CN101139677A - Method for producing inconel by submerged arc furnace - Google Patents

Method for producing inconel by submerged arc furnace Download PDF

Info

Publication number
CN101139677A
CN101139677A CNA2007100625474A CN200710062547A CN101139677A CN 101139677 A CN101139677 A CN 101139677A CN A2007100625474 A CNA2007100625474 A CN A2007100625474A CN 200710062547 A CN200710062547 A CN 200710062547A CN 101139677 A CN101139677 A CN 101139677A
Authority
CN
China
Prior art keywords
ore
producing
alloy
nichrome
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100625474A
Other languages
Chinese (zh)
Inventor
张美焦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNA2007100625474A priority Critical patent/CN101139677A/en
Publication of CN101139677A publication Critical patent/CN101139677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention relates to a production method of Ni-Cr-Fe alloy, in particular to a method for producing Ni-Cr-Fe alloy by using an ore heating furnace. In the method, the raw material is nickel oxide ore; the fuel for calcining the crude ore contains P of no more than 0.02 per cent; the reducer used in smelting by the ore heating furnace contains P of no more than 0.02 per cent. The invention uses low-phosphorous fuel and reducer, the phosphorous contained in the product can meet the requirement for stainless steel, and is not necessary to dephosphorize again in refining or directly smelting stainless steel, the chromium is kept in the product, so as to become Ni-Cr-Fe alloy. Compared with the traditional method, the invention avoids waste and reduces operations and the cost in smelting alloy.

Description

Method with the hot stove production in ore deposit nichrome
Technical field:
The present invention relates to the nichrome production method, especially a kind of method of producing nichrome with the hot stove in ore deposit.
Background technology:
Ferronickel is a better raw material such as smelting stainless steel, casting, generally is to be that raw material forms with mine heat furnace smelting with the nickel oxide ore.Not only nickeliferous and iron also contains part chromium because of nickel oxide ore, contains the chromium difference according to raw ore, and the hot stove in ore deposit refines and contains the about 3-5% of chromium in the raw ferro nickel, have up to 8%.Because impurity such as phosphorous in the raw ferro nickel, sulphur are very high, so need through refining with impurity removals such as phosphorus sulphur, desulfurization needs reducing atmosphere, can be easy to sulphur is reduced to very low with conventional desulfurizing iron technology, the aerobic gasification atmosphere of dephosphorization changes phosphorus oxidation in the slag over to by the oxygen in oxygen blast or the dephosphorizing agent and to remove.Chromium is that the chromium initial oxidation that is to say before phosphorus oxidation than the active element of phosphorus, and chromium is removed prior to phosphorus oxidation when dephosphorization, afterwards could dephosphorization.Though dephosphorizing process can drop to phosphorus the desired level of standard, also chromium is removed together inevitably, adds ferrochrome during smelting stainless steel again, causes the serious waste of chromium resource.
Summary of the invention:
The present invention seeks to the problems referred to above of existing at nickel iron smelting process, and to provide a kind of be raw material with the nickel oxide ore, the method for producing nichrome with the hot stove in ore deposit that can protect chromium.
Realize that the technical scheme that the object of the invention adopts is: a kind of method of producing nichrome with the hot stove in ore deposit is characterized in that:
A, raw materials used be nickel oxide ore;
Fuel used P≤0.02% that contains when b, whole ore roasting;
Used reductive agent contains P≤0.02% when c, mine heat furnace smelting.
Can add nickle contained discarded material in the above-mentioned raw materials.
Above-mentioned reductive agent can be various carbonaceous materials.
Above-mentioned whole ore roasting adopts stoving process or sintering process.
Advantage of the present invention is:
1. chromium can be retained in the alloy well, can add ferrochrome less during smelting stainless steel, avoid the wasting of resources.
2. because of in alloy, keeping the chromium of 3-5%, can reduce the stainless steel smelting cost.
3. because of institute of the present invention nickel metallurgy ferrochrome is phosphorous low, can reach stainless requirement, not need refining dephosphorization, reduce operation, reduce the alloy smelting cost.
4. because of the present invention does not need refining dephosphorization, reduce the dephosphorization operation one, thereby reduce by a slag making, reduced the amount of metal that slagging process is taken away, improved metal recovery rate.
Embodiment:
Below in conjunction with embodiment in detail the present invention is described in detail.
Embodiment 1:
With the nickel oxide ore is raw material, be fuel with hard coal during sintering, hard coal is phosphorous 0.019%, is reductive agent with blue charcoal during mine heat furnace smelting, blue charcoal phosphorous 0.008%, the nichrome of producing phosphorous 0.027%, nickel 12.5%, chromium 3.3%, phosphorus content are lower than the requirement of stainless steel 0.035%, do not need dephosphorization, chromium can all be retained in the alloy.
Embodiment 2:
With the nickel oxide ore is raw material, be fuel with hard coal during oven dry, hard coal is phosphorous 0.005%, is reductive agent with blue charcoal during mine heat furnace smelting, blue charcoal phosphorous 0.008%, the nichrome of producing phosphorous 0.015%, nickel 13.8%, chromium 4.6%, phosphorus content is far below the requirement of stainless steel 0.035%, do not need dephosphorization, chromium can all be retained in the alloy.
Embodiment 3:
With the nickel oxide ore is raw material, be fuel with coke powder during sintering, phosphorous 0.003%, be reductive agent with the coke during mine heat furnace smelting, coke phosphorous 0.018%, the nichrome of producing phosphorous 0.03%, nickel 13.8%, chromium 3.2%, phosphorus content are lower than the requirement of stainless steel 0.035%, do not need dephosphorization, chromium can all be retained in the alloy.

Claims (4)

1. method of producing nichrome with the hot stove in ore deposit is characterized in that:
A, raw materials used be nickel oxide ore;
Fuel used P≤0.02% that contains when b, whole ore roasting;
Used reductive agent contains P≤0.02% when c, mine heat furnace smelting.
2. method of producing nichrome with the hot stove in ore deposit according to claim 1 is characterized in that: can add nickle contained discarded material in the raw material.
3. method of producing nichrome with the hot stove in ore deposit according to claim 1, it is characterized in that: reductive agent can be various carbonaceous materials.
4. method of producing nichrome with the hot stove in ore deposit according to claim 1, it is characterized in that: whole ore roasting adopts stoving process or sintering process.
CNA2007100625474A 2007-08-08 2007-08-08 Method for producing inconel by submerged arc furnace Pending CN101139677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100625474A CN101139677A (en) 2007-08-08 2007-08-08 Method for producing inconel by submerged arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100625474A CN101139677A (en) 2007-08-08 2007-08-08 Method for producing inconel by submerged arc furnace

Publications (1)

Publication Number Publication Date
CN101139677A true CN101139677A (en) 2008-03-12

Family

ID=39191782

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100625474A Pending CN101139677A (en) 2007-08-08 2007-08-08 Method for producing inconel by submerged arc furnace

Country Status (1)

Country Link
CN (1) CN101139677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875206A (en) * 2022-04-11 2022-08-09 辽宁石源科技有限公司 Phosphorus removal and chromium protection double process for smelting chromium-containing high-phosphorus metal liquid from laterite-nickel ore
CN115558816A (en) * 2022-09-01 2023-01-03 广东广青金属科技有限公司 Nickel-chromium alloy smelting method and system by utilizing sensible heat of flue gas and furnace slag of submerged arc furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875206A (en) * 2022-04-11 2022-08-09 辽宁石源科技有限公司 Phosphorus removal and chromium protection double process for smelting chromium-containing high-phosphorus metal liquid from laterite-nickel ore
CN114875206B (en) * 2022-04-11 2023-09-19 辽宁石源科技有限公司 Double dephosphorization and chromium protection process for smelting chromium-containing high-phosphorus metal liquid from laterite-nickel ore
CN115558816A (en) * 2022-09-01 2023-01-03 广东广青金属科技有限公司 Nickel-chromium alloy smelting method and system by utilizing sensible heat of flue gas and furnace slag of submerged arc furnace
CN115558816B (en) * 2022-09-01 2023-09-19 广东广青金属科技有限公司 Smelting method and system for nichrome by utilizing sensible heat of flue gas and slag of submerged arc furnace

Similar Documents

Publication Publication Date Title
CN102758085B (en) Method for producing nickel-iron alloy by smelting red earth nickel mineral at low temperature
CN101775451B (en) Blast-furnace smelting method for vanadium titano-magnetite
CN107673756B (en) Mineral hot furnace magnesia anhydrous stemming and preparation method thereof
CN100485071C (en) Electric furnace smelting recovery method for chronium-nickel alloy element in stainless steel dedusting ash
CN100424191C (en) Method for directly reducing ferronickel by tunnel kiln using laterite-nickel ore as raw material
CN105907984B (en) The method for comprehensively utilizing vanadium slag
CN101665871A (en) Method for producing titanium carbide slag
CN102212636A (en) Iron-making method by performing coal-based direct reduction in rotary hearth furnace and melting in gas melting furnace on lateritic-nickel ore
CN102559981A (en) Iron making method and device by virtue of gas-based smelting reduction
CN103866115B (en) The preparation of red soil nickel ore single stage method is containing the method for nickel and stainless steel raw material
CN102301016A (en) An improved process for production of high carbon ferrochrome (hcfecr) and charge chrome with the use of a new type of chromite ore agglomerates
CN102191348B (en) Technological method and device for producing high-grade nickel and stainless steel by using oxidized pellet method
Babich et al. Low carbon ironmaking technologies: an European approach
AU2013206521B2 (en) Method for manufacturing an austenitic stainless steel from a nickel laterite ore and a chromite ore
CN101139677A (en) Method for producing inconel by submerged arc furnace
CN102181776B (en) Technique and device for producing high-grade nickel and stainless steel by reduction pelletization
CN106702177A (en) Technology of direct reduction of nickel-iron particles from laterite-nickel ores in rotary kiln
CN106148679A (en) A kind of Application way of the lean josephinite of high aluminium profiles
CN113215389B (en) Method for enriching niobium and titanium in iron-containing niobium-titanium ore and application of nickel-containing substance
CN101967530A (en) Method for reducing iron by smelting reduction in electrometallurgy
CN110257579B (en) Process for smelting schreyerite by using Ou smelting furnace
CN102206725A (en) Process for producing and reducing iron powder through two-step method
CN101892414A (en) Method for producing alloy steel by directly utilizing low-grade nickel-chromium commensal iron ore
CN107963899A (en) A kind of system and method for melting nickel slag and preparing forsterite
CN109797263A (en) The carbon containing iron charge machinery pressure ball preparation process of converter direct steelmaking

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080312