JP6776210B2 - Molded body for refining or smelting addition - Google Patents

Molded body for refining or smelting addition Download PDF

Info

Publication number
JP6776210B2
JP6776210B2 JP2017205998A JP2017205998A JP6776210B2 JP 6776210 B2 JP6776210 B2 JP 6776210B2 JP 2017205998 A JP2017205998 A JP 2017205998A JP 2017205998 A JP2017205998 A JP 2017205998A JP 6776210 B2 JP6776210 B2 JP 6776210B2
Authority
JP
Japan
Prior art keywords
smelting
molded body
refining
molded
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017205998A
Other languages
Japanese (ja)
Other versions
JP2019077922A (en
Inventor
将弘 小寺
将弘 小寺
水田 泰弘
泰弘 水田
Original Assignee
ダイネン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイネン株式会社 filed Critical ダイネン株式会社
Priority to JP2017205998A priority Critical patent/JP6776210B2/en
Publication of JP2019077922A publication Critical patent/JP2019077922A/en
Application granted granted Critical
Publication of JP6776210B2 publication Critical patent/JP6776210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、膨張剤を含有する精錬又は製錬添加用成型体に関する。 The present invention relates to a smelting or smelting addition molded body containing a leavening agent.

精錬又は製錬工程では、目的とする金属、金属化合物またはこれらの精製物を得るために反応系内に脱酸材、昇温材、保温材、造滓材又は加炭材等の種々の添加剤を投入する。 In the refining or smelting process, various additions such as deoxidizing material, heating material, heat insulating material, slag-making material or carbonizing material are added to the reaction system in order to obtain the desired metal, metal compound or refined product thereof. Add the agent.

例えば、脱酸材とは製鋼工程において溶鋼中の酸素を除去するために用いられ、主にアルミドロスに代表されるアルミニウム系材料を有効成分とする。また、製鋼の分野においてコークスや黒鉛などの炭素材料は昇温材又は保温材の有効成分として用いられ、鋼鉄の炭素量を調整するための加炭材の有効成分としても使用されている。 For example, the deoxidizing material is used to remove oxygen in molten steel in the steelmaking process, and mainly contains an aluminum-based material typified by aluminum dross as an active ingredient. Further, in the field of steelmaking, carbon materials such as coke and graphite are used as an active ingredient of a heating material or a heat insulating material, and are also used as an active ingredient of a charcoal material for adjusting the carbon content of steel.

これらの添加剤は、系内にてその有効成分が容易に拡散して、その効果を早く発揮することが望まれている。一方で、上記する添加剤は、輸送及び運搬等の利便性の向上;系内へ投入する際の作業性を容易にすること;系内に投入した後の沈降性の上昇;及び系内に投入する際の発塵防止等を達成するために、一定以上の強度を有する必要があるとされる。 It is desired that the active ingredient of these additives is easily diffused in the system and the effect is exhibited quickly. On the other hand, the above-mentioned additives improve convenience such as transportation and transportation; facilitate workability when they are put into the system; increase sedimentation after being put into the system; and in the system. It is said that it is necessary to have a certain level of strength or higher in order to prevent dust generation at the time of charging.

他方、これらの精錬又は製錬工程とは関係のない鋳造の分野において、特許文献1に記載のように膨張効果を発揮する成分の典型例である膨張黒鉛が、中子(なかご)として用いられることが知られている。また、同様の効果を発揮する成分であるバーミキュライトも、特許文献2に記載のように鋳型の分野にて用いられる事が知られている。 On the other hand, in the field of casting unrelated to these refining or smelting processes, expanded graphite, which is a typical example of a component exhibiting an expansion effect as described in Patent Document 1, is used as a core (basket). It is known to be. Further, it is known that vermiculite, which is a component exhibiting the same effect, is also used in the field of a mold as described in Patent Document 2.

特開2010-036252号公報Japanese Unexamined Patent Publication No. 2010-036252 特開2009-161409号公報JP 2009-161409

上記するように、精錬又は製錬工程で使用される添加剤(成型体)は、輸送及び運搬等の利便性の向上等のために、打錠機又はブリケット機等を用いて、円盤状若しくは円柱状等の錠剤、マセック型、タマゴ型又はピロー型等のある程度強い強度を有する形状に成型される。 As described above, the additive (molded body) used in the refining or smelting process is disk-shaped or formed by using a tableting machine or a briquette machine in order to improve convenience such as transportation and transportation. It is molded into a shape having a certain degree of strength, such as a columnar tablet, a massec type, an egg type, or a pillow type.

一方で、上記の様な強度にした成型体を系内に添加すると、これに含有される有効成分が十分に系内に拡散せず、結果としてその効果を発揮させることが難しくなる。 On the other hand, when the molded product having the above-mentioned strength is added to the system, the active ingredient contained therein is not sufficiently diffused into the system, and as a result, it becomes difficult to exert the effect.

本発明は、系内に添加後した時に十分な拡散能を発揮しつつ、操作性等に影響を及ぼさない程度に十分な強度を有する、精錬又は製錬工程において添加される成型体を提供することを課題とする。 The present invention provides a molded product added in a refining or smelting process, which exhibits sufficient diffusivity when added into a system and has sufficient strength to the extent that it does not affect operability or the like. That is the issue.

上記する課題を解決すべく本発明者らが鋭意検討を重ねた結果、これまで精錬又は製錬工程に関する分野では用いられていなかった膨張材を採用することによって、十分な強度を有しつつ、且つ添加後の拡散能に富んだ成型体を提供できることを見出した。 As a result of diligent studies by the present inventors in order to solve the above-mentioned problems, by adopting an expansion material that has not been used in the field of refining or smelting process so far, while having sufficient strength, Moreover, it has been found that it is possible to provide a molded product having a high diffusivity after addition.

本発明は、上記する知見に基づいてなされたものであり、下記に示す態様の発明を広く包含するものである。 The present invention has been made based on the above findings, and broadly includes the inventions of the following aspects.

項1 膨張黒鉛、バーミキュライト及びパーライトからなる群より選択される少なくとも1つの膨張材を含有する精錬又は製錬添加用成型体。 Item 1 A molded product for refining or smelting addition containing at least one expanding material selected from the group consisting of expanded graphite, vermiculite and pearlite.

項2 さらに、炭素類、鉄、石灰、非鉄金属類、鉱滓類及び樹脂類からなる群より選択される、少なくとも1つを含有する事を特徴とする、項1に記載する精錬又は製錬添加用成型体。 Item 2 The refining or smelting addition according to Item 1, further comprising at least one selected from the group consisting of carbons, iron, lime, non-ferrous metals, slags and resins. Molded body.

項3 前記する炭素類が、石炭、コークス及び黒鉛からなる群より選択される少なくとも一種である、項2に記載する精錬又は製錬添加用成型体。 Item 3 The refining or smelting addition molding according to Item 2, wherein the carbons are at least one selected from the group consisting of coal, coke and graphite.

項4 前記する非鉄金属類が、ニッケル、クロム、シリコン、マンガン、モリブデン、チタン、リン、硫黄、銅及びバナジウムからなる群より選択される少なくとも一種である、項2に記載する精錬又は製錬添加用成型体。 Item 4 The refining or smelting addition according to Item 2, wherein the nonferrous metal is at least one selected from the group consisting of nickel, chromium, silicon, manganese, molybdenum, titanium, phosphorus, sulfur, copper and vanadium. Molded body.

項5 前記する鉱滓類が、鉄鋼スラグ及び/又はアルミドロスである、項2に記載する精錬又は製錬添加用成型体。 Item 5 The smelting or smelting addition molding according to Item 2, wherein the mineral slag is steel slag and / or aluminum dross.

項6 前記する樹脂類が、炭化水素及び/又はプラスチック類である、項2に記載する精錬又は製錬添加用成型体。 Item 6 The smelting or smelting addition molding according to Item 2, wherein the resins described above are hydrocarbons and / or plastics.

項7 前記する炭化水素が、パラフィン、ピッチ及びタールからなる群より選択される、項6に記載する精錬又は製錬添加用成型体。 Item 7 The refining or smelting addition molding according to Item 6, wherein the hydrocarbon is selected from the group consisting of paraffin, pitch and tar.

項8 前記するプラスチック類が、フェノール、エポキシ、メラミン、ポリエステル、ポリウレタン、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、ポリカーボネート、アクリル及びポリエチレンテレフタレート樹脂からなる群より選択される、項6に記載する精錬又は製錬添加用成型体。 Item 8 The refining or refining according to Item 6, wherein the plastics are selected from the group consisting of phenol, epoxy, melamine, polyester, polyurethane, polyimide, polyethylene, polypropylene, polystyrene, nylon, polycarbonate, acrylic and polyethylene terephthalate resin. Molded body for smelting addition.

項9 成型体100質量部に対して0.1〜45重量部の前記膨張材が含有される事を特徴とする、項1〜項8の何れか1項に記載する精錬又は製錬添加用成型体。 Item 9 The refining or smelting addition molding according to any one of Items 1 to 8, wherein 0.1 to 45 parts by weight of the expanding material is contained with respect to 100 parts by mass of the molded body. ..

項10 成型体の圧壊強度が30〜1000kgfである事を特徴とする、項1〜項9の何れか1項に記載する精錬又は製錬添加用成型体。 Item 10. The smelting or smelting addition molding according to any one of Items 1 to 9, wherein the crushing strength of the molded product is 30 to 100 kgf.

項11 形状が、円盤型、円柱型、マセック型、タマゴ型、ピロー型、レンズ型又はアーモンド型である事を特徴とする、項1〜項10の何れか1項に記載する精錬又は製錬添加用成型体。 Item 11 The refining or smelting according to any one of Items 1 to 10, wherein the shape is a disk type, a cylindrical type, a Masek type, an egg type, a pillow type, a lens type or an almond type. Molded body for addition.

本発明の精錬又は製錬添加用成型体は系内に投与することによって容易に拡散する作用を発揮する。この作用に基づいて、本発明の精錬又は製錬添加用成型体に含まれる有効成分が系内にて溶け残る事がなく、有効成分による効果を早期に発揮することができる。 The refined or smelting-added molded product of the present invention exerts an action of easily diffusing when administered into the system. Based on this action, the active ingredient contained in the refining or smelting addition molding of the present invention does not remain undissolved in the system, and the effect of the active ingredient can be exhibited at an early stage.

本発明の精錬又は製錬添加用形成体は十分な強度を有するので、輸送及び運搬等の利便性の面で有利である。また、これを系内に投入する際の作業性向上、系内に投入した後の沈降性の上昇、及び系内に投入する際の発塵防止等の効果も期待できる。 Since the smelting or smelting addition forming body of the present invention has sufficient strength, it is advantageous in terms of convenience such as transportation and transportation. Further, it can be expected to have effects such as improvement of workability when the product is charged into the system, improvement of sedimentation property after the product is charged into the system, and prevention of dust generation when the product is charged into the system.

実施例1の結果を示す写真像。0重量%、0.1重量%又は0.3重量%の濃度の膨張黒鉛を含有する成型体の、1000℃での崩壊試験の結果を示す。図中に、成型体を加温するために電気炉に、これらを設置してからの経過時間を記す。A photographic image showing the results of Example 1. The results of a disintegration test at 1000 ° C. of a molded product containing expanded graphite having a concentration of 0% by weight, 0.1% by weight or 0.3% by weight are shown. In the figure, the elapsed time from the installation of these in the electric furnace for heating the molded body is shown. 実施例1の結果を示す写真像。0.5重量%又は1重量%の濃度の膨張黒鉛を含有する成型体の、1000℃での崩壊試験の結果を示す。図中に、成型体を加温するために電気炉に、これらを設置してからの経過時間を記す。A photographic image showing the results of Example 1. The results of a disintegration test at 1000 ° C. of a molded product containing expanded graphite having a concentration of 0.5% by weight or 1% by weight are shown. In the figure, the elapsed time from the installation of these in the electric furnace for heating the molded body is shown. 実施例1の結果を示す写真像。0重量%、0.1重量%又は0.3重量%の濃度の膨張黒鉛を含有する成型体の、1400℃での崩壊試験の結果を示す。図中に、成型体を加温するために電気炉に。これらを設置してからの経過時間を記す。A photographic image showing the results of Example 1. The results of a disintegration test at 1400 ° C. of a molded product containing expanded graphite having a concentration of 0% by weight, 0.1% by weight or 0.3% by weight are shown. In the figure, in an electric furnace to heat the molded body. The elapsed time since these were installed is recorded. 実施例1の結果を示す写真像。0.5重量%又は1重量%の濃度の膨張黒鉛を含有する成型体の、1400℃での崩壊試験の結果を示す図中に、成型体を加温するために電気炉に、これらを設置してからの経過時間を記す。A photographic image showing the results of Example 1. In the figure showing the results of the decay test at 1400 ° C. of the molded product containing 0.5% by weight or 1% by weight of expanded graphite, these were installed in an electric furnace to heat the molded product. Record the elapsed time from. 実施例2の結果を示す写真像。各種濃度のバーミキュライトを含有する成型体の崩壊試験の結果を示す。各写真像は、成型体を1000℃の電気炉に設置する前、3分間設置及び5分間設置した後の様子を示す。A photographic image showing the results of Example 2. The results of the disintegration test of the molded product containing various concentrations of vermiculite are shown. Each photographic image shows the state before the molded body is installed in the electric furnace at 1000 ° C., after the installation for 3 minutes and after the installation for 5 minutes. 実施例2の結果を示す写真像。0.5重量%及び1%の膨張黒鉛を含有する成型体の崩壊試験の結果を示す。各写真像は、成型体を1200℃の電気炉に設置する前、3分間設置及び5分間設置した後の様子を示す。A photographic image showing the results of Example 2. The results of the disintegration test of the molded product containing 0.5% by weight and 1% expanded graphite are shown. Each photographic image shows the state before the molded product is installed in the electric furnace at 1200 ° C., after the installation for 3 minutes and after the installation for 5 minutes. 実施例2の結果を示す写真像。各種濃度のバーミキュライト及び0.5重量%の黒鉛を含有する成型体の崩壊実験の結果を示す。各写真像は、成型体を1200℃の電気炉に設置する前、3分間設置及び5分間設置した後の様子を示す。A photographic image showing the results of Example 2. The results of the disintegration experiment of the molded product containing various concentrations of vermiculite and 0.5% by weight of graphite are shown. Each photographic image shows the state before the molded product is installed in the electric furnace at 1200 ° C., after the installation for 3 minutes and after the installation for 5 minutes. 実施例3の結果を示す写真像。各種膨張材を含有しない成型体の崩壊試験の結果を示す。各写真像は、成型体を1200℃の電気炉に設置する前(図中の「投入前」に相当します。)、5分間設置、10分間設置及び20分間設置した後の様子を示す。なお、「投入前」の写真像に記す数値は成型体を作製した圧力を示し、他の各写真像に示す成型体の位置はこれと同じである。A photographic image showing the results of Example 3. The result of the collapse test of the molded body which does not contain various expansion materials is shown. Each photographic image shows the state before installing the molded body in an electric furnace at 1200 ° C (corresponding to "before charging" in the figure), after installing for 5 minutes, 10 minutes, and 20 minutes. The numerical value shown in the photographic image "before loading" indicates the pressure at which the molded body was produced, and the position of the molded body shown in each of the other photographic images is the same as this. 実施例3の結果を示す写真像。各種成型圧力によって成型して作成した、1重量%及び5重量%の濃度のバーミキュライトを含有する成型体を1400℃の電気炉に設置する前及び5分間設置した後の様子を示す。なお、「1%」「投入前」に示す写真像に記載した数値は成型体を作製した圧力を示し、これらと「5%」「投入前」に示す写真像と同じ位置の成型体は、それぞれ同じ圧力で成型して得られた成型体であることを示す。また、「1%」も「5%」も共に、投入前と5分後の写真像の成型体の位置はそれぞれ同じである。A photographic image showing the results of Example 3. The state before and after installing the molded body containing vermiculite having a concentration of 1% by weight and 5% by weight in an electric furnace at 1400 ° C., which was produced by molding with various molding pressures, is shown. In addition, the numerical values described in the photographic images shown in "1%" and "before charging" indicate the pressure at which the molded body was produced, and these and the molded body at the same position as the photographic images shown in "5%" and "before charging" are It is shown that they are molded bodies obtained by molding at the same pressure. In addition, both "1%" and "5%" have the same position of the molded body of the photographic image before and after 5 minutes of injection. 実施例3の結果を示す写真像。各種成型圧力によって成型して作成した、F品及びN品の1重量%の膨張黒鉛を含有する成型体を、1400℃の電気炉に設置する前及び5分間設置した後の様子を示す。なお、「F品:1%」「投入前」に示す写真像に記載した数値は成型体を作製した圧力を示し、これらと「N品:1%」「投入前」に示す写真像と同じ位置の成型体は、それぞれ同じ圧力で成型して得られた成型体であることを示す。また、「F品:1%」も「N品:1%」も、共に投入前と5分後の写真像の成型体の位置はそれぞれ同じである。A photographic image showing the results of Example 3. The appearances of the molded product containing 1% by weight of expanded graphite of the F product and the N product, which were molded by various molding pressures, before and after being installed in the electric furnace at 1400 ° C. for 5 minutes are shown. The numerical values shown in the photographic images shown in "F product: 1%" and "before charging" indicate the pressure at which the molded body was produced, and are the same as these and the photographic images shown in "N product: 1%" and "before charging". The molded bodies at the positions indicate that they are molded bodies obtained by molding at the same pressure. In addition, both "F product: 1%" and "N product: 1%" have the same position of the molded body of the photographic image before and 5 minutes after the injection.

<用語の説明>
本明細書において使用する「含む」なる用語にも「含有する」なる用語にも、特に断りが無い限り「必須として含む」及び「のみからなる」の両方の意味が包含される。
<Explanation of terms>
The terms "include" and "contain" as used herein include both the meanings of "included as essential" and "consisting of only" unless otherwise noted.

本明細書において使用する「精錬」なる用語は、粗金属の純度を高める精製工程を意味する。例えば、粗金属を溶融して酸化又は還元する工程がこれに相当される。 As used herein, the term "refining" refers to a purification step that increases the purity of crude metals. For example, the step of melting a crude metal and oxidizing or reducing it corresponds to this.

本明細書において使用する「製錬」なる用語は、鉱石又はその他の原料から含有金属を分離又は抽出して、金属又は合金の製造工程を意味する。例えば、鉄鋼分野において、鉄鉱石を溶融炉等によって溶解して銑鉄を作製する工程等がこれにする。 As used herein, the term "smelting" means the process of manufacturing a metal or alloy by separating or extracting the contained metal from an ore or other raw material. For example, in the steel field, this is a process of melting iron ore in a melting furnace or the like to produce pig iron.

精錬又は製錬添加用成型体
本発明の精錬又は製錬添加用成型体は、精錬又は製錬の分野に用いられる各種の添加用成型体であって、膨張黒鉛、バーミキュライト及びパーライトからなる群より選択される少なくとも1つの膨張材を含有する。
Molded body for refining or smelting addition The molded body for refining or smelting addition of the present invention is various types of molded body for addition used in the field of refining or smelting, and is composed of expanded graphite, vermiculite and pearlite. Contains at least one expansive material of choice.

すなわち、本発明の精錬又は製錬添加用成型体は、精錬又は製錬の分野に用いられる添加剤に対し、膨張黒鉛、バーミキュライト及びパーライトからなる群より選択される少なくとも1つの膨張材を含有させ、これを成型体としたものとも言える。 That is, the smelting or smelting additive molding of the present invention contains at least one expanding material selected from the group consisting of expanded graphite, vermiculite and pearlite in the additive used in the field of smelting or smelting. , It can be said that this is a molded body.

上記する膨張黒鉛とは、本発明の効果を発揮する範囲に限って、特に限定はされない。具体的には、通常は150〜500℃程度で体積変化を生じ、体積変化後の膨張率が通常は200%程度以上、好ましくは400%程度以上の特性を有するものを選択することが出来る。 The above-mentioned expanded graphite is not particularly limited as long as the effect of the present invention is exhibited. Specifically, it is possible to select a material that usually causes a volume change at about 150 to 500 ° C. and has a characteristic that the expansion coefficient after the volume change is usually about 200% or more, preferably about 400% or more.

本発明の精錬又は製錬添加用成型体に含有される膨張材を、150℃程度以上で体積変化、すなわち膨張効果を発揮するものとすることで、成型体を系内に投入する前に膨張効果を発揮してしまう事を防ぐ事が可能になる。 By making the expansion material contained in the smelting or smelting addition molding of the present invention exhibit a volume change, that is, an expansion effect at about 150 ° C. or higher, the expansion material expands before being put into the system. It is possible to prevent it from exerting its effect.

また、本発明の精錬又は製錬添加用成型体が投入される系内の温度は通常1000℃程度以上であるが、それよりも低い温度となる500℃程度で膨張効果を発揮する方が、膨張材と共に成型体に含有される後記する有効成分をより早く拡散させることができる。 Further, the temperature in the system into which the smelting or smelting addition molding of the present invention is put is usually about 1000 ° C. or higher, but it is better to exert the expansion effect at about 500 ° C., which is a lower temperature. The active ingredient described later contained in the molded body together with the expander can be diffused more quickly.

また、本発明の精錬又は製錬添加用成型体に含有される膨張材の膨張率を200%程度以上とすることによって、成型体に含有される膨張材の量を少なくすることができ、後記する有効成分をより多く配合することが可能となる。 Further, by setting the expansion coefficient of the expanding material contained in the refining or smelting addition molding body of the present invention to about 200% or more, the amount of the expanding material contained in the molded body can be reduced, which will be described later. It is possible to blend more active ingredients.

上記するバーミキュライトとは、本発明の効果を発揮する範囲に限って、特に限定はされない。具体的には(Mg1-x(Mg,Fe,Fe3+,Al)3(Si,Al)4O10(OH)2・4H2O)の化学組成を有し、土壌改良、建設資材、ガスケット材、又はシール材等の用途に用いられる成分である。また、上記する膨張黒鉛と同様に通常は150〜500℃程度で体積変化を生じ、体積変化後の膨張率が通常は200%程度以上、好ましくは400%程度以上の特性を有するものを選択することができる。 The above-mentioned vermiculite is not particularly limited as long as the effect of the present invention is exhibited. Specifically (Mg 1-x (Mg, Fe, Fe 3+, Al) 3 (Si, Al) 4 O 10 (OH) 2 · 4H 2 O) has a chemical composition of, soil improvement, construction materials , A component used for applications such as gasket materials or sealing materials. Further, similarly to the above-mentioned expanded graphite, one having a characteristic that a volume change usually occurs at about 150 to 500 ° C. and an expansion rate after the volume change is usually about 200% or more, preferably about 400% or more is selected. be able to.

上記するパーライトとは、本発明の効果を発揮する範囲に限って、特に限定はされない。具体的には、園芸培養、土壌改良、濾過材、保冷温材、又は保冷材等の用途に用いられる成分であり、上記する膨張黒鉛及びバーミキュライトと同様に、通常は150〜500℃程度で体積変化を生じ、体積変化後の膨張率が通常は200%程度以上、好ましくは400%程度以上の特性を有するものを選択することができる。 The above-mentioned pearlite is not particularly limited as long as the effect of the present invention is exhibited. Specifically, it is a component used for horticultural culture, soil improvement, filter media, cold insulation material, cold insulation material, etc., and like the above-mentioned expanded graphite and vermiculite, it usually has a volume of about 150 to 500 ° C. It is possible to select a medium that causes a change and has a characteristic that the expansion rate after the volume change is usually about 200% or more, preferably about 400% or more.

上記する精錬又は製錬の分野にて用いられる添加剤とは、本発明の効果を発揮する範囲に限って特に限定されない。具体的には、加炭材、昇温材、脱酸材、脱硫材、脱リン材、鎮静材又は非鉄金属添加材等を挙げることができる。 The additives used in the above-mentioned refining or smelting fields are not particularly limited as long as the effects of the present invention are exhibited. Specific examples thereof include a carbonizing material, a heating material, a deoxidizing material, a desulfurizing material, a dephosphorizing material, a sedative material, and a non-ferrous metal additive material.

上記する加炭材とは、投入対象となる系内の炭素濃度を調整する効果を発揮する材であり、石炭、コークス又は黒鉛等に代表される炭素類を有効成分として含む。 The above-mentioned carbonized material is a material that exerts an effect of adjusting the carbon concentration in the system to be input, and contains carbons typified by coal, coke, graphite, etc. as an active ingredient.

上記する昇温材とは、投入対象となる系内の温度を燃焼反応によって昇温する効果を発揮する材であり、主として石炭、コークス又は黒鉛等に代表される炭素類;シリコン;アルミニウム又はマグネシウム等に代表される非鉄金属類又は鉄等を有効成分として含む。 The above-mentioned heating material is a material that exerts an effect of raising the temperature in the system to be charged by a combustion reaction, and is mainly carbons typified by coal, coke, graphite, etc .; silicon; aluminum or magnesium. It contains non-ferrous metals such as iron or iron as an active ingredient.

上記する脱酸材とは、投入対象となる系内の酸素濃度を下げる効果を発揮する材であり、アルミニウム又はアルミドロス等を有効成分として含む。 The deoxidizing material described above is a material that exerts an effect of lowering the oxygen concentration in the system to be charged, and contains aluminum, aluminum dross, or the like as an active ingredient.

上記する脱硫材とは、投入対象となる系内の硫黄濃度を下げる効果を発揮する材であり、石灰又はアルミドロス等を有効成分として含む。 The desulfurization material described above is a material that exerts an effect of lowering the sulfur concentration in the system to be charged, and contains lime, aluminum dross, or the like as an active ingredient.

上記する脱リン材とは、投入対象となる系内のリン濃度を下げる効果を発揮する材であり、石灰等を有効成分として含む。 The above-mentioned dephosphorizing material is a material that exerts an effect of lowering the phosphorus concentration in the system to be charged, and contains lime or the like as an active ingredient.

上記する鎮静材とは、投入対象となる系内のスロッピングおよびフォーミングを防止または抑制する効果を発揮する材であり、樹脂類を有効成分として含む。 The above-mentioned sedative material is a material that exerts an effect of preventing or suppressing sloping and forming in the system to be charged, and contains resins as an active ingredient.

上記する非鉄金属添加材とは、投入対象となる系内の非鉄金属成分を系内に付与する効果を発揮する材であり、ニッケル、クロム、シリコン、マンガン、モリブデン、チタン、リン、硫黄、銅又はバナジウム等の非鉄金属類を有効成分として含む。 The non-ferrous metal additive material described above is a material that exerts the effect of imparting a non-ferrous metal component in the system to be input into the system, and is nickel, chromium, silicon, manganese, molybdenum, titanium, phosphorus, sulfur, copper. Alternatively, it contains non-ferrous metals such as vanadium as an active ingredient.

従って、本発明の精錬又は製錬添加用成型体は、上記する膨張材と、石炭、コークス、黒鉛等に代表される炭素類、鉄、石灰、非鉄金属類、鉄鋼スラグ又はアルミドロス等に代表される鉱滓類及び炭化水素又はプラスチック類樹脂類等の有効成分とを含有する態様とすることができる。 Therefore, the molded body for refining or smelting addition of the present invention is represented by the above-mentioned expansion material and carbons such as coal, coke and graphite, iron, lime, non-ferrous metals, steel slag and aluminum dross. It can be an embodiment containing the slag and an active ingredient such as a hydrocarbon or a plastic resin.

なお、上記する炭化水素とは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、パラフィン、ピッチ又はタール等を挙げることができる。また、上記するプラスチック類とは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、フェノール、エポキシ、メラミン、ポリエステル、ポリウレタン、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、ポリカーボネート、アクリル又はポリエチレンテレフタレート樹脂等を挙げることができる。 The above-mentioned hydrocarbon is not particularly limited as long as the effect of the present invention is exhibited. For example, paraffin, pitch, tar and the like can be mentioned. Further, the above-mentioned plastics are not particularly limited as long as the effects of the present invention are exhibited. For example, phenol, epoxy, melamine, polyester, polyurethane, polyimide, polyethylene, polypropylene, polystyrene, nylon, polycarbonate, acrylic or polyethylene terephthalate resin can be mentioned.

上記するエポキシ、メラミン及びアクリル樹脂は、何れも、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、公知の樹脂を適宜選択することができる。 The above-mentioned epoxy, melamine and acrylic resin are not particularly limited as long as the effects of the present invention are exhibited. For example, a known resin can be appropriately selected.

本発明の精錬又は製錬添加用成型体における上記する膨張材の含有量は、本発明の効果を発揮する範囲に限って、特に限定はされない。具体的には、精錬又は製錬添加用成型体100重量部に対して、通常は0.1〜45重量部程度、好ましくは0.3〜30重量部程度、更に好ましくは0.5〜10重量部程度である。 The content of the above-mentioned expansion material in the refining or smelting addition molding of the present invention is not particularly limited as long as the effect of the present invention is exhibited. Specifically, it is usually about 0.1 to 45 parts by weight, preferably about 0.3 to 30 parts by weight, and more preferably about 0.5 to 10 parts by weight with respect to 100 parts by weight of the molded body for refining or smelting addition.

本発明の精錬又は製錬添加用成型体100重量部に対して0.1重量部程度以上の膨張材を含有させることによって、系内に投入した添加剤が崩壊しやすくなり、成型体に含まれる有効成分が十分に拡散する効果を発揮しやすい傾向となる。 By containing about 0.1 part by weight or more of the expanding material with respect to 100 parts by weight of the refining or smelting additive molding body of the present invention, the additive charged into the system is likely to disintegrate, and the effective content contained in the molded body It tends to exert the effect of sufficiently diffusing the components.

また、精錬又は製錬添加用成型体100重量部に対する膨張材の含有量を45重量部程度以下とすることによって、上記する成型体に含有される有効成分による効果を十分に発揮しやすい傾向となる。 Further, by setting the content of the expanding material to about 45 parts by weight or less with respect to 100 parts by weight of the molded body for refining or smelting addition, the effect of the active ingredient contained in the above-mentioned molded body tends to be sufficiently exhibited. Become.

本発明の精錬又は製錬添加用成型体の圧壊強度は、本発明の効果を発揮する範囲に限って、特に限定はされない。具体的には、JIS Z 8841「造粒物-強度試験方法」の圧壊強度試験方法によって測定した数値として、通常は30〜1000kgf程度、好ましくは50〜500kgf程度、更に好ましくは100〜200kgf程度を挙げることができる。 The crushing strength of the smelting or smelting addition molding of the present invention is not particularly limited as long as the effect of the present invention is exhibited. Specifically, as a numerical value measured by the crushing strength test method of JIS Z 8841 "Granulated product-strength test method", it is usually about 30 to 100 kgf, preferably about 50 to 500 kgf, and more preferably about 100 to 200 kgf. Can be mentioned.

本発明の精錬又は製錬添加用成型体の圧壊強度を30kgf程度以上とすることによって、成型体にすることで発塵を抑制し、かつハンドリング性が良くなるとの効果を発揮しやすい傾向となる。また、本発明の精錬又は製錬添加用成型体の圧壊強度を1000kgf程度以下とすることによって、系内への投入後、成型体が速やかに解れ、分散し有効成分の効果を発揮するとの効果を発揮しやすい傾向となる。 By setting the crushing strength of the smelting or smelting addition molding of the present invention to about 30 kgf or more, the molding tends to suppress dust generation and improve the handling property. .. Further, by setting the crushing strength of the smelting or smelting addition molding of the present invention to about 1000 kgf or less, the molded body is quickly disintegrated and dispersed after being put into the system, and the effect of the active ingredient is exhibited. It tends to be easy to demonstrate.

本発明の精錬又は製錬添加用成型体の形状は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、円盤型、円柱型、マセック型、タマゴ型、ピロー型、レンズ型、又はアーモンド型等を挙げることができる。 The shape of the molded body for refining or smelting addition of the present invention is not particularly limited as long as the effect of the present invention is exhibited. For example, a disk type, a cylindrical type, a Masek type, an egg type, a pillow type, a lens type, an almond type and the like can be mentioned.

上記する精錬又は製錬添加用成型体は、精錬又は製錬の分野にて用いられている種々の添加剤に、必要であればバインダーと共に、上記する膨張材を配合して得ることができる。 The above-mentioned molded body for refining or smelting addition can be obtained by blending the above-mentioned expansion material with various additives used in the field of refining or smelting together with a binder, if necessary.

本発明の精錬又は製錬添加用成型体の具体的な大きさは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、三方の長さを通常は20〜90mm程度とすることができる。また、直径を通常は20〜90mm程度とすることができる。 The specific size of the refined or smelting-added molded product of the present invention is not particularly limited as long as the effect of the present invention is exhibited. For example, the length of the three sides can usually be about 20 to 90 mm. In addition, the diameter can usually be about 20 to 90 mm.

以下に、本発明をより詳細に説明するために、本発明の精錬又は製錬添加用成型体の典型例となる各種成型体の温度応答性を確認した実験結果を示す。なお、本発明が以下の実施例に示す発明に限定して解釈されない事はいうまでもない。 In order to explain the present invention in more detail, the experimental results for confirming the temperature responsiveness of various molded bodies, which are typical examples of the molded bodies for refining or smelting addition of the present invention, are shown below. Needless to say, the present invention is not construed as being limited to the inventions shown in the following examples.

実施例1
石炭粉及び鉄粉を含有する加炭および昇温用添加剤に、膨張黒鉛を添加して得られる成型体
下記の表1に示す割合で膨張黒鉛(中国産)を配合した加炭および昇温用添加剤(石炭粉:鉄粉=4:1)をバインダーと共に混錬し、その後ロール成型機;自社製を用いてマセック型に成型した。なお、表中の圧壊強度(kgf)はプレス機;自社製を用いて測定した数値の平均値(10個)である。測定手段はJIS Z 8841「造粒物-強度試験方法」に記載する圧壊強度試験方法に準じて行った。また。表中の見掛比重(g/mL)は5個の成型体の平均値である。
Example 1
Molded product obtained by adding expanded graphite to coal powder and iron powder-containing additive for coal and temperature rise. Coal addition and temperature rise by blending expanded graphite (made in China) at the ratio shown in Table 1 below. Additives (coal powder: graphite powder = 4: 1) were kneaded together with a binder, and then molded into a massec mold using a roll molding machine; in-house. The crushing strength (kgf) in the table is the average value (10 pieces) of the values measured using a press machine; in-house manufactured. The measuring means was carried out according to the crush strength test method described in JIS Z 8841 “Granulated product-strength test method”. Also. The apparent specific gravity (g / mL) in the table is the average value of the five molded bodies.

このようにして作製した成型体を1000℃又は1400℃に加熱した電気炉に投入し、その崩壊の様子を写真像(遮光板を通して炉内を撮影した像)によって観察した。その結果を図1〜4に示す。 The molded product thus produced was put into an electric furnace heated to 1000 ° C. or 1400 ° C., and the state of its collapse was observed by a photographic image (an image of the inside of the furnace taken through a light-shielding plate). The results are shown in FIGS. 1 to 4.

図1及び図3から、従来配合の膨張黒鉛を含有しない成型体は、1000℃の温度条件であっても1400℃の温度条件であっても、共に投入から4分を目途に崩壊することはなかった。一方で、膨張黒鉛を含む成型体は、その含有割合に従って崩壊することが明らかとなった。 From FIGS. 1 and 3, the conventionally blended molded product containing no expanded graphite does not collapse within 4 minutes after charging, regardless of the temperature condition of 1000 ° C. or 1400 ° C. There wasn't. On the other hand, it was clarified that the molded product containing expanded graphite collapsed according to its content ratio.

例えば、図1及び2から1000℃の温度条件では0.1重量%の膨張黒鉛を含む成型体は3分50秒で崩壊し、0.3重量%では2分42秒、0.5重量%では2分25秒、そして1重量%では2分4秒で崩壊した。 For example, under the temperature conditions of 1000 ° C from FIGS. 1 and 2, the molded product containing 0.1% by weight of expanded graphite collapsed in 3 minutes and 50 seconds, 0.3% by weight was 2 minutes and 42 seconds, and 0.5% by weight was 2 minutes and 25 seconds. And at 1% by weight, it collapsed in 2 minutes and 4 seconds.

また、1400℃の温度条件では1000℃の温度条件よりも早く崩壊し、図3及び4から0.1重量%の膨張黒鉛を含む成型体は3分14秒で崩壊し、0.3重量%では1分27秒、0.5重量%では1分12秒、そして1重量%では1分5秒で崩壊した。 In addition, under the temperature condition of 1400 ° C, it collapses faster than the temperature condition of 1000 ° C, and from FIGS. 3 and 4, the molded product containing 0.1% by weight of expanded graphite collapses in 3 minutes and 14 seconds, and at 0.3% by weight, it collapses at 1 minute 27. It collapsed in 1 minute and 12 seconds at 0.5% by weight and 1 minute and 5 seconds at 1% by weight.

なお、上記する表1に示すようにこれらの成型体の圧壊強度は100kgfを超えており、一般的に成型体の運搬及び投入時のオペレーションに不自由がない強度であると言える。 As shown in Table 1 above, the crushing strength of these molded bodies exceeds 100 kgf, and it can be said that there is generally no inconvenience in the operation during transportation and loading of the molded bodies.

実施例2
脱酸用添加剤に、各種配合量にて各種膨張材を添加して得られる成型体
製鋼の分野に用いられるアルミドロスに対して、膨張材であるバーミキュライト及び膨張黒鉛を所定の濃度で含有する成型体を作製した。
Example 2
Vermiculite and expanded graphite, which are expansion materials, are contained in a predetermined concentration with respect to aluminum dross used in the field of molded steelmaking obtained by adding various expansion materials in various blending amounts to the deoxidizing additive. A molded body was produced.

アルミドロスに対してバーミキュライトを5重量%又は10重量%となるようにバインダーと共に混錬し、これらを上記実施例1に示す手段を採用してマセック型に成型した。なお、5重量%のバーミキュライトを含有する成型体は、その強度を上記する実施例1にて確認した手段を採用しながら、その圧壊強度をそれぞれ150kgf又は500kgfとなるように成型した。また、これと同様にアルミドロスに対して膨張黒鉛を0.5重量%又は1重量%となるように含有する成型体も作製した。 Vermiculite was kneaded with a binder so as to be 5% by weight or 10% by weight with respect to aluminum dross, and these were molded into a massec mold by adopting the means shown in Example 1 above. The molded body containing 5% by weight of vermiculite was molded so as to have a crushing strength of 150 kgf or 500 kgf, respectively, while adopting the means for which the strength was confirmed in Example 1 above. Similarly to this, a molded product containing expanded graphite in an amount of 0.5% by weight or 1% by weight with respect to aluminum dross was also produced.

このようにして作製した成型体を1000℃又は1400℃の電気炉に投入し、その崩壊の様子を写真像(炉外にて撮影した像)によって観察した。その結果を図5〜7に示す。 The molded product thus produced was put into an electric furnace at 1000 ° C. or 1400 ° C., and the state of its collapse was observed by a photographic image (an image taken outside the furnace). The results are shown in Figures 5-7.

図5に示すように、5重量%のバーミキュライトを含有する成型体は、圧壊強度が150kgfの時は投入から3分後および5分後と長時間になるにつれて、その崩壊の度合いが進行したのに対して、圧壊強度が500kgfの時は投入から3分後も5分後も共に崩壊すらしないことが明らかとなった。 As shown in FIG. 5, when the crushing strength of the molded product containing 5% by weight of vermiculite was 150 kgf, the degree of collapse progressed as the crushing strength increased to 3 minutes and 5 minutes after the injection. On the other hand, when the crushing strength was 500 kgf, it became clear that neither collapsed 3 minutes or 5 minutes after the injection.

なお、バーミキュライトを10質量%含む場合の成型体(この時の圧壊強度は320kgfである)は3分後および5分後と長時間になるにつれて、その崩壊の度合いが進行した。 The degree of disintegration of the molded product (the crushing strength at this time was 320 kgf) in the case of containing 10% by mass of vermiculite progressed as a long time of 3 minutes and 5 minutes.

実施例3
各種圧力で成型した、各種膨張材を含有する添加用成型体
製鋼の分野に用いられるアルミドロスに対して、膨張材であるバーミキュライト及び膨張黒鉛を所定の添加量で含有する成型体を作製した。
Example 3
Addition moldings containing various expansion materials molded at various pressures For aluminum dross used in the field of steelmaking, moldings containing vermiculite and expansion graphite, which are expansion materials, in a predetermined amount were prepared.

アルミドロスを2t、4t、6t、8t及び10tと、所定の圧力にて円柱型の成型体を作製した。具体的には上記する実施例1にて作製した手段(油圧式プレス機を用いた点が異なる)を採用することによって成型体を作製した。 A cylindrical molded body was prepared with a predetermined pressure of 2t, 4t, 6t, 8t and 10t of aluminum ross. Specifically, the molded body was produced by adopting the means produced in Example 1 described above (the difference is that a hydraulic press was used).

なお、2tの場合は約80〜120kgf程度、4tの場合は約180〜220kgf程度、6tの場合は約280〜320kgf程度、8tの場合は約380〜420kgf程度そして10tの場合は約480〜520kgf程度の圧壊強度となる。 In addition, about 80 to 120 kgf for 2t, about 180 to 220kgf for 4t, about 280 to 320kgf for 6t, about 380 to 420kgf for 8t, and about 480 to 520kgf for 10t. The crushing strength is about the same.

また、アルミドロスに対してバーミキュライトを1重量%となるように混錬して包含させた成型体も同様に作製した。この時、2tの圧力をかけて作製した成型体は約70〜120kgf程度、4tの場合は約160〜210kgf程度、6tの場合は約250〜300kgf程度、8tの場合は約350〜400kgf程度、そして10tの場合は約450〜500kgf程度の圧壊強度となる。 Further, a molded body in which vermiculite was kneaded and included in an amount of 1% by weight with respect to aluminum dross was also produced in the same manner. At this time, the molded body produced by applying a pressure of 2t is about 70 to 120kgf, 4t is about 160 to 210kgf, 6t is about 250 to 300kgf, and 8t is about 350 to 400kgf. And in the case of 10t, the crushing strength is about 450 to 500kgf.

そして、アルミドロスに対してバーミキュライトを5重量%となるように包含させた成型体も同様に作製した。この時、2tの圧力をかけて作製した成型体は約50〜100kgf程度、4tの場合は約160〜210kgf程度、6tの場合は約230〜280kgf程度、8tの場合は約320〜370kgf程度、そして10tの場合は約420〜470kgf程度の圧壊強度となる。 Then, a molded body containing vermiculite in an amount of 5% by weight based on aluminum dross was also produced in the same manner. At this time, the molded body manufactured by applying a pressure of 2t is about 50 to 100kgf, 4t is about 160 to 210kgf, 6t is about 230 to 280kgf, and 8t is about 320 to 370kgf. And in the case of 10t, the crushing strength is about 420 to 470kgf.

一方、アルミドロスに対してF品(膨張率:約900%)及びN品(N品:膨張率:約3600%)と称する2種類の膨張黒鉛を1重量%となるように包含させた成型体を作製した。上記のバーミキュライト包含成型体と同様に、2t、4t、6t、8t及び10tと、所定の圧力にて円柱状の成型体を作製した。 On the other hand, molding in which two types of expanded graphite called F product (expansion rate: about 900%) and N product (N product: expansion rate: about 3600%) are included in aluminum dross so as to be 1% by weight. The body was made. Similar to the above-mentioned vermiculite-containing molded body, a columnar molded body was prepared at a predetermined pressure of 2t, 4t, 6t, 8t and 10t.

ここで、F品の2tの場合は約80〜120kgf程度、4tの場合は約180〜220kgf程度、6tの場合は約280〜320kgf程度、8tの場合は約380〜420kgf程度、そして10tの場合は約480〜520kgf程度の圧壊強度となる。 Here, 2t of F product is about 80 to 120kgf, 4t is about 180 to 220kgf, 6t is about 280 to 320kgf, 8t is about 380 to 420kgf, and 10t. Has a crushing strength of about 480 to 520 kgf.

そして、N品の2tの場合は約80〜120kgf程度、4tの場合は約180〜220kgf程度、6tの場合は約280〜320kgf程度、8tの場合は約380〜420kgf程度、そして10tの場合は約480〜520kgf程度の圧壊強度となる。 And, in the case of N product 2t, it is about 80 to 120kgf, in the case of 4t, it is about 180 to 220kgf, in the case of 6t, it is about 280 to 320kgf, in the case of 8t, it is about 380 to 420kgf, and in the case of 10t. The crush strength is about 480 to 520 kgf.

このようにして作製した各種成型体を1200℃の電気炉に投入し、所定時間経過後の成型体の様子を観察した。図8〜10にその結果を示す。 The various molded bodies thus produced were put into an electric furnace at 1200 ° C., and the state of the molded bodies after a lapse of a predetermined time was observed. The results are shown in Figures 8-10.

図8は、アルミドロス単独の成型体の1200℃の電気炉への投入前、投入後5分、10分及び20分の様子を示す。2tの場合は5分後より崩壊しつつあるが、その他の圧力で作製した成型体は20分間投入し続けても崩壊することはなかった。以上より、成型体を作製する際の圧力を高くすればするほど、たとえ成型体に膨張成分を含有されないとしても、その崩壊性が低くなる傾向となることが明らかとなった。 FIG. 8 shows the state of the molded product of aluminum dross alone before, 5 minutes, 10 minutes, and 20 minutes after the injection into the electric furnace at 1200 ° C. In the case of 2t, it started to collapse after 5 minutes, but the molded product prepared under other pressure did not collapse even if it was continuously charged for 20 minutes. From the above, it has been clarified that the higher the pressure at the time of producing the molded body, the lower the disintegration property tends to be, even if the molded body does not contain the expansion component.

図9は、アルミドロスに1重量%又は5重量%のバーミキュライトを包含させた成型体の1200℃の電気炉への投入前及び投入後5分の様子を示す。両者共に、成型体作製時の圧力が高くなるにつれて、5分後の成型体の崩壊の程度が減少していく傾向が見れとれ、10tの圧力では共に殆んど崩壊しない事が明らかとなった。 FIG. 9 shows a state of a molded product containing 1% by weight or 5% by weight of vermiculite in aluminum dross before and 5 minutes after the injection into an electric furnace at 1200 ° C. In both cases, it was found that the degree of collapse of the molded body after 5 minutes tended to decrease as the pressure during the production of the molded body increased, and it became clear that both of them hardly collapsed at a pressure of 10 tons. ..

図10は、1%のF品又はN品の膨張黒鉛を包含するアルミドロスの成型体を1200℃の電気炉に投入する前及び投入後5分の様子を示す。F品もN品も共に、5分後は全ての圧力で作製した成型体が崩壊することが明らかとなった。 FIG. 10 shows a state of an aluminum dross molded product containing 1% F product or N product expanded graphite before and 5 minutes after being charged into an electric furnace at 1200 ° C. It was clarified that the molded bodies produced at all pressures collapsed after 5 minutes for both F and N products.

以上の結果から、膨張率の高い膨張黒鉛を使用した方が、崩壊性が高くなる事が明らかとなった。 From the above results, it was clarified that the disintegration property was higher when expanded graphite having a high expansion coefficient was used.

Claims (4)

バーミュキュライト、パーライトを含有せず、膨張黒鉛を含有する精錬又は製錬添加用成型体であって、該成型体100質量部に対して0.1〜10重量部の膨張黒鉛が含有される事を特徴とする、精錬又は製錬添加用成型体。 A molded product for refining or smelting addition that does not contain vermiculite or pearlite but contains expanded graphite, and contains 0.1 to 10 parts by weight of expanded graphite with respect to 100 parts by mass of the molded product. A molded body for refining or smelting addition, which comprises. さらに、炭素類、鉄、石灰、非鉄金属類、鉱滓類及び樹脂類からなる群より選択される、少なくとも1つを含有する事を特徴とする、請求項1に記載する精錬又は製錬添加用成型体。 The refining or smelting addition according to claim 1, further comprising at least one selected from the group consisting of carbons, iron, lime, non-ferrous metals, slags and resins. Molded body. 成型体の圧壊強度が30〜1000kgfである事を特徴とする、請求項1又は2に記載する精錬又は製錬添加用成型体。 The smelting or smelting addition molding according to claim 1 or 2, wherein the crushing strength of the molded body is 30 to 100,000 kgf. 形状が、円盤型、円柱型、マセック型、タマゴ型、ピロー型、レンズ型又はアーモンド型である事を特徴とする、請求項1〜3の何れか1項に記載する精錬又は製錬添加用成型体。 The refining or smelting addition according to any one of claims 1 to 3, wherein the shape is a disk type, a cylindrical type, a massec type, an egg type, a pillow type, a lens type or an almond type. Molded body.
JP2017205998A 2017-10-25 2017-10-25 Molded body for refining or smelting addition Active JP6776210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205998A JP6776210B2 (en) 2017-10-25 2017-10-25 Molded body for refining or smelting addition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205998A JP6776210B2 (en) 2017-10-25 2017-10-25 Molded body for refining or smelting addition

Publications (2)

Publication Number Publication Date
JP2019077922A JP2019077922A (en) 2019-05-23
JP6776210B2 true JP6776210B2 (en) 2020-10-28

Family

ID=66628662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205998A Active JP6776210B2 (en) 2017-10-25 2017-10-25 Molded body for refining or smelting addition

Country Status (1)

Country Link
JP (1) JP6776210B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145918A (en) * 1981-02-27 1982-09-09 Shinagawa Rozai Kk Slag forming material
JPS59159909A (en) * 1983-02-28 1984-09-10 Yahashi Kogyo Kk Thermal collapsing type granulated desulfurizing agent and desulfurizing method
JPH0472006A (en) * 1990-05-14 1992-03-06 Toshiba Ceramics Co Ltd Antifoaming agent
GB9108889D0 (en) * 1991-04-25 1991-06-12 Foseco Int Metallurgical fluxes
WO1994019496A1 (en) * 1993-02-23 1994-09-01 Laporte Group Australia Limited Insulating/metallurgical composite and method of manufacturing same
JP3619279B2 (en) * 1995-03-23 2005-02-09 株式会社ケイハン Metal-containing powder molding composition and method for producing the same
JP3724116B2 (en) * 1997-05-19 2005-12-07 吉澤石灰工業株式会社 Electric furnace steelmaking flux and method for producing the same
US7374838B2 (en) * 2003-06-10 2008-05-20 Ballard Power Systems Inc. Electrochemical fuel cell with fluid distribution layer having non-uniform permeability
KR101190630B1 (en) * 2012-01-30 2012-10-15 주식회사 지앤씨에스 Organic light emitting diode display
JP6616956B2 (en) * 2015-04-03 2019-12-04 司郎 原口 Slag forming suppression material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2019077922A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP4295544B2 (en) Method for producing reformed coal for metallurgy, and method for producing slag containing reduced metal and non-ferrous metal oxide using reformed coal for metallurgy
US20050211020A1 (en) Ferronickel and process for producing raw material for ferronickel smelting
Robinson et al. An empirical comparative study of renewable biochar and fossil carbon as carburizer in steelmaking
US4613363A (en) Process of making silicon, iron and ferroalloys
JP6776210B2 (en) Molded body for refining or smelting addition
US9534275B2 (en) Methods and systems for reducing chromium containing raw material
US4728358A (en) Iron bearing briquet and method of making
JP2003183715A (en) Method for manufacturing molten metal
JPS6179744A (en) Continuous production of silicon base composite alloyed iron
Kurunov et al. Brex–a new stage in the agglomeration of raw materials for blast furnaces
JP2007056306A (en) Method for producing sintered ore, and pseudo particle for producing sintered ore
US3907554A (en) Additive for steel baths
JP4078285B2 (en) Blast furnace operation method
EP0235291A4 (en) Method for obtaining vanadium slag.
JP3863104B2 (en) Blast furnace operation method
JP2007253031A (en) Production method of subsidiary material for iron making
US1428061A (en) Manufacture of iron and steel
RU2237722C1 (en) Briquette-component for blast-furnace charge
RU2496895C1 (en) Method of waelz process of zinc cakes
TWI825639B (en) Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
JP2004225108A (en) Killing material for foaming slag in converter and molten slag pan
CN101139677A (en) Method for producing inconel by submerged arc furnace
RU2219450C1 (en) Bed refractory charge for iron-melting gas cupola
US3190745A (en) Method of improving blast furnace performance using raw petroleum coke
JPS60169512A (en) Carburizer for metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200901

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6776210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250