JP6767327B2 - エレベーターロープ - Google Patents

エレベーターロープ Download PDF

Info

Publication number
JP6767327B2
JP6767327B2 JP2017173775A JP2017173775A JP6767327B2 JP 6767327 B2 JP6767327 B2 JP 6767327B2 JP 2017173775 A JP2017173775 A JP 2017173775A JP 2017173775 A JP2017173775 A JP 2017173775A JP 6767327 B2 JP6767327 B2 JP 6767327B2
Authority
JP
Japan
Prior art keywords
rope
strand
steel wire
elevator rope
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017173775A
Other languages
English (en)
Other versions
JP2019048698A (ja
Inventor
前田 亮
亮 前田
真人 中山
真人 中山
安部 貴
貴 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017173775A priority Critical patent/JP6767327B2/ja
Priority to EP18853024.0A priority patent/EP3683179A4/en
Priority to CN201880057739.2A priority patent/CN111065594B/zh
Priority to PCT/JP2018/026671 priority patent/WO2019049514A1/ja
Publication of JP2019048698A publication Critical patent/JP2019048698A/ja
Application granted granted Critical
Publication of JP6767327B2 publication Critical patent/JP6767327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/1014Rope or cable structures characterised by their internal structure characterised by being laid or braided from several sub-ropes or sub-cables, e.g. hawsers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1044Rope or cable structures twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2005Elongation or elasticity
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Landscapes

  • Ropes Or Cables (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Description

本発明は、エレベーターロープに関する。
一般に、エレベーターの乗りかごはワイヤロープ(以下、「ロープ」又は「エレベーターロープ」と称する。)によって懸架されており、このロープを巻上機の駆動シーブに巻き掛け、シーブ表面のロープ溝とロープとの摩擦によって駆動することで乗りかごを昇降させている。
ところで、例えば巻上機を昇降路内に設置した機械室レスエレベーターでは、昇降路の断面積を縮小するために、巻上機の小型化が求められている。この実現手段として、駆動シーブの薄型化がある。駆動シーブを薄型化することによって、巻上機の軸長寸法の短縮が可能となり、巻上機を小型化することができる。このため、エレベーターロープとして、1本あたりの破断強度が高く、乗りかごを懸架するのに必要なロープ本数を低減できる高強度なロープが求められている。
ロープを高強度化する構成として、例えば特許文献1には、心ストランドと、心ストランドの周囲に配置される複数の側ストランドと、心ストランド及び複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、IWRCの周囲に配置される複数の主ストランドと、
を備えるエレベーター用主ロープにおいて、複数の側ストランドは、複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、仮想層心円の周長に対して、前記複数の側ストランドの内、仮想層心円の周方向において隣り合う二つの側ストランドの間隙の総計の割合が8.5%以上であることを特徴とするエレベーター用主ロープが開示されている。
特許文献1に開示されているロープは、ロープを構成する素線を伸線加工して細線化し、破断強度を2300MPa(一般的に広く普及しているエレベーター用ロープの素線破断強度は約1620〜1910MPa)級まで高めた素線を用いている。素線強度に比例してロープの強度が向上し、ロープ本数の低減が可能となる。
国際公開第2016/199204号
エレベーターに使用するロープの本数は、ロープ1本あたりが引き受ける荷重と破断強度との比から決められており、1本あたりの破断強度を向上することでエレベーター1台あたりに使用するロープ本数を低減することができる。ワイヤロープの破断強度を向上させる方法の1つとして、ワイヤロープを構成する素線1本あたりの破断強度を向上する方法があるが、素線1本あたりの弾性係数は破断強度に比例しないため、ロープ本数を低減した分だけロープ全体の剛性が低下する。そのため、例えばエレベーターの乗降によってロープにかかる荷重が急変した際、ロープの伸縮量が大きくなり、乗り心地が低下してしまう。
これを防止するため、エレベーターロープにおいては張力を付加しても伸びにくい特性が求められる。しかしながら、特許文献1では、主として高強度化した素線同士の接触抑制によるロープ寿命の向上に着目しており、ロープ伸びについては配慮されていない。
本発明の目的は、上記事情に鑑み、ロープの破断強度を向上してロープ本数を減らしたとしても、エレベーターの乗降によりロープ張力が変動することによって発生するロープ伸びの変化量を低減できるエレベーターロープを提供することにある。
本発明は、上記目的を達成するため、複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、エレベーターロープの径をd(mm)、ストランドの巻間隔をロープピッチP、鋼線の巻間隔をストランドピッチPとした時に、dに対するPの比率a、dに対するPの比率b及びエレベーターロープの破断強度T(N)が以下の式Aを満足することを特徴とするエレベーターロープを提供する。
Figure 0006767327
ただし、上記式において、E:エレベーターロープに使用している材料の縦弾性係数(MPa)、G:エレベーターロープに使用している材料の横弾性係数(MPa)、N:ストランドの本数とする。
また、本発明は、上記目的を達成するために、複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、上記鋼線は、複数の素線が撚り合わせて形成されたものであり、エレベーターロープの径をd(mm)、ストランドの巻き間隔をロープピッチP、鋼線の巻間隔をストランドピッチPとした時に、dに対するPの比率a、dに対するPの比率b及びエレベーターロープの破断強度T(N)が、上記式Aを満足することを特徴とするエレベーターロープを提供する。
本発明のより具体的な構成は、特許請求の範囲に記載される。
本発明によれば、ロープの破断強度を向上してロープ本数を減らしたとしても、エレベーターの乗降によりロープ張力が変動することによって発生するロープ伸びの変化量を低減できるエレベーター用ワイヤロープを提供することができる。
上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明のエレベーターロープの第1の例を模式的に示す側面図。 本発明のエレベーターロープの第2の例を模式的に示す側面図。 エレベーターロープにおける張力T、伸びδLτ,δLρの関係を示す図である。 エレベーターロープの最外層が10本のストランドで構成されているエレベーターロープの断面模式図。 エレベーターロープの最外層が6本のストランドで構成されているエレベーターロープの断面模式図。 ストランドの最外層が6本の鋼線で構成されているエレベーターロープの断面模式図である。 ストランドの最外層が12本の鋼線で構成されているエレベーターロープの断面模式図である。 素線が撚られた鋼線を有するエレベーターロープ(三次撚り)の断面模式図である。 ロープひずみ量:0.55%の時のストランドピッチ倍数及びロープピッチ倍数の関係を示すグラフである。 試験のために作製したエレベーターロープを模式的に示す側面図である。 ロープの伸び量δLとロープピッチP及びストランドピッチPとの関係を示すグラフである。
以下、本発明によるエレベーター用ワイヤロープの実施の形態を図1及び図2を参照しながら説明する。
図1は本発明のエレベーターロープの第1の例を模式的に示す側面図である。図1に示すように、エレベーターロープ1は、複数の鋼線3が撚り合わされたストランド2が複数撚り合わされて形成されている。図1では、図面の見やすさを考慮して、ストランド2及び鋼線3はそれぞれ1本ずつしか図示していない。
エレベーター1の中心には、図1には示していないが、芯(繊維芯及び鋼線芯等)が配置されており、ストランド2はその芯の上に撚られている。複数のストランド2は、同一円周上に、ほぼ均等な隙間を置いて配置されている。鋼線3も同様である。なお、ストランド2と鋼線3は、それぞれ径方向において1層を円周状に配置する他にも、2層を円周上に配置する2層配置、3層を円周上に配置する3層配置等、複数の層から構成されるものもある。
本発明において、エレベーターロープを構成する1本のストランド2が一周する間隔(巻間隔)をロープピッチPとし、ストランド2を構成する鋼線3が一周する間隔(巻間隔)をストランドピッチPとする。言い換えると、ロープピッチPは、ストランド2が芯の周りを一回りするまでの長さであり、ストランドピッチPは、鋼線3がストランドの中心軸の周りを一回りするまでの長さである。
図2は本発明のエレベーターロープの第2の例を模式的に示す側面図である。図2では、鋼線3が、素線3aが複数撚り合わされて形成されたものを示している。このような構成のエレベーターロープに対しても本発明を適用することができる。鋼線3を構成する素線3aが一周する間隔(巻間隔)を鋼線ピッチPとする。
次に、エレベーターロープの伸びの発生メカニズムについて、図3を用いて説明する。図3はエレベーターロープにおける張力T、伸びδLτ,δLρの関係を示す図である。撚られたストランドに対して、撚りの中心軸30の軸方向に張力Tが作用した場合を考える。このときのストランド2の伸びは、ストランド2の断面にせん断力が作用し撚りが伸びることによって生じる伸びδLτと、ストランド2の断面の垂直方向に伸びる軸31の軸方向に引張り力が作用し、ストランド2自身に微小なひずみが生じることによる伸びδLρとの和で与えられる(撚りの中心軸30と、ストランド断面と垂直方向の軸31とはθ°の角度がついている)。
したがって、長さLのエレベーターロープにおいて、ストランドの撚りの中心軸方向に張力Tが作用したときの伸びδLは、以下の式(1)のように表現できる。同様に、長さLの鋼線3の撚りの中心軸方向に張力Tが作用したときの伸びδLは以下の式(2)のように表現でき、長さLの素線3aの撚りの中心軸方向に張力Tが作用したときの伸びδLは以下の式(3)のように表現できる。
δL=δLτ+δLρ 式(1)
δL=δLτ+δLρ 式(2)
δL=δLτ+δLρ 式(3)
ただし、Lはストランドの撚りの中心軸方向の長さ(mm)、Lは鋼線の撚りの中心軸方向の長さ(mm)、Lは素線の撚りの中心軸方向の長さ(mm)とする。
複数本の鋼線が撚り合わされて構成されているストランドにおいては、ストランド断面の垂直方向と鋼線の撚りの中心軸方向は同方向であるため、ストランド断面の垂直方向に作用する引張り力は、鋼線の撚りの中心軸方向に作用する力となる。よって、ストランドの引張り力による伸びδLρは、鋼線全体の伸びδLに等しいと考えられる。この関係性は複数本の素線を撚り合わせて構成されている鋼線でも同様であり、上述した関係をまとめると、二次撚りロープ(図2のストランド及び鋼線が撚られているロープ)の伸びは式(4)のように、三次撚りロープ(図3のストランド、鋼線及び素線が撚られているロープ)の伸びは式(5)のように表現できる。
δL=δLτ+δLτ+δLρ 式(4)
δL=δLτ+δLτ+δLτ+δLρ 式(5)
式(4)、(5)について、長さLのストランドの撚りの中心軸方向に張力Tが作用したときの伸びδLτは、Kτをストランドのバネ定数とすると以下の式(6)で求められ、Kτは以下の式(7)のように表現できる。これは、例えばコイルバネのバネ定数を求める際にも同様の式が見られる。
δLτ=T/Kτ 式(6)
τ=0.03×G×S/n/d 式(7)
ここで、Gはストランドの横弾性係数(MPa)、Sはストランド1本あたりの断面積(mm)、nは長さLあたりのストランド撚り数(個)、dはロープ径(mm)とする。
同様に、長さLの鋼線の撚りの中心軸方向に張力Tが作用したときの伸びδLτは、Kτを鋼線のバネ定数とすると以下の式(8)で求められ、Kτは式以下の(9)のように表現できる。さらに、長さLの素線の撚りの中心軸方向に張力Tが作用したときの伸びδLτは、Kτを素線のバネ定数とすると以下の式(10)で求められ、Kτは式以下の(11)のように表現できる。ただし、ストランドの場合は幾何学的な拘束が1軸方向(上下方向)にしか無いが、鋼線の場合はさらに撚られるため、3軸方向(上下・前後・左右全方向)の幾何学的拘束を受ける。したがって、撚りの次数が増加するにつれて鋼線のバネ定数も増加するため、拘束係数を乗じた。
δLτ=T/Kτ 式(8)
τ=0.03×α×G×S/n/d 式(9)
ここで、Sは鋼線1本あたりの断面積(mm)、nは長さLあたりの鋼線の撚り数(個)、αは拘束係数(α=10)とする。
δLτ=T/Kτ 式(10)
τ=0.03×α×G×S/n/d 式(11)
ここで、Sは素線1本あたりの断面積(mm)、nは長さLあたりの素線の撚り数(個)、αは拘束係数(α=10)とする。
なお、ストランド・鋼線・素線の撚り数は、ロープピッチP・ストランドピッチP・鋼線ピッチPによって定まる値であり、ロープ径dに対するロープピッチの比率をa(P/d)、ストランドピッチの比率をb(P/d)、鋼線ピッチの比率をc(P/d)とおくと、式(12)〜(14)のように表現できる。
=L/(d×a) 式(12)
=L/(d×b) 式(13)
=L/(d×c) 式(14)
次に、図4〜図8を用いてロープ断面構造とストランド径・鋼線径・素線径と、ストランドの撚り径・鋼線の撚り径・素線の撚り径との関係性を説明する。図4はエレベーターロープの最外層が10本のストランドで構成されており、図5はエレベーターロープの最外層が6本のストランドで構成されているエレベーターロープの断面模式図である。図4及び図5において、ストランドの最外層の鋼線の数は9本である。また、図6はストランドの最外層が6本の鋼線で構成されており、図7はストランドの最外層が12本の鋼線で構成されているエレベーターロープの断面模式図である。図6及び図7において、エレベーターロープの最外層のストランドの数は8本である。さらに、図8は素線が撚られた鋼線を有するエレベーターロープ(三次撚り)の断面模式図である。
図4〜図8に示すように、ストランド・鋼線・素線は円周上にほぼ均等に配置されている。したがって、ストランド径:d、鋼線径:d、素線径:d及びストランドの撚り径:D、鋼線の撚り径:D及び素線の撚り径Dは幾何学的に求まり、以下の式(15)〜(17)の関係が成立する。
=d×sin(π/N)/(1+sin(π/N))
=d−d 式(15)
ここで、Nは最外層ストランド数(本)とする。
=d×sin(π/N)/(1+sin(π/N))
=d−d 式(16)
ここで、Nは最外層鋼線数(本)とする。
=d×sin(π/N)/(1+sin(π/N))
=d−d 式(17)
ここでNは最外層素線数(本)とする。
次に、ロープに張力Tが作用したときの、最外層ストランド・最外層鋼線・最外層素線1本あたりに作用する張力を求める。これらはストランド・鋼線・素線の断面積の比率で決まり、幾何学的に求めることができる。最外層ストランドにかかる張力をT、最外層鋼線にかかる張力をT、最外層素線にかかる張力をTとすると、式以下の(18)〜(20)のように表現可能である。
=T/N 式(18)
=T×(S/S) 式(19)
=T×(S/S) 式(20)
次に、ストランド・鋼線・素線の撚り角度の関係について説明する。撚り角度は、ロープピッチP・ストランドピッチP・鋼線ピッチPとストランドの撚り径、鋼線の撚り径、素線の撚り径により定まり、以下の式(21)〜(23)のように表現できる。
θ=tan−1(D×π/(d×a)) 式(21)
θ=tan−1(D×π/(d×b)) 式(22)
θ=tan−1(D×π/(d×c)) 式(23)
ここで、θはストランドの撚り角度(rad)、θは鋼線の撚り角度(rad)、θは素線の撚り角度(rad)を示す。
また、ストランド・鋼線・素線の長さは、それぞれの撚り角度を用いて求めることができる。複数本の鋼線を撚り合わせて構成されているストランドにおいて、撚られたストランドの螺旋の長さ(ストランドを伸ばしたときの長さ)と鋼線の撚りの中心軸方向の長さは等しくなる。同様に、複数本の素線を撚り合わせて構成されている鋼線において、撚られた鋼線の螺旋の長さ(鋼線を伸ばしたときの長さ)と素線の撚りの中心軸方向の長さは等しくなる。したがって、ストランドの中心軸方向の長さ:L、鋼線の中心軸方向の長さ:L、および素線の中心軸方向の長さ:Lの関係性は、以下の式(24)、(25)のように表現できる。
=L/cosθ 式(24)
=L/cosθ 式(25)
次に、長さLの鋼線の撚りの中心軸方向に張力Tが作用したときの伸びδLρは、鋼線の撚りの中心軸と鋼線断面の垂直方向軸との間には鋼線の撚りによる角度がついていることを考慮し、Kρを鋼線のバネ定数とすると以下の式(26)で求められ、Kρは以下の式(27)のように表現できる。
δL2ρ=T×cosθ/K2ρ 式(26)
2ρ=E×S/(L/cosθ) 式(27)
ここで、Eは鋼線の縦弾性係数(MPa)とする。
同様に、長さLの素線の撚りの中心軸方向に張力Tが作用したときの伸びδL3ρは、素線の撚りの中心軸と素線断面の垂直方向軸との間には素線の撚りによる角度がついていることを考慮し、K3ρを鋼線のバネ定数とすると以下の式(28)で求められ、K3ρは式(29)のように表現できる。
δL3ρ=T×cosθ/K3ρ 式(28)
3ρ=E×S/(L/cosθ) 式(29)
したがって、上述した式(1)〜式(29)の計算式をまとめると、二次撚りロープにおいて、ストランド数:N、鋼線数:Nで構成され、ロープ径に対するロープピッチの比率:a、ストランドピッチの比率:bで撚られたロープ径:d、長さ:Lのロープに張力:Tが作用したときの伸び量:δLは、以下の式(30)で表現できる。
Figure 0006767327
同様に、三次撚りロープにおいて、ストランド数:N、鋼線数:N、素線数:Nで構成され、ロープ径に対するロープピッチの比率:a、ストランドピッチの比率:b、鋼線ピッチの比率:cで撚られたロープ径:d、長さ:Lのロープに張力:Tが作用したときの伸び量:δLは、以下の式(31)で表現できる。
Figure 0006767327
上述した式(30)、(31)より、二次撚りロープでも三次撚りロープでも、ストランド数:Nが増加するにつれロープのひずみ量が低下する一方、鋼線数:N、素線数:Nはロープのひずみ量に影響しないことが分かる。これは、ストランド数が増加するにつれロープの断面積が増加する一方、鋼線数または素線数が増減してもロープの断面積はほとんど変化しないためである。したがって、ロープ伸びの検討においては、鋼線数:Nおよび素線数:Nを考慮する必要がない。
また、撚りピッチについては上述した式(9)、(10)に示したように、撚りの次数が増加するにつれてロープ伸びへの影響は小さくなり、鋼線ピッチの比率:cにおいてロープピッチの比率:aの1/100しか影響せず、非常に小さい値となる。したがって、ロープ伸びの検討においては、鋼線の撚りピッチは無視できると考えられる。よって、本発明においては、ロープピッチ比率a及びストランドピッチ比率bを規定すればよいため、ストランドの内側を構成する鋼線ピッチ比率cは考慮しなくて良い。
以上の指針により、ロープ破断強度を向上すると、ロープ1本あたりの負担荷重が大きくなり、ロープ伸び(ロープのひずみ量)が増加してしまう課題については、上述した式(30)及び式(31)より、ロープピッチP及びストランドピッチPを増加することでロープのひずみ量を低減できることが分かる。
すなわち、上述した通り、撚られた鋼線に荷重をかけることによって生じる伸びとは、ロープ断面にせん断力が作用し撚りが伸びることによって生じる伸びと、断面と垂直方向に引張り力が作用しストランド自身に微小なひずみが生じることによる伸びとの和である。よって、各撚りのピッチを長くすれば、撚りが伸びることによって生じる伸びを低減し、ロープ全体の伸びを抑制することができる。
本発明において、エレベーターロープの構成(ストランド、鋼線及び素線の本数)については任意である。また、本発明では、エレベーターロープを構成する外側2本(本発明では、ロープ1及びストランド2)以外(本発明では、鋼線3)の撚りピッチについては考慮する必要が無い。例えば、図1及び図2に示した構成以外に、複数のストランドを撚り合わせてなるシェンケルが複数撚り合わされて形成されたエレベーターロープの構成もあるが、この場合、エレベーターロープ及びシェンケルの撚りを長くすればよい。
一方、ロープピッチ、ストランドピッチ及び鋼線ピッチを長くするにつれて撚りの回数が少なくなり、撚りがほどけやすくなるため、ロープとして成立しなくなる場合がある。その場合は、ロープの周りをプラスチックや樹脂で被覆することでロープ形状を保つことが可能となる。
次に、上記式(30)及び(31)を用いたエレベーターロープの設計について説明する。エレベーターにおいて、ロープのひずみ量が大きくなると、乗り心地だけでなく、かご乗込み時の段差につまずくなどの危険が生じやすくなるため、最床合わせ補正装置を設けている。しかし、床合わせ動作が大きくなりすぎるとつま先等を挟む恐れがあるため、かご床の変動が75mm以内(平成12年建設省告示第1429号「エレベーターの制御器の構造方法を定める件」にて定義されている値)になるようにしなければならない。
ここで、一般的な高層マンション・オフィスビルの行程:80mを基準とし、また、かご内の荷重変動量を、ロープ安全率:12をロープ安全率:10(建築基準法で定められている安全値の最小値)とした際の許容ロープひずみ量が0.092%であると想定する。この時、無負荷の状態から安全率:10とした場合の許容ひずみ量は、0.55%となる。よって、安全率を10以上にするためには、ロープひずみ量:0.55%以下にする必要がある。
図9は、ロープひずみ量:0.55%の時のストランドピッチ倍数及びロープピッチ倍数の関係を示すグラフである。鋼線の材料の破断強度を1770MPa、1910MPa以下、2300MPa以下及び3200MPaの4条件で検討した場合を示す。図9のグラフでは、各ラインよりも外側の領域(ストランドピッチ倍数及びロープピッチ倍数が大きい領域)であれば、ロープひずみ量が0.55%未満となる。
ここで、破断強度1770MPaのエレベーターロープは、JIS規格(Japanese Industrial Standards)で定められる「B種」(JIS G 3525)のエレベーターロープであり、破断強度1910MPaのエレベーターロープは、JISで定められる「T種」(JIS G 3525)のエレベーターロープである。この2つのエレベーターロープは、一般に広く普及しているものである。破断強度2300MPa及び3200MPaは、上述した一般に普及しているエレベーターロープよりもさらに高い強度を有するものである。
図9に示すように、エレベーターロープの破断強度が大きくなるほど、ロープひずみ量:0.55%以下とするためには、ストランドピッチ及びロープピッチを大きくする必要があることがわかる。本発明では、破断強度3200MPaの高強度エレベーターロープにおいて、P=2.5、P=17.2とすれば、ロープひずみが0.55%以下を達成することができることがわかる。言い換えると、エレベーターロープを高強度化(破断強度3200MPa)して本数を減らしたとしても、P=2.5、P=17.2を満たしていればロープひずみが0.55%以下となり、ロープ張力が変動することによって発生するロープ伸びの変化量を十分に低減することができる。
上記以外の破断強度を持つストランド及び鋼線を使用した場合でも、式(32)にロープ破断強度の1/10(安全率:10)の値を代入することで、ロープひずみ量:0.55%以下とするために必要なロープピッチP及びストランドピッチPを算出可能である。
次に、上記指針に基づいた計算の妥当性を確認するための試験を実施した。図10は試験のために作製したロープを模式的に示す側面図である。試験用のエレベーターロープ101は、エレベーターロープ1の径d:8.0(mm)、ストランド102の数N:4(本)、ストランド102の最外層の鋼線103の数:7(本)、鋼線103の最外層の素線103aの数:7(本)、ロープ基長(ストランドの撚りの中心軸方向の長さ)L:21000(mm)、付加荷重(張力T):6000(N)、鋼線の縦弾性係数E:205000MPa、鋼線の横弾性係数G:170800MPaであり、ロープが型崩れしないように表面を樹脂104で被覆している。
図11はロープの伸び量δLとロープピッチP及びストランドピッチPの関係を示すグラフである。図11では計算値と実験値を比較している。図10のエレベーターロープ101において、ロープピッチ:P(mm)、ストランドピッチ:P(mm)、鋼線ピッチ:P(mm)とし、以下の条件1〜3で実験及び計算を行った。
条件1:P=90(mm)、P=16(mm)、P=12(mm)
条件2:P=180(mm)、P=32(mm)、P=18(mm)
条件3:P=360(mm)、P=60(mm)、P=24(mm)
図11はL=21000(mm)、T=6000(N)における各ロープの伸び量計算値及び実験値(実測値)を示している。3水準ともに計算値と実験値との誤差は±10%未満であり、十分な計算精度が担保されていることが確認できる。
以上より、エレベーター用ワイヤロープとして必要とされる所定のロープひずみ量(0.55%)以下に抑えられる「ロープ径dに対するロープピッチPの比率a」と「ロープ径dに対するストランドピッチPの比率b」は、以下の式(32)を満たす範囲とすれば良いことが分かる。
Figure 0006767327
上記式(32)を、左辺をbとして整理すると、上述した式Aとなる。
以上説明した通り、本発明によれば、ロープの破断強度を向上してロープ本数を減らしたとしても、エレベーターの乗降によりロープ張力が変動することによって発生するロープ伸びの変化量を低減できるエレベーター用ワイヤロープを提供できることが示された。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1,101…エレベーターロープ、2,102…ストランド、3,103…鋼線、3a,103a…素線、104…樹脂、30…撚りの中心軸、31…ストランド断面と垂直方向の軸。

Claims (12)

  1. 複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、
    前記エレベーターロープの径をd(mm)、前記ストランドの巻き間隔をロープピッチP、前記鋼線の巻間隔をストランドピッチPとした時に、前記dに対する前記Pの比率a、前記dに対する前記Pの比率b及び前記エレベーターロープの破断強度T(N)が以下の式Aを満足することを特徴とするエレベーターロープ。
    Figure 0006767327
    ただし、上記式Aにおいて、E:前記エレベーターロープに使用している材料の縦弾性係数(MPa)、G:前記エレベーターロープに使用している材料の横弾性係数(MPa)、N:前記ストランドの本数とする。
  2. 前記Pが17.2であり、前記Pが2.5であることを特徴とする請求項1に記載のエレベーターロープ。
  3. 前記鋼線の破断強度が3200MPaであることを特徴とする請求項1又は2に記載のエレベーターロープ。
  4. 前記鋼線の破断強度が2300MPaであることを特徴とする請求項1に記載のエレベーターロープ。
  5. 前記鋼線の破断強度が1910MPaであることを特徴とする請求項1に記載のエレベーターロープ。
  6. 前記鋼線の破断強度が1770MPaであることを特徴とする請求項1に記載のエレベーターロープ。
  7. 複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、
    前記鋼線は、複数の素線が撚り合わせて形成されたものであり、
    前記エレベーターロープの径をd(mm)、前記ストランドの巻き間隔をロープピッチP、前記鋼線の巻間隔をストランドピッチPとした時に、前記dに対する前記Pの比率a、前記dに対する前記Pの比率b及び前記エレベーターロープの破断強度T(N)が以下の式を満足することを特徴とするエレベーターロープ。
    Figure 0006767327
    ただし、上記式Aにおいて、E:前記エレベーターロープに使用している材料の縦弾性係数(MPa)、G:前記エレベーターロープに使用している材料の横弾性係数(MPa)、N:前記ストランドの本数とする。
  8. 前記Pが17.2であり、前記Pが2.5であることを特徴とする請求項7に記載のエレベーターロープ。
  9. 前記鋼線の破断強度が3200MPaであることを特徴とする請求項7又は8に記載のエレベーターロープ。
  10. 前記鋼線の破断強度が2300MPaであることを特徴とする請求項7に記載のエレベーターロープ。
  11. 前記鋼線の破断強度が1910MPaであることを特徴とする請求項7に記載のエレベーターロープ。
  12. 前記鋼線の破断強度が1770MPaであることを特徴とする請求項7に記載のエレベーターロープ。
JP2017173775A 2017-09-11 2017-09-11 エレベーターロープ Active JP6767327B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017173775A JP6767327B2 (ja) 2017-09-11 2017-09-11 エレベーターロープ
EP18853024.0A EP3683179A4 (en) 2017-09-11 2018-07-17 ELEVATOR CABLE
CN201880057739.2A CN111065594B (zh) 2017-09-11 2018-07-17 电梯绳索
PCT/JP2018/026671 WO2019049514A1 (ja) 2017-09-11 2018-07-17 エレベーターロープ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173775A JP6767327B2 (ja) 2017-09-11 2017-09-11 エレベーターロープ

Publications (2)

Publication Number Publication Date
JP2019048698A JP2019048698A (ja) 2019-03-28
JP6767327B2 true JP6767327B2 (ja) 2020-10-14

Family

ID=65633849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173775A Active JP6767327B2 (ja) 2017-09-11 2017-09-11 エレベーターロープ

Country Status (4)

Country Link
EP (1) EP3683179A4 (ja)
JP (1) JP6767327B2 (ja)
CN (1) CN111065594B (ja)
WO (1) WO2019049514A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767327B2 (ja) 2017-09-11 2020-10-14 株式会社日立製作所 エレベーターロープ
CN109457520A (zh) * 2018-12-30 2019-03-12 辽宁通达建材实业有限公司 一种控制钢绞线弹性模量的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659072B2 (ja) * 1988-12-16 1997-09-30 住友電気工業株式会社 ゴム補強用スチールコード
JP2916520B2 (ja) * 1991-11-01 1999-07-05 東京製綱株式会社 耐疲労性ワイヤローブ
JP3910377B2 (ja) * 2001-04-25 2007-04-25 東京製綱株式会社 ワイヤロープ
KR20040102000A (ko) * 2002-01-30 2004-12-03 티센 엘리베이터 캐피탈 코포레이션 엘리베이터용 합성섬유로프
EP1597183B1 (en) 2003-02-27 2009-02-11 N.V. Bekaert S.A. An elevator rope
JP2006052483A (ja) * 2004-08-10 2006-02-23 Hitachi Building Systems Co Ltd ワイヤーロープ
JP5269838B2 (ja) * 2010-07-12 2013-08-21 株式会社日立製作所 エレベータ用ワイヤロープ
CN201773624U (zh) * 2010-08-23 2011-03-23 江苏河阳线缆有限公司 一种快速响应的高速电梯电缆
JP5758203B2 (ja) * 2011-06-03 2015-08-05 小松精練株式会社 紐状強化繊維複合体およびコンクリート補強筋材並びにブレース材
JP5806644B2 (ja) * 2012-05-31 2015-11-10 東京製綱株式会社 ハイブリッド心ロープ
JP2016011481A (ja) * 2014-06-30 2016-01-21 神鋼鋼線工業株式会社 難自転性ワイヤロープ
JP5947863B2 (ja) * 2014-11-13 2016-07-06 東京製綱株式会社 クレーン用ワイヤロープ
CN107709214B (zh) 2015-06-08 2019-12-20 株式会社日立制作所 电梯用主吊索和使用其的电梯装置
CN108137277A (zh) * 2015-10-16 2018-06-08 三菱电机株式会社 电梯用绳索及其制造方法
JP6767327B2 (ja) 2017-09-11 2020-10-14 株式会社日立製作所 エレベーターロープ

Also Published As

Publication number Publication date
EP3683179A1 (en) 2020-07-22
CN111065594A (zh) 2020-04-24
CN111065594B (zh) 2021-07-27
WO2019049514A1 (ja) 2019-03-14
EP3683179A4 (en) 2021-05-19
JP2019048698A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
JP5269838B2 (ja) エレベータ用ワイヤロープ
JP5281261B2 (ja) 張力キャリヤを備えた平ベルト状の支持駆動手段
JP5657147B2 (ja) エレベータ用ロープ
JP6248311B2 (ja) エレベータ用ロープ及びその製造方法
JP5976116B2 (ja) エレベータ用ロープ及びそれを用いたエレベータ装置
JP6452839B2 (ja) エレベータ用ロープ及びその製造方法
JP6042987B2 (ja) エレベータ用ロープ及びそれを用いたエレベータ装置
JP6767327B2 (ja) エレベーターロープ
JPWO2006061888A1 (ja) エレベータ用ロープ及びエレベータ装置
JP5859138B2 (ja) エレベータシステムベルト
KR101635468B1 (ko) 엘리베이터 시스템 벨트
KR20130125797A (ko) 엘리베이터 서스펜션 및/또는 구동 장치
JP2011148626A (ja) エレベーター用巻上ロープ
EP2511219A1 (en) Rope for elevator
JP2015140243A (ja) エレベータの主索
JP2006052483A (ja) ワイヤーロープ
KR20060120250A (ko) 엘리베이터용 로프 및 엘리베이터 장치
KR20240140770A (ko) 향상된 검출성을 갖는 고강도 코드

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R150 Certificate of patent or registration of utility model

Ref document number: 6767327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150