JP6763251B2 - Composition ratio estimation device, composition ratio estimation program, and its method - Google Patents

Composition ratio estimation device, composition ratio estimation program, and its method Download PDF

Info

Publication number
JP6763251B2
JP6763251B2 JP2016182008A JP2016182008A JP6763251B2 JP 6763251 B2 JP6763251 B2 JP 6763251B2 JP 2016182008 A JP2016182008 A JP 2016182008A JP 2016182008 A JP2016182008 A JP 2016182008A JP 6763251 B2 JP6763251 B2 JP 6763251B2
Authority
JP
Japan
Prior art keywords
brightness
content ratio
luminance
sample
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182008A
Other languages
Japanese (ja)
Other versions
JP2018044234A (en
Inventor
恭輔 原
恭輔 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016182008A priority Critical patent/JP6763251B2/en
Publication of JP2018044234A publication Critical patent/JP2018044234A/en
Application granted granted Critical
Publication of JP6763251B2 publication Critical patent/JP6763251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構成比率推定装置、構成比率推定プログラム、及びその方法に関する。より詳細には、本発明は、焼結鉱、及び、破砕前のシンターケーキ(以下、焼結鉱等とも称する)の鉱物相組織の構成比率推定装置、構成比率推定プログラム、及びその方法に関する。 The present invention relates to a composition ratio estimation device, a composition ratio estimation program, and a method thereof. More specifically, the present invention relates to a composition ratio estimation device for a mineral phase structure of a sinter and a sinter cake (hereinafter, also referred to as a sinter or the like) before crushing, a composition ratio estimation program, and a method thereof.

高炉の操業の安定性を向上させると共に高炉の操業状態を改善するために、高炉に投入される焼結鉱の構成鉱物及び気孔構造を把握することが好ましい(例えば、非特許文献1及び2を参照)。焼結鉱は、ヘマタイト相(Fe)、マグネタイト相(Fe)、カルシウムフェライト相(CaOFe、以下、CF相とも称する)、スラグ相(非晶質相)の4つの鉱物相組織及び気孔によって構成される。焼結鉱の鉱物相組織の中で、被還元性がよいとされるカルシウムフェライト相の含有比率を知ることが好ましい(例えば、非特許文献3を参照)。焼結鉱の気孔を樹脂で埋めた後に研磨した焼結鉱の切断面を顕微鏡で拡大した観察面を観察することで、焼結鉱に含有されるカルシウムフェライト相の含有比率を測定することができる(例えば、特許文献1〜4)。 In order to improve the operational stability of the blast furnace and improve the operating condition of the blast furnace, it is preferable to grasp the constituent minerals and pore structure of the sinter to be charged into the blast furnace (for example, Non-Patent Documents 1 and 2). reference). There are four sinters: hematite phase (Fe 2 O 3 ), magnetite phase (Fe 3 O 4 ), calcium ferrite phase (CaOF e 2 O 3 , hereinafter also referred to as CF phase), and slag phase (amorphous phase). It is composed of two mineral phase structures and pores. It is preferable to know the content ratio of the calcium ferrite phase, which is considered to have good reducibility, in the mineral phase structure of the sinter (see, for example, Non-Patent Document 3). It is possible to measure the content ratio of the calcium ferrite phase contained in the sinter by observing the cut surface of the sinter that has been polished after filling the pores of the sinter with a resin and magnifying it with a microscope. Yes (for example, Patent Documents 1 to 4).

特開昭58−034142号公報Japanese Unexamined Patent Publication No. 58-034142 特開昭58−037132号公報Japanese Unexamined Patent Publication No. 58-037132 特開昭58−042732号公報JP-A-58-042732 特開2014−215987号公報Japanese Unexamined Patent Publication No. 2014-215987

「焼結鉱組織と還元性状の関係」佐藤ら、鉄と鋼68(1982年)第2215頁〜第2222頁"Relationship between sinter structure and reducing properties" Sato et al., Iron and Steel 68 (1982), pp. 2215 to pp. 2222 「Quantitative Determination of Sinter Structure byImage Analysis」Shibuya et al, Transactions of the Iron and Steel Institute of Japan, 25(1985), 257-260."Quantitative Determination of Sinter Structure by Image Analysis" Shibuya et al, Transactions of the Iron and Steel Institute of Japan, 25 (1985), 257-260. 「焼結過程における溶解現象のモデル化」佐藤ら、鉄と鋼70(1984年)第657頁〜第664頁"Modeling of melting phenomenon in sintering process" Sato et al., Iron and Steel 70 (1984), pp. 657-664

焼結鉱の切断面を顕微鏡で拡大した観察面を観察することで、カルシウムフェライト相の含有比率を測定する場合、可能な限り広い切断面を観察して、観察した切断面の代表性を確保する必要がある。しかしながら、観察する切断面の面積を広くするほど、顕微鏡で拡大された観察面は広くなる。このため、顕微鏡で拡大された観察面を観察する方法では、観察した切断面の代表性を確保することは容易ではない。例えば、3cm2の切断面を300倍の倍率を有する顕微鏡で観察する場合、観察される合計の観察面の面積は81m(=(3cm×300))に達する。 When measuring the content ratio of the calcium ferrite phase by observing the observation surface of the cut surface of the sinter magnified with a microscope, observe the cut surface as wide as possible to ensure the representativeness of the observed cut surface. There is a need to. However, the larger the area of the cut surface to be observed, the wider the observation surface magnified by the microscope. Therefore, it is not easy to secure the representativeness of the observed cut surface by the method of observing the enlarged observation surface with a microscope. For example, when observing a 3 cm 2 cut surface with a microscope having a magnification of 300 times, the total area of the observed surface to be observed reaches 81 m 2 (= (3 cm × 300) 2 ).

そこで、本発明は、観察した切断面の代表性を確保可能な構成比率推定装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a composition ratio estimation device capable of ensuring the representativeness of the observed cut surface.

このような課題を解決する本発明は、以下に構成比率推定装置、構成比率推定プログラム、及び構成比率推定方法を要旨とするものである。
(1)カルシウムフェライト相を少なくとも含む試料を撮像して画像データを生成する撮像部と、
画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を取得する対象輝度群取得部と、
対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定する最頻輝度決定部と、
試料に含まれるカルシウムフェライト相の含有比率と最頻輝度との対応関係に基づいて、試料に含まれるカルシウムフェライト相の含有比率を推定する含有比率推定部と、
推定されたカルシウムフェライト相の含有比率を出力する含有比率出力部と、
を有することを特徴とする構成比率推定装置。
(2)しきい値輝度は、撮像部の解像度よりも径が大きいマクロ気孔の輝度より大きい、(1)に記載の構成比率推定装置。
(3)試料は、シンターケーキ及び焼結鉱の少なくとも一方を含む、(1)又は(2)に記載の構成比率推定装置。
(4)撮像部は、スキャナを含む、(1)〜(3)の何れか1つに記載の構成比率推定装置。
(5)カルシウムフェライト相を少なくとも含む試料を撮像して画像データを生成し、
画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を取得し、
対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定し、
試料に含まれるカルシウムフェライト相の含有比率と最頻輝度との対応関係に基づいて、試料に含まれるカルシウムフェライト相の含有比率を推定し、
推定されたカルシウムフェライト相の含有比率を出力する、ことを含むことを特徴とする構成比率推定方法。
(6)カルシウムフェライト相を少なくとも含む試料を撮像して画像データを生成し、
画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を取得し、
対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定し、
試料に含まれるカルシウムフェライト相の含有比率と最頻輝度との対応関係に基づいて、試料に含まれるカルシウムフェライト相の含有比率を推定し、
推定されたカルシウムフェライト相の含有比率を出力する、ことを含む処理をコンピュータに実行させることを特徴とする構成比率推定プログラム。
The present invention for solving such a problem is the gist of the composition ratio estimation device, the composition ratio estimation program, and the composition ratio estimation method below.
(1) An imaging unit that generates image data by imaging a sample containing at least a calcium ferrite phase.
A target brightness group acquisition unit that acquires a target brightness group obtained by removing brightness equal to or less than a predetermined threshold value from a brightness group that is a set of the brightness of each pixel included in the image corresponding to the image data.
Among the brightness included in the target brightness group, the most frequent brightness determination unit that determines the most frequent brightness, and
A content ratio estimation unit that estimates the content ratio of the calcium ferrite phase contained in the sample based on the correspondence between the content ratio of the calcium ferrite phase contained in the sample and the most frequent brightness.
A content ratio output unit that outputs the estimated content ratio of the calcium ferrite phase,
A composition ratio estimation device characterized by having.
(2) The configuration ratio estimation device according to (1), wherein the threshold brightness is larger than the brightness of macropores having a diameter larger than the resolution of the imaging unit.
(3) The composition ratio estimation device according to (1) or (2), wherein the sample contains at least one of a sinter cake and a sinter.
(4) The configuration ratio estimation device according to any one of (1) to (3), wherein the imaging unit includes a scanner.
(5) Image data is generated by imaging a sample containing at least a calcium ferrite phase.
A target luminance group obtained by removing the luminance below a predetermined threshold luminance from the luminance group which is a set of the luminance of each pixel included in the image corresponding to the image data is acquired.
Among the brightness included in the target brightness group, the most frequent brightness with the largest number is determined.
Based on the correspondence between the content ratio of the calcium ferrite phase contained in the sample and the highest brightness, the content ratio of the calcium ferrite phase contained in the sample is estimated.
A method for estimating a composition ratio, which comprises outputting the estimated content ratio of a calcium ferrite phase.
(6) Image data is generated by imaging a sample containing at least a calcium ferrite phase.
A target luminance group obtained by removing the luminance below a predetermined threshold luminance from the luminance group which is a set of the luminance of each pixel included in the image corresponding to the image data is acquired.
Among the brightness included in the target brightness group, the most frequent brightness with the largest number is determined.
Based on the correspondence between the content ratio of the calcium ferrite phase contained in the sample and the highest brightness, the content ratio of the calcium ferrite phase contained in the sample is estimated.
A composition ratio estimation program characterized by having a computer execute a process including outputting the estimated content ratio of the calcium ferrite phase.

一実施形態では、観察した切断面の代表性を確保可能な構成比率推定装置を提供することができる。 In one embodiment, it is possible to provide a configuration ratio estimation device capable of ensuring the representativeness of the observed cut surface.

実施形態に係る構成比率推定装置を示す図である。It is a figure which shows the composition ratio estimation apparatus which concerns on embodiment. 図1に示す構成比率推定装置が焼結鉱のCF相の含有比率を推定する含有比率推定処理のフローチャートである。FIG. 5 is a flowchart of a content ratio estimation process in which the composition ratio estimation device shown in FIG. 1 estimates the content ratio of the CF phase of the sinter. 対象輝度群に含まれる輝度の分布の一例を示す図であるIt is a figure which shows an example of the distribution of the luminance included in the target luminance group. 図1に示すCF相推定テーブルの一例を示す図である。It is a figure which shows an example of the CF phase estimation table shown in FIG. 顕微鏡を介して試料を撮像した画像の輝度分布の一例を示す図である。It is a figure which shows an example of the luminance distribution of the image which imaged the sample through a microscope. スキャナで試料を撮像した画像の輝度分布の一例を示す図である。It is a figure which shows an example of the luminance distribution of the image which imaged the sample by a scanner. 最頻輝度とCF相の含有比率との間の対応関係を示す図である。It is a figure which shows the correspondence relationship between the most frequent luminance and the content ratio of CF phase. 最頻輝度とミクロ気孔の含有比率との間の対応関係を示す図である。It is a figure which shows the correspondence relationship between the most frequent brightness and the content ratio of micropores. 最頻輝度とヘマタイト相の含有比率との間の対応関係を示す図である。It is a figure which shows the correspondence relation between the most frequent brightness and the content ratio of the hematite phase.

以下図面を参照して、構成比率推定装置、構成比率推定プログラム、及びその方法について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されない。 The composition ratio estimation device, the composition ratio estimation program, and the method thereof will be described with reference to the drawings below. However, the technical scope of the present invention is not limited to those embodiments.

(実施形態に係る構成比率推定装置の概要)
実施形態に係る構成比率推定装置は、焼結鉱等の試料を撮像した画像に含まれる画素のそれぞれの輝度の集合である輝度群からマクロ気孔に対応する輝度を除去した対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定する。実施形態に係る構成比率推定装置は、試料に含まれるCF相の含有比率と、最頻輝度との関係に基づいて、試料に含まれるCF相の含有比率を推定する。実施形態に係る構成比率推定装置は、焼結鉱等の構成の中で試料毎のばらつきが比較的大きいマクロ気孔の影響を取り除いたときの最頻輝度とCF相の含有比率との間に対応関係があるとの知見に基づいてCF相の含有比率を推定する。
(Outline of the constituent ratio estimation device according to the embodiment)
The composition ratio estimation device according to the embodiment is included in the target luminance group in which the luminance corresponding to the macropores is removed from the luminance group which is a set of the luminance of each pixel included in the image obtained by capturing a sample such as sinter. Among the brightnesses, the most frequent brightness is determined. The configuration ratio estimation device according to the embodiment estimates the content ratio of the CF phase contained in the sample based on the relationship between the content ratio of the CF phase contained in the sample and the most frequent brightness. The composition ratio estimation device according to the embodiment corresponds to the mode between the mode and the CF phase content ratio when the influence of macropores, which has a relatively large variation among samples in the composition of sinter or the like, is removed. The CF phase content ratio is estimated based on the finding that there is a relationship.

(実施形態に係る構成比率推定装置の構成及び機能)
図1は、実施形態に係る構成比率推定装置を示す図である。
(Configuration and function of the configuration ratio estimation device according to the embodiment)
FIG. 1 is a diagram showing a configuration ratio estimation device according to an embodiment.

構成比率推定装置1は、撮像装置10と、演算装置20とを有する。構成比率推定装置1は、撮像装置10が撮像した試料の画像の画素のそれぞれの輝度から、撮像部11の解像度よりも径が大きいマクロ気孔に対応する輝度を除去した対象輝度群の中の最頻輝度に基づいてCF相の含有比率を推定する。 The configuration ratio estimation device 1 includes an image pickup device 10 and an arithmetic device 20. The composition ratio estimation device 1 is the highest in the target luminance group in which the luminance corresponding to the macropores having a diameter larger than the resolution of the imaging unit 11 is removed from the luminance of each pixel of the image of the sample imaged by the imaging apparatus 10. The CF phase content ratio is estimated based on the frequency of brightness.

撮像装置10は、一例ではスキャナであり、撮像部11と、移動機構12とを有する。撮像部11は、CCDセンサを有し、焼結鉱101の表面を拡大することなく撮像し、撮像した画像を示す画像データをLAN15を介して演算装置20に出力する。移動機構12は、撮像部11を移動可能に支持し、不図示の上位制御装置からの指示に基づいて、撮像部11を所定の撮像範囲に亘って移動することにより、撮像範囲に含まれる焼結鉱101の表面を撮像部11が撮像することを可能にする。 The image pickup device 10 is, for example, a scanner, and has an image pickup unit 11 and a moving mechanism 12. The image pickup unit 11 has a CCD sensor, takes an image without enlarging the surface of the sinter 101, and outputs image data indicating the captured image to the arithmetic unit 20 via the LAN 15. The moving mechanism 12 movably supports the imaging unit 11 and moves the imaging unit 11 over a predetermined imaging range based on an instruction from a higher-level control device (not shown), whereby the firing included in the imaging range is included. Allows the imaging unit 11 to image the surface of the sinter 101.

撮像装置10が撮像した画像の輝度は、演算装置20を介して不図示のユーザによって設定可能である。一例では、撮像装置10が撮像した画像の輝度は256ビットで設定可能であり、撮像装置10が撮像した基準試料に含まれるヘマタイト相の中で最も明るい部分の輝度を「255」に設定し、基準試料に含まれる最も暗い部分を「0」に設定してもよい。 The brightness of the image captured by the image pickup device 10 can be set by a user (not shown) via the arithmetic unit 20. In one example, the brightness of the image captured by the imaging device 10 can be set to 256 bits, and the brightness of the brightest portion of the hematite phase contained in the reference sample imaged by the imaging device 10 is set to "255". The darkest part contained in the reference sample may be set to "0".

演算装置20は、通信部21と、記憶部22と、入力部23と、出力部24と、処理部30とを有する。通信部21、記憶部22、入力部23、出力部24及び処理部30は、バス200を介して互いに接続される。演算装置20は、撮像装置10が撮像した焼結鉱101の画像の画素のそれぞれの輝度から焼結鉱101にCF相が含有される含有比率を推定する。一例では、演算装置20は、焼結工程を監視制御する監視制御装置である。 The arithmetic unit 20 includes a communication unit 21, a storage unit 22, an input unit 23, an output unit 24, and a processing unit 30. The communication unit 21, the storage unit 22, the input unit 23, the output unit 24, and the processing unit 30 are connected to each other via the bus 200. The arithmetic unit 20 estimates the content ratio of the CF phase contained in the sinter 101 from the brightness of each pixel of the image of the sinter 101 imaged by the imaging device 10. In one example, the arithmetic unit 20 is a monitoring control device that monitors and controls the sintering process.

通信部21は、イーサネット(登録商標)などの有線の通信インターフェース回路を有する。通信部21は、LAN25を介して撮像装置10及び不図示の上位制御装置と通信を行う。 The communication unit 21 has a wired communication interface circuit such as Ethernet (registered trademark). The communication unit 21 communicates with the image pickup device 10 and a higher-level control device (not shown) via the LAN 25.

記憶部22は、例えば、半導体記憶装置、磁気テープ装置、磁気ディスク装置、又は光ディスク装置のうちの少なくとも一つを備える。記憶部22は、処理部30での処理に用いられるオペレーティングシステムプログラム、ドライバプログラム、アプリケーションプログラム、データ等を記憶する。例えば、記憶部22は、アプリケーションプログラムとして、焼結鉱101のCF相の含有比率を推定する含有比率推定処理を処理部30に実行させるための含有比率推定プログラム等を記憶する。含有比率推定プログラムプログラムは、例えばCD−ROM、DVD−ROM等のコンピュータ読み取り可能な可搬型記録媒体から、公知のセットアッププログラム等を用いて記憶部22にインストールされてもよい。 The storage unit 22 includes, for example, at least one of a semiconductor storage device, a magnetic tape device, a magnetic disk device, or an optical disk device. The storage unit 22 stores an operating system program, a driver program, an application program, data, and the like used for processing in the processing unit 30. For example, the storage unit 22 stores, as an application program, a content ratio estimation program for causing the processing unit 30 to execute a content ratio estimation process for estimating the content ratio of the CF phase of the sinter 101. The content ratio estimation program program may be installed in the storage unit 22 from a computer-readable portable recording medium such as a CD-ROM or a DVD-ROM using a known setup program or the like.

また、記憶部22は、含有比率推定処理で使用される種々のデータを記憶する。例えば、記憶部22は、焼結鉱101のCF相の含有比率を推定するときに使用されるCF相推定テーブル221を記憶する。さらに、記憶部22は、所定の処理に係る一時的なデータを一時的に記憶してもよい。 In addition, the storage unit 22 stores various data used in the content ratio estimation process. For example, the storage unit 22 stores the CF phase estimation table 221 used when estimating the CF phase content ratio of the sinter 101. Further, the storage unit 22 may temporarily store temporary data related to a predetermined process.

入力部23は、データの入力が可能であればどのようなデバイスでもよく、例えば、タッチパネル、キーボード等である。作業者は、入力部23を用いて、文字、数字、記号等を入力することができる。入力部23は、作業者により操作されると、その操作に対応する信号を生成する。そして、生成された信号は、作業者の指示として、処理部30に供給される。 The input unit 23 may be any device as long as it can input data, for example, a touch panel, a keyboard, or the like. The operator can input characters, numbers, symbols, etc. using the input unit 23. When the input unit 23 is operated by an operator, the input unit 23 generates a signal corresponding to the operation. Then, the generated signal is supplied to the processing unit 30 as an instruction of the operator.

出力部24は、映像や画像等の表示が可能であればどのようなデバイスでもよく、例えば、液晶ディスプレイ又は有機EL(Electro−Luminescence)ディスプレイ等である。出力部24は、処理部30から供給された映像データに応じた映像や、画像データに応じた画像等を表示する。また、出力部24は、紙などの表示媒体に、映像、画像又は文字等を印刷する出力装置であってもよい。 The output unit 24 may be any device as long as it can display an image, an image, or the like, and is, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display. The output unit 24 displays an image corresponding to the image data supplied from the processing unit 30, an image corresponding to the image data, and the like. Further, the output unit 24 may be an output device that prints an image, an image, characters, or the like on a display medium such as paper.

処理部30は、一又は複数個のプロセッサ及びその周辺回路を有する。処理部30は、演算装置20の全体的な動作を統括的に制御するものであり、例えば、CPUである。処理部30は、記憶部22に記憶されているプログラム(ドライバプログラム、オペレーティングシステムプログラム、アプリケーションプログラム等)に基づいて処理を実行する。また、処理部30は、複数のプログラム(アプリケーションプログラム等)を並列に実行できる。 The processing unit 30 includes one or more processors and peripheral circuits thereof. The processing unit 30 comprehensively controls the overall operation of the arithmetic unit 20, and is, for example, a CPU. The processing unit 30 executes processing based on a program (driver program, operating system program, application program, etc.) stored in the storage unit 22. Further, the processing unit 30 can execute a plurality of programs (application programs and the like) in parallel.

処理部30は、画像データ取得部31と、輝度抽出部32と、輝度除去部33と、対象輝度群取得部34と、最頻輝度決定部35と、含有比率推定部36と、含有比率出力部37とを有する。これらの各部は、処理部30が備えるプロセッサで実行されるプログラムにより実現される機能モジュールである。あるいは、これらの各部は、ファームウェアとして演算装置20に実装されてもよい。 The processing unit 30 includes an image data acquisition unit 31, a brightness extraction unit 32, a brightness removal unit 33, a target brightness group acquisition unit 34, a mode brightness determination unit 35, a content ratio estimation unit 36, and a content ratio output. It has a part 37. Each of these units is a functional module realized by a program executed by the processor included in the processing unit 30. Alternatively, each of these parts may be mounted on the arithmetic unit 20 as firmware.

(第1実施形態に係る構成比率推定装置による含有比率推定処理)
図2は、構成比率推定装置1が焼結鉱101のCF相の含有比率を推定する含有比率推定処理のフローチャートである。図2に示す気孔率決定処理は、予め記憶部22に記憶されているプログラムに基づいて、主に処理部30により演算装置20の各要素と協働して実行される。
(Content ratio estimation process by the configuration ratio estimation device according to the first embodiment)
FIG. 2 is a flowchart of the content ratio estimation process in which the composition ratio estimation device 1 estimates the content ratio of the CF phase of the sinter 101. The porosity determination process shown in FIG. 2 is mainly executed by the processing unit 30 in cooperation with each element of the arithmetic unit 20 based on the program stored in the storage unit 22 in advance.

まず、画像データ取得部は、撮像部11が撮像した画像を示す画像データをLAN15を介して撮像部11から取得する(S101)。 First, the image data acquisition unit acquires image data indicating the image captured by the image pickup unit 11 from the image pickup unit 11 via the LAN 15 (S101).

次いで、輝度抽出部32は、S101の処理で取得された画像データに対応する画像の画素のそれぞれの輝度を抽出し、抽出した輝度の集合である輝度群を取得する(S102)。例えば、撮像部11の解像度が1200〔bpi〕のとき、輝度群は、1200×(撮像範囲の面積)/(2.54cm2)個の輝度を含む。 Next, the luminance extraction unit 32 extracts the luminance of each of the pixels of the image corresponding to the image data acquired in the process of S101, and acquires the luminance group which is a set of the extracted luminances (S102). For example, when the resolution of the imaging unit 11 is 1200 [bpi], the luminance group includes 1200 × (area of the imaging range) / (2.54 cm 2 ) luminances.

次いで、輝度除去部33は、S102の処理で取得された輝度群から、所定のしきい値輝度以下の輝度を除去する(S103)。しきい値輝度は、焼結鉱101の鉱物相組織の中で比較的輝度が小さいマクロ気孔の輝度より大きい値である。しきい値輝度が気孔の輝度より大きい値であるので、輝度除去部33がしきい値輝度以下の輝度を除去することで、マクロ気孔の輝度が除去される。対象輝度群は、マクロ気孔の輝度が除去されているので、ヘマタイト相、マグネタイト相、CF相及びスラグ相を含む基質、及び撮像部11の解像度よりも径が小さいミクロ気孔の輝度を含む。 Next, the luminance removing unit 33 removes the luminance equal to or less than the predetermined threshold luminance from the luminance group acquired in the process of S102 (S103). The threshold brightness is a value larger than the brightness of the macropores, which have relatively low brightness in the mineral phase structure of the sinter 101. Since the threshold brightness is a value larger than the brightness of the pores, the brightness of the macropores is removed by the brightness removing unit 33 removing the brightness equal to or less than the threshold brightness. Since the brightness of the macropores is removed, the target brightness group includes the brightness of the substrate including the hematite phase, the magnetite phase, the CF phase and the slag phase, and the brightness of the micropores having a diameter smaller than the resolution of the imaging unit 11.

次いで、対象輝度群取得部34は、輝度群に含まれる輝度の中でしきい値輝度より大きい輝度の集合である対象輝度群を取得する(S104)。 Next, the target luminance group acquisition unit 34 acquires the target luminance group, which is a set of luminances larger than the threshold luminance among the luminances included in the luminance group (S104).

次いで、最頻輝度決定部35は、S104の処理で取得された対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定する(S105)。 Next, the most frequent brightness determination unit 35 determines the most frequent brightness among the brightness included in the target luminance group acquired in the process of S104 (S105).

図3は、対象輝度群に含まれる輝度の分布の一例を示す図である。図3において、横軸は輝度を示し、縦軸は抽出された輝度の数を示す。図3に示す例では、基準試料に含まれるヘマタイト相の中で最も明るい部分の輝度は「255」に設定され、基準試料に含まれる最も暗い部分は「0」に設定される。S103において輝度を除去するときに使用されるしきい値輝度は「32」である。 FIG. 3 is a diagram showing an example of the distribution of the luminance included in the target luminance group. In FIG. 3, the horizontal axis represents the luminance and the vertical axis represents the number of extracted luminances. In the example shown in FIG. 3, the brightness of the brightest portion of the hematite phase contained in the reference sample is set to “255”, and the brightness of the darkest portion contained in the reference sample is set to “0”. The threshold brightness used when removing the brightness in S103 is "32".

最頻輝度決定部35は、輝度「33」〜輝度「255」の中で、最も数が多い輝度を最頻輝度Lmに決定する。最頻輝度は、図3において矢印Aで示される。 The most frequent brightness determination unit 35 determines the most frequent brightness among the brightness "33" to the brightness "255" as the most frequent brightness Lm. The most frequent brightness is indicated by arrow A in FIG.

次いで、含有比率推定部36は、焼結鉱101に含まれるCF相の含有比率Rcfと最頻輝度Lmとの関係に基づいて、焼結鉱101に含まれるCF相の含有比率を推定する(S106)。より詳細には、含有比率推定部36は、記憶部22に記憶されるCF相推定テーブル221を参照して、焼結鉱101に含まれるCF相の含有比率Rcfを推定する。 Next, the content ratio estimation unit 36 estimates the content ratio of the CF phase contained in the sinter 101 based on the relationship between the content ratio Rcf of the CF phase contained in the sinter 101 and the highest luminance Lm ( S106). More specifically, the content ratio estimation unit 36 estimates the CF phase content ratio Rcf contained in the sinter 101 with reference to the CF phase estimation table 221 stored in the storage unit 22.

図4は、CF相推定テーブル221の一例を示す図である。 FIG. 4 is a diagram showing an example of the CF phase estimation table 221.

CF相推定テーブル221は、n個の最頻輝度Lm1〜Lmnとn個のCF相の含有比率Rcf1〜Rcfnとの対応関係を記憶する。 The CF phase estimation table 221 stores the correspondence between the n most frequent luminances Lm 1 to Lm n and the content ratios of n CF phases Rcf 1 to Rcf n .

そして、含有比率出力部37は、S307の処理で推定されたカルシウムフェライト相の含有比率Rcfを示すCF相含有比率信号を出力する(S107)。 Then, the content ratio output unit 37 outputs a CF phase content ratio signal indicating the content ratio Rcf of the calcium ferrite phase estimated in the process of S307 (S107).

(実施形態に係る構成比率推定装置の作用効果)
構成比率推定装置1は、撮像された焼結鉱等の試料の画像の画素の輝度の中で最も数が多い最頻輝度とCF相の含有比率との間の対応関係に基づいてCF相の含有比率を推定するので、撮像した画像を拡大した観察面を使用する必要はない。構成比率推定装置1は、撮像した画像を拡大した観察面を使用することなくCF相の含有比率を推定するので、画像の代表性の確保が容易である。
(Action and effect of the composition ratio estimation device according to the embodiment)
The composition ratio estimation device 1 determines the CF phase based on the correspondence between the most frequent brightness and the CF phase content ratio, which is the largest number of pixels in the image of the sample such as the imaged sintered ore. Since the content ratio is estimated, it is not necessary to use a magnified observation surface of the captured image. Since the configuration ratio estimation device 1 estimates the CF phase content ratio without using an enlarged observation surface of the captured image, it is easy to secure the representativeness of the image.

構成比率推定装置1は、撮像部11の解像度よりも径が大きいマクロ気孔の輝度より大きいしきい値輝度以下の輝度を対象輝度群から除去するので、推定されるCF相の含有比率は、試料毎にばらつきが比較的大きいマクロ輝度の影響を受けることはない。 Since the composition ratio estimation device 1 removes the brightness below the threshold brightness, which is larger than the brightness of the macro pores having a diameter larger than the resolution of the imaging unit 11, from the target brightness group, the estimated CF phase content ratio is the sample. It is not affected by macro-luminance, which varies widely from time to time.

構成比率推定装置1は、マクロ気孔の影響を取り除いたときの最頻輝度LmとCF相の含有比率Rcfとの間に対応関係があるとの知見に基づいて、最頻輝度LmからCF相の含有比率Rcfを推定する。マクロ気孔が撮像された画素以外の画素のそれぞれには、ヘマタイト相、マグネタイト相、CF相、スラグ相及び撮像部11の解像度よりも径が小さいミクロ気孔が混在して撮像される。ヘマタイト相、マグネタイト相、CF相、スラグ相及びミクロ気孔が混在して撮像される画素の輝度は、混在する鉱物相組織の存在比率に応じた値となる。輝度が比較的高いヘマタイト相が多く撮像されるほど、画素の輝度は高くなる。輝度が比較的低いCF相が多く撮像されるほど、画素の輝度は低くなる。 Based on the finding that there is a correspondence between the most frequent luminance Lm and the CF phase content ratio Rcf when the influence of the macropores is removed, the configuration ratio estimation device 1 changes from the most luminance Lm to the CF phase. The content ratio Rcf is estimated. Hematite phase, magnetite phase, CF phase, slag phase, and micropores having a diameter smaller than the resolution of the imaging unit 11 are mixed and imaged in each of the pixels other than the pixel in which the macropores are imaged. The brightness of a pixel imaged in which hematite phase, magnetite phase, CF phase, slag phase and micropores are mixed becomes a value according to the abundance ratio of the mixed mineral phase structure. The more hematite phases with relatively high brightness are captured, the higher the brightness of the pixels. The more CF phases with relatively low brightness are captured, the lower the brightness of the pixels.

撮像部11の解像度よりも径が小さい焼結鉱等のミクロ気孔は、CF相に形成される空隙部としてCF相に並存するので、ミクロ気孔の含有比率は、CF相の含有比率Rcfに比例する。ミクロ気孔の含有比率は、CF相の含有比率Rcfに比例して変化するため、ミクロ気孔の含有比率がCF相の含有比率Rcfの変化と異なる傾向で変化することはなく、ミクロ気孔の含有比率は、CF相の含有比率Rcfの推定に影響を与えることはない。 Since micropores such as sinter having a diameter smaller than the resolution of the imaging unit 11 coexist in the CF phase as voids formed in the CF phase, the content ratio of the micropores is proportional to the content ratio Rcf of the CF phase. To do. Since the micropore content ratio changes in proportion to the CF phase content ratio Rcf, the micropore content ratio does not change in a tendency different from that of the CF phase content ratio Rcf, and the micropore content ratio does not change. Does not affect the estimation of the CF phase content ratio Rcf.

マグネタイト相の含有比率は、最大でも10%程度と比較的低いので、マグネタイト相の含有比率の変動がCF相の含有比率Rcfの推定に与える影響は大きくない。また、スラグ相の含有比率は、試料毎のばらつきが小さいため、CF相の含有比率Rcfの推定に影響を与えることはない。 Since the content ratio of the magnetite phase is relatively low, about 10% at the maximum, the influence of the fluctuation of the content ratio of the magnetite phase on the estimation of the content ratio Rcf of the CF phase is not large. Further, since the slag phase content ratio varies little from sample to sample, it does not affect the estimation of the CF phase content ratio Rcf.

(実施形態に係る構成比率推定装置の変形例)
構成比率推定装置1は、焼結鉱101のCF相の含有比率を推定するが、実施形態に係る構成比率推定装置は、焼結鉱及びシンターケーキの粉砕物等のCF相を少なくとも含む試料のCF相の含有比率を推定することができる。
(Modification example of the configuration ratio estimation device according to the embodiment)
The composition ratio estimation device 1 estimates the content ratio of the CF phase of the sinter 101, but the composition ratio estimation device according to the embodiment is a sample containing at least the CF phase such as a sinter and a pulverized product of a sinter cake. The content ratio of the CF phase can be estimated.

構成比率推定装置1では、輝度抽出部32及び輝度除去部33は、処理部30が有するが、輝度抽出部32及び輝度除去部33が実行する処理は、焼結鉱を撮像する撮像部が実行してもよい。輝度抽出部32及び輝度除去部33の処理が撮像部によって実行される場合、演算装置は、画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を、撮像部から取得する。 In the composition ratio estimation device 1, the processing unit 30 has the brightness extraction unit 32 and the brightness removal unit 33, but the processing executed by the brightness extraction unit 32 and the brightness removal unit 33 is executed by the imaging unit that images the sintered ore. You may. When the processing of the brightness extraction unit 32 and the brightness removal unit 33 is executed by the image pickup unit, the arithmetic unit has a predetermined threshold from the brightness group which is a set of the respective brightness of the pixels included in the image corresponding to the image data. The target brightness group from which the brightness below the value brightness is removed is acquired from the imaging unit.

顕微鏡を介して試料を撮像した画像から決定されたCF相の含有比率と、スキャナにより試料を撮像した画像から決定された最頻輝度とに基づいて、最頻輝度とCF相の含有比率との間の対応関係を算出した。10個の試薬試料及び12個の鉱物試料が、最頻輝度とCF相の含有比率との間の対応関係の算出に使用された。10個の試薬試料のそれぞれは複数の試薬を含有する試料であり、12個の鉱物試料のそれぞれは試薬と共に径が0.25mm未満の鉄鉱石を含有する試料である。 The content ratio of the most frequent brightness and the CF phase is determined based on the CF phase content ratio determined from the image obtained by capturing the sample through a microscope and the most frequent brightness determined from the image obtained by capturing the sample by a scanner. The correspondence between them was calculated. Ten reagent samples and 12 mineral samples were used to calculate the correspondence between the most frequent brightness and the CF phase content. Each of the 10 reagent samples is a sample containing a plurality of reagents, and each of the 12 mineral samples is a sample containing iron ore having a diameter of less than 0.25 mm together with the reagents.

(試料の原料組成)
第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12を作成した。第1試薬試料1〜第3試薬試料3は、Fe23試薬とCaCO3試薬とを含む。第4試薬試料4〜第7試薬試料7はFe23試薬及びCaCO3試薬に加えてSiO2試薬を含み、第8試薬試料8〜第10試薬試料10はFe23試薬及びCaCO3試薬に加えてAl23試薬を含む。第1鉱石試料1〜第3鉱石試料3は鉄鉱石AとCaCO3試薬とを含み、第4試薬試料4〜第6試薬試料6は鉄鉱石B及びCaCO3試薬を含む。第7鉱石試料7〜第9鉱石試料9は鉄鉱石CとCaCO3試薬とを含み、第10試薬試料10〜第12試薬試料12は鉄鉱石D及びCaCO3試薬を含む。鉄鉱石A〜鉄鉱石Dのそれぞれは、産地等のロットが互いに相違する。
(Raw material composition of sample)
The first reagent sample 1 to the tenth reagent sample 10 and the first ore sample 1 to the twelfth ore sample 12 were prepared. The first reagent sample 1 to the third reagent sample 3 contains a Fe 2 O 3 reagent and a CaCO 3 reagent. 4th reagent sample 4 to 7th reagent sample 7 contains SiO 2 reagent in addition to Fe 2 O 3 reagent and CaCO 3 reagent, and 8th reagent sample 8 to 10th reagent sample 10 contains Fe 2 O 3 reagent and CaCO 3 Contains Al 2 O 3 reagents in addition to reagents. The first ore sample 1 to the third ore sample 3 contain iron ore A and a CaCO 3 reagent, and the fourth reagent sample 4 to the sixth reagent sample 6 contains iron ore B and a CaCO 3 reagent. The 7th ore sample 7 to 9th ore sample 9 contains iron ore C and CaCO 3 reagent, and the 10th reagent sample 10 to 12th reagent sample 12 contains iron ore D and CaCO 3 reagent. Each of iron ore A to iron ore D has different lots such as production areas.

表1は第1試薬試料1〜第10試薬試料10に含有される試薬の含有比率を示し、表2は第1鉱石試料1〜第12鉱石試料12に含有される試薬の含有比率を示す。 Table 1 shows the content ratio of the reagent contained in the first reagent sample 1 to the tenth reagent sample 10, and Table 2 shows the content ratio of the reagent contained in the first ore sample 1 to the twelfth ore sample 12.

Figure 0006763251
Figure 0006763251

Figure 0006763251
Figure 0006763251

(試料の形成)
まず、第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれは、4MPaの圧力で加圧されて径が8mmであり高さが10mmであるタブレットとして形成された。次いで、第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれは、ニッケル製のるつぼにいれて電気炉で焼成された。第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれは、1100℃から1290℃まで1分間で昇温した後に、1290℃から1110℃まで3分間で降温するヒートパターンにより焼成された。焼成時の最高温度は1350℃以下の1290℃なので、マグネタイト相は、第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12に含有されない。焼成された第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれは、樹脂を埋め込んだ後に、湿式研磨された。
(Sample formation)
First, each of the first reagent sample 1 to 10th reagent sample 10 and the first ore sample 1 to 12th ore sample 12 is pressed at a pressure of 4 MPa as a tablet having a diameter of 8 mm and a height of 10 mm. Been formed. Next, each of the 1st reagent sample 1 to 10th reagent sample 10 and the 1st ore sample 1 to 12th ore sample 12 was placed in a nickel crucible and fired in an electric furnace. Each of the first reagent sample 1 to 10th reagent sample 10 and the first ore sample 1 to 12th ore sample 12 was heated from 1100 ° C. to 1290 ° C. in 1 minute, and then from 1290 ° C. to 1110 ° C. in 3 minutes. It was fired by a heat pattern that lowered the temperature. Since the maximum temperature at the time of firing is 1290 ° C. which is 1350 ° C. or lower, the magnetite phase is not contained in the first reagent sample 1 to the tenth reagent sample 10 and the first ore sample 1 to 12 ore sample 12. Each of the calcined first reagent samples 1 to 10 reagent samples 10 and the first ore samples 1 to 12 ore samples 12 was wet-polished after embedding the resin.

(試料のCF相の含有比率の決定)
第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12の表面を顕微鏡で300倍に拡大した画像を取得し、取得した画像の画素のそれぞれの輝度を抽出して、CF相の輝度範囲に含まれる鉱物相組織の含有比率を測定した。取得した画像は、三谷商事株式会社製の画像解析ソフトウェアプログラム「WinROOF」を使用して画像解析された。CF相の輝度範囲を決定するときのしきい値は、取得した画像の中で同一鉱物のみが存在する極小エリアの輝度を測定して決定された鉱物相組織のそれぞれの輝度範囲に基づいて決定された。ヘマタイト相の輝度範囲は230〜255とされ、CF相の輝度範囲は165−227とされ、スラグ相及びミクロ気孔の輝度範囲は110−165とされ、マクロ気孔の輝度範囲は0−110とされた。なお、スラグ相は本実験の試料にはほとんど含有されないこと、スラグ相はCF相と気孔との間の境界の輝度の輝度と重複すること、及びCF相と気孔との間の境界の比率がスラグ相の含有比率より高いことから、スラグ相は、解析から除外された。すなわち、110−165の輝度範囲は、ミクロ気孔の輝度範囲と規定した。
(Determination of CF phase content ratio of sample)
Images of the surfaces of the first reagent sample 1 to 10th reagent sample 10 and the first ore sample 1 to 12 ore sample 12 magnified 300 times with a microscope were acquired, and the brightness of each pixel of the acquired image was extracted. The content ratio of the mineral phase structure contained in the brightness range of the CF phase was measured. The acquired image was image-analyzed using the image analysis software program "WinROOF" manufactured by Mitani Corporation. The threshold value when determining the brightness range of the CF phase is determined based on the respective brightness ranges of the mineral phase structure determined by measuring the brightness of the minimum area where only the same mineral exists in the acquired image. Was done. The brightness range of the hematite phase is 230 to 255, the brightness range of the CF phase is 165-227, the brightness range of the slag phase and micropores is 110-165, and the brightness range of macropores is 0-110. It was. It should be noted that the slag phase is hardly contained in the sample of this experiment, the slag phase overlaps with the brightness of the boundary between the CF phase and the pores, and the ratio of the boundary between the CF phase and the pores is The slag phase was excluded from the analysis because it was higher than the slag phase content. That is, the luminance range of 110-165 was defined as the luminance range of micropores.

図5は、顕微鏡を介して試料を撮像した画像の輝度分布の一例を示す図である。図5において、横軸は輝度を示し、縦軸は抽出された輝度の数を示す。 FIG. 5 is a diagram showing an example of the brightness distribution of an image obtained by capturing a sample through a microscope. In FIG. 5, the horizontal axis represents the luminance and the vertical axis represents the number of extracted luminances.

図5に示す例では、CF相の輝度範囲に含まれる輝度「185」の近辺の輝度の抽出数が1番大きなピークを示し、気孔の輝度範囲に含まれる輝度「105」の近辺の輝度の抽出数が2番目に大きなピークを示す。そして、ヘマタイト相の輝度範囲に含まれる輝度「230」の近辺の輝度の抽出数が3番目に大きなピークを示す。 In the example shown in FIG. 5, the number of extracted luminances in the vicinity of the luminance "185" included in the luminance range of the CF phase shows the largest peak, and the luminance in the vicinity of the luminance "105" included in the luminance range of the pores. The number of extracts shows the second largest peak. Then, the number of extracted luminances in the vicinity of the luminance "230" included in the luminance range of the hematite phase shows the third largest peak.

図5において165−227の輝度範囲に含まれる輝度分布の面積を0−255の範囲に含まれる輝度分布の面積で除した値は、第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれのCF相の含有比率に決定された。 In FIG. 5, the value obtained by dividing the area of the luminance distribution included in the luminance range of 165-227 by the area of the luminance distribution included in the range of 0-255 is the value obtained by dividing the first reagent sample 1 to the tenth reagent sample 10 and the first ore. The content ratio of each CF phase of Samples 1 to 12 ore Samples 12 was determined.

同様に、110−165の輝度範囲に含まれる輝度分布の面積を0−255の範囲に含まれる輝度分布の面積で除した値は、第1試薬試料1〜第10試薬試料10のそれぞれのミクロ気孔の含有比率に決定された。また、230〜255の輝度範囲に含まれる輝度分布の面積を0−255の範囲に含まれる輝度分布の面積で除した値は、第1試薬試料1〜第10試薬試料10のそれぞれのヘマタイト相の含有比率に決定された。 Similarly, the value obtained by dividing the area of the luminance distribution included in the luminance range of 110-165 by the area of the luminance distribution included in the range of 0-255 is the respective micro of the first reagent sample 1 to the tenth reagent sample 10. The porosity content was determined. Further, the value obtained by dividing the area of the luminance distribution included in the luminance range of 230 to 255 by the area of the luminance distribution included in the range of 0-255 is the hematite phase of each of the first reagent sample 1 to the tenth reagent sample 10. The content ratio of was determined.

(試料の最頻輝度の決定)
第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれをスキャナで撮像して、第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれの最頻輝度を測定した。スキャナはキヤノン株式会社製の「PIXUS MG3130」を使用した。解像度は1200dpiであり、輝度は、基準試料をスキャナで撮像したときの撮像結果に基づいて、256諧調で示されるデフォルトの輝度範囲の「32」〜「95」の範囲を「0」〜「255」の範囲に拡大した。デフォルトの輝度範囲の下限輝度「32」は、基準試料に含まれるマクロ気孔の輝度より大きい輝度である。また、デフォルトの輝度範囲の上限輝度「95」は、基準試料に含まれるヘマタイト相の中で最も明るい部分の輝度である。スキャナで撮像された画像は、三谷商事株式会社製の画像解析ソフトウェアプログラム「WinROOF」を使用して画像解析された。
(Determination of the most frequent brightness of the sample)
The first reagent sample 1 to the tenth reagent sample 10 and the first ore sample 1 to the twelfth ore sample 12 are respectively imaged by a scanner, and the first reagent sample 1 to the tenth reagent sample 10 and the first ore sample 1 to 1 The most frequent brightness of each of the twelfth ore samples 12 was measured. The scanner used was "PIXUS MG3130" manufactured by Canon Inc. The resolution is 1200 dpi, and the brightness is "0" to "255" in the range of "32" to "95" of the default brightness range shown in 256 gradations based on the imaging result when the reference sample is imaged by the scanner. Expanded to the range of. The lower limit brightness "32" in the default brightness range is a brightness larger than the brightness of the macropores contained in the reference sample. Further, the upper limit luminance "95" in the default luminance range is the luminance of the brightest portion of the hematite phase contained in the reference sample. The image captured by the scanner was image-analyzed using the image analysis software program "WinROOF" manufactured by Mitani Corporation.

図6は、スキャナで試料を撮像した画像の輝度分布の一例を示す図である。図6において、横軸は輝度を示し、縦軸は抽出された輝度の数を示す。 FIG. 6 is a diagram showing an example of the brightness distribution of an image obtained by capturing a sample with a scanner. In FIG. 6, the horizontal axis represents the brightness and the vertical axis represents the number of extracted brightness.

スキャナで試料を撮像した画像の輝度分布は、単一のピークのみを有する。スキャナが撮像した画像の画素のそれぞれには、ヘマタイト相、マグネタイト相、CF相、スラグ相及び撮像部11の解像度よりも径が小さいミクロ気孔が混在して撮像されるため、図5に示す顕微鏡を介した画像の輝度分布とは異なる分布を有する。 The brightness distribution of the image captured by the scanner has only a single peak. Since each of the pixels of the image captured by the scanner is captured by a mixture of hematite phase, magnetite phase, CF phase, slag phase, and micropores having a diameter smaller than the resolution of the imaging unit 11, the microscope shown in FIG. It has a distribution different from the brightness distribution of the image through.

第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれについて、図6において矢印Aで示される輝度分布のピークに位置する輝度が最頻輝度に決定された。次いで、第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれについて、最頻輝度が決定された。 For each of the first reagent sample 1 to the tenth reagent sample 10 and the first ore sample 1 to the twelfth ore sample 12, the brightness located at the peak of the brightness distribution indicated by the arrow A in FIG. 6 is determined to be the most frequent brightness. It was. Next, the most frequent brightness was determined for each of the first reagent sample 1 to 10th reagent sample 10 and the first ore sample 1 to 12th ore sample 12.

(最頻輝度とCF相の含有比率との間の対応関係の算出)
第1試薬試料1〜第10試薬試料10及び第1鉱石試料1〜第12鉱石試料12のそれぞれについて決定されたCF相の含有比率及び最頻輝度の関係がプロットされた。そして、プロットされた点を最小二乗法で近似された直線は、最頻輝度とCF相の含有比率との間の対応関係を示す式として算出された。
(Calculation of the correspondence between the most frequent brightness and the content ratio of CF phase)
The relationship between the CF phase content ratio and the most frequent brightness determined for each of the first reagent sample 1 to 10th reagent sample 10 and the first ore sample 1 to 12th ore sample 12 was plotted. Then, the straight line obtained by approximating the plotted points by the least squares method was calculated as an equation showing the correspondence between the most frequent luminance and the content ratio of the CF phase.

図7は、最頻輝度とCF相の含有比率との間の対応関係を示す図である。図において、横軸はCF相の含有比率〔%〕を示し、縦軸は最頻輝度を示す。最頻輝度とCF相の含有比率との間の対応関係を示す直線は、CF相の含有比率が増加するに従って最頻輝度が低くなることを示す。 FIG. 7 is a diagram showing a correspondence relationship between the most frequent luminance and the content ratio of the CF phase. In FIG. 7 , the horizontal axis represents the CF phase content ratio [%], and the vertical axis represents the most frequent luminance. The straight line showing the correspondence between the most frequent luminance and the content ratio of the CF phase indicates that the most frequent luminance decreases as the content ratio of the CF phase increases.

(最頻輝度とミクロ気孔の含有比率との間の対応関係の算出)
図8は、最頻輝度とミクロ気孔の含有比率との間の対応関係を示す図である。図において、横軸はミクロ気孔の含有比率〔%〕を示し、縦軸は最頻輝度を示す。また、直線は、最小二乗法で近似された直線であり、最頻輝度とミクロ気孔の含有比率との間の対応関係を示す。
(Calculation of the correspondence between the most frequent brightness and the content ratio of micropores)
FIG. 8 is a diagram showing a correspondence relationship between the most frequent brightness and the content ratio of micropores. In FIG. 8 , the horizontal axis represents the content ratio [%] of micropores, and the vertical axis represents the most frequent brightness. Further, the straight line is a straight line approximated by the least squares method, and shows the correspondence between the most frequent luminance and the content ratio of micropores.

最頻輝度とミクロ気孔の含有比率との間の対応関係を示す直線は、図7に示す最頻輝度とCF相の含有比率との間の対応関係を示す直線と同様に、ミクロ気孔の含有比率が増加するに従って最頻輝度が低くなることを示す。すなわち、最頻輝度とミクロ気孔の含有比率との間の対応関係と、最頻輝度とCF相の含有比率との間の対応関係とは正相関を示す。 The straight line showing the correspondence between the most frequent luminance and the content ratio of the micropores is the same as the straight line showing the correspondence relationship between the most frequent luminance and the content ratio of the CF phase shown in FIG. It is shown that the most frequent brightness decreases as the ratio increases. That is, the correspondence between the mode brightness and the content ratio of micropores and the correspondence relationship between the mode brightness and the content ratio of the CF phase show a positive correlation.

(最頻輝度とヘマタイト相の含有比率との間の対応関係の算出)
は、最頻輝度とヘマタイト相の含有比率との間の対応関係を示す図である。図において、横軸はヘマタイト相の含有比率〔%〕を示し、縦軸は最頻輝度を示す。また、直線は、最小二乗法で近似された直線であり、最頻輝度とヘマタイト相の含有比率との間の対応関係を示す。
(Calculation of the correspondence between the most frequent brightness and the content ratio of hematite phase)
FIG. 9 is a diagram showing a correspondence relationship between the most frequent brightness and the content ratio of the hematite phase. In FIG. 9 , the horizontal axis represents the content ratio [%] of the hematite phase, and the vertical axis represents the most frequent brightness. Further, the straight line is a straight line approximated by the least squares method, and shows the correspondence between the most frequent luminance and the content ratio of the hematite phase.

最頻輝度とヘマタイト相の含有比率との間の対応関係を示す直線は、図7に示す最頻輝度とCF相の含有比率との間の対応関係を示す直線とは反対に、ミクロ気孔の含有比率が増加するに従って最頻輝度が高くなることを示す。すなわち、最頻輝度とヘマタイト相の含有比率との間の対応関係と、最頻輝度とCF相の含有比率との間の対応関係とは負相関を示す。 The straight line showing the correspondence between the most frequent luminance and the content ratio of the hematite phase is opposite to the straight line showing the correspondence relationship between the most frequent luminance and the content ratio of the CF phase shown in FIG. It is shown that the most frequent brightness increases as the content ratio increases. That is, the correspondence between the mode and the content ratio of the hematite phase and the correspondence between the mode and the content ratio of the CF phase show a negative correlation.

(本実施形態に係る構成比率推定方法の妥当性の検証)
3つの製鉄所の焼結工程で製造されたシンターケーキの粉砕物である焼結鉱α、焼結鉱β及び焼結鉱γを使用して、本実施形態に係る構成比率推定方法の妥当性を検証した。検証に使用された焼結鉱α〜焼結鉱γのそれぞれの切断面の面積は10cm2であった。
(Verification of validity of the composition ratio estimation method according to this embodiment)
Validity of the composition ratio estimation method according to the present embodiment using sinter α, sinter β and sinter γ, which are crushed products of sinter cake produced in the sintering steps of three steelworks. Was verified. The area of each cut surface of the sinter α to the sinter γ used for the verification was 10 cm 2 .

は、本実施形態に係る構成比率推定方法により推定されたCF相の含有比率、及び顕微鏡を介して観察面を観察した結果から測定されたCF相の含有比率を焼結鉱α、焼結鉱β及び焼結鉱γについて示す。表に示す例では、最頻輝度とCF相の含有比率との間の対応関係は、図7に示す直線を使用して決定された。 Table 3 shows the CF phase content ratio estimated by the composition ratio estimation method according to the present embodiment and the CF phase content ratio measured from the result of observing the observation surface with a microscope. It shows about the ore β and the sinter γ. In the example shown in Table 3 , the correspondence between the most frequent luminance and the content ratio of the CF phase was determined using the straight line shown in FIG.

Figure 0006763251
Figure 0006763251

に示す例では、焼結鉱αでは、本実施形態に係る構成比率推定方法により推定されたCF相の含有比率は23%であり、顕微鏡を介して観察面を観察した結果から測定されたCF相の含有比率は27%である。また、焼結鉱βでは、本実施形態に係る構成比率推定方法により推定されたCF相の含有比率は35%であり、顕微鏡を介して観察面を観察した結果から測定されたCF相の含有比率は31%である。また、焼結鉱γでは、本実施形態に係る構成比率推定方法により推定されたCF相の含有比率は52%であり、顕微鏡を介して観察面を観察した結果から測定されたCF相の含有比率は54%である。 In the example shown in Table 3 , in the sinter α, the content ratio of the CF phase estimated by the composition ratio estimation method according to the present embodiment is 23%, which is measured from the result of observing the observation surface through a microscope. The content ratio of the CF phase is 27%. Further, in the sinter β, the content ratio of the CF phase estimated by the composition ratio estimation method according to the present embodiment is 35%, and the content of the CF phase measured from the result of observing the observation surface through a microscope. The ratio is 31%. Further, in the sinter γ, the content ratio of the CF phase estimated by the composition ratio estimation method according to the present embodiment is 52%, and the content of the CF phase measured from the result of observing the observation surface through a microscope. The ratio is 54%.

に示すように、本実施形態に係る構成比率推定方法により推定されたCF相の含有比率は、顕微鏡を介して観察面を観察した結果から測定されたCF相の含有比率と略一致する。したがって、本実施形態に係る構成比率推定方法は、CF相の含有比率の推定方法として妥当なものである。 As shown in Table 3 , the CF phase content ratio estimated by the composition ratio estimation method according to the present embodiment substantially matches the CF phase content ratio measured from the result of observing the observation surface through a microscope. .. Therefore, the composition ratio estimation method according to the present embodiment is appropriate as a method for estimating the CF phase content ratio.

1 構成比率推定装置
10 撮像装置
11 撮像部
12 移動機構
20 演算装置
30 処理部
31 画像データ取得部
32 輝度抽出部
33 輝度除去部
34 対象輝度群取得部
35 最頻輝度決定部
36 含有比率推定部
37 含有比率出力部
1 Composition ratio estimation device 10 Imaging device 11 Imaging unit 12 Moving mechanism 20 Computing device 30 Processing unit 31 Image data acquisition unit 32 Brightness extraction unit 33 Brightness removal unit 34 Target brightness group acquisition unit 35 Most frequent brightness determination unit 36 Content ratio estimation unit 37 Content ratio output unit

Claims (5)

カルシウムフェライト相を少なくとも含む試料を撮像して画像データを生成する撮像部と、
前記画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を取得する対象輝度群取得部と、
前記対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定する最頻輝度決定部と、
前記試料に含まれるカルシウムフェライト相の含有比率と前記最頻輝度との対応関係に基づいて、前記試料に含まれるカルシウムフェライト相の含有比率を推定する含有比率推定部と、
前記推定されたカルシウムフェライト相の含有比率を出力する含有比率出力部と、を有し、
前記しきい値輝度は、前記撮像部の解像度よりも径が大きいマクロ気孔の輝度より大きい、ことを特徴とする構成比率推定装置。
An imaging unit that images a sample containing at least a calcium ferrite phase and generates image data,
A target brightness group acquisition unit that acquires a target brightness group obtained by removing brightness equal to or less than a predetermined threshold value from a brightness group that is a set of the brightness of each pixel included in the image corresponding to the image data.
Among the brightness included in the target brightness group, the most frequent brightness determining unit that determines the most frequent brightness, and
A content ratio estimation unit that estimates the content ratio of the calcium ferrite phase contained in the sample based on the correspondence between the content ratio of the calcium ferrite phase contained in the sample and the most frequent brightness.
It has a content ratio output unit that outputs the content ratio of the estimated calcium ferrite phase , and
A configuration ratio estimation device, characterized in that the threshold brightness is larger than the brightness of macropores having a diameter larger than the resolution of the imaging unit .
前記試料は、シンターケーキ及び焼結鉱の少なくとも一方を含む、請求項に記載の構成比率推定装置。 The composition ratio estimation device according to claim 1 , wherein the sample contains at least one of a sinter cake and a sinter. 前記撮像部は、スキャナを含む、請求項1又は2に記載の構成比率推定装置。 The configuration ratio estimation device according to claim 1 or 2 , wherein the imaging unit includes a scanner. カルシウムフェライト相を少なくとも含む試料を撮像して画像データを生成し、
前記画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を取得し、
前記対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定し、
前記試料に含まれるカルシウムフェライト相の含有比率と前記最頻輝度との対応関係に基づいて、前記試料に含まれるカルシウムフェライト相の含有比率を推定し、
前記推定されたカルシウムフェライト相の含有比率を出力する、ことを含み、
前記しきい値輝度は、前記撮像部の解像度よりも径が大きいマクロ気孔の輝度より大きい、ことを特徴とする構成比率推定方法。
Image data is generated by imaging a sample containing at least a calcium ferrite phase.
A target luminance group obtained by removing the luminance equal to or less than a predetermined threshold luminance from the luminance group which is a set of the luminance of each pixel included in the image corresponding to the image data is acquired.
Among the brightnesses included in the target brightness group, the most frequent brightness having the largest number is determined.
The content ratio of the calcium ferrite phase contained in the sample is estimated based on the correspondence between the content ratio of the calcium ferrite phase contained in the sample and the most frequent brightness.
Including that the content ratio of the estimated calcium ferrite phase is output .
A method for estimating a composition ratio , wherein the threshold luminance is larger than the luminance of a macropore having a diameter larger than the resolution of the imaging unit .
カルシウムフェライト相を少なくとも含む試料を撮像して画像データを生成し、
前記画像データに対応する画像に含まれる画素のそれぞれの輝度の集合である輝度群から、所定のしきい値輝度以下の輝度を除去した対象輝度群を取得し、
前記対象輝度群に含まれる輝度の中で、数が最も多い最頻輝度を決定し、
前記試料に含まれるカルシウムフェライト相の含有比率と前記最頻輝度との対応関係に基づいて、前記試料に含まれるカルシウムフェライト相の含有比率を推定し、
前記推定されたカルシウムフェライト相の含有比率を出力する、ことを含む処理をコンピュータに実行させる構成比率推定プログラムであって、
前記しきい値輝度は、前記撮像部の解像度よりも径が大きいマクロ気孔の輝度より大きい、ことを特徴とする構成比率推定プログラム。
Image data is generated by imaging a sample containing at least a calcium ferrite phase.
A target luminance group obtained by removing the luminance equal to or less than a predetermined threshold luminance from the luminance group which is a set of the luminance of each pixel included in the image corresponding to the image data is acquired.
Among the brightnesses included in the target brightness group, the most frequent brightness having the largest number is determined.
The content ratio of the calcium ferrite phase contained in the sample is estimated based on the correspondence between the content ratio of the calcium ferrite phase contained in the sample and the most frequent brightness.
It is a composition ratio estimation program that causes a computer to execute a process including outputting the content ratio of the estimated calcium ferrite phase .
A composition ratio estimation program characterized in that the threshold brightness is larger than the brightness of macropores having a diameter larger than the resolution of the imaging unit .
JP2016182008A 2016-09-16 2016-09-16 Composition ratio estimation device, composition ratio estimation program, and its method Active JP6763251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182008A JP6763251B2 (en) 2016-09-16 2016-09-16 Composition ratio estimation device, composition ratio estimation program, and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182008A JP6763251B2 (en) 2016-09-16 2016-09-16 Composition ratio estimation device, composition ratio estimation program, and its method

Publications (2)

Publication Number Publication Date
JP2018044234A JP2018044234A (en) 2018-03-22
JP6763251B2 true JP6763251B2 (en) 2020-09-30

Family

ID=61694424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182008A Active JP6763251B2 (en) 2016-09-16 2016-09-16 Composition ratio estimation device, composition ratio estimation program, and its method

Country Status (1)

Country Link
JP (1) JP6763251B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453532B2 (en) 2020-04-08 2024-03-21 日本製鉄株式会社 Sintered ore structure learning device, structure structure learning method, and structure structure learning program, and sintered ore manufacturing condition changing device, manufacturing condition changing method, and manufacturing condition changing program
JP7222379B2 (en) * 2020-05-14 2023-02-15 Jfeスチール株式会社 Sintered ore structure evaluation method and sintered ore production method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483895A (en) * 1977-12-17 1979-07-04 Nippon Steel Corp Quantitizing device for mineal structure
JPS56168550A (en) * 1980-05-31 1981-12-24 Nippon Kokan Kk <Nkk> Method and appratus for measuring physical properties of sintered ore
JPS5842732A (en) * 1981-09-04 1983-03-12 Nippon Kokan Kk <Nkk> Measuring method for characteristic of sintered ore
JPH0644278B2 (en) * 1984-03-27 1994-06-08 株式会社ニレコ Method and apparatus for automatic quantitative measurement of tissue by image analysis
JPH06103251B2 (en) * 1989-03-06 1994-12-14 株式会社ニレコ Tissue quantification method by image analysis
JP6094230B2 (en) * 2013-01-18 2017-03-15 新日鐵住金株式会社 Microscopic image analysis method for sintered ore
JP6107388B2 (en) * 2013-04-30 2017-04-05 新日鐵住金株式会社 Microscope image analysis method, microscope image analysis apparatus, and computer program for binding substance

Also Published As

Publication number Publication date
JP2018044234A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6562534B2 (en) Workability evaluation program, workability evaluation method, and workability evaluation device
JP6763251B2 (en) Composition ratio estimation device, composition ratio estimation program, and its method
JP6619194B2 (en) Touch panel inspection apparatus and method
JP6747391B2 (en) Material property estimating apparatus and material property estimating method
JP6107388B2 (en) Microscope image analysis method, microscope image analysis apparatus, and computer program for binding substance
EP1705901A3 (en) Image processing apparatus and method, recording medium, and program
Edwin et al. Quantitative analysis on porosity of reactive powder concrete based on automated analysis of back-scattered-electron images
JP2017090071A (en) Hardness tester and hardness testing method
CN104498654A (en) Blast furnace temperature change trend determination method and device
JP2007141222A5 (en)
Kawaguchi et al. Development of Sinter Quality and the Technology with Corresponding to the Change of Iron Ore Resources: 100 years of Sintering Process and to the Future
JP2013120550A5 (en)
Xiang et al. The dissolution kinetics of Al 2 O 3 into molten CaO-Al 2 O 3-Fe 2 O 3 slag
JP2009198709A5 (en)
Graça et al. Effect of the morphological types in grinding of iron-ore products
Silva et al. Bench-scale calcination and sintering of a goethite iron ore sample
CN113793308A (en) Intelligent pellet quality rating method and device based on neural network
CN105466930A (en) Method for determining calcium ferrite content on basis of sinter microscopic images
JP7417097B2 (en) Sintered ore structure learning device, structure learning method, and structure learning program
Stuer et al. Yield stress modelling of doped alumina suspensions for applications in freeze granulation: towards dry pressed transparent ceramics
JP2018173328A (en) Method, device and program for discriminating kind of dust
JP7417095B2 (en) Sintered ore structure learning device, structure learning method, and structure learning program
KR101568726B1 (en) Quantitative method for constituents of sintered ore
JP7453532B2 (en) Sintered ore structure learning device, structure structure learning method, and structure structure learning program, and sintered ore manufacturing condition changing device, manufacturing condition changing method, and manufacturing condition changing program
CN110095464B (en) Fine quantitative analysis method for complex-composition sinter ore phases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151