JPS5842732A - Measuring method for characteristic of sintered ore - Google Patents

Measuring method for characteristic of sintered ore

Info

Publication number
JPS5842732A
JPS5842732A JP56139407A JP13940781A JPS5842732A JP S5842732 A JPS5842732 A JP S5842732A JP 56139407 A JP56139407 A JP 56139407A JP 13940781 A JP13940781 A JP 13940781A JP S5842732 A JPS5842732 A JP S5842732A
Authority
JP
Japan
Prior art keywords
sintered ore
microstructure
macrostructure
ore
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56139407A
Other languages
Japanese (ja)
Other versions
JPH0148510B2 (en
Inventor
Takeo Yamada
健夫 山田
Mitsuaki Uesugi
上杉 満昭
Teiji Shibuya
渋谷 悌二
Hiroshi Saito
斎藤 汎
Hideomi Yanaka
谷中 秀臣
Katsuhiro Takemoto
竹元 克寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP56139407A priority Critical patent/JPS5842732A/en
Publication of JPS5842732A publication Critical patent/JPS5842732A/en
Publication of JPH0148510B2 publication Critical patent/JPH0148510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To measure the characteristics of sintered ore such as a reduction powdering property, reducibility and the like quickly with good accuracy by picking up the images of the macrostructure and microstructure of samples, and incorporating a series of processes including decision and quantitative determination of respective compsns., and calculation of physical characteristics. CONSTITUTION:A low magnification microscope 1, a high magnification microscope 1', computer vidicons 2, 2', a camera controller 3, an electric calculator 4, a central processing unit 4a, an interpreter 4b, a frame memory 5, a hard copy 6, a plotter 7, a line printer 8 and a disc file 9 are provided. The reflected images of the microscopes 1, 1' are converted to video signals by the vidicons 2, 2' and the video signals are fed to the calculator 4. Luminance levels are detected there by the picture elements divided to about 65,000 pieces per visual field, and geometrical and statistical operations are applied to these levels to calculate the area ratios of the respective structures and the quantitative values of the structures and the indices indicating the characteristics of sintered ore are determined. The results thereof are displayed by a monitor television, hard copies, a plotter, etc.

Description

【発明の詳細な説明】 本発明は焼結鉱性状の測定方法に関し、焼結鉱のマクロ
組織とミクロ組織の各組成物等を定量化し、これら諸量
により被還元性、還元粉化性等の焼結鉱性状を迅速且つ
精度良く測定せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the properties of sintered ore, in which each composition of the macrostructure and microstructure of sintered ore is quantified, and these quantities are used to determine the reducibility, reduction powderability, etc. The objective is to quickly and accurately measure the properties of sintered ore.

焼結鉱の物理的性状は焼結鉱組織と密接な関係があるこ
とが知られており、このため、従来から焼結鉱組織に着
目した性状測定方法が種々提案されている。その代表的
なものとして、例えばコイル備えた円筒内にサンプルを
装入し、これに含まれるマグネタイトの割合によって起
る共振周波数の変化を利用する所謂パーマグナグ方式や
サンプルの磁化率を利用する方式等があり、これらの方
式はいずれもヘマタイト、マグネタイト等の鉄酸化物の
み馨その定量可能な対象としている点で共通している。
It is known that the physical properties of sintered ore are closely related to the sintered ore structure, and for this reason, various property measurement methods focusing on the sintered ore structure have been proposed. Typical examples include the so-called Permagnag method, in which a sample is placed in a cylinder equipped with a coil, and changes in the resonance frequency occur depending on the proportion of magnetite contained therein, and the method uses the magnetic susceptibility of the sample. These methods all have in common that only iron oxides such as hematite and magnetite can be quantified.

しかしながら、焼結鉱の物理的性状は、単に鉄酸化物の
定量にのみ依存するものではないと考えられ、従って他
の組織、例工ばカルシウムフェライト、スラグ、気孔等
の定量化を伴わない上記方式は東操業の管理に適用し得
る十分な精度を有しているとは言い難い。また、本発明
者等の検討したところによれば、焼結鉱の物理的性状は
そのミクロ的な組織にとど、まらずマクロ的な組織にも
密接に関連しており、このマクロ組織をも含めた組織の
全体的な解析なしではその物理的性状の測定を十分なし
得ないことが判明した。
However, it is thought that the physical properties of sintered ore do not simply depend on the quantification of iron oxides, and therefore other structures, such as calcium ferrite, slag, pores, etc., are not quantified. It is difficult to say that the method has sufficient accuracy to be applicable to the management of eastern operations. In addition, according to the studies conducted by the present inventors, the physical properties of sintered ore are not limited to its microstructure, but are also closely related to its macrostructure. It has been found that it is not possible to adequately measure the physical properties of the tissue without comprehensive analysis of the tissue, including its physical properties.

しかしながら、上記方式を含めた従来の測定方式は、い
ずれも焼結鉱のミクロ組織を対象としたものであり、焼
結鉱のマクロ組織を含めたより全体的な組織圧着目し、
またこれt解析した例は未だ見当らない。
However, all conventional measurement methods including the above method target the microstructure of sintered ore, and focus on the overall structure including the macrostructure of sintered ore.
Also, I have yet to find an example of this analysis.

本発明はこのような現状に鑑み創案されたもので、その
基本的特徴は、焼結鉱試料のマクロ組織及びミクロ組織
をそれぞれ撮偉し、これによる各画像忙ついて反射率の
差圧基づく組織割合をそれぞれ測定し、この反射率の差
に基づく組織割合からマクロ組織及びミクロ組織におけ
る各組成物及び気孔の判別と定量化を行い、この定量分
析値から算定して焼結鉱の性状を測定するようKしたこ
とにあり、このようにするこ、とにより、焼結鉱組織の
全体的な判別及び定量化に基づく迅速且つ精度良い性状
測定が可能となる。
The present invention was devised in view of the current situation, and its basic feature is that the macrostructure and microstructure of a sintered ore sample are photographed, and each image is imaged to create a microstructure based on the differential pressure of reflectance. Each ratio is measured, and each composition and pore in the macrostructure and microstructure are determined and quantified from the structure ratio based on the difference in reflectance, and the properties of the sintered ore are calculated by calculating from this quantitative analysis value. By doing so, it becomes possible to quickly and accurately measure the properties based on the overall discrimination and quantification of the sintered ore structure.

焼結鉱の常温強度、熱間強度、被還元性、還元粉化性等
の物理的性状はへマタイト、マグネサイト等のミクロ組
織のみならず元鉱、マクロ気孔等のマクロ組織にも強い
相関を有することは前述した通りであり、このため、本
発明では焼結鉱のマクロ組織及びミクロ組織の両者につ
いて、その組成物及び気孔の定量化を行うものである。
The physical properties of sintered ore, such as room temperature strength, hot strength, reducibility, and reduction pulverizability, are strongly correlated not only with the microstructure of hematite and magnesite, but also with the macrostructure of the source ore and macropores. As described above, the present invention involves quantifying the composition and pores of both the macrostructure and microstructure of sintered ore.

本発明者等は、かかる各組成物定量化を次のようなプロ
セス、即ち、マクロ組織及びミクロ組織の撮像、その画
像処理忙よる反射率の差に基づ(各組成物組織割合の測
定、両側定値に基づ(各組成物の定量化という一連のプ
ロセスを取ることにより迅速且つ精度良(行うことがで
きることン見い出した。そこで本発明ではまず、試料の
マクロ組織及びミクロ組織の撮像が行われる。この撮像
は倍率の異る顕微鏡を介したlTVカメラ等によって行
われる。ここで焼結鉱のマクロ組織とは、元鉱、焼結部
及びマクロ気孔が判別可能な程度の組織馨、またミクロ
組織とは、ヘマタイト、マグネサイト、カルシウム7エ
ライト、スラグ及びミクロ気孔が判別可能な程度の組織
ン意味し、従って各撮像忙おける拡大倍率は前者が2〜
10倍、後者が100〜400倍程度のものが採用され
る。以上のような撮像までのプロセスtより詳細に説明
すると、まず実機焼結鉱から10〜20町の試料をサン
プリングしてこれを樹脂に埋め込み、さらにエメリー紙
で表面研摩を行い、しかる後前記低倍率顕微鏡を介した
マクロ組織の撮像が行われる。上記エメリー紙は432
0〜1000の範囲、通常は4−600程度のものが用
いられる。次いで上記試料はダイヤモンド研摩又は、こ
れに相当する程度の研摩が行われ、しかる後、前記高倍
率顕微鏡を介したミクロ組織の撮像が行われる。
The present inventors carried out the quantification of each composition based on the following process: imaging of the macrostructure and microstructure, and the difference in reflectance due to image processing (measurement of the tissue proportion of each composition, We have discovered that this can be done quickly and with high precision by taking a series of processes of quantifying each composition based on constant values on both sides. Therefore, in the present invention, first, images of the macrostructure and microstructure of the sample are taken. This imaging is carried out using a TV camera or the like through a microscope with different magnifications.The macrostructure of sintered ore is defined as a structure that is such that the original ore, sintered parts, and macropores can be distinguished. The term "microstructure" refers to a structure in which hematite, magnesite, calcium 7-elite, slag, and micropores can be distinguished. Therefore, the magnification for each imaging is 2 to 2.
10 times, and the latter about 100 to 400 times. To explain in more detail the process up to imaging as described above, first, 10 to 20 samples are sampled from the actual sintered ore, embedded in resin, and the surface is polished with emery paper. Imaging of the macrostructure is performed via a magnification microscope. The above emery paper is 432
A value in the range of 0 to 1000, usually about 4 to 600, is used. The sample is then diamond polished or equivalently polished, and the microstructure is then imaged using the high magnification microscope.

上記撮像によるマクロ組織及びミクロ組織の画像につい
ては、その反射率の差圧基づ(組織割合がそれぞれ測定
される。マクロ組織及びミクロ組織においては、その組
織分忙応じて光の反射率が異り、マクロ組織の場合は反
射率が高い順に元鉱、焼結部(元鉱及びマクロ気孔を除
く部分)、マクロ気孔が識別され、またミクロ組織の場
合は反射率の高い順にヘマタイト、マグネタイト、カル
シウムフェライト、スラグ及びミクロ気孔が識別される
。、本発明においてはこれら両組織において反射率に差
のある各組織分の面積比を組織割合としてそれぞれ求め
るものである。
Regarding the images of the macrostructure and microstructure obtained by the above imaging, the reflectance of the light is measured based on the differential pressure of the reflectance (tissue ratio). In the case of the macrostructure, the base ore, sintered part (excluding the base ore and macropores), and macropores are identified in the order of highest reflectance, and in the case of the microstructure, hematite, magnetite, Calcium ferrite, slag, and micropores are identified. In the present invention, the area ratio of each structure having a difference in reflectance in these two structures is determined as the structure ratio.

しかし、かかる反射率の差圧よる各組織分の判別及び定
量化だけでは、本発明の主眼とする組織の定量化は十分
でない。即ち、元鉱を除くヘマタイト、つまり所謂2次
へマタイト(ミクロ組織中の焼結部に含まれる)は還元
粉化率と強い相関があるが、上記2次へマタイトは元鉱
と反射率が同じであり、従ってマクロ組織はもとよりミ
クロ組織単独の画像処理だけからでは両者を判別するこ
とは不可能である。そこで本発明では反射率の差により
判別された元鉱組織と、同じ(判別されたヘマタイト組
織(元鉱組織!含む)とから、2次へフタイト組織Y判
別し、これを定量化するものであり、これによってはじ
めて、マクロ組織及びミクロ組織の全体的な定量化が可
能となる。そしてかかる各定量分析値に基づき、焼結鉱
の各物理的性状が算定され、例えば、前記マクロ気孔の
定量分析値によって被還元率が、また2次へマタイトの
定量分析値或いはへマタイトと元鉱の定量分析値によっ
て還元粉化率がそれぞれ算定される。
However, the discrimination and quantification of each tissue component based on the differential pressure of the reflectance alone is not sufficient for the quantification of the tissue, which is the main focus of the present invention. In other words, hematite excluding the original ore, that is, so-called secondary hematite (included in the sintered part in the microstructure) has a strong correlation with the reduction powdering rate, but the reflectance of the secondary hematite is different from that of the original ore. They are the same, and therefore it is impossible to distinguish between the two only by image processing of the microstructure alone, let alone the macrostructure. Therefore, in the present invention, the secondary hephtite structure Y is determined from the original ore structure determined by the difference in reflectance and the same (discriminated hematite structure (including the original ore structure!)), and this is quantified. Only then can the overall quantification of the macrostructure and microstructure become possible. Based on each quantitative analysis value, each physical property of the sintered ore is calculated, for example, the quantification of the macropores. The reduction rate is calculated based on the analysis value, and the reduction powdering rate is calculated based on the quantitative analysis value of secondary hematite or the quantitative analysis value of hematite and the original ore.

以上のプロセスは具体的には自動化された測定システム
が用いられる。このシステムは顕微鏡、撮像装置及び画
像処理及びこれに基づく一連の算定を行うための処理装
置?含み、顕微鏡を介して撮像されたマクロ組織及びミ
クロ組織の画像から一連のプロセスを経て各組成物の定
量とこれに基づ(物理的性状を算定し、これヲ宍示する
。このため前記処理装置Kは、各反射率と各組織分との
関係、各組織分の測定値(面積比)と重量、体積(定量
分析値)との関係、さらKは各組織分の定量分析値と焼
結鉱の物理的性状等が予め記憶されており、最終的に、
各組織の定量化された重量、体積Il!に応じた演算に
より焼結鉱の性状を示す指数が求められる。
Specifically, an automated measurement system is used for the above process. Is this system a microscope, an imaging device, and a processing device for image processing and a series of calculations based on this? quantification of each composition through a series of processes from images of the macrostructure and microstructure taken through a microscope, and based on this (calculate the physical properties and demonstrate this. Device K measures the relationship between each reflectance and each tissue component, the relationship between the measured value (area ratio) of each tissue component, weight, and volume (quantitative analysis value), and furthermore K measures the quantitative analysis value and burnout of each tissue component. The physical properties of the condensation are memorized in advance, and finally,
Quantified weight of each tissue, volume Il! An index indicating the properties of sintered ore can be obtained by calculation according to .

第1図はこのような自動化された測定システムを示すも
ので、1は低倍率顕微鏡、1′は高倍率顕微鏡、2.2
’はコンピュータビジコン、3はカメラコントローラ、
4は上記各演算処理を行う電子計算機、4mは中央処理
装置、4bはインタプリタ、5はフレームメモリ、6は
ハードコピー、Tはプロッタ。
Figure 1 shows such an automated measurement system, where 1 is a low magnification microscope, 1' is a high magnification microscope, 2.2
' is a computer business controller, 3 is a camera controller,
Reference numeral 4 denotes an electronic computer for performing the above-mentioned arithmetic processing, 4m a central processing unit, 4b an interpreter, 5 a frame memory, 6 a hard copy, and T a plotter.

8ラインプリンタ、9はディスクファイルである。これ
ら測定システムによれば上記顕微鏡1.1’  による
反射像tコンピュータビジコン2,2 によってビデオ
信号に変換し、これt電子計算機4に送給する。電子計
算機では1視野当り約65000個に分割した画素によ
って各々の輝度レベルが検出され、これに幾何学的、統
r的演算な加えて各組織分の面積割合が算出され、さら
にこれから上記した如く組織の定量値とこの定量値に基
づ(焼結鉱の性状を示す指数が求められる。このような
演算結果はモニターテレビ、ハードコピー、プロッター
、ラインプリンター等に表示され、また測定されたデー
タはディスクファイル等に保存される。なお、上記試料
の撮像に際しては、その撮像前後に標準反射板による輝
度測定V実施し、組織の反射率校正を行う。
8 line printer, 9 is a disk file. According to these measuring systems, the image reflected by the microscope 1.1' is converted into a video signal by the computer vidicon 2,2, and this is sent to the computer 4. The electronic computer detects each brightness level using approximately 65,000 pixels divided into one field of view, performs geometric and systematic calculations, calculates the area ratio of each tissue component, and then calculates the area ratio of each tissue component as described above. Based on the quantitative value of the structure and this quantitative value, an index indicating the properties of the sintered ore is calculated.Such calculation results are displayed on a monitor TV, hard copy, plotter, line printer, etc., and the measured data is stored in a disk file, etc. When imaging the sample, the brightness is measured using a standard reflector before and after imaging, and the reflectance of the tissue is calibrated.

第2図及び第3図は本発明法を使用し、焼結鉱の組織と
性状の関係を調べた一例を示すものである。このうち第
1図はパレット層方向の試料のマクロ気孔定量分析値と
被還元率との関係Z、また第2図は2次へマタイト定量
分析値と還元粉化率との関係を示すものであり、これら
によれば、それぞれの組織と物理性状の間には強い相関
が認められる。そして、本発明では、例えば、 (被還元率) = a X (マクロ気孔定量分析値)
十b(還元粉化率) = a X (2次へマタイト定量分析値>b x (
元鉱定量1分析値) +c 但し、a、b、c・・・定数 の如き式により、各物理的性状が求められる。
FIGS. 2 and 3 show an example in which the relationship between the structure and properties of sintered ore was investigated using the method of the present invention. Of these, Figure 1 shows the relationship Z between the macropore quantitative analysis value of the sample in the pallet layer direction and the reduction rate, and Figure 2 shows the relationship between the secondary hematite quantitative analysis value and the reduction powdering rate. According to these studies, there is a strong correlation between each structure and physical properties. In the present invention, for example, (reducibility rate) = a X (macropore quantitative analysis value)
10 b (reduction powdering rate) = a X (secondary hematite quantitative analysis value > b x (
Original ore quantitative analysis value 1) +c However, each physical property is determined by a formula such as a, b, c...constants.

以上のように1本発明によるときは、焼結鉱の性状を測
定するに当り、焼結鉱のミクロ組織のみならずマクロ組
織の組成物をもその測定因子とし、かかる各組織の定量
化とこれによる性状の測定を、両組織の撮像、各画像に
ついての反射率の差圧基づく組織割合の測定、両側定値
に基づ(各組成物の判別及び定量化、さらにこの定量分
析値に基づく物理的性状の算定という一連のプロセスを
取るようにしたので、還元粉化性、被還元性等の焼結鉱
性状を迅速にしかも精度良く測定することができ、その
結果実操業へのフィードバックも迅速且つ正確となって
、良好な性状の焼結鉱を製造せしめ得るものであるから
、工業上その効果が大きい発明である。
As described above, according to the present invention, when measuring the properties of sintered ore, not only the microstructure of sintered ore but also the composition of the macrostructure is used as a measurement factor, and each structure is quantified and The properties are measured based on the imaging of both tissues, the measurement of the tissue proportion based on the difference in reflectance for each image, the constant value on both sides (discrimination and quantification of each composition, and the physical properties based on this quantitative analysis value). Since we have adopted a series of processes to calculate physical properties, we can quickly and accurately measure sintered ore properties such as reduction powderability and reducibility, and as a result, feedback to actual operations can be quickly provided. Moreover, it is possible to produce sintered ore with good properties with accuracy, so this invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に供される測定システムの一例ン
示す説明図である。第2図はマクロ気孔定量分析値と被
還元率との関係を示すものである。第3図は2次へマタ
イト定量分析値と還元粉化率との関係を示すものである
。 特許出願人 日本鋼管株式会社 発 明 者   山   1)  健   大同   
     上   杉   満   昭同      
   渋   谷   悌   二同        
 斎   藤       混同         谷
   中   秀   臣同        竹   
元   克   寛−輝を、
FIG. 1 is an explanatory diagram showing an example of a measurement system used for implementing the present invention. FIG. 2 shows the relationship between macropore quantitative analysis values and reduction rate. FIG. 3 shows the relationship between the secondary hematite quantitative analysis value and the reduction powdering rate. Patent applicant Nippon Kokan Co., Ltd. Inventor Yama 1) Ken Daido
Mitsuru Uesugi Akito
Takashi Shibuya
Saito confusion Taninaka Hide Shindo Take
Former Katsuhiro - Teru,

Claims (1)

【特許請求の範囲】[Claims] 焼結鉱試料のマクロ組織及びミクロ組織をそれぞれ撮像
し、これによる各画像について反射率の差に基づ(組織
割合をそれぞれ測定し、この反射率の差に基づ(組織割
合からマクロ組織及びミクロ組織における各組成物及び
気孔の判別及び定量化を行い、この定量分析値から算定
して焼結鉱の性状を測定するよ5Kしたこと′1に特徴
とする焼結鉱性状の測定方法。
The macrostructure and microstructure of the sintered ore sample are each imaged, and based on the difference in reflectance (tissue ratio) for each image, the macrostructure and A method for measuring the properties of sintered ore, characterized in that the properties of the sintered ore are measured by determining and quantifying each composition and pore in the microstructure, and calculating the properties of the sintered ore by calculating from the quantitative analysis values.'1.
JP56139407A 1981-09-04 1981-09-04 Measuring method for characteristic of sintered ore Granted JPS5842732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139407A JPS5842732A (en) 1981-09-04 1981-09-04 Measuring method for characteristic of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139407A JPS5842732A (en) 1981-09-04 1981-09-04 Measuring method for characteristic of sintered ore

Publications (2)

Publication Number Publication Date
JPS5842732A true JPS5842732A (en) 1983-03-12
JPH0148510B2 JPH0148510B2 (en) 1989-10-19

Family

ID=15244529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139407A Granted JPS5842732A (en) 1981-09-04 1981-09-04 Measuring method for characteristic of sintered ore

Country Status (1)

Country Link
JP (1) JPS5842732A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143770A (en) * 1983-12-29 1985-07-30 Kawasaki Steel Corp Automatic broken surface analytical apparatus
JPS62205233A (en) * 1986-03-03 1987-09-09 Nippon Kokan Kk <Nkk> Ri measuring method of sintered ore
CN102175838A (en) * 2011-01-05 2011-09-07 浙江省电力试验研究院 Method for measuring resin oxidized degree
JP2014215987A (en) * 2013-04-30 2014-11-17 新日鐵住金株式会社 Microscopic image analysis method of bound substance, microscopic image analysis device, and computer program
CN105466930A (en) * 2015-12-04 2016-04-06 武汉钢铁(集团)公司 Method for determining calcium ferrite content on basis of sinter microscopic images
JP2018044234A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Component ratio estimation device, component ratio estimation program, and method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143770A (en) * 1983-12-29 1985-07-30 Kawasaki Steel Corp Automatic broken surface analytical apparatus
JPH0560058B2 (en) * 1983-12-29 1993-09-01 Kawasaki Steel Co
JPS62205233A (en) * 1986-03-03 1987-09-09 Nippon Kokan Kk <Nkk> Ri measuring method of sintered ore
JPH0582459B2 (en) * 1986-03-03 1993-11-19 Nippon Kokan Kk
CN102175838A (en) * 2011-01-05 2011-09-07 浙江省电力试验研究院 Method for measuring resin oxidized degree
JP2014215987A (en) * 2013-04-30 2014-11-17 新日鐵住金株式会社 Microscopic image analysis method of bound substance, microscopic image analysis device, and computer program
CN105466930A (en) * 2015-12-04 2016-04-06 武汉钢铁(集团)公司 Method for determining calcium ferrite content on basis of sinter microscopic images
JP2018044234A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Component ratio estimation device, component ratio estimation program, and method thereof

Also Published As

Publication number Publication date
JPH0148510B2 (en) 1989-10-19

Similar Documents

Publication Publication Date Title
JP4230566B2 (en) Defect integration processing apparatus and defect integration processing method
JPH0644278B2 (en) Method and apparatus for automatic quantitative measurement of tissue by image analysis
BR112012024633B1 (en) PARTICLE MEASUREMENT DEVICE AND PARTICLE MEASUREMENT METHOD
KR101137045B1 (en) Microstructure inspection method, microstructure inspection apparatus, and microstructure inspection program storage medium
JPH0424539A (en) Apparatus for judging particle aggregation pattern
JPS5842732A (en) Measuring method for characteristic of sintered ore
JPWO2008059934A1 (en) Aggregation judgment method
JP4938428B2 (en) Specimen image creation method and apparatus
TW521363B (en) Method and apparatus for numerically analyzing growth degree of grains on semiconductor wafer using SEM image
JPH0452411B2 (en)
Harms et al. Estimation of sampling errors in a high‐resolution TV microscope image‐processing system
JP3165429B2 (en) Aggregation image judgment method
CN107770434B (en) Rapid focusing adjustment method
JP3869905B2 (en) Method and apparatus for inspecting non-metallic inclusions in metallic materials
JP3745075B2 (en) Film thickness measuring device
WO2023119923A1 (en) Soft magnetic material evaluation method and evaluation system
US10775603B2 (en) Phase distribution calculation method, evaluation method, and image processing device
JP2008261850A (en) Image inspection method for inspection plate
JPH08298091A (en) Scanning electron microscope
SU1615750A1 (en) Method of determining te degree of homogeneity and isotropism of object structure
JPS62205233A (en) Ri measuring method of sintered ore
Lv et al. Research on a DS-class X-ray film digitisation device and an image enhancement algorithm with 12-bit RAW data
JP2528908B2 (en) Fatigue measurement method for metallic materials
CN117871254A (en) Rock characteristic stress determining method
TW201030406A (en) Auto-focus method of image