JP6783231B2 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP6783231B2
JP6783231B2 JP2017526334A JP2017526334A JP6783231B2 JP 6783231 B2 JP6783231 B2 JP 6783231B2 JP 2017526334 A JP2017526334 A JP 2017526334A JP 2017526334 A JP2017526334 A JP 2017526334A JP 6783231 B2 JP6783231 B2 JP 6783231B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
semiconductor substrate
type impurity
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017526334A
Other languages
English (en)
Other versions
JPWO2017002747A1 (ja
Inventor
康志 吉川
康志 吉川
伊坂 隆行
隆行 伊坂
親扶 岡本
親扶 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2017002747A1 publication Critical patent/JPWO2017002747A1/ja
Application granted granted Critical
Publication of JP6783231B2 publication Critical patent/JP6783231B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光電変換素子に関する。
太陽光などの光エネルギーを電気エネルギーに変換する光電変換素子は、近年、地球環境問題の観点から、次世代のエネルギー源としての期待が高まっている。光エネルギーを電気エネルギーに変換する効率を向上させるために、光の入射面と反対側である裏面のみに電極が形成されたバックコンタクト構造を有する光電変換素子が知られている(たとえば特許文献1参照)。
米国特許第4927770号明細書
しかし、特許文献1に記載された光電変換素子では、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアを収集する効率が十分に高いとはいえない。
本発明は、上記の課題を鑑みてなされたものであり、その目的は、向上されたキャリアの収集効率を有する光電変換素子を提供することである。
本発明の光電変換素子は、光が入射する第1の表面と、第1の表面と反対側の第2の表面と、第1の表面と第2の表面とを接続する側面とを有する半導体基板を備える。半導体基板は、第2の表面内に、n型不純物拡散層と、p型不純物拡散層とを含む。本実施の形態の光電変換素子は、さらに、第2の表面上に設けられた複合パッシベーション膜を備える。複合パッシベーション膜は、負の固定電荷を有する第1のパッシベーション膜と、第1のパッシベーション膜を保護する保護膜とを含む。本実施の形態の光電変換素子は、さらに、第2の表面上に設けられるとともに、n型不純物拡散層と電気的に接続される第1の電極と、第2の表面上に設けられるとともに、p型不純物拡散層と電気的に接続される第2の電極とを備える。
本発明の光電変換素子によれば、向上されたキャリアの収集効率を有する光電変換素子を提供することができる。
半導体基板の第2の面側から見た、実施の形態1に係る光電変換素子の模式的な平面図である。 実施の形態1に係る光電変換素子の、図1に示す断面線II−IIにおける概略断面図である。 実施の形態1に係る光電変換素子の製造方法における一工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図3に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図4に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図5に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図6に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図7に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図8に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図9に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図10に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図11に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図12に示す工程の次工程を示す概略断面図である。 実施の形態1に係る光電変換素子の製造方法における、図13に示す工程の次工程を示す概略断面図である。 実施の形態1の変形例に係る光電変換素子の概略断面図である。 実施の形態2に係る光電変換素子の概略断面図である。 実施の形態3に係る光電変換素子の概略断面図である。 実施の形態4に係る光電変換素子の概略断面図である。 実施の形態5に係る光電変換素子の概略断面図である。 実施の形態6に係る光電変換素子の概略断面図である。 実施の形態6に係る光電変換素子の製造方法における一工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図21に示す工程の次工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図22に示す工程の次工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図23に示す工程の次工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図24に示す工程の次工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図25に示す工程の次工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図26に示す工程の次工程を示す概略断面図である。 実施の形態6に係る光電変換素子の製造方法における、図27に示す工程の次工程を示す概略断面図である。 実施の形態7に係る光電変換素子の概略断面図である。 実施の形態8に係る光電変換素子の概略断面図である。 実施の形態9に係る光電変換素子の概略断面図である。 実施の形態9に係る光電変換素子の製造方法における一工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図32に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図33に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図34に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図35に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図36に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図37に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図38に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図39に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図40に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図41に示す工程の次工程を示す概略断面図である。 実施の形態9に係る光電変換素子の製造方法における、図42に示す工程の次工程を示す概略断面図である。 実施の形態10に係る光電変換素子の概略断面図である。 実施の形態10に係る光電変換素子の製造方法における一工程を示す概略断面図である。 実施の形態10に係る光電変換素子の製造方法における、図45に示す工程の次工程を示す概略断面図である。 実施の形態10に係る光電変換素子の製造方法における、図46に示す工程の次工程を示す概略断面図である。 実施の形態11に係る光電変換素子の概略断面図である。 実施の形態12に係る光電変換素子の概略断面図である。
(実施の形態1)
図1及び図2を参照して、実施の形態1に係る光電変換素子1を説明する。
本実施の形態の光電変換素子1は、n型不純物拡散層13とp型不純物拡散層12とを含む半導体基板10と、複合パッシベーション膜6と、n型不純物拡散層13と電気的に接続される第1の電極19と、p型不純物拡散層12と電気的に接続される第2の電極18とを、主に備える。
半導体基板10は、n型またはp型の半導体基板であってもよい。半導体基板10は、多結晶シリコン基板または単結晶シリコン基板であってもよい。本実施の形態では、半導体基板10として、n型のシリコン基板が用いられている。半導体基板10は、第1の表面10aと、第1の表面10aと反対側の第2の表面10bと、第1の表面10aと第2の表面10bとを接続する側面(例えば、第1の側面10c、第2の側面10d)とを有する。本明細書において、半導体基板10の側面は、第1の側面10c及び第2の側面10d以外の他の側面(例えば、第1の側面10c及び第2の側面10dに交差する方向(図1の左右方向)に延在する側面)も含む。半導体基板10の第1の表面10a側から光電変換素子1に光が入射する。半導体基板10の第1の表面10aは、受光面である。半導体基板10の第1の表面10aに凹凸構造11が形成されてもよい。光の入射面である半導体基板10の第1の表面10a上に凹凸を設けることによって、半導体基板10の第1の表面10aにおいて光が反射することが抑制されて、より多くの光が光電変換素子1内に入射され得る。そのため、光電変換素子1において光エネルギーを電気エネルギーに変換する効率が向上され得る。
半導体基板10は、第2の表面10b内に、n型不純物拡散層13と、p型不純物拡散層12とを含む。n型不純物拡散層13は、半導体基板10に、燐などのn型不純物を拡散させることによって形成された層である。p型不純物拡散層12は、半導体基板10に、ホウ素などのp型不純物を拡散させることによって形成された層である。
半導体基板10の第1の表面10aの上に、第2のパッシベーション膜16が設けられてもよい。第2のパッシベーション膜16は、窒化珪素(SiNx4)または水素化窒化珪素(SiNx4:H)で形成されてもよい。第2のパッシベーション膜16は、半導体基板10の屈折率と、空気などの光電変換素子1の周囲に存在する物質の屈折率との間の屈折率を有してもよい。第2のパッシベーション膜16が、半導体基板10の屈折率と、空気などの光電変換素子1の周囲に存在する物質の屈折率との間の屈折率を有することによって、第2のパッシベーション膜16は、反射防止膜として機能し得る。そのため、光電変換素子1における光の反射率が低減されて、より多くの光が光電変換素子1内に入射され得る。光電変換素子1において光エネルギーを電気エネルギーに変換する効率を向上させることができる。
半導体基板10の第2の表面10b上に、複合パッシベーション膜6が設けられている。本実施の形態では、複合パッシベーション膜6は、負の固定電荷を有する第1のパッシベーション膜14と、第1のパッシベーション膜14を保護する保護膜15とを含む。半導体基板10の第2の表面10b上において、保護膜15は、第1のパッシベーション膜14を覆う。第1のパッシベーション膜14は、半導体基板10の第2の表面10bと保護膜15との間に位置する。
負の固定電荷を有する第1のパッシベーション膜14は、酸化アルミニウム(AlOx1)または水素化酸化アルミニウム(AlOx1:H)で形成されてもよい。第1のパッシベーション膜14は、例えば、3nm以上100nm以下の膜厚を有してもよい。
保護膜15は、第1のパッシベーション膜14上に設けられて、第1のパッシベーション膜14を保護する。保護膜15は、光電変換素子1の外部から加わる衝撃等から、第1のパッシベーション膜14を機械的に保護してもよい。保護膜15は、光電変換素子1の製造プロセス中及び製造後において、第1のパッシベーション膜14が半導体基板10から剥がれることを防止してもよい。保護膜15は、酸化珪素(SiOx3)、窒化珪素(SiNx3)、または水素化窒化珪素(SiNx3:H)で形成されてもよい。
半導体基板10の第2の表面10b上に、第1の電極19と第2の電極18とが設けられる。第1の電極19は、複合パッシベーション膜6に設けられた貫通孔17(図14を参照)を通じて、n型不純物拡散層13と電気的に接続される。第1の電極19は、n型電極として機能する。第2の電極18は、複合パッシベーション膜6に設けられた貫通孔17(図14を参照)を通じて、p型不純物拡散層12と電気的に接続される。第2の電極18は、p型電極として機能する。第1の電極19及び第2の電極18は、光が入射する第1の表面10aと反対側の第2の表面10b上に設けられているので、光電変換素子1に入射する光が、第1の電極19及び第2の電極18によって反射されることがない。本実施の形態の光電変換素子1は、裏面接合型の光電変換素子である。図1および図2には、p型不純物拡散層12及びn型不純物拡散層13と、第1の電極19及び第2の電極18とはそれぞれ1つしか示されていないが、光電変換素子1は、p型不純物拡散層12、n型不純物拡散層13、第1の電極19及び第2の電極18をそれぞれ複数備えてもよい。図1および図2に示される光電変換素子1では、第2の表面10bの第1の側面10c側に第1の電極19が形成され、第2の表面10bの第2の側面10d側の端部に第2の電極18が形成されている。しかし、第2の表面10bの第1の側面10c側の端部及び第2の表面10bの第2の側面10d側の端部に第1の電極19が形成され、第1の電極19の間の第2の表面10b上に第2の電極18が形成されてもよいし、第2の表面10bの第1の側面10c側の端部及び第2の表面10bの第2の側面10d側の端部に第2の電極18が形成され、第2の電極18の間の第2の表面10b上に第1の電極19が形成されてもよい。
図3から図14を参照して、本実施の形態に係る光電変換素子1の製造方法の一例について説明する。
図3を参照して、半導体基板10が準備される。半導体基板10は、第1の表面10aと、第1の表面10aと反対側の第2の表面10bと、第1の表面10aと第2の表面10bとを接続する側面(第1の側面10c、第2の側面10d)とを有する。本実施の形態では、半導体基板10は、n型シリコン基板である。半導体基板10として、たとえば、半導体ウエハをスライスして半導体基板10を得る際に生じたスライスダメージが除去された半導体基板が用いられる。ここで、半導体基板10のスライスダメージを除去することは、半導体基板10の表面をフッ化水素水溶液と硝酸との混酸または水酸化ナトリウムなどのアルカリ水溶液などでエッチングを行なうことにより実施してもよい。
図4を参照して、半導体基板10の第1の表面10aに凹凸構造11が形成される。例えば、n型シリコン基板である半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10dがエッチング保護膜4によって被覆される。エッチング保護膜4として、酸化シリコン膜が例示され得る。本実施の形態では、化学気相堆積(CVD)法またはスピンオングラス(SOG)法などを用いて、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10d上に、酸化シリコン膜を形成することによって、エッチング保護膜4が形成される。エッチング保護膜4は、スチーム酸化法などによって、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10dを酸化することによって形成されてもよい。エッチング保護膜4の厚さは特に限定されないが、たとえば300nm以上800nm以下の厚さとすることができる。エッチング保護膜4として、窒化シリコン膜、または酸化シリコン膜と窒化シリコン膜の積層体などもまた用いられ得る。ここで、窒化シリコン膜は、たとえば、プラズマCVD法または常圧CVD法などで形成され得る。窒化シリコン膜の厚さは特に限定されないが、たとえば60nm以上100nm以下の厚さとすることができる。
それから、n型シリコン基板である半導体基板10の第1の表面10aをエッチングすることによって、半導体基板10の第1の表面10aに凹凸構造11が形成されてもよい。このエッチングは、水酸化カリウム(KOH)または水酸化ナトリウム(NaOH)のようなアルカリ水溶液にイソプロピルアルコールを添加した液を、たとえば70℃以上80℃以下に加熱したものなどを用いて行ってもよい。その後、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10d上のエッチング保護膜4がフッ化水素水溶液などを用いて除去される。
図5を参照して、半導体基板10の第1の表面10a、第2の表面10b、第1の側面10c及び第2の側面10d上に、第1の拡散防止マスク5が形成される。第1の拡散防止マスク5は、p型不純物が半導体基板10に拡散することを防止するためのマスクである。第1の拡散防止マスク5として、酸化シリコン膜が例示され得る。第1の拡散防止マスク5は、スチーム酸化法などによって、半導体基板10の第1の表面10a、第2の表面10b、第1の側面10c及び第2の側面10dを熱酸化することによって形成されてもよい。第1の拡散防止マスク5の厚さは特に限定されないが、たとえば100nm以上300nm以下の厚さとすることができる。第1の拡散防止マスク5として、窒化シリコン膜、または酸化シリコン膜と窒化シリコン膜の積層体などが用いられ得る。ここで、窒化シリコン膜は、たとえば、プラズマCVD法または常圧CVD法などで形成され得る。窒化シリコン膜の厚さは特に限定されないが、たとえば40nm以上80nm以下の厚さとすることができる。
図6を参照して、半導体基板10の第2の表面10b上の第1の拡散防止マスク5上の一部に、第1の拡散防止マスク5をエッチングすることができる成分を含有する第1のエッチングペースト26が印刷される。第1のエッチングペースト26は、たとえばスクリーン印刷法などによって、p型不純物拡散層12が形成される箇所に相当する第1の拡散防止マスク5の部分の上に形成される。第1のエッチングペースト26に含まれる、第1の拡散防止マスク5をエッチングする成分として、リン酸が例示され得る。第1のエッチングペースト26は、さらに、水、有機溶媒および増粘剤を含んでいる。
図7を参照して、第1のエッチングペースト26が形成された半導体基板10に第1の加熱処理を施して、半導体基板10の第2の表面10b上の第1の拡散防止マスク5のうち第1のエッチングペースト26が形成された部分が、エッチングされて除去される。第1の加熱処理の後、半導体基板10の第2の表面10bを水で洗浄することによって、第1のエッチングペースト26が除去される。このようにして、図7に示すように、第1の拡散防止マスク5の一部が除去されて、第1の拡散防止マスク5の一部に開口部5aが形成される。第1の拡散防止マスク5の開口部5aにおいて、半導体基板10の第2の表面10bの一部が第1の拡散防止マスク5から露出する。
図8を参照して、第1の拡散防止マスク5から露出した半導体基板10の第2の表面10bにp型不純物を拡散させて、p型不純物拡散層12が形成される。例えば、BBr3を用いた気相拡散によって、第1の拡散防止マスク5から露出した半導体基板10の第2の表面10bに、p型不純物であるボロンを、950℃の温度で30分間拡散させて、p型不純物拡散層12が形成されてもよい。なお、p型不純物拡散層12は、第1の拡散防止マスク5から露出した半導体基板10の第2の表面にボロンを含む溶剤を塗布し、ボロンを含む溶剤が塗布された半導体基板10を加熱することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第1の拡散防止マスク5が除去される。
図9を参照して、半導体基板10の第1の表面10a、第2の表面10b、第1の側面10c及び第2の側面10d上に、第2の拡散防止マスク7が形成される。第2の拡散防止マスク7は、n型不純物が半導体基板10に拡散することを防止するためのマスクである。第2の拡散防止マスク7は、半導体基板10の第2の表面10b上において、p型不純物拡散層12を覆う。第2の拡散防止マスク7は、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)も覆う。半導体基板10の第2の表面10b上において、第2の拡散防止マスク7は開口部7aを有する。半導体基板10の第2の表面10bのうち、第2の拡散防止マスク7の開口部7aに対応する領域は、第2の拡散防止マスク7から露出している。半導体基板10の第2の表面10b側から平面視したときに、第2の拡散防止マスク7の開口部7aは、p型不純物拡散層12と重ならない位置に形成される。
第2の拡散防止マスク7は、マスキングペーストを用いて形成されてもよい。例えば、半導体基板10の第1の表面10a、第2の表面10b、第1の側面10c及び第2の側面10d上に、二酸化珪素(SiO2)前駆体を含有するマスキングペーストがスクリーン印刷などの方法によって施される。マスキングペーストは、半導体基板10の第2の表面10b上において、開口部を有する。マスキングペーストが施された半導体基板10を、例えば、800℃以上1000℃以下の温度で、10分以上60分以下の時間加熱して、マスキングペーストを焼結することによって、第2の拡散防止マスク7が形成される。マスキングペーストを用いることによって開口部7aを有する第2の拡散防止マスク7を形成することは、フォトリソグラフィを用いて開口部7aを有する第2の拡散防止マスク7を形成することよりも、安価に光電変換素子1を製造することを可能にする。
図10を参照して、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bにn型不純物を拡散させて、n型不純物拡散層13が形成される。例えば、POCl3を用いた気相拡散によって、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bにn型不純物である燐を、800℃の温度で30分間拡散させて、n型不純物拡散層13が形成されてもよい。なお、n型不純物拡散層13は、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bに燐を含む溶剤を塗布し、燐を含む溶剤が塗布された半導体基板10を加熱することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第2の拡散防止マスク7が除去される。
図11及び図12を参照して、p型不純物拡散層12及びn型不純物拡散層13が拡散された半導体基板10の第2の表面10b上に、複合パッシベーション膜6が形成される。具体的には、図11を参照して、p型不純物拡散層12及びn型不純物拡散層13が拡散された半導体基板10の第2の表面10b上に、第1のパッシベーション膜14が形成される。第1のパッシベーション膜14は、負の固定電荷を有する材料で形成されている。第1のパッシベーション膜14は、酸化アルミニウム(AlOx1)または水素化酸化アルミニウム(AlOx1:H)で形成されてもよい。第1のパッシベーション膜14は、原子層堆積(ALD)法、スパッタ法またはプラズマCVD法などを用いて形成されてもよい。図12を参照して、第1のパッシベーション膜14上に、保護膜15が形成される。保護膜15は、第1のパッシベーション膜14を保護する。保護膜15は、酸化珪素(SiOx3)、窒化珪素(SiNx3)または水素化窒化珪素(SiNx3:H)で形成されてもよい。保護膜15は、化学気相堆積(CVD)法またはスパッタ法などを用いて形成されてもよい。
図13を参照して、半導体基板10の第1の表面10a上に、第2のパッシベーション膜16が形成されてもよい。第2のパッシベーション膜16は、化学気相堆積(CVD)法またはスパッタ法などを用いて形成されてもよい。第2のパッシベーション膜16は、半導体基板10の屈折率と、空気などの光電変換素子1の周囲に存在する物質の屈折率との間の屈折率を有し、反射防止膜として機能してもよい。
図14を参照して、複合パッシベーション膜6に貫通孔17が形成される。それから、複合パッシベーション膜6上に、第1の電極19及び第2の電極18が形成される。第2の電極18は、貫通孔17内に形成されて、p型不純物拡散層12と電気的に接続される。第1の電極19は、貫通孔17内に形成されて、n型不純物拡散層13と電気的に接続される。こうして、図1及び図2に示される本実施の形態の光電変換素子1が製造され得る。
本実施の形態の光電変換素子1の効果を説明する。
本実施の形態の光電変換素子1は、光が入射する第1の表面10aと、第1の表面10aと反対側の第2の表面10bと、第1の表面10aと第2の表面10bとを接続する側面(例えば、第1の側面10c、第2の側面10d)とを有する半導体基板10を備える。半導体基板10は、第2の表面10b内に、n型不純物拡散層13と、p型不純物拡散層12とを含む。本実施の形態の光電変換素子1は、さらに、第2の表面10b上に設けられた複合パッシベーション膜6を備える。複合パッシベーション膜6は、負の固定電荷を有する第1のパッシベーション膜14と、第1のパッシベーション膜14を保護する保護膜15とを含む。本実施の形態の光電変換素子1は、さらに、半導体基板10の第2の表面10b上に設けられるとともに、n型不純物拡散層13と電気的に接続される第1の電極19と、半導体基板10の第2の表面10b上に設けられるとともに、p型不純物拡散層12と電気的に接続される第2の電極18とを備える。
本実施の形態の光電変換素子1では、半導体基板10の第2の表面10b上に複合パッシベーション膜6が設けられ、複合パッシベーション膜6は、負の固定電荷を有する第1のパッシベーション膜14を含む。負の固定電荷を有する第1のパッシベーション膜14は、p型不純物拡散層12の表面において、光電変換素子1に光が照射されることによって光電変換素子1内に生成されたキャリアが再結合することを抑制するとともに、第2の電極18にキャリアを効率的に収集することができる。本実施の形態の光電変換素子1によれば、向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子1では、半導体基板10の第2の表面10b上に複合パッシベーション膜6が設けられる。複合パッシベーション膜6は、第1のパッシベーション膜14を保護する保護膜15を含む。保護膜15は、光電変換素子1の外部から加わる衝撃等から、第1のパッシベーション膜14を機械的に保護することができる。保護膜15は、光電変換素子1の製造プロセス中及び製造後において、第1のパッシベーション膜14が半導体基板10から剥がれることを防止することができる。そのため、膜質の高い第1のパッシベーション膜14が得られる。本実施の形態の光電変換素子1によれば、向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子1では、第1の電極19及び第2の電極18は、光が入射する第1の表面10aと反対側の半導体基板10の第2の表面10b上に設けられる。すなわち、本実施の形態の光電変換素子1は、裏面接合型の光電変換素子である。光電変換素子1に入射する光は、第1の電極19及び第2の電極18によって反射されることがない。本実施の形態の光電変換素子1によれば、光電変換素子1において光エネルギーを電気エネルギーに変換する効率が向上され得る。
本実施の形態の光電変換素子1は、半導体基板10の第1の表面10a上に、第2のパッシベーション膜16をさらに備えてもよい。本実施の形態の光電変換素子1は、半導体基板10の第1の表面10a上に、第2のパッシベーション膜16を備えるため、光電変換素子2に光が照射されることによって光電変換素子2内に生成されたキャリアが半導体基板10の第1の表面10aにおいて再結合することが防止され得る。本実施の形態の光電変換素子1によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子1では、第2のパッシベーション膜16は、半導体基板10の屈折率と、空気などの光電変換素子1の周囲に存在する物質の屈折率との間の屈折率を有してもよい。第2のパッシベーション膜16が、半導体基板10の屈折率と、空気などの光電変換素子1の周囲に存在する物質の屈折率との間の屈折率を有することによって、第2のパッシベーション膜16は、反射防止膜として機能し得る。上記のような屈折率を有する第2のパッシベーション膜16は、半導体基板10の第1の表面10aにおいて入射光が反射されることを抑制して、より多くの光を光電変換素子1内に入射させることができる。本実施の形態の光電変換素子1によれば、光電変換素子1において光エネルギーを電気エネルギーに変換する効率が向上され得る。
図15に示すように、本実施の形態の変形例の光電変換素子1aでは、半導体基板10の第2の表面10bと第1のパッシベーション膜14との間に、第2の誘電体膜23が設けられてもよい。第2の誘電体膜は、半導体基板10の第2の表面10bを酸化することによって形成されてもよい。第2の誘電体膜23として、二酸化シリコン(SiO2)が例示され得る。第1のパッシベーション膜14によるパッシベーション効果がなくならないように、第2の誘電体膜23の材料と厚さとが選択されることが望ましい。
(実施の形態2)
図16を参照して、実施の形態2に係る光電変換素子1bについて説明する。本実施の形態の光電変換素子1aは、基本的には、図1及び図2に示す実施の形態1の光電変換素子1と同様の構成を備え、同様の効果を得ることができるが、主に以下の点で異なる。
本実施の形態では、半導体基板10の第1の表面10a上に表面電界層21が設けられている。表面電界層21は、n型不純物拡散層であってもよい。表面電界層21は、例えばPOCl3を用いた気相拡散によって、半導体基板10の第1の表面10aにn型不純物であるリンを、750℃の温度で30分間拡散させることによって形成してもよい。表面電界層21は、半導体基板10内に生成されて、受光面である第1の表面10a側に向かって拡散するキャリアが、第1の表面10aの近くで再結合することを抑制する表面電界(FSF)障壁として機能する。本実施の形態の光電変換素子1bによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(実施の形態3)
図17を参照して、実施の形態3に係る光電変換素子1cについて説明する。本実施の形態の光電変換素子1bは、基本的には、図16に示す実施の形態2の光電変換素子1bと同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子1cは、第2のパッシベーション膜16上に、第1の誘電体膜22をさらに備える。第2のパッシベーション膜16は、第1の誘電体膜22の屈折率よりも大きく、半導体基板10の屈折率よりも小さな屈折率を有する。第1の誘電体膜22は、窒化珪素(SiNx5)、水素化窒化珪素(SiNx5:H)または酸化珪素(SiOx5)で形成されてもよい。
本実施の形態の光電変換素子1cの効果を説明する。本実施の形態の光電変換素子1cの効果は、実施の形態2の光電変換素子1bの効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子1cは、第2のパッシベーション膜16上に、誘電体膜(第1の誘電体膜22)をさらに備えてもよい。第2のパッシベーション膜16は、誘電体膜(第1の誘電体膜22)の屈折率よりも大きく、半導体基板10の屈折率よりも小さな屈折率を有する。半導体基板10と光電変換素子1cの外部との間の屈折率がゆるやかに変化するため、光電変換素子1cにおける光の反射率がさらに低減されて、より多くの光が光電変換素子1c内に入射され得る。本実施の形態の光電変換素子1cによれば、光エネルギーを電気エネルギーに変換する効率がさらに向上された光電変換素子が提供され得る。
(実施の形態4)
図18を参照して、実施の形態4に係る光電変換素子1dについて説明する。本実施の形態の光電変換素子1dは、基本的には、図1及び図2に示す実施の形態1の光電変換素子1と同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子1dでは、複合パッシベーション膜6は、負の固定電荷を有さない第3のパッシベーション膜14dをさらに含む。半導体基板10の第2の表面10bにおけるp型不純物拡散層12の上に、第1のパッシベーション膜14が設けられ、半導体基板10の第2の表面10bにおけるn型不純物拡散層13の上に、第3のパッシベーション膜14dが設けられる。半導体基板10がn型を有する場合には、p型不純物拡散層12及びn型不純物拡散層13が形成されていない半導体基板10の第2の表面10b上にも、負の固定電荷を有さない第3のパッシベーション膜14dが設けられてもよい。負の固定電荷を有さない第3のパッシベーション膜14dとして、酸化ケイ素(SiO2)が例示され得る。
本実施の形態の光電変換素子1dの効果を説明する。本実施の形態の光電変換素子1dの効果は、実施の形態1の光電変換素子1の効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子1dでは、半導体基板10の第2の表面10bにおけるp型不純物拡散層12の上に、負の固定電荷を有する第1のパッシベーション膜14が設けられている。そのため、半導体基板10の第1の表面10a側から入射する光によって半導体基板10内に生成されたキャリア(正孔)は、p型不純物拡散層12に電気的に接続された第2の電極18に効率的に収集され得る。
本実施の形態の光電変換素子1dでは、半導体基板10の第2の表面10bにおけるn型不純物拡散層13の上に、負の固定電荷を有さない第3のパッシベーション膜14dが設けられている。負の固定電荷を有する膜がn型不純物拡散層13上に位置すると、負の固定電荷を有する膜における負の固定電荷の密度と、n型不純物拡散層13におけるn型不純物の濃度との条件によっては、負の固定電荷を有する膜とn型不純物拡散層13との界面に反転層が形成され得る。そのため、光電変換素子の出力が低下するおそれがある。これに対し、本実施の形態の光電変換素子1dでは、半導体基板10の第2の表面10bにおけるn型不純物拡散層13上に、負の固定電荷を有しない第3のパッシベーション膜14dが設けられているため、第3のパッシベーション膜14dとn型不純物拡散層13との界面に反転層が形成されることが防止され得る。本実施の形態の光電変換素子1dによれば、向上された出力を有する光電変換素子が提供され得る。
また、半導体基板10がn型を有する場合には、p型不純物拡散層12及びn型不純物拡散層13が形成されていない半導体基板10の第2の表面10b上にも、負の固定電荷を有しない第3のパッシベーション膜14dが設けられてもよい。そのため、第3のパッシベーション膜14dと半導体基板10との界面においても反転層が形成されることが防止され得る。本実施の形態の光電変換素子1dによれば、さらに向上された出力を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子1dでは、負の固定電荷を有しない第3のパッシベーション膜14dは、正の固定電荷を有する誘電体膜であってもよい。第3のパッシベーション膜14dが正の固定電荷を有するため、半導体基板10の第1の表面10a側から入射する光によって半導体基板10内に生成されたキャリア(電子)は、n型不純物拡散層13に電気的に接続された第1の電極19に効率的に収集され得る。本実施の形態の光電変換素子1dによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(実施の形態5)
図19を参照して、実施の形態5に係る光電変換素子1eについて説明する。本実施の形態の光電変換素子1eは、基本的には、図1及び図2に示す実施の形態1の光電変換素子1と同様の構成を備え、同様の効果を得ることができるが、主に以下の点で異なる。
本実施の形態の光電変換素子1eでは、p型不純物拡散層12は、n型不純物拡散層13に接している。そのため、p型不純物拡散層12またはn型不純物拡散層13と、p型不純物拡散層12及びn型不純物拡散層13が形成されていない半導体基板10の領域との界面に形成されるpn接合の面積が増加し得る。例えば、半導体基板10がn型を有する場合には、p型不純物拡散層12の面積が増加するため、pn接合の面積が増加し得る。半導体基板10がp型を有する場合には、n型不純物拡散層13の面積が増加するため、pn接合の面積が増加し得る。本実施の形態の光電変換素子1eによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
実施の形態1から実施の形態5のうちの複数の実施の形態を適宜組み合わせて、実施の形態1から実施の形態5の変形例としてもよい。一つの変形例として、実施の形態4における負の固定電荷を有さない第3のパッシベーション膜14dを有する複合パッシベーション膜6が、実施の形態2、3、5の光電変換素子1b、1c、1eに適用されてもよい。別の変形例として、実施の形態2から実施の形態4の光電変換素子1b、1c、1dにおけるp型不純物拡散層12が、実施の形態5の光電変換素子1eのように、n型不純物拡散層13に接してもよい。さらに別の変形例として、実施の形態3の光電変換素子1cにおいて、表面電界層21が省略されてもよい。
(実施の形態6)
図20を参照して、実施の形態6に係る光電変換素子2について説明する。本実施の形態の光電変換素子2は、基本的には、図16に示す実施の形態2の光電変換素子1bと同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子2では、半導体基板10は、n型不純物拡散層13を、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部にも含む。n型不純物拡散層13が含まれる半導体基板10の側面は、第1の側面10c及び第2の側面10d以外の他の側面であってもよい。n型不純物拡散層13を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)における、半導体基板10の第2の表面10bからのn型不純物拡散層13の厚さd1は、半導体基板10の第2の表面10b側から平面視したときに、n型不純物拡散層13と電気的に接続される第1の電極19と重なる領域における、半導体基板10の第2の表面10bからのn型不純物拡散層13の厚さd2よりも大きくてもよい。
本実施の形態の光電変換素子2は、半導体基板10の第1の表面10a上に、第2のパッシベーション膜16をさらに備えてもよい。第2のパッシベーション膜16は、n型不純物拡散層13を含む半導体基板10の側面(第1の側面10c、第2の側面10d)上にさらに設けられてもよい。
図21から図28を参照して、本実施の形態の光電変換素子2の製造方法を説明する。本実施の形態の光電変換素子2の製造方法は、基本的には、図3から図14に示す実施の形態1の光電変換素子1の製造方法と同様の工程を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子2の製造方法は、図3から図8に示される工程を備える。図3及び図4に示される工程により、半導体基板10の第1の表面10aに凹凸構造11が形成される。図5から図8に示される工程により、半導体基板10の第2の表面10bの一部に、p型不純物拡散層12が形成される。その後、フッ化水素水溶液などを用いて、第1の拡散防止マスク5が形成される。
それから、図21を参照して、半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)上に、第1のマスク8が形成される。第1のマスク8の材料として、二酸化珪素(SiO2)が例示され得る。半導体基板10の第2の表面10b及び側面上に第1のマスク8の材料を蒸着すること、または、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10dを熱酸化することによって、第1のマスク8が形成されてもよい。
図22を参照して、第1のマスク8が形成されていない半導体基板10の第1の表面10aに、表面電界層21が形成される。表面電界層21は、n型不純物拡散層であってもよい。表面電界層21は、例えばPOCl3を用いた気相拡散によって、半導体基板10の第1の表面10aにn型不純物であるリンを、750℃の温度で30分間拡散させることによって形成されてもよい。表面電界層21は、半導体基板10の第1の表面10aにn型半導体層を蒸着することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第1のマスク8が除去される。
図23を参照して、半導体基板10の第1の表面10a及び第2の表面10b上に、第2の拡散防止マスク7が形成される。第2の拡散防止マスク7は、半導体基板10の第2の表面10b上において、p型不純物拡散層12を覆う。半導体基板10の第2の表面10bのうちp型不純物拡散層12が形成されていない領域、半導体基板の側面(例えば、第1の側面10c、第2の側面10d)は、第2の拡散防止マスク7から露出している。本実施の形態の第2の拡散防止マスク7は、実施の形態1の第2の拡散防止マスク7と同じ材料と同じ形成方法を用いて、形成されてもよい。例えば、本実施の形態の第2の拡散防止マスク7は、マスキングペーストを用いて形成されてもよい。具体的には、半導体基板10の第2の表面10bの一部及び第1の表面10a上に、マスキングペーストがスクリーン印刷などの方法によって施される。マスキングペーストが施された半導体基板10を、例えば、800℃以上1000℃以下の温度で、10分以上60分以下の時間加熱して、マスキングペーストを焼結することによって、第2の拡散防止マスク7が形成される。マスキングペーストを用いて第2の拡散防止マスク7を形成することは、フォトリソグラフィを用いて第2の拡散防止マスク7を形成することよりも、安価に光電変換素子2を製造することを可能にする。
図24を参照して、第2の拡散防止マスク7から露出した、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10dに、n型不純物を拡散させて、n型不純物拡散層13が形成される。本実施の形態のn型不純物拡散層13は、実施の形態1のn型不純物拡散層13と同じ材料と同じ形成方法を用いて形成されてもよい。例えば、POCl3を用いた気相拡散によって、第2の拡散防止マスク7から露出した半導体基板10の露出した第2の表面10b、第1の側面10c及び第2の側面10dにn型不純物である燐を、800℃の温度で30分間拡散させて、n型不純物拡散層13が形成されてもよい。なお、n型不純物拡散層13は、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bに燐を含む溶剤を塗布し、燐を含む溶剤が塗布された半導体基板10を加熱することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第2の拡散防止マスク7が除去される。
図25及び図26を参照して、p型不純物拡散層12及びn型不純物拡散層13が拡散された半導体基板10の第2の表面10b上に、複合パッシベーション膜6が形成される。具体的には、図25を参照して、p型不純物拡散層12及びn型不純物拡散層13が拡散された半導体基板10の第2の表面10b上に、第1のパッシベーション膜14が形成される。第1のパッシベーション膜14は、負の固定電荷を有する材料で形成されている。第1のパッシベーション膜14は、酸化アルミニウム(AlOx1)または水素化酸化アルミニウム(AlOx1:H)で形成されてもよい。第1のパッシベーション膜14は、原子層堆積(ALD)法、スパッタ法またはプラズマCVD法などを用いて形成されてもよい。図26を参照して、第1のパッシベーション膜14上に、保護膜15が形成される。保護膜15は、第1のパッシベーション膜14を保護する。保護膜15は、酸化珪素(SiOx3)、窒化珪素(SiNx3)または水素化窒化珪素(SiNx3:H)で形成されてもよい。保護膜15は、化学気相堆積(CVD)法またはスパッタ法などを用いて形成されてもよい。
図27を参照して、半導体基板10の第1の表面10a及び側面(例えば、第1の側面10c、第2の側面10d)上に、第2のパッシベーション膜16が形成されてもよい。より特定的には、半導体基板10の第1の表面10a上に形成された表面電界層21及び半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上に、第2のパッシベーション膜16が形成されてもよい。第2のパッシベーション膜16は、化学気相堆積(CVD)法またはスパッタ法などを用いて形成されてもよい。第2のパッシベーション膜16は、半導体基板10の屈折率と、空気などの光電変換素子2の周囲に存在する物質の屈折率との間の屈折率を有し、反射防止膜として機能してもよい。
図28を参照して、複合パッシベーション膜6に貫通孔17が形成される。それから、複合パッシベーション膜6上に、第1の電極19及び第2の電極18が形成される。第2の電極18は、貫通孔17内に形成されて、p型不純物拡散層12と電気的に接続される。第1の電極19は、貫通孔17内に形成されて、n型不純物拡散層13と電気的に接続される。こうして、図20に示される本実施の形態の光電変換素子2が製造され得る。
本実施の形態の光電変換素子2の効果を説明する。本実施の形態の光電変換素子2の効果は、実施の形態2の光電変換素子1bの効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子2では、半導体基板10は、n型不純物拡散層13を、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部にも含む。そのため、本実施の形態の光電変換素子2によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
例えば、半導体基板10がn型を有する場合には、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部に設けられたn型不純物拡散層13は、側面電界層として機能してもよい。半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部に設けられたn型不純物拡散層13による電界効果により、光電変換素子2に入射される光によって光電変換素子2内に生成されたキャリアが半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において再結合することが防がれ得る。そのため、光電変換素子2に入射される光によって半導体基板10内に生成されたキャリアは、効率的に収集され得る。例えば、半導体基板10がp型を有する場合には、pn接合が半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)付近にも形成されて、pn接合の面積が増加する。そのため、光電変換素子2に入射される光によって半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)付近に生成されたキャリアは効率的に収集され得る。
本実施の形態の光電変換素子2では、n型不純物拡散層13を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)における、半導体基板10の第2の表面10bからのn型不純物拡散層13の厚さd1は、半導体基板10の第2の表面10b側から平面視したときに、第1の電極19と重なる領域における、半導体基板10の第2の表面10bからのn型不純物拡散層13の厚さd2よりも大きくてもよい。半導体基板10の厚さ方向(第1の表面10aと第2の表面10bとが対向する方向)に、n型不純物拡散層13が形成される領域は拡大され得る。そのため、半導体基板10の第1の表面10aの近くで生成されたキャリアは効率的に収集され得る。本実施の形態の光電変換素子2によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子2は、半導体基板10の第1の表面10a上に設けられる第2のパッシベーション膜16をさらに備えてもよい。半導体基板10の第1の表面10a上に、第2のパッシベーション膜16を備えるため、光電変換素子2に光が照射されることによって光電変換素子2内に生成されたキャリアが半導体基板10の第1の表面10aにおいて再結合することが防止され得る。本実施の形態の光電変換素子2によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子2では、第2のパッシベーション膜16は、n型不純物拡散層13を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上にさらに設けられてもよい。本実施の形態の光電変換素子2では、第2のパッシベーション膜16が、n型不純物拡散層13を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上に設けられるため、光電変換素子2に光が照射されることによって光電変換素子2内に生成されたキャリアが半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において再結合することが防止され得る。本実施の形態の光電変換素子2によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(実施の形態7)
図29を参照して、実施の形態7に係る光電変換素子2aについて説明する。本実施の形態の光電変換素子2aは、基本的には、図20に示す実施の形態6の光電変換素子2と同様の構成を備え、同様の効果を得ることができるが、主に以下の点で異なる。
本実施の形態に係る光電変換素子2aでは、保護膜15は、n型不純物拡散層13を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上にさらに設けられる。第2のパッシベーション膜16は、n型不純物拡散層13を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)と保護膜15との間に位置する。n型不純物拡散層13を含む半導体基板10の側面(第1の側面10c、第2の側面10d)において、保護膜15は、第2のパッシベーション膜16を覆う。
保護膜15は、光電変換素子2aの外部から加わる衝撃等から、第1のパッシベーション膜14及び第2のパッシベーション膜16を機械的に保護することができる。保護膜15は、光電変換素子2aの製造プロセス中及び製造後において、第1のパッシベーション膜14及び第2のパッシベーション膜16が半導体基板10から剥がれることを防止することができる。そのため、膜質の高い第1のパッシベーション膜14及び第2のパッシベーション膜16が得られる。本実施の形態の光電変換素子2aによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(実施の形態8)
図30を参照して、実施の形態8に係る光電変換素子2bについて説明する。本実施の形態の光電変換素子2bは、基本的には、図20に示す実施の形態6の光電変換素子2と同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子2bでは、複合パッシベーション膜6は、負の固定電荷を有さない第3のパッシベーション膜14dをさらに含む。半導体基板10の第2の表面10bにおけるp型不純物拡散層12の上に、第1のパッシベーション膜14が設けられ、半導体基板10の第2の表面10bにおけるn型不純物拡散層13の上に、第3のパッシベーション膜14dが設けられる。半導体基板10がn型を有する場合には、p型不純物拡散層12及びn型不純物拡散層13が形成されていない半導体基板10の第2の表面10b上にも、負の固定電荷を有さない第3のパッシベーション膜14dが設けられてもよい。
本実施の形態の光電変換素子2bの効果を説明する。本実施の形態の光電変換素子2bの効果は、実施の形態6の光電変換素子2の効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子2bでは、半導体基板10の第2の表面10bにおけるp型不純物拡散層12の上に、負の固定電荷を有する第1のパッシベーション膜14が設けられる。そのため、半導体基板10の第1の表面10a側から入射する光によって半導体基板10内に生成されたキャリア(正孔)は、p型不純物拡散層12に電気的に接続された第2の電極18に効率的に収集され得る。
本実施の形態の光電変換素子2bでは、半導体基板10の第2の表面10bにおけるn型不純物拡散層13の上に、負の固定電荷を有さない第3のパッシベーション膜14dが設けられる。負の固定電荷を有する膜がn型不純物拡散層13上に位置すると、負の固定電荷を有する膜における負の固定電荷の密度と、n型不純物拡散層13におけるn型不純物の濃度との条件によっては、負の固定電荷を有する膜とn型不純物拡散層13との界面に反転層が形成され得る。そのため、光電変換素子の出力が低下するおそれがある。これに対し、本実施の形態の光電変換素子2bでは、半導体基板10の第2の表面10bにおけるn型不純物拡散層13上に、負の固定電荷を有しない第3のパッシベーション膜14dが設けられているため、第3のパッシベーション膜14dとn型不純物拡散層13との界面に反転層が形成されることが防止され得る。本実施の形態の光電変換素子2bによれば、向上された出力を有する光電変換素子が提供され得る。また、半導体基板10がn型を有する場合には、p型不純物拡散層12及びn型不純物拡散層13が形成されていない、半導体基板10の第2の表面10b上にも、負の固定電荷を有しない第3のパッシベーション膜14dが設けられてもよい。そのため、第3のパッシベーション膜14dと半導体基板10との界面においても反転層が形成されることが防止され得る。本実施の形態の光電変換素子2bによれば、さらに向上された出力を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子2bでは、負の固定電荷を有しない第3のパッシベーション膜14dは、正の固定電荷を有する誘電体膜であってもよい。第3のパッシベーション膜14dが正の固定電荷を有するため、半導体基板10の第1の表面10a側から入射する光によって半導体基板10内に生成されたキャリア(電子)は、n型不純物拡散層13に電気的に接続された第1の電極19に効率的に収集され得る。本実施の形態の光電変換素子2bによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
実施の形態6から実施の形態8のうちの複数の実施の形態を適宜組み合わせて、実施の形態6から実施の形態8の変形例としてもよい。例えば、実施の形態8における負の固定電荷を有さない第3のパッシベーション膜14dを有する複合パッシベーション膜6は、実施の形態7の光電変換素子2aに適用されてもよい。実施の形態6から実施の形態8の光電変換素子2、2a、2bにおいて、表面電界層21が省略されてもよい。実施の形態6及び実施の形態7の光電変換素子2、2aにおいて、図15に示すように、第1のパッシベーション膜14と半導体基板10の第2の表面10bとの間に第2の誘電体膜23が設けられてもよい。実施の形態8の光電変換素子2bにおいて、図15に示すように、第1のパッシベーション膜14及び第3のパッシベーション膜14dと、半導体基板10の第2の表面10bとの間に、第2の誘電体膜23が設けられてもよい。実施の形態6から実施の形態8の光電変換素子2、2a、2bにおいて、図17に示すように、第2のパッシベーション膜16上に第1の誘電体膜22が設けられてもよい。実施の形態6から実施の形態8の光電変換素子2、2a、2bにおいて、図19に示すように、p型不純物拡散層12がn型不純物拡散層13に接してもよい。実施の形態6から実施の形態8の光電変換素子2、2a、2bにおいて、n型不純物拡散層13は、半導体基板10の第1の側面10c及び第2の側面10dの少なくとも1つに形成されてもよい。n型不純物拡散層13が半導体基板10の第1の側面10c及び第2の側面10dの一つに形成される場合には、n型不純物拡散層13が形成されていない第1の側面10c及び第2の側面10dの他の一つ上に、第2のパッシベーション膜16が形成されなくてもよい。
(実施の形態9)
図31を参照して、実施の形態9に係る光電変換素子3について説明する。本実施の形態の光電変換素子3は、基本的には、図16に示す実施の形態2の光電変換素子1bと同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子3では、半導体基板10は、p型不純物拡散層12を、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部にも含む。p型不純物拡散層12が含まれる半導体基板10の側面は、第1の側面10c及び第2の側面10d以外の他の側面であってもよい。p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)における、半導体基板10の第2の表面10bからのp型不純物拡散層12の厚さd3は、半導体基板10の第2の表面10b側から平面視したときに、第2の電極18と重なる領域における、半導体基板10の第2の表面10bからのp型不純物拡散層12の厚さd4よりも大きくてもよい。
本実施の形態の光電変換素子3では、第1のパッシベーション膜14及び保護膜15は、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上にさらに設けられる。第1のパッシベーション膜14は、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)と保護膜15との間に位置する。p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において、保護膜15は、第1のパッシベーション膜14を覆う。
図32から図43を参照して、本実施の形態の光電変換素子3の製造方法を説明する。本実施の形態の光電変換素子3の製造方法は、基本的には、図3から図14に示す実施の形態1の光電変換素子1の製造方法と同様の工程を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子3の製造方法は、図3及び図4に示される工程を備える。図3及び図4に示される工程により、半導体基板10の第1の表面10aに凹凸構造11が形成される。その後、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10d上のエッチング保護膜4がフッ化水素水溶液などを用いて除去される。
それから、図32を参照して、半導体基板10の第1の表面10a、第2の表面10b、及び側面(例えば、第1の側面10c、第2の側面10d)上に、第2の拡散防止マスク7が形成される。第2の拡散防止マスク7は、n型不純物が半導体基板10に拡散することを防止するためのマスクである。第2の拡散防止マスク7として、酸化シリコン膜が例示され得る。第2の拡散防止マスク7は、スチーム酸化法などによって、半導体基板10の第1の表面10a、第2の表面10b、第1の側面10c及び第2の側面10dを熱酸化することによって形成されてもよい。第2の拡散防止マスク7の厚さは特に限定されないが、たとえば100nm以上300nm以下の厚さとすることができる。第2の拡散防止マスク7としては、窒化シリコン膜、または酸化シリコン膜と窒化シリコン膜の積層体などが用いられ得。ここで、窒化シリコン膜は、たとえば、プラズマCVD法または常圧CVD法などで形成され得る。窒化シリコン膜の厚さは特に限定されないが、たとえば40nm以上80nm以下の厚さとすることができる。
図33を参照して、半導体基板10の第2の表面10b上の第2の拡散防止マスク7上の一部に、第2の拡散防止マスク7をエッチングすることができる成分を含有する第2のエッチングペースト27が印刷される。第2のエッチングペースト27は、たとえばスクリーン印刷法などによって、n型不純物拡散層13が形成される箇所に相当する第2の拡散防止マスク7の部分の上に形成される。第2のエッチングペースト27に含まれる、第2の拡散防止マスク7をエッチングする成分として、リン酸が例示され得る。第2のエッチングペースト27は、さらに、水、有機溶媒および増粘剤を含んでいる。
図34を参照して、第2のエッチングペースト27が形成された半導体基板10に第1の加熱処理を施して、半導体基板10の第2の表面10b上の第2の拡散防止マスク7のうち第2のエッチングペースト27が形成された部分がエッチングされて除去される。第1の加熱処理の後、半導体基板10の第2の表面10bを水で洗浄することによって、第2のエッチングペースト27が除去される。このようにして、図34に示すように、第2の拡散防止マスク7の一部が除去されて、第2の拡散防止マスク7の一部に開口部7aが形成される。第2の拡散防止マスク7の開口部7aにおいて、半導体基板10の第2の表面10bの一部は、第2の拡散防止マスク7から露出する。
図35を参照して、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bにn型不純物を拡散させて、n型不純物拡散層13が形成される。例えば、POCl3を用いた気相拡散によって、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bにn型不純物である燐を、800℃の温度で30分間拡散させて、n型不純物拡散層13が形成されてもよい。なお、n型不純物拡散層13は、第2の拡散防止マスク7から露出した半導体基板10の第2の表面10bに燐を含む溶剤を塗布し、燐を含む溶剤が塗布された半導体基板10を加熱することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第2の拡散防止マスク7が除去される。
図36を参照して、半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)上に、第1のマスク8が形成される。第1のマスク8の材料として、二酸化珪素(SiO2)が例示され得る。半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10d上に第1のマスク8の材料を蒸着すること、または、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10dを熱酸化することによって、第1のマスク8は形成されてもよい。
図37を参照して、第1のマスク8が形成されていない半導体基板10の第1の表面10a上に、表面電界層21が形成される。表面電界層21は、n型不純物拡散層であってもよい。表面電界層21は、例えばPOCl3を用いた気相拡散によって、半導体基板10の第1の表面10aにn型不純物であるリンを、750℃の温度で30分間拡散させることによって形成されてもよい。表面電界層21は、半導体基板10の第1の表面10aにn型半導体層を蒸着することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第1のマスク8が除去される。
図38を参照して、半導体基板10の第1の表面10a及び第2の表面10b上に、第1の拡散防止マスク5が形成される。第1の拡散防止マスク5は、p型不純物が半導体基板10に拡散することを防止するためのマスクである。第1の拡散防止マスク5は、表面電界層21を覆う。第1の拡散防止マスク5は、半導体基板10の第2の表面10b上において、n型不純物拡散層13を覆う。半導体基板10の第2の表面10bのうちn型不純物拡散層13が形成されていない領域と、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)とは、第1の拡散防止マスク5から露出している。本実施の形態の第1の拡散防止マスク5は、マスキングペーストを用いて形成されてもよい。具体的には、表面電界層21、半導体基板10の第2の表面10bの一部及び第1の表面10a上に、マスキングペーストがスクリーン印刷などの方法によって施される。マスキングペーストが施された半導体基板10を、例えば、800℃以上1000℃以下の温度で、10分以上60分以下の時間加熱して、マスキングペーストを焼結することによって、第1の拡散防止マスク5が形成される。マスキングペーストを用いて第1の拡散防止マスク5を形成することは、フォトリソグラフィを用いて第1の拡散防止マスク5を形成することよりも、安価に光電変換素子3を製造することを可能にする。
図39を参照して、第1の拡散防止マスク5から露出した、半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)に、p型不純物を拡散させて、p型不純物拡散層12が形成される。本実施の形態のp型不純物拡散層12は、実施の形態1のp型不純物拡散層12と同じ材料と同じ形成方法を用いて、形成されてもよい。例えば、BBr3を用いた気相拡散によって、第1の拡散防止マスク5から露出した半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)にp型不純物であるボロンを、例えば950℃の温度で30分間拡散させて、p型不純物拡散層12が形成されてもよい。なお、p型不純物拡散層12は、第1の拡散防止マスク5から露出した半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)にボロンを含む溶剤を塗布し、ボロンを含む溶剤が塗布された半導体基板10を加熱することによって形成されてもよい。その後、フッ化水素水溶液などを用いて、第1の拡散防止マスク5が除去される。
図40及び図41を参照して、p型不純物拡散層12及びn型不純物拡散層13が拡散された半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)上に、複合パッシベーション膜6が形成される。具体的には、図40を参照して、p型不純物拡散層12またはn型不純物拡散層13が拡散された半導体基板10の第2の表面10b及び側面(例えば、第1の側面10c、第2の側面10d)上に、第1のパッシベーション膜14が形成される。第1のパッシベーション膜14は、負の固定電荷を有する材料で形成されている。第1のパッシベーション膜14は、酸化アルミニウム(AlOx1)または水素化酸化アルミニウム(AlOx1:H)で形成されてもよい。第1のパッシベーション膜14は、原子層堆積(ALD)法、スパッタ法またはプラズマCVD法などを用いて形成されてもよい。図41を参照して、第1のパッシベーション膜14上に、保護膜15が形成される。より特定的には、保護膜15は、p型不純物拡散層12及びn型不純物拡散層13が拡散された半導体基板10の第2の表面10b上に加えて、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上にも形成されてもよい。保護膜15は、第1のパッシベーション膜14を保護する。保護膜15は、化学気相堆積(CVD)法またはスパッタ法などを用いて形成されてもよい。
図42を参照して、半導体基板10の第1の表面10a上に、第2のパッシベーション膜16が形成されてもよい。より特定的には、半導体基板10の第1の表面10a上に形成された表面電界層21上に、第2のパッシベーション膜16が形成されてもよい。第2のパッシベーション膜16は、化学気相堆積(CVD)法またはスパッタ法などを用いて形成されてもよい。第2のパッシベーション膜16は、半導体基板10の屈折率と、空気などの光電変換素子3の周囲に存在する物質の屈折率との間の屈折率を有し、反射防止膜として機能してもよい。
図43を参照して、複合パッシベーション膜6に貫通孔17が形成される。それから、複合パッシベーション膜6上に、第1の電極19及び第2の電極18が形成される。第2の電極18は、貫通孔17内に形成されて、p型不純物拡散層12と電気的に接続される。第1の電極19は、貫通孔17内に形成されて、n型不純物拡散層13と電気的に接続される。こうして、図31に示される本実施の形態の光電変換素子3が製造され得る。
本実施の形態の光電変換素子3の効果を説明する。本実施の形態の光電変換素子3の効果は、実施の形態2の光電変換素子1bの効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子3では、半導体基板10は、p型不純物拡散層12を、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部にも含む。そのため、本実施の形態の光電変換素子3によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
例えば、半導体基板10がn型を有する場合には、pn接合が半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)付近にも形成されて、pn接合の面積が増加する。そのため、光電変換素子3に入射される光によって半導体基板10の側面付近に生成されたキャリアは、効率的に収集され得る。例えば、半導体基板10がp型を有する場合には、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部に設けられたp型不純物拡散層12は、側面電界層として機能してもよい。半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)の少なくとも一部に設けられたp型不純物拡散層12による電界効果により、光電変換素子3に入射される光によって光電変換素子3内に生成されたキャリアが半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において再結合することが防がれ得る。そのため、光電変換素子3に入射される光によって半導体基板10内に生成されたキャリアは、効率的に収集され得る。
本実施の形態の光電変換素子3では、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)における、半導体基板10の第2の表面10bからのp型不純物拡散層12の厚さd3は、半導体基板10の第2の表面10b側から平面視したときに、p型不純物拡散層12と電気的に接続される第2の電極18と重なる領域における、半導体基板10の第2の表面10bからのp型不純物拡散層12の厚さd4よりも大きくてもよい。半導体基板10の厚さ方向(第1の表面10aと第2の表面10bとが対向する方向)に、p型不純物拡散層12が形成される領域は拡大され得る。そのため、半導体基板10の第1の表面10aの近くで生成されたキャリア(例えば、少数キャリアである正孔)は効率的に収集され得る。本実施の形態の光電変換素子3によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子3は、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上に、負の固定電荷を有する第1のパッシベーション膜14をさらに備えてもよい。本実施の形態の光電変換素子3では、第1のパッシベーション膜14は、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上にさらに設けられるため、光電変換素子3に光が照射されることによって光電変換素子3内に生成されたキャリアが半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において再結合することが防止され得る。本実施の形態の光電変換素子3によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
本実施の形態の光電変換素子3では、保護膜15は、p型不純物拡散層12を含む側面(例えば、第1の側面10c、第2の側面10d)上にさらに設けられてもよい。第1のパッシベーション膜14は、p型不純物拡散層12を含む側面(例えば、第1の側面10c、第2の側面10d)と保護膜15との間に位置してもよい。p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において、保護膜15は、第1のパッシベーション膜14を覆う。保護膜15は、光電変換素子3の外部から加わる衝撃等から、第1のパッシベーション膜14を機械的に保護することができる。保護膜15は、光電変換素子3の製造プロセス中及び製造後において、第1のパッシベーション膜14が半導体基板10から剥がれることを防止することができる。そのため、膜質の高い第1のパッシベーション膜14が得られる。本実施の形態の光電変換素子3によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(実施の形態10)
図44を参照して、実施の形態10に係る光電変換素子3aについて説明する。本実施の形態の光電変換素子3aは、基本的には、図31に示す実施の形態9の光電変換素子3と同様の構成を備えるが、主に以下の点で異なる。
本実施の形態に係る光電変換素子3aでは、第2のパッシベーション膜16は、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上及び半導体基板10の第1の表面10a上に設けられる。p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上において、第2のパッシベーション膜16は、第1のパッシベーション膜14と保護膜15との間に位置する。p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において、第2のパッシベーション膜16は、第1のパッシベーション膜14を覆う。p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)において、保護膜15は、第1のパッシベーション膜14及び第2のパッシベーション膜16を覆う。
図45から図47を参照して、本実施の形態の光電変換素子3aの製造方法を説明する。本実施の形態の光電変換素子3aの製造方法は、基本的には、図32から図43に示す実施の形態9の光電変換素子3の製造方法と同様の工程を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子3aの製造方法は、図32から図40に示される工程を備える。こうして、半導体基板10の第2の表面10b、第1の側面10c及び第2の側面10d上に、第1のパッシベーション膜14が形成される。
その後、図45を参照して、第2のパッシベーション膜16が、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上及び半導体基板10の第1の表面10a上に形成される。より特定的には、第2のパッシベーション膜16は、半導体基板10の第1の表面10a上に形成された表面電界層21上と、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上に形成された第1のパッシベーション膜14上とに形成される。
図46を参照して、保護膜15が、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上及び半導体基板10の第2の表面10b上に形成される。より特定的には、保護膜15は、半導体基板10の第2の表面10b上に形成された第1のパッシベーション膜14上と、半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上に形成された第2のパッシベーション膜16上とに形成される。
図47を参照して、複合パッシベーション膜6に貫通孔17が形成される。それから、複合パッシベーション膜6上に、第1の電極19及び第2の電極18が形成される。第2の電極18は、貫通孔17内に形成されて、p型不純物拡散層12と電気的に接続される。第1の電極19は、貫通孔17内に形成されて、n型不純物拡散層13と電気的に接続される。こうして、図44に示される本実施の形態の光電変換素子3aが製造され得る。
本実施の形態の光電変換素子3aの効果を説明する。本実施の形態の光電変換素子3aの効果は、実施の形態9の光電変換素子3の効果に加えて、以下の効果を有する。
本実施の形態に係る光電変換素子3aでは、p型不純物拡散層12を含む半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)上において、第2のパッシベーション膜16は、第1のパッシベーション膜14と保護膜15との間に位置する。保護膜15は、光電変換素子3aの外部から加わる衝撃等から、第1のパッシベーション膜14及び第2のパッシベーション膜16を機械的に保護することができる。保護膜15は、光電変換素子3aの製造プロセス中及び製造後において、第1のパッシベーション膜14及び第2のパッシベーション膜16が半導体基板10から剥がれることを防止することができる。半導体基板10の第1の表面10a側から半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)を覆う層(第2のパッシベーション膜16)と、半導体基板10の第2の表面10b側から半導体基板10の側面(例えば、第1の側面10c、第2の側面10d)を覆う層(第1のパッシベーション膜14、保護膜15)とが、交互に積層されるため、第1のパッシベーション膜14及び第2のパッシベーション膜16が半導体基板10から剥がれることがより効果的に防止され得る。そのため、膜質の高い第1のパッシベーション膜14及び第2のパッシベーション膜16が得られる。本実施の形態の光電変換素子3aによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(実施の形態11)
図48を参照して、実施の形態11に係る光電変換素子3bについて説明する。本実施の形態の光電変換素子3bは、基本的には、図44に示す実施の形態10の光電変換素子3aと同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子3bは、第2のパッシベーション膜16上に、第1の誘電体膜22をさらに備える。第2のパッシベーション膜16は、第1の誘電体膜22の屈折率よりも大きく、半導体基板10の屈折率よりも小さな屈折率を有する。第1の誘電体膜22は、窒化珪素(SiNx5)、水素化窒化珪素(SiNx5:H)または酸化珪素(SiOx5)で形成されてもよい。
本実施の形態の光電変換素子3bの効果を説明する。本実施の形態の光電変換素子3bの効果は、実施の形態10の光電変換素子3aの効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子3bは、第2のパッシベーション膜16上に、誘電体膜(第1の誘電体膜22)をさらに備えてもよい。本実施の形態の光電変換素子3bでは、第2のパッシベーション膜16は、誘電体膜(第1の誘電体膜22)の屈折率よりも大きく、半導体基板10の屈折率よりも小さな屈折率を有する。半導体基板10と光電変換素子3bの外部との間の屈折率がゆるやかに変化するため、光電変換素子3bにおける光の反射率がさらに低減されて、より多くの光が光電変換素子3b内に入射され得る。本実施の形態の光電変換素子3bによれば、光エネルギーを電気エネルギーに変換する効率がさらに向上された光電変換素子が提供され得る。
(実施の形態12)
図49を参照して、実施の形態11に係る光電変換素子3cについて説明する。本実施の形態の光電変換素子3cは、基本的には、図31に示す実施の形態9の光電変換素子3と同様の構成を備えるが、主に以下の点で異なる。
本実施の形態の光電変換素子3cでは、複合パッシベーション膜6は、負の固定電荷を有さない第3のパッシベーション膜14dをさらに含む。半導体基板10の第2の表面10bにおけるp型不純物拡散層12の上に、第1のパッシベーション膜14が設けられ、半導体基板10の第2の表面10bにおけるn型不純物拡散層13の上に、第3のパッシベーション膜14dが設けられる。半導体基板10がn型を有する場合には、p型不純物拡散層12及びn型不純物拡散層13が形成されていない半導体基板10の第2の表面10b上にも、負の固定電荷を有さない第3のパッシベーション膜14dが設けられてもよい。
本実施の形態の光電変換素子3cの効果を説明する。本実施の形態の光電変換素子3cの効果は、実施の形態9の光電変換素子3の効果に加えて、以下の効果を有する。
本実施の形態の光電変換素子3cでは、半導体基板10の第2の表面10bにおけるp型不純物拡散層12の上に、負の固定電荷を有する第1のパッシベーション膜14が設けられる。そのため、半導体基板10の第1の表面10a側から入射する光によって半導体基板10内に生成されたキャリア(正孔)は、p型不純物拡散層12に電気的に接続された第2の電極18に効率的に収集され得る。
本実施の形態の光電変換素子3cでは、半導体基板10の第2の表面10bにおけるn型不純物拡散層13の上に、負の固定電荷を有さない第3のパッシベーション膜14dが設けられる。負の固定電荷を有する膜がn型不純物拡散層13上に位置すると、負の固定電荷を有する膜における負の固定電荷の密度と、n型不純物拡散層13におけるn型不純物の濃度との条件によっては、負の固定電荷を有する膜とn型不純物拡散層13との界面に反転層が形成され得る。そのため、光電変換素子の出力が低下するおそれがある。これに対し、本実施の形態の光電変換素子3cでは、半導体基板10の第2の表面10bにおけるn型不純物拡散層13上に、負の固定電荷を有しない第3のパッシベーション膜14dが設けられているため、第3のパッシベーション膜14dとn型不純物拡散層13との界面に反転層が形成されることが防止され得る。本実施の形態の光電変換素子3cによれば、向上された出力を有する光電変換素子が提供され得る。
また、半導体基板10がn型を有する場合には、p型不純物拡散層12及びn型不純物拡散層13が形成されていない半導体基板10の第2の表面10b上にも、負の固定電荷を有しない第3のパッシベーション膜14dが設けられてもよい。第3のパッシベーション膜14dと半導体基板10との界面においても反転層が形成されることが防止され得る。本実施の形態の光電変換素子3cによれば、さらに向上された出力を有する光電変換素子が提供され得る。
また、本実施の形態の光電変換素子3cでは、負の固定電荷を有しない第3のパッシベーション膜14dは、正の固定電荷を有する誘電体膜であってもよい。第3のパッシベーション膜14dが正の固定電荷を有するため、半導体基板10の第1の表面10a側から入射する光によって半導体基板10内に生成されたキャリア(電子)は、n型不純物拡散層13に電気的に接続された第1の電極19に効率的に収集され得る。本実施の形態の光電変換素子3cによれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
実施の形態9から実施の形態12のうちの複数の実施の形態を適宜組み合わせて、実施の形態9から実施の形態12の変形例としてもよい。例えば、実施の形態12における負の固定電荷を有さない第3のパッシベーション膜14dを有する複合パッシベーション膜6が、実施の形態9から実施の形態11の光電変換素子3、3a、3bに適用されてもよい。実施の形態9から実施の形態12の光電変換素子3、3a、3b、3cにおいて、表面電界層21が省略されてもよい。実施の形態9から実施の形態12の光電変換素子3、3a、3b、3cにおいて、図15に示すように、第1のパッシベーション膜14と半導体基板10の第2の表面10bとの間に第2の誘電体膜23が設けられてもよい。実施の形態9から実施の形態12の光電変換素子3、3a、3b、3cにおいて、図19に示すように、p型不純物拡散層12がn型不純物拡散層13に接してもよい。実施の形態11の光電変換素子3bにおいて、誘電体膜(第1の誘電体膜22)が、p型不純物拡散層12が形成された半導体基板10の側面(第1の側面10c、第2の側面)にさらに形成されてもよい。実施の形態9から実施の形態12の光電変換素子3、3a、3b、3cにおいて、p型不純物拡散層12は、半導体基板10の第1の側面10c及び第2の側面10dの少なくとも1つに形成されてもよい。p型不純物拡散層12が半導体基板10の第1の側面10c及び第2の側面10dの一つに形成される場合には、p型不純物拡散層12が形成されていない第1の側面10c及び第2の側面10dの他の一つ上に、第1のパッシベーション膜14が形成されなくてもよい。
[付記]
(1)ここで開示された実施の形態の光電変換素子は、光が入射する第1の表面と、第1の表面と反対側の第2の表面と、第1の表面と第2の表面とを接続する側面とを有する半導体基板を備える。半導体基板は、第2の表面内に、n型不純物拡散層と、p型不純物拡散層とを含む。ここで開示された実施の形態の光電変換素子は、さらに、第2の表面上に設けられた複合パッシベーション膜を備える。複合パッシベーション膜は、負の固定電荷を有する第1のパッシベーション膜と、第1のパッシベーション膜を保護する保護膜とを含む。ここで開示された実施の形態の光電変換素子は、さらに、第2の表面上に設けられるとともに、n型不純物拡散層と電気的に接続される第1の電極と、第2の表面上に設けられるとともに、p型不純物拡散層と電気的に接続される第2の電極とを備える。ここで開示された実施の形態の光電変換素子によれば、向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(2)ここで開示された実施の形態の光電変換素子では、半導体基板は、p型不純物拡散層を、半導体基板の側面の少なくとも一部にも含んでもよい。そのため、ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。例えば、半導体基板がn型を有する場合には、pn接合が半導体基板の側面付近にも形成されて、pn接合の面積が増加する。そのため、光電変換素子に入射される光によって半導体基板の側面付近に生成されたキャリアは、効率的に収集され得る。例えば、半導体基板がp型を有する場合には、半導体基板の側面の少なくとも一部に設けられたp型不純物拡散層は、側面電界層として機能してもよい。半導体基板の側面の少なくとも一部に設けられたp型不純物拡散層による電界効果により、光電変換素子に入射される光によって光電変換素子内に生成されたキャリアが半導体基板の側面において再結合することが防がれ得る。そのため、光電変換素子に入射される光によって半導体基板内に生成されたキャリアは、効率的に収集され得る。
(3)ここで開示された実施の形態の光電変換素子では、p型不純物拡散層を含む半導体基板10の側面における、第2の表面からのp型不純物拡散層の厚さは、第2の表面側から平面視したときに第2の電極と重なる領域における、第2の表面からのp型不純物拡散層の厚さよりも大きくてもよい。ここで開示された実施の形態の光電変換素子では、半導体基板10の厚さ方向(第1の表面と第2の表面とが対向する方向)に、p型不純物拡散層が形成される領域は拡大され得るので、半導体基板の第1の表面の近くで生成されたキャリア(例えば、少数キャリアである正孔)は効率的に収集され得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(4)ここで開示された実施の形態の光電変換素子では、負の固定電荷を有する第1のパッシベーション膜は、p型不純物拡散層を含む半導体基板の側面上にさらに設けられてもよい。ここで開示された実施の形態の光電変換素子では、負の固定電荷を有する第1のパッシベーション膜は、p型不純物拡散層を含む半導体基板の側面上にさらに設けられるため、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアが半導体基板の側面において再結合することが防止され得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(5)ここで開示された実施の形態の光電変換素子では、保護膜は、p型不純物拡散層を含む半導体基板の側面上にさらに設けられ、第1のパッシベーション膜は、p型不純物拡散層を含む半導体基板の側面と保護膜との間に位置する。第1のパッシベーション膜は、p型不純物拡散層を含む半導体基板の側面と保護膜との間に位置するため、保護膜は、光電変換素子の外部から加わる衝撃等から、第1のパッシベーション膜及び第2のパッシベーション膜を機械的に保護することができる。保護膜は、光電変換素子の製造プロセス中及び製造後において、第1のパッシベーション膜及び第2のパッシベーション膜が半導体基板から剥がれることを防止することができる。そのため、膜質の高い第1のパッシベーション膜及び第2のパッシベーション膜が得られる。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(6)ここで開示された実施の形態の光電変換素子では、半導体基板の第1の表面上に設けられる第2のパッシベーション膜をさらに備えてもよい。半導体基板の第1の表面上に、第2のパッシベーション膜を備えるため、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアが半導体基板の第1の表面において再結合することが防止され得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(7)ここで開示された実施の形態の光電変換素子は、第2のパッシベーション膜は、p型不純物拡散層を含む半導体基板の側面上にも設けられてもよい。p型不純物拡散層を含む半導体基板の側面上において、第2のパッシベーション膜は、第1のパッシベーション膜と保護膜との間に位置してもよい。半導体基板の第1の表面上に、第2のパッシベーション膜を備えるため、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアが半導体基板の第1の表面において再結合することが防止され得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
また、ここで開示された実施の形態の光電変換素子では、p型不純物拡散層を含む半導体基板の側面上において、第2のパッシベーション膜は、第1のパッシベーション膜と保護膜との間に位置している。そのため、保護膜は、光電変換素子の外部から加わる衝撃等から、第1のパッシベーション膜及び第2のパッシベーション膜を機械的に保護することができる。保護膜は、ここで開示された実施の形態の光電変換素子の製造プロセス中及び製造後において、第1のパッシベーション膜及び第2のパッシベーション膜が半導体基板から剥がれることを防止することができる。半導体基板の第1の表面側から側面を覆う層(第2のパッシベーション膜)と、半導体基板の第2の表面側から側面を覆う層(第1のパッシベーション膜、保護膜)とが、交互に積層されるため、第1のパッシベーション膜及び第2のパッシベーション膜が半導体基板から剥がれることがより効果的に防止され得る。そのため、膜質の高い第1のパッシベーション膜及び第2のパッシベーション膜が得られる。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(8)ここで開示された実施の形態の光電変換素子は、第2のパッシベーション膜上に、誘電体膜をさらに備えてもよい。第2のパッシベーション膜は、誘電体膜の屈折率よりも大きく、半導体基板の屈折率よりも小さな屈折率を有してもよい。ここで開示された実施の形態の光電変換素子では、半導体基板と光電変換素子の外部との間の屈折率がゆるやかに変化するため、光電変換素子における光の反射率がさらに低減されて、より多くの光が光電変換素子内に入射され得る。ここで開示された実施の形態の光電変換素子によれば、光エネルギーを電気エネルギーに変換する効率がさらに向上された光電変換素子が提供され得る。
(9)ここで開示された実施の形態の光電変換素子では、半導体基板は、n型不純物拡散層を、半導体基板の側面の少なくとも一部にも含んでもよい。そのため、ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。例えば、半導体基板がn型を有する場合には、半導体基板の側面の少なくとも一部に設けられたn型不純物拡散層は、側面電界層として機能してもよい。半導体基板の側面の少なくとも一部に設けられたn型不純物拡散層による電界効果により、光電変換素子に入射される光によって光電変換素子内に生成されたキャリアが半導体基板の側面において再結合することが防がれ得る。そのため、光電変換素子に入射される光によって半導体基板内に生成されたキャリアは、効率的に収集され得る。例えば、半導体基板がp型を有する場合には、pn接合が半導体基板の側面付近にも形成されて、pn接合の面積が増加する。そのため、光電変換素子に入射される光によって半導体基板10の側面付近に生成されたキャリアが効率的に収集され得る。
(10)ここで開示された実施の形態の光電変換素子では、n型不純物拡散層を含む半導体基板10の側面における、半導体基板の第2の表面からのn型不純物拡散層の厚さは、半導体基板の第2の表面側から平面視したときに第1の電極と重なる領域における、半導体基板の第2の表面からのn型不純物拡散層の厚さよりも大きくてもよい。ここで開示された実施の形態の光電変換素子では、半導体基板10の厚さ方向(第1の表面と第2の表面とが対向する方向)に、n型不純物拡散層が形成される領域は拡大され得るので、半導体基板の第1の表面の近くで生成されたキャリアは効率的に収集され得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(11)ここで開示された実施の形態の光電変換素子は、半導体基板の第1の表面上に設けられる第2のパッシベーション膜をさらに備えてもよい。半導体基板の第1の表面上に、第2のパッシベーション膜を備えるため、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアが半導体基板の第1の表面において再結合することが防止され得きる。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。また、第2のパッシベーション膜が、n型不純物拡散層を含む半導体基板の側面上にも設けられるため、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアが半導体基板の側面において再結合することが防止され得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(12)ここで開示された実施の形態の光電変換素子は、第2のパッシベーション膜上に、誘電体膜をさらに備えてもよい。第2のパッシベーション膜は、誘電体膜の屈折率よりも大きく、半導体基板の屈折率よりも小さな屈折率を有する。ここで開示された実施の形態の光電変換素子では、半導体基板と光電変換素子の外部との間の屈折率がゆるやかに変化するため、ここで開示された実施の形態の光電変換素子における光の反射率がさらに低減されて、より多くの光がここで開示された実施の形態の光電変換素子内に入射され得る。ここで開示された実施の形態の光電変換素子によれば、光エネルギーを電気エネルギーに変換する効率がさらに向上された光電変換素子が提供され得る。
(13)ここで開示された実施の形態の光電変換素子では、第2のパッシベーション膜は、n型不純物拡散層を含む半導体基板の側面上にさらに設けられてもよい。第2のパッシベーション膜は、n型不純物拡散層を含む半導体基板の側面上にさらに設けられるため、光電変換素子に光が照射されることによって光電変換素子内に生成されたキャリアが半導体基板の側面において再結合することが防止され得る。本実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(14)ここで開示された実施の形態の光電変換素子では、保護膜は、n型不純物拡散層を含む半導体基板の側面上にさらに設けられてもよい。第2のパッシベーション膜は、n型不純物拡散層を含む半導体基板の側面と保護膜との間に位置してもよい。保護膜は、ここで開示された実施の形態の光電変換素子の外部から加わる衝撃等から、第1のパッシベーション膜及び第2のパッシベーション膜を機械的に保護することができる。保護膜は、ここで開示された実施の形態の光電変換素子の製造プロセス中及び製造後において、第1のパッシベーション膜及び第2のパッシベーション膜が半導体基板から剥がれることを防止することができる。そのため、膜質の高い第1のパッシベーション膜14及び第2のパッシベーション膜16が得られる。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(15)ここで開示された実施の形態の光電変換素子では、複合パッシベーション膜は、負の固定電荷を有さない第3のパッシベーション膜をさらに含んでもよい。半導体基板の第2の表面におけるp型不純物拡散層の上に、第1のパッシベーション膜が設けられ、半導体基板の第2の表面におけるn型不純物拡散層の上に、第3のパッシベーション膜が設けられてもよい。半導体基板の第2の表面におけるp型不純物拡散層の上に、負の固定電荷を有する第1のパッシベーション膜が設けられるため、半導体基板の第1の表面側から入射する光によって半導体基板内に生成されたキャリア(正孔)は、p型不純物拡散層に電気的に接続された第2の電極に効率的に収集され得る。また、半導体基板の第2の表面におけるn型不純物拡散層の上に、負の固定電荷を有さない第3のパッシベーション膜が設けられるため、第3のパッシベーション膜とn型不純物拡散層との界面に反転層が形成されることが防止され得る。ここで開示された実施の形態の光電変換素子によれば、向上された出力を有する光電変換素子が提供され得る。
(16)ここで開示された実施の形態の光電変換素子では、半導体基板の第1の表面に、表面電界層をさらに備えてもよい。表面電界層は、半導体基板内に生成されて、受光面である第1の表面側に向かって拡散するキャリアが、第1の表面の近くで再結合することを抑制する表面電界障壁として機能する。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
(17)ここで開示された実施の形態の光電変換素子では、p型不純物拡散層は、n型不純物拡散層に接してもよい。そのため、p型不純物拡散層またはn型不純物拡散層と、p型不純物拡散層及びn型不純物拡散層が形成されていない半導体基板10の領域との界面に形成されるpn接合の面積が増加し得る。ここで開示された実施の形態の光電変換素子によれば、さらに向上されたキャリアの収集効率を有する光電変換素子が提供され得る。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1a,1b,1c,1d,1e,2,2a,2b,3,3a,3b,3c 光電変換素子、4 エッチング保護膜、5 第1の拡散防止マスク、5a,7a 開口部、6 複合パッシベーション膜、7 第2の拡散防止マスク、8 第1のマスク、10 半導体基板、10a 第1の表面、10b 第2の表面、10c 第1の側面、10d 第2の側面、11 凹凸構造、12 p型不純物拡散層、13 n型不純物拡散層、14 第1のパッシベーション膜、14d 第3のパッシベーション膜、15 保護膜、16 第2のパッシベーション膜、17 貫通孔、18 第2の電極、19 第1の電極、21 表面電界層、22 第1の誘電体膜、23 第2の誘電体膜、26 第1のエッチングペースト、27 第2のエッチングペースト。

Claims (20)

  1. 光が入射する第1の表面と、前記第1の表面と反対側の第2の表面と、前記第1の表面と前記第2の表面とを接続する側面とを有する半導体基板を備え、前記半導体基板は、前記第2の表面内に、n型不純物拡散層と、p型不純物拡散層とを含み、さらに、
    前記第2の表面上に設けられた複合パッシベーション膜を備え、前記複合パッシベーション膜は、負の固定電荷を有する第1のパッシベーション膜と、前記第1のパッシベーション膜を保護する保護膜とを含み、さらに、
    前記第2の表面上に設けられるとともに、前記n型不純物拡散層と電気的に接続される第1の電極と、
    前記第2の表面上に設けられるとともに、前記p型不純物拡散層と電気的に接続される第2の電極とを備え、
    前記半導体基板は、前記p型不純物拡散層を、前記側面の少なくとも一部にも含み、
    前記p型不純物拡散層を含む前記側面における、前記第2の表面からの前記p型不純物拡散層の厚さは、前記第2の表面側から平面視したときに前記第2の電極と重なる領域における、前記第2の表面からの前記p型不純物拡散層の厚さよりも大きい、光電変換素子。
  2. 前記第1のパッシベーション膜は、前記p型不純物拡散層を含む前記側面上にさらに設けられる、請求項1に記載の光電変換素子。
  3. 前記保護膜は、前記p型不純物拡散層を含む前記側面上にさらに設けられ、
    前記第1のパッシベーション膜は、前記p型不純物拡散層を含む前記側面と前記保護膜との間に位置する、請求項に記載の光電変換素子。
  4. 前記第1の表面上に設けられる第2のパッシベーション膜をさらに備える、請求項から請求項のいずれか一項に記載の光電変換素子。
  5. 前記第2のパッシベーション膜は、前記p型不純物拡散層を含む前記側面上にも設けられ、
    前記p型不純物拡散層を含む前記側面上において、前記第2のパッシベーション膜は、前記第1のパッシベーション膜と前記保護膜との間に位置する、請求項に記載の光電変換素子。
  6. 前記第2のパッシベーション膜上に、誘電体膜をさらに備え、
    前記第2のパッシベーション膜は、前記誘電体膜の屈折率よりも大きく、前記半導体基板の屈折率よりも小さな屈折率を有する、請求項または請求項に記載の光電変換素子。
  7. 前記半導体基板は、前記n型不純物拡散層を、前記側面の少なくとも一部にも含む、請求項1に記載の光電変換素子。
  8. 光が入射する第1の表面と、前記第1の表面と反対側の第2の表面と、前記第1の表面と前記第2の表面とを接続する側面とを有する半導体基板を備え、前記半導体基板は、前記第2の表面内に、n型不純物拡散層と、p型不純物拡散層とを含み、さらに、
    前記第2の表面上に設けられた複合パッシベーション膜を備え、前記複合パッシベーション膜は、負の固定電荷を有する第1のパッシベーション膜と、前記第1のパッシベーション膜を保護する保護膜とを含み、さらに、
    前記第2の表面上に設けられるとともに、前記n型不純物拡散層と電気的に接続される第1の電極と、
    前記第2の表面上に設けられるとともに、前記p型不純物拡散層と電気的に接続される第2の電極とを備え、
    前記半導体基板は、前記n型不純物拡散層を、前記側面の少なくとも一部にも含み、
    前記n型不純物拡散層を含む前記側面における、前記第2の表面からの前記n型不純物拡散層の厚さは、前記第2の表面側から平面視したときに前記第1の電極と重なる領域における、前記第2の表面からの前記n型不純物拡散層の厚さよりも大きい、光電変換素子。
  9. 前記第1の表面上に設けられる第2のパッシベーション膜をさらに備える、請求項または請求項に記載の光電変換素子。
  10. 前記第2のパッシベーション膜上に、誘電体膜をさらに備え、
    前記第2のパッシベーション膜は、前記誘電体膜の屈折率よりも大きく、前記半導体基板の屈折率よりも小さな屈折率を有する、請求項に記載の光電変換素子。
  11. 前記第2のパッシベーション膜は、前記n型不純物拡散層を含む前記側面上にさらに設けられる、請求項または請求項10に記載の光電変換素子。
  12. 前記保護膜は、前記n型不純物拡散層を含む前記側面上にさらに設けられ、
    前記第2のパッシベーション膜は、前記n型不純物拡散層を含む前記側面と前記保護膜との間に位置する、請求項11に記載の光電変換素子。
  13. 前記複合パッシベーション膜は、負の固定電荷を有さない第3のパッシベーション膜をさらに含み、
    前記第2の表面における前記p型不純物拡散層の上に、前記第1のパッシベーション膜が設けられ、
    前記第2の表面における前記n型不純物拡散層の上に、前記第3のパッシベーション膜が設けられる、請求項1から請求項12のいずれか一項に記載の光電変換素子。
  14. 前記第3のパッシベーション膜は、窒化珪素(SiNx2)、または水素化窒化珪素(SiNx2:H)から形成される、請求項13に記載の光電変換素子。
  15. 前記第1の表面に、表面電界層をさらに備える、請求項1から請求項14のいずれか一項に記載の光電変換素子。
  16. 前記p型不純物拡散層は、前記n型不純物拡散層に接する、請求項1から請求項15のいずれか一項に記載の光電変換素子。
  17. 前記第1のパッシベーション膜は、酸化アルミニウム(AlOx1)または水素化酸化アルミニウム(AlOx1:H)で形成される、請求項1から請求項16のいずれか一項に記載の光電変換素子。
  18. 前記保護膜は、酸化珪素(SiOx3)、窒化珪素(SiNx3)、または水素化窒化珪素(SiNx3:H)で形成される、請求項1から請求項17のいずれか一項に記載の光電変換素子。
  19. 前記第2のパッシベーション膜は、窒化珪素(SiNx4)、または水素化窒化珪素(SiNx4:H)で形成される、請求項から請求項並びに請求項から請求項12のいずれか一項に記載の光電変換素子。
  20. 前記誘電体膜は、窒化珪素(SiNx5)、水素化窒化珪素(SiNx5:H)または酸化珪素(SiOx5)で形成される、請求項または請求項10に記載の光電変換素子。
JP2017526334A 2015-06-30 2016-06-27 光電変換素子 Active JP6783231B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015131740 2015-06-30
JP2015131740 2015-06-30
PCT/JP2016/068969 WO2017002747A1 (ja) 2015-06-30 2016-06-27 光電変換素子

Publications (2)

Publication Number Publication Date
JPWO2017002747A1 JPWO2017002747A1 (ja) 2018-04-19
JP6783231B2 true JP6783231B2 (ja) 2020-11-11

Family

ID=57608647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017526334A Active JP6783231B2 (ja) 2015-06-30 2016-06-27 光電変換素子

Country Status (4)

Country Link
US (1) US10665731B2 (ja)
JP (1) JP6783231B2 (ja)
CN (1) CN107851672B (ja)
WO (1) WO2017002747A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422290A4 (en) 2016-02-23 2019-02-27 Ricoh Company, Ltd. PICTURE PROCESSING DEVICE, IMAGING DEVICE, MOBILE BODY CONTROL SYSTEM, PICTURE PROCESSING METHOD AND PROGRAM
JP6953246B2 (ja) * 2017-09-08 2021-10-27 浜松ホトニクス株式会社 半導体ウエハの製造方法、半導体エネルギー線検出素子の製造方法、及び半導体ウエハ
CN117276356A (zh) * 2023-06-02 2023-12-22 天合光能股份有限公司 太阳能电池及其制作方法、光伏组件及光伏系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805126A (en) * 1972-10-11 1974-04-16 Westinghouse Electric Corp Charge storage target and method of manufacture having a plurality of isolated charge storage sites
US4927770A (en) 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US7402448B2 (en) * 2003-01-31 2008-07-22 Bp Corporation North America Inc. Photovoltaic cell and production thereof
US7687402B2 (en) * 2004-11-15 2010-03-30 Micron Technology, Inc. Methods of making optoelectronic devices, and methods of making solar cells
JP4767110B2 (ja) 2006-06-30 2011-09-07 シャープ株式会社 太陽電池、および太陽電池の製造方法
JP2010161310A (ja) * 2009-01-09 2010-07-22 Sharp Corp 裏面電極型太陽電池および裏面電極型太陽電池の製造方法
US9070804B2 (en) 2009-02-24 2015-06-30 Sunpower Corporation Back contact sliver cells
US7858427B2 (en) * 2009-03-03 2010-12-28 Applied Materials, Inc. Crystalline silicon solar cells on low purity substrate
US8188363B2 (en) * 2009-08-07 2012-05-29 Sunpower Corporation Module level solutions to solar cell polarization
US8779280B2 (en) * 2009-08-18 2014-07-15 Lg Electronics Inc. Solar cell and method of manufacturing the same
JP5756352B2 (ja) * 2011-06-21 2015-07-29 シャープ株式会社 裏面電極型太陽電池の製造方法
US8682129B2 (en) * 2012-01-20 2014-03-25 Micron Technology, Inc. Photonic device and methods of formation
KR101894585B1 (ko) * 2012-02-13 2018-09-04 엘지전자 주식회사 태양전지
CN102738288A (zh) * 2012-06-20 2012-10-17 常州天合光能有限公司 非晶硅钝化n型背接触电池及其制备方法
CN104488069B (zh) * 2012-07-12 2018-01-19 日立化成株式会社 钝化层形成用组合物、带钝化层的半导体基板、带钝化层的半导体基板的制造方法、太阳能电池元件、太阳能电池元件的制造方法及太阳能电池
WO2014014112A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 太陽電池素子及びその製造方法、並びに太陽電池モジュール
JP2014056875A (ja) * 2012-09-11 2014-03-27 Sharp Corp 光電変換素子および光電変換素子の製造方法
KR101889775B1 (ko) 2012-09-27 2018-08-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
JP2015050277A (ja) * 2013-08-30 2015-03-16 シャープ株式会社 太陽電池およびその製造方法

Also Published As

Publication number Publication date
CN107851672B (zh) 2020-05-19
CN107851672A (zh) 2018-03-27
JPWO2017002747A1 (ja) 2018-04-19
US20180190839A1 (en) 2018-07-05
US10665731B2 (en) 2020-05-26
WO2017002747A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP2015531550A (ja) 太陽電池及びその製造方法
US20110100459A1 (en) Solar cell and method for manufacturing the same
WO2011136116A1 (ja) 裏面電極型太陽電池および裏面電極型太陽電池の製造方法
JP2018535554A (ja) 電荷担体の選択的接合を介して相互接続される複数の吸収体を備えた太陽電池
US9640673B2 (en) Solar cell and manufacturing method thereof
JP2012503330A (ja) 直接パターンによるピンホールフリーのマスク層を利用した太陽電池の製造方法
JP2014075526A (ja) 光電変換素子および光電変換素子の製造方法
JP6783231B2 (ja) 光電変換素子
JP2024509329A (ja) 選択的接触領域埋込型太陽電池及びその裏面接触構造
JP2010161310A (ja) 裏面電極型太陽電池および裏面電極型太陽電池の製造方法
JP5139502B2 (ja) 裏面電極型太陽電池
WO2012176839A1 (ja) 裏面電極型太陽電池の製造方法
JP2007019259A (ja) 太陽電池およびその製造方法
KR20110082372A (ko) 태양 전지 모듈 및 이의 제조 방법
JP2014072209A (ja) 光電変換素子および光電変換素子の製造方法
JPWO2018021546A1 (ja) 太陽電池素子および太陽電池素子の製造方法
TW201431108A (zh) 指叉狀背部電極太陽能電池之製造方法及其元件
JP2013197538A (ja) 光電変換素子の製造方法
KR20110087168A (ko) 태양 전지의 제조 방법
TWI455335B (zh) 背接觸式太陽能電池及其製造方法
KR101155192B1 (ko) 태양전지의 제조방법
TWI481060B (zh) 太陽能電池的製作方法
JP2017041590A (ja) 光電変換素子及び光電変換モジュール
JP6639169B2 (ja) 光電変換素子及びその製造方法
TWI438913B (zh) Production method of crystalline silicon solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150