JPS62205233A - Ri measuring method of sintered ore - Google Patents

Ri measuring method of sintered ore

Info

Publication number
JPS62205233A
JPS62205233A JP4597986A JP4597986A JPS62205233A JP S62205233 A JPS62205233 A JP S62205233A JP 4597986 A JP4597986 A JP 4597986A JP 4597986 A JP4597986 A JP 4597986A JP S62205233 A JPS62205233 A JP S62205233A
Authority
JP
Japan
Prior art keywords
sintered ore
ratio
reaction rate
respective structures
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4597986A
Other languages
Japanese (ja)
Other versions
JPH0582459B2 (en
Inventor
Hiroshi Saito
斉藤 汎
Noboru Sakamoto
登 坂本
Hiroshi Fukuyo
福与 寛
Hidetoshi Noda
野田 英俊
Yoshito Iwata
岩田 嘉人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4597986A priority Critical patent/JPS62205233A/en
Publication of JPS62205233A publication Critical patent/JPS62205233A/en
Publication of JPH0582459B2 publication Critical patent/JPH0582459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To rapidly perform precise operation of sintering machine in high frequency and with a low cost, by inputting content ratios of respective structures composing sintering ore obtd. by image analysis, etc., to RI estimating numerical model, and measuring RI of sintering ore. CONSTITUTION:At first, relating to each single structure and composited structure of single structures composing sintered ore, reducing reaction rate constant is obtd. respectively. Next, image analysis, etc., are carried out to sintered ore sample for RI measurement by using microscope, to measure content ratio and porosity ratio of respective structures contained in sintered ore. Oxygen concn. to be reduced in each structure and effective diffusion coefft. in grain are corrected by a prescribed formula while using the porosity ratio. Then attained reducing ratio under a prescribed reducing condition of each structure is otbd. by a prescribed formula by using corrected reducing reaction rate constant, etc., of these respective structures. Further, attained reduction ratios of respective structures under a prescribed condition obtd. by using content ratio and corrected reducing reaction ratio constant of respective structures in sintering ore sample for RI measurement are used to calculate RI of sintering ore sample for measuring RI by a prescribed formula.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は焼結鉱のRII定方法に関する。[Detailed description of the invention] (Industrial application field) This invention relates to a method for determining RII of sintered ore.

(従来技術および問題点) 焼結鉱は主たる高炉原料であり、高炉操業を安定してお
こなうためには、焼結鉱の品質管理が重要である。焼結
鉱の品質は、一般に常温強度、還元粉化性(RD I)
 、被還元性(RI)、高温荷重軟化性などの指数で評
価される。特にRIは、高炉シャフト部での原料の被還
元性を評価するもので、高炉操業上重要な指数である。
(Prior Art and Problems) Sintered ore is the main raw material for blast furnaces, and quality control of sintered ore is important for stable blast furnace operation. The quality of sintered ore is generally determined by its room temperature strength and reduction pulverizability (RD I).
, reducibility (RI), softening under high temperature load, and other indexes. In particular, RI evaluates the reducibility of the raw material in the blast furnace shaft, and is an important index for blast furnace operation.

従来の焼結鉱のRI測定方法は、焼結鉱試料を取出し、
所定の条件下で還元試験しておこなっていた。このため
測定値は正確であるが測定に時間がかかり、かつ、電気
炉1台を専゛aすることになるので、101〜2回程度
の頻度でしか測定できず、測定結果を焼結プロセスに反
映して精密な制御をおこなうことができない。また還元
ガスの費用、人件費等も多い。
The conventional method for measuring RI of sintered ore is to take a sintered ore sample,
A reduction test was conducted under specified conditions. For this reason, although the measured values are accurate, it takes time to measure, and since one electric furnace is used exclusively, measurements can only be taken about 101 to 2 times, and the measurement results are transferred to the sintering process. Therefore, precise control cannot be performed. In addition, there are many costs such as reducing gas costs and labor costs.

この問題を解決する方法として、近時焼結鉱組織を画像
解析して、焼結鉱に含まれるボア及び特定の鉱物相の含
有割合を測定し、これら測定値からRIを推定する方法
がいくつか提案されている。
As a way to solve this problem, there are several methods in recent years that involve image analysis of the sintered ore structure, measuring the content of bores and specific mineral phases contained in the sintered ore, and estimating the RI from these measured values. or has been proposed.

例えば測定装置として特開昭513−1138550号
1.推定方法として特開昭50−42732号がある。
For example, as a measuring device, JP-A No. 513-1138550 1. As an estimation method, there is Japanese Patent Application Laid-Open No. 50-42732.

しかし焼結鉱のRIは、ボア及び特定の鉱物相によって
のみ決められるものでなく、焼結鉱を構成する全ての鉱
物相が互いに影響しあって決められている。このため上
記方法は、迅速に、かつ高頻度でしかも低コストでRI
を測定できるが、測定精度が低い問題がある。
However, the RI of sintered ore is determined not only by the bore and a specific mineral phase, but also by the mutual influence of all the mineral phases that make up the sintered ore. Therefore, the above method can perform RI quickly, frequently and at low cost.
can be measured, but there is a problem with low measurement accuracy.

そこで、同じく画像解析を利用して測定精度をより向上
させたRI測定法が提案されている(特願昭59−13
051号)。この方法は、「焼結鉱を構成する各単一組
織及び単一組織の複合せる組織につきそれぞれ還元反応
速度定数を求めておき、次いで、RI測定用焼結鉱試料
の画像解析から試料の各組織を判定するとともにその含
有割合を測定し、同組織含有割合と」二足各組織の還元
反応速度定数と各組織の加成性にもとずいて試料のRI
を算出することを特徴とする焼結鉱のRIDJ定方法」
である。この方法は焼結鉱中に存在する各組織の含有割
合の影響を全て考慮しているが、焼結鉱中に存6ユする
気孔の存在割合の影響については全く考慮していない。
Therefore, an RI measurement method that also uses image analysis to improve measurement accuracy has been proposed (Japanese Patent Application No. 59-13
No. 051). This method involves determining the reduction reaction rate constant for each single structure and composite structure of single structures that make up the sintered ore, and then calculating the reduction reaction rate constant for each of the sintered ore samples from image analysis of the sintered ore sample for RI measurement. Determine the structure and measure its content, and determine the RI of the sample based on the same structure content, the reduction reaction rate constant of each tissue, and the additivity of each tissue.
RIDJ determination method for sintered ore characterized by calculating
It is. Although this method takes into account all the effects of the proportions of each structure present in the sintered ore, it does not take into account at all the effects of the proportions of pores present in the sintered ore.

その為、はぼ同一の気孔割合を持つ焼結鉱に関しては、
上述した方法に比べ測定精度は向」ニしているが、気孔
割合か異なる焼結鉱に関しては適用できず、実際の焼結
鉱における気孔割合の変化の程度を考慮すると、精度が
劣るとAわざるを得ない。
Therefore, for sintered ores with approximately the same pore ratio,
Although the measurement accuracy is better than the above method, it cannot be applied to sintered ores with different pore ratios, and considering the degree of change in pore ratio in actual sintered ores, the accuracy is inferior. I have no choice but to.

(発明が解決しようとする技術的課題)画像解析等によ
り求めた焼結鉱を構成する各組織の含有割合(気孔率も
含む)をRI推定数字モデルに入力して、焼結鉱のRI
をAl1定することにより、迅速に高頻度かつ低コスト
でより精密な焼結機の操業が可能となる焼結鉱のRI1
定方法を得んとするものである。
(Technical problem to be solved by the invention) The content ratio (including porosity) of each structure constituting the sintered ore obtained by image analysis etc. is input into the RI estimation numerical model, and the RI of the sintered ore is calculated.
By setting Al1, the RI1 of sintered ore enables quick, frequent, low-cost, and more precise sintering machine operation.
The purpose is to obtain a method for determining

(技術的課題を解決する手段) 本発明では、まず焼結鉱を構成する各単一組織および単
一組織の複合せる組織について、それぞれ還元反応速度
定数を求めておく。即ち焼結鉱を構成する主な組織とし
てミクロボアを数多く内包する微細型へマタイト(以下
微細型flewと記す)、スラグ中に存在する晶出型の
2次へマタイト(以下2次Itamと記す)、スラグま
たはカルシウムフェライト中に存在する2次マグネタイ
ト(以下2次Magと記す)、ミクロポアを数多く内包
する微細型カルシウムフェライト(以下微細型CaFと
記す)、ミクロポアを内包し、針状の形態を持つ針状カ
ルシウムフェライト(以下針状CaFと記す)、スラグ
中に存在し短冊状の形態を持つ短冊状カルシウムフェラ
イト(以下短冊状CaPと記す)および非晶質スラグな
どがある。これら単一組織または単一組織の複合せる組
織のみからなる焼結鉱試料について、これを還元しない
非晶質スラグを除きそれぞれ作製し、所定条件下で還元
試験を行なう。還元試験で得られた還元曲線をもとに各
組織の化学反応速度定数、粒子内有効拡散係数等の還元
反応速度定数を求める。なお、各組織の焼結鉱試料作製
時に各組織の物性値である彼還元酸素濃度も求める。図
1に900℃、CO30%、N270%の混合ガス気流
中で行なった各組織の還元率曲線を、また、表1に各組
織の彼還元酸素濃度および図1より求めた各組織の90
0℃における還元反応速度定数を示す。
(Means for Solving Technical Problems) In the present invention, first, reduction reaction rate constants are determined for each single structure and composite structure of the single structure constituting the sintered ore. In other words, the main structures constituting sintered ore are microscopic hematite containing many micropores (hereinafter referred to as fine flew), and crystallized secondary hematite present in slag (hereinafter referred to as secondary Itam). , secondary magnetite (hereinafter referred to as secondary Mag) existing in slag or calcium ferrite, microscopic calcium ferrite that contains many micropores (hereinafter referred to as fine type CaF), and has a needle-like shape that contains micropores. These include acicular calcium ferrite (hereinafter referred to as acicular CaF), rectangular calcium ferrite (hereinafter referred to as rectangular CaP) that exists in slag and has a rectangular form, and amorphous slag. These sintered ore samples consisting only of a single structure or a composite structure of a single structure are prepared by removing the amorphous slag that does not reduce it, and a reduction test is conducted under predetermined conditions. Based on the reduction curve obtained in the reduction test, the reduction reaction rate constants such as the chemical reaction rate constant of each tissue and the intraparticle effective diffusion coefficient are determined. In addition, when preparing the sintered ore sample of each structure, the reduced oxygen concentration, which is a physical property value of each structure, is also determined. Figure 1 shows the reduction rate curves of each tissue in a mixed gas flow of 900°C and 30% CO and 70% N. Table 1 shows the reduced oxygen concentration of each tissue and the
The reduction reaction rate constant at 0°C is shown.

および900℃における還元反応速度定数次にRI 7
1111定用焼結鉱試料について、顕微鏡を用いた画像
解析等を行ない、焼結鉱中に含まれる各組織の含有割合
および気孔割合を測定する。なお、各組織および気孔の
判定方法およびその含有割合の測定方法として、手動A
lI3定の場合には、点分1i、線分析などの方法が用
いられ、また自動M1定の場合には、計算機を用い、各
相の明度差や各相間の境界等を測定することによって各
組織等を判定し、かつその含を割合を測定する方法が採
用される。また、/lp+定する焼結鉱の数は、得られ
る結果がロットを代表するものとなるまでの数を測定す
る必要がある。
and the reduction reaction rate constant at 900 °C then RI 7
The 1111 regular sintered ore sample is subjected to image analysis using a microscope, and the content ratio of each structure and the pore ratio contained in the sintered ore are measured. In addition, manual A
In the case of lI3 constant, methods such as point 1i and line analysis are used, and in the case of automatic M1 constant, a computer is used to measure the brightness difference of each phase, the boundary between each phase, etc. A method of determining the structure, etc. and measuring the proportion thereof is adopted. In addition, the number of sintered ore to be determined as /lp+ needs to be measured until the obtained result becomes representative of the lot.

次に、これら上述した方法で求めた焼結鉱を構成する各
組織の還元反応速度定数およびRI測定用焼結鉱試料に
おける各組織の含有割合(気孔割合も含む)を用い加成
性にもとずいてRI MJ定定位焼結鉱試料RIを算出
する。まずRI測定用焼結鉱試料の気孔割合を用い、各
組織の被還元酸素濃度および粒子内有効拡散係数を補正
する。補正式として各種考えられるが、例えば補正波還
元酸素濃度は(1)式で補正粒子内有効拡散係数は(2
)式で求める。
Next, using the reduction reaction rate constant of each structure constituting the sintered ore obtained by the method described above and the content ratio of each structure (including the pore ratio) in the sintered ore sample for RI measurement, the additivity was also determined. Then, calculate the RI MJ fixed position sinter sample RI. First, the pore ratio of the sintered ore sample for RI measurement is used to correct the reducible oxygen concentration and intraparticle effective diffusion coefficient of each structure. Various correction formulas can be considered, but for example, the corrected wave reduced oxygen concentration is expressed as (1), and the corrected intraparticle effective diffusion coefficient is (2
) is calculated using the formula.

do’−(1,0−9p) # do        
  −(1)De’−(1,0−8p) ・De+ S
p−Dg      −(2)ここで、dOは各組織の
被還元酸素濃度(9−atm/ Cm3)、do’は各
組織の補正波還元酸素濃度(9−ata+/ c113
)、Deは各組織の粒子内有効拡散係数(d/S)、D
e’は各組織の補正粒子内有効拡散係数(d/S)、D
gはガス拡散係数(d /S)。また、SpはRI測定
用焼結鉱試料の気孔割合(−)を示す。
do'-(1,0-9p) # do
-(1)De'-(1,0-8p) ・De+ S
p-Dg-(2) where dO is the reduced oxygen concentration of each tissue (9-atm/Cm3), and do' is the corrected wave reduced oxygen concentration of each tissue (9-ata+/c113).
), De is the intraparticle effective diffusion coefficient (d/S) of each tissue, D
e' is the corrected intraparticle effective diffusion coefficient (d/S) of each tissue, D
g is the gas diffusion coefficient (d/S). Moreover, Sp indicates the pore ratio (-) of the sintered ore sample for RI measurement.

その次に、これら各組織の補正還元反応速度定数等を用
い、下記の(3)式から得られる(4)式より各組織の
所定還元条件下での到着還元率を求める。なお、(4)
式はRに関して、陰関数の形となっているので、逐次近
似法等を用いてRを求めると便利である。
Next, using the corrected reduction reaction rate constants and the like of each of these tissues, the arrival reduction rate of each tissue under predetermined reduction conditions is determined from equation (4) obtained from equation (3) below. Furthermore, (4)
Since the equation is in the form of an implicit function with respect to R, it is convenient to find R using a successive approximation method or the like.

・・・(3) +As    I  1−(1−1?)’イ)  ] 
                  ・・・(A4こ
こで、Rは各組織の到達還元率(−)、θは還元時間(
s)、cbは還元ガス濃度(Illol/ crti3
)、Ceは平衡ガス濃度(a+ol/ c113)、r
oは球相当径(Cm) 、 kgはガス境膜内物質移動
係数(ca+/S)、には平衡定数(−) 、 kcは
化学反応速度定数(Cm/S)を示し、またAH−3(
Cb−Cc)、 A2−ro −do 、 A3−17
kg。
...(3) +As I 1-(1-1?)'i)]
...(A4 Here, R is the achieved reduction rate (-) of each tissue, θ is the reduction time (
s), cb is the reducing gas concentration (Illol/crti3
), Ce is the equilibrium gas concentration (a+ol/c113), r
o is the equivalent sphere diameter (Cm), kg is the mass transfer coefficient within the gas membrane (ca+/S), is the equilibrium constant (-), and kc is the chemical reaction rate constant (Cm/S), and AH-3 (
Cb-Cc), A2-ro-do, A3-17
kg.

^a =ro/Dc’、 As−に/(K+1)kcを
示す。最後にRI測定用焼結鉱試料における各組織の含
有割合および各組織の補正還元反応速度定数を使用して
求めた所定条件下での各組織の到達還元率を用い下記の
(5)式にもとずいてRI測定用焼結鉱試料のRIを算
出する。
^a = ro/Dc', As- indicates /(K+1)kc. Finally, using the content ratio of each structure in the sintered ore sample for RI measurement and the reduction rate achieved for each structure under the specified conditions determined using the corrected reduction reaction rate constant of each structure, the following formula (5) is calculated. First, the RI of the sintered ore sample for RI measurement is calculated.

RI ca、i’−100・ ΣRi  −S 1  
     =15)ここで、RI cal!は本発明法
で求めた焼結鉱のRI,R’iは(4)式で求めた各組
織の所定条件下での到達還元率(−)、Siは各組織(
非晶質スラグは除く)の含有割合(−)(気孔率も含む
)を示す。なお、 Σ5t−1,0とする。
RI ca, i'-100・ΣRi-S 1
=15) Here, RI cal! is the RI of the sintered ore determined by the method of the present invention, R'i is the reduction rate (-) achieved for each structure under the specified conditions determined by equation (4), and Si is the reduction rate (-) of each structure (
(excluding amorphous slag) (including porosity). Note that it is assumed that Σ5t-1,0.

(実施例) 実際の焼結機で製造した焼結鉱について本、発明法を適
用してRI cal!を求め、実際に還元試験を行なっ
て求めた実測のRIとの比較を行なう。表2に上記焼結
鉱の画像解析で求めた各組織(気孔も含む)の含を割合
および上記各組織の含有割合を用い、本発明法を適用し
て求めたR I caiを、気孔割合で還元反応速度定
数等を補正しないで求めた。すなわち、従来法で求めた
R I cai(従来法)および実測のRIとともに示
す。なお、各組織の含有割合の測定は線分析法を採用し
て行ない、また各組織の還元反応速度定数等(補正前)
は表1の値を用いた。
(Example) Applying the method of this invention to sintered ore produced using an actual sintering machine, RI cal! is determined and compared with the actually measured RI determined by conducting an actual reduction test. Table 2 shows the percentage of each structure (including pores) obtained by image analysis of the sintered ore, and the R I cai obtained by applying the method of the present invention using the content percentage of each structure described above. The reduction reaction rate constant etc. were determined without correction. That is, it is shown together with the RI cai (conventional method) determined by the conventional method and the actually measured RI. The content ratio of each tissue was measured using line analysis method, and the reduction reaction rate constant of each tissue (before correction) was measured.
The values in Table 1 were used.

表2より、本発明法を適用して求めた実測RIとRI 
ca、1’との相関図を図2に、また気孔割合で還元反
応速度定数等を補正しないで求めた実測RIとRI c
al(従来法)との相関図を図3に示す。これらの図よ
り本発明法を適用して求めたRIcaI!は、実A11
lのRIを精度良く算出することが出来(相関係1&−
0,87) 、かつ従来の各組織の還元反応速度定数等
を補正しないで求めたR I cal (従来法)11
関係Vl−o、e9)よりも精度が高い事がわかる。
From Table 2, the measured RI and RI obtained by applying the method of the present invention
Figure 2 shows the correlation diagram with ca and 1', and the measured RI and RI c obtained without correcting the reduction reaction rate constant etc. with the pore ratio.
A correlation diagram with al (conventional method) is shown in FIG. From these figures, RIcaI! was determined by applying the method of the present invention. is real A11
The RI of l can be calculated with high accuracy (correlation 1 & -
0,87), and R I cal (conventional method)11 determined without correcting the reduction reaction rate constants, etc. of each conventional tissue.
It can be seen that the accuracy is higher than the relationship Vl-o, e9).

(発明の効果) 以上の如く本発明では、気孔率をも考慮してRIを測定
しているので、これを考慮しないものに比べて精密な測
定を行なうことができる。
(Effects of the Invention) As described above, in the present invention, since the RI is measured taking the porosity into account, it is possible to perform more precise measurements than when this is not taken into consideration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結鉱を構成する各組織の900°C1coa
o%、N270%の混合ガス気流中での還元率1111
線図、第2図は実測RIと本発明法を適用して求めたR
Ical!との相関図、第3図は実測RIと気孔割合で
還元反応速度定数等を補正しないで求めたRlcal(
従来法)との相関図である。
Figure 1 shows the 900°C1coa of each structure that makes up the sintered ore.
o%, reduction rate in a mixed gas flow of 70% N2: 1111
The diagram, Figure 2 shows the actually measured RI and the R obtained by applying the method of the present invention.
Ical! Figure 3 shows the relationship between the actual measured RI and the pore ratio, and the Rlcal (
(Conventional method)

Claims (1)

【特許請求の範囲】[Claims] 焼結鉱を構成する各単一組織および単一組織の複合せる
組織につき、それぞれ還元反応速度定数を求めておき、
次いでRI測定用焼結鉱試料の各組織を判定するととも
にその含有割合を測定し、同組織含有割合と上記各組織
の還元反応速度定数と各組織の加成性とにもとづいて試
料のRIを算出する焼結鉱のRI測定方法において、更
に試料の気孔割合を測定し、この気孔割合により各組織
の被還元酸素濃度及び粒子内有効拡散係数を補正して各
組織の還元反応速度定数を補正し、この補正値を使用し
てRIを算出することを特徴とする焼結鉱のRI測定方
法。
Determine the reduction reaction rate constant for each single structure and composite structure of single structures that make up the sintered ore.
Next, each structure of the sintered ore sample for RI measurement is determined and its content ratio is measured, and the RI of the sample is determined based on the structure content, the reduction reaction rate constant of each structure, and the additivity of each structure. In the RI measurement method of sintered ore to be calculated, the pore ratio of the sample is further measured, and the reduction reaction rate constant of each tissue is corrected by correcting the reducible oxygen concentration and intraparticle effective diffusion coefficient of each structure using this pore ratio. and calculating RI using this correction value.
JP4597986A 1986-03-03 1986-03-03 Ri measuring method of sintered ore Granted JPS62205233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4597986A JPS62205233A (en) 1986-03-03 1986-03-03 Ri measuring method of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4597986A JPS62205233A (en) 1986-03-03 1986-03-03 Ri measuring method of sintered ore

Publications (2)

Publication Number Publication Date
JPS62205233A true JPS62205233A (en) 1987-09-09
JPH0582459B2 JPH0582459B2 (en) 1993-11-19

Family

ID=12734309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4597986A Granted JPS62205233A (en) 1986-03-03 1986-03-03 Ri measuring method of sintered ore

Country Status (1)

Country Link
JP (1) JPS62205233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494372C2 (en) * 2008-06-06 2013-09-27 Сименс Фаи Металз Текнолоджиз Гмбх Conversion process control method
EP2853606A1 (en) * 2013-09-30 2015-04-01 Siemens VAI Metals Technologies GmbH Method for allocating a level of suitability for a transformation method to a material used
JP2016060920A (en) * 2014-09-16 2016-04-25 新日鐵住金株式会社 Method for estimating reduction degradation index of pellet for iron manufacturing
JP2020012141A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Sintered ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168550A (en) * 1980-05-31 1981-12-24 Nippon Kokan Kk <Nkk> Method and appratus for measuring physical properties of sintered ore
JPS5842732A (en) * 1981-09-04 1983-03-12 Nippon Kokan Kk <Nkk> Measuring method for characteristic of sintered ore
JPS60157049A (en) * 1984-01-27 1985-08-17 Nippon Kokan Kk <Nkk> Ri measuring method of sintered ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168550A (en) * 1980-05-31 1981-12-24 Nippon Kokan Kk <Nkk> Method and appratus for measuring physical properties of sintered ore
JPS5842732A (en) * 1981-09-04 1983-03-12 Nippon Kokan Kk <Nkk> Measuring method for characteristic of sintered ore
JPS60157049A (en) * 1984-01-27 1985-08-17 Nippon Kokan Kk <Nkk> Ri measuring method of sintered ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494372C2 (en) * 2008-06-06 2013-09-27 Сименс Фаи Металз Текнолоджиз Гмбх Conversion process control method
US8665437B2 (en) 2008-06-06 2014-03-04 Siemens Vai Metals Technologies Gmbh Method of controlling a transformation process of charge material to a product
EP2853606A1 (en) * 2013-09-30 2015-04-01 Siemens VAI Metals Technologies GmbH Method for allocating a level of suitability for a transformation method to a material used
JP2016060920A (en) * 2014-09-16 2016-04-25 新日鐵住金株式会社 Method for estimating reduction degradation index of pellet for iron manufacturing
JP2020012141A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Sintered ore

Also Published As

Publication number Publication date
JPH0582459B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
Yessengaliyev et al. Thermodynamic diagram analysis (TDA) of MnO–CaO-Аl 2 O 3-SiO 2 and phase composition of slag in refined ferromanganese production
CN103969272A (en) Method and system for determination of cement components by X ray fluorescence analysis
Roseboom Jr Skutterudites (Co, Ni, Fe) As3− x: composition and cell dimensions
JPS62205233A (en) Ri measuring method of sintered ore
CN114496107A (en) Method for sintering ore blending based on liquid phase fluidity index of uniformly mixed ore
Chen et al. Investigation of the Thermodynamic Stability of C (A, F) 3 Solid Solution in the FeO-Fe 2 O 3-CaO-Al 2 O 3 System and SFCA Phase in the FeO-Fe 2 O 3-CaO-SiO 2-Al 2 O 3 System
Moses et al. Iron loss in non-oriented electrical steels under distorted flux conditions
Siggaard-Andersen et al. Nomograms for calculating the concentration of ionized calcium of human blood plasma from total calcium, total protein and/or albumin, and pH
Akroyd THE ACCELERATED CURING OF CONCRETE TEST CUBES.
Braginski et al. On the mechanism of disaccommodation in ferrites
JPH0146827B2 (en)
CN112611678A (en) Method for detecting liquidity of iron ore powder liquid phase based on actual sintering production condition
JPS5842732A (en) Measuring method for characteristic of sintered ore
Lepezin et al. Optical methods of determination of the water contents in cordierites
SU1126859A1 (en) Ferrite powder calorimetric method
Zhang Microstructure study of cementitious materials using resistivity measurement
CN107941738A (en) The method of inspection of nitrogen content in a kind of variety steel magnesium oxide coating
Henning Appendix III: Minutes of the Third Conference for the Unification of Standard Methods of Testing Materials of Construction, Held at Berlin, Germany, Sept. 19–20, 1890
JP2002039971A (en) Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern
Gerward Magnetic After‐Effect in Deformed Cobalt Single Crystals
JP4552338B2 (en) Stress prediction method during two-phase processing of steel
Semiatin et al. Microplasticity Predictions of r‐Values and Yield Loci of Low Carbon Sheet Steels Deforming by< 111> Pencil Glide
Appel The influence of dislocation densities and Ca++ impurities on macroscopic flow parameters of NaCl
JPS6390741A (en) Rapid measurement method for ternary solution composition
JPH0342569A (en) Method for measuring water and moisture sticking to particulate matter