JPH0452411B2 - - Google Patents

Info

Publication number
JPH0452411B2
JPH0452411B2 JP15001382A JP15001382A JPH0452411B2 JP H0452411 B2 JPH0452411 B2 JP H0452411B2 JP 15001382 A JP15001382 A JP 15001382A JP 15001382 A JP15001382 A JP 15001382A JP H0452411 B2 JPH0452411 B2 JP H0452411B2
Authority
JP
Japan
Prior art keywords
microstructure
macrostructure
sintered ore
determined
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15001382A
Other languages
Japanese (ja)
Other versions
JPS5940165A (en
Inventor
Hiroshi Saito
Hideomi Yanaka
Katsuhiro Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP15001382A priority Critical patent/JPS5940165A/en
Publication of JPS5940165A publication Critical patent/JPS5940165A/en
Publication of JPH0452411B2 publication Critical patent/JPH0452411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は焼結鉱性状の測定方法に関し、焼結鉱
のマクロ組織とミクロ組織の各組成物等を定量化
し、これら諸量により被還元性、還元粉化性等の
焼結鉱性状を迅速且つ精度良く測定せんとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the properties of sintered ore, in which each composition of the macrostructure and microstructure of sintered ore is quantified, and these quantities are used to determine the reducibility, reduction powderability, etc. The objective is to quickly and accurately measure the properties of sintered ore.

焼結鉱の物理的性状は焼結鉱組織と密接な関係
があることが知られており、このため従来から焼
結鉱性状に着目した性状測定方法が種々提案され
ている。その代表的なものとして、例えばコイル
を備えた円筒内にサンプルを装入し、これに含ま
れるマグネタイトの割合によつて起る共振周波数
の変化を利用する所謂パーマグナグ方式やサンプ
ルの磁化率を利用する方式等があり、これらの方
式はいずれもヘマタイト、マグネタイト等の鉄酸
化物のみをその定量可能な対象としている点で共
通している。しかしながら焼結鉱の物理的性状は
単に鉄酸化物の定量にのみ依存するものではない
と考えられ、従つて他の組織、例えばカルシウ
ム・フエライト、スラグ、気孔、さらにヘマタイ
ト中の2次ヘマタイト等の定量化を伴わない上記
方式は実操業の管理の十分な指針となり得るか疑
問のあるところである。また、本発明者等の検討
したところによれば、焼結鉱の物理的性状はその
ミクロ的な組織にとどまらずマクロ的な組織にも
密接に関連しており、このマクロ組織をも含めた
組織の全体的な解析なしではその物理的性状の測
定を十分なし得ないことが判明した。しかしなが
ら、上記方式を含めた従来の測定方式はいずれも
焼結鉱のミクロ組織、それもその組織中の一部の
組成物を対象としたものであり、焼結鉱のマクロ
組織を含めたより全体的な組織に着目し、またこ
れを解析して焼結鉱性状の測定に応用した例は未
だ見当らない。
It is known that the physical properties of sintered ore are closely related to the sintered ore structure, and for this reason, various property measurement methods focusing on sintered ore properties have been proposed. Typical examples include the so-called Permagnag method, in which a sample is placed in a cylinder equipped with a coil, and changes in the resonant frequency that occur depending on the proportion of magnetite contained in the sample are used, and the magnetic susceptibility of the sample is used. There are several methods to do this, and all of these methods have in common that only iron oxides such as hematite and magnetite can be quantified. However, it is thought that the physical properties of sintered ore do not simply depend on the amount of iron oxide, but also on the presence of other structures such as calcium ferrite, slag, pores, and even secondary hematite in hematite. It is questionable whether the above method, which does not involve quantification, can serve as a sufficient guideline for management of actual operations. In addition, according to the inventors' studies, the physical properties of sintered ore are closely related not only to its microstructure but also to its macrostructure, including this macrostructure. It has been found that without an overall analysis of the tissue, it is not possible to adequately measure its physical properties. However, all of the conventional measurement methods, including the above methods, target the microstructure of sintered ore, and that is, only a part of the composition within that structure. There is still no example of focusing on the microstructure, analyzing it, and applying it to measuring the properties of sintered ore.

本発明はこのような現状に鑑み創案されたもの
で、その基本的特徴は以下の点にある。まず焼結
鉱試料の規定された測定範囲を小区画に細分化し
て各区画についてミクロ組織の画像を得、画像処
理により各区画像の反射率の差に基づく組織割合
を測定して各区画のヘマタイト、マグネタイト、
カルシウム・フエライト及びスラグ等の組成物に
代表される鉱物のミクロ組織を求めるとともに、
これら全区画の組織割合から測定範囲全体のミク
ロ組織割合を求める。一方、鉱石が溶けずに元の
鉱石の原形をとどめている元鉱部、鉱石がいちど
溶融して凝固した焼結部及び直径250μ以上のマ
クロ気孔に区別されるマクロ組織割合を求めるに
当り、各区画について、それらのヘマタイト量
(H)、マグネタイト量(M)、カルシウム・フエ
ライト量(C)及びスラグ量(S)から、区画面
積に対して、(H+M+C+S)10%の面積化
を有する区画は気孔部、(H+M+C+S)>10%
のうち(H/(H+M+C))35%で且つ(H
+M)/(H+M+C)55%の区画は元鉱部、
それ以外の区画を焼結部と判別して、これら全区
画の組織割合から測定範囲全体のマクロ組織割合
を求める。そして予め求めていたマクロ組織及び
ミクロ組織中の組成割合と焼結鉱性状との関係に
基づき焼結鉱性状を測定するようにしたものであ
り、このようにすることにより、焼結鉱組織の全
体的な判別及び定量化に基づく迅速且つ精度良い
性状測定が可能になる。
The present invention was devised in view of the current situation, and its basic features are as follows. First, the specified measurement range of the sintered ore sample is subdivided into small sections to obtain images of the microstructure for each section, and the microstructure ratio is measured based on the difference in reflectance between the images of each section through image processing. , magnetite,
In addition to determining the microstructure of minerals represented by compositions such as calcium ferrite and slag,
The microstructure ratio of the entire measurement range is determined from the tissue ratio of all these sections. On the other hand, in determining the macrostructure ratio, which is divided into the original ore part where the ore does not melt and retains its original shape, the sintered part where the ore melts and solidifies once, and the macropores with a diameter of 250μ or more, For each section, from the amount of hematite (H), the amount of magnetite (M), the amount of calcium ferrite (C), and the amount of slag (S), the section has an area ratio of (H + M + C + S) 10% to the section area. is the pore area, (H+M+C+S)>10%
Of which (H/(H+M+C)) 35% and (H
+M)/(H+M+C) 55% section is former mining department,
The other sections are determined to be sintered parts, and the macrostructure ratio of the entire measurement range is determined from the structure ratio of all these sections. Then, the sintered ore properties are measured based on the relationship between the composition ratio in the macrostructure and microstructure and the sintered ore properties, which have been determined in advance.By doing this, the sintered ore structure can be measured. It becomes possible to quickly and accurately measure properties based on overall discrimination and quantification.

焼結鉱の常温強度、熱間強度、被還元性、還元
粉化性等の物理的性状はヘマタイト、マグネタイ
ト等のミクロ組織のみならず、元鉱部、マクロ気
孔等のマクロ組織にも強い相関を有することは前
述した通りであり、このため本発明では焼結鉱の
ミクロ組織とマクロ組織の両者についてその組織
物及び気孔の定量化を行うものである。本発明者
等は既に、本発明と同様、焼結鉱のミクロ組織と
マクロ組織の両者について各組成物等の定量化を
行うことによつて焼結鉱性状を測定するという方
法を提案しており、この方法はマクロ組織とミク
ロ組織の両者をそれぞれ撮像し、それぞれを画像
処理することによつて組織割合を得るというもの
であつた。これに対し、本発明ではマクロ組織の
撮像、画像処理を省略し、ミクロ組織の画像のみ
に基づいて、ミクロ組織及びマクロ組織の定量化
を行うことを特徴としており、これにより測定を
より迅速化することができる。
The physical properties of sintered ore, such as room temperature strength, hot strength, reducibility, and reduction pulverizability, are strongly correlated not only with the microstructure of hematite and magnetite, but also with the macrostructure of the original ore and macropores. As described above, the present invention involves quantifying the structures and pores of both the microstructure and macrostructure of sintered ore. The present inventors have already proposed a method of measuring the properties of sintered ore by quantifying each composition of both the microstructure and macrostructure of sintered ore, similar to the present invention. In this method, both the macrostructure and the microstructure were imaged, and the tissue ratio was obtained by processing each image. In contrast, the present invention is characterized by omitting macrostructure imaging and image processing and quantifying microstructures and macrostructures based only on microstructure images, thereby speeding up measurements. can do.

本発明では、まず試料のミクロ組織の撮像が行
われる。ここでミクロ組織とは、ヘマタイト、マ
グネタイト、カルシウム・フエライト、スラグ、
直径が250μ未満のミクロ気孔等が判別可能な程
度の組織を意味する。またマクロ組織とは元鉱
部、焼結部及びマクロ気孔が判別可能な程度の組
織をいう。ミクロ組織の撮像は試料の測定の範囲
を規定し、この測定範囲を小区画に細分化し、各
区画について行われる。この撮像は50〜400倍程
度の顕微鏡を介したITVカメラ等によつて行わ
れる。このような撮像までのプロセスの一例をよ
り詳細に説明すると、ます実機焼結鉱から例えば
10mm四方前後の試料をサンプリングしてこれを樹
脂に埋め込み、ダイヤモンド研摩またはこれに相
当する程度の研摩が行われる。こして測定範囲を
9mm×9mmと規定し、これを250μ×250μ程度の
小区画に分け各区画の撮像を行うものである。
In the present invention, first, imaging of the microstructure of a sample is performed. Here, microstructures include hematite, magnetite, calcium ferrite, slag,
It means a structure in which micropores with a diameter of less than 250μ can be discerned. Moreover, the macrostructure refers to a structure in which the original ore part, sintered part, and macropores can be distinguished. Imaging of the microstructure defines the measurement range of the sample, subdivides this measurement range into small sections, and is performed for each section. This imaging is performed using an ITV camera or the like through a microscope with a magnification of about 50 to 400 times. To explain in more detail an example of the process up to such imaging, for example, from actual sintered ore,
A sample approximately 10 mm square is sampled, embedded in resin, and diamond polished or equivalently polished. The measurement range is defined as 9 mm x 9 mm, and this is divided into small sections of approximately 250 μ x 250 μ, and each section is imaged.

このようにして得られた各画像について、その
反射率の差に基づく組織割合がそれぞれ測定され
る。ミクロ組織においては、その組織分に応じて
光の反射率が異なり、反射率の高い順にヘマタイ
ト、マグネタイト、カルシウム・フエライト、ス
ラグ及び気孔が識別され、各区画毎のこれらの面
積比が求められる。
For each image obtained in this way, the tissue proportion based on the difference in reflectance is measured. In the microstructure, the reflectance of light differs depending on the structure, and hematite, magnetite, calcium ferrite, slag, and pores are identified in order of the highest reflectance, and the area ratio of these for each section is determined.

一方、マクロ組織については、上記ミクロ組織
の割合からその組織割合を測定する。即ち、以上
のようにして定量化された各区画のミクロ組織中
の組成割合から各区画がマクロ組織中のいずれの
組織に該当するかの判定が行われる。区画毎に測
定されたヘマタイト量(H)、マグネタイト量
(M)、カルシウム・フエライト量(C)及びスラ
グ量(S)から、各区画のマクロ組織を以下のよ
うに判定する。
On the other hand, regarding the macrostructure, the structure ratio is measured from the above-mentioned microstructure ratio. That is, it is determined which structure in the macrostructure each section corresponds to from the composition ratio in the microstructure of each section quantified as described above. The macrostructure of each section is determined as follows from the hematite amount (H), magnetite amount (M), calcium ferrite amount (C), and slag amount (S) measured for each section.

()(H+M+C+S)10%の場合は気孔部。()(H+M+C+S) If it is 10%, it is the stomata.

() (H+M+C+S)>10%のうち、(H/
(H+M+C))35%で且つ(H+M)/(H
+M+C)55%の場合は元鉱部。
() (H+M+C+S)>10%, (H/
(H+M+C)) 35% and (H+M)/(H
+M+C) 55% is former mining department.

() (H+M+C+S)>10%のうち、()以
外の場合は焼結部。
() Among (H+M+C+S)>10%, cases other than () are sintered parts.

そして、このようにして得られた各区画のマク
ロ組織から測定範囲全体におけるマクロ組織の組
織割合、即ち元鉱部、焼結部及びマクロ気孔の各
割合を定量化する。このように本発明ではマクロ
組織割合を実測することなくマクロ組織実測に要
する試料の作成、測定作業等を全く省略できる。
Then, from the macrostructure of each section obtained in this manner, the proportion of the macrostructure in the entire measurement range, that is, the respective proportions of the original ore part, the sintered part, and the macropores are quantified. As described above, in the present invention, the sample preparation, measurement work, etc. required for actual macrostructure measurement can be completely omitted without actually measuring the macrostructure ratio.

以上のようにして試料中のミクロ組織及びマク
ロ組織の組織割合が求められ、予め求めておいた
ミクロ組織及びマクロ組織中の組成割合と焼結鉱
性状との関係に基づき焼結鉱性状が求められる
が、上記したようにミクロ及びマクロの両組織割
合(ミクロ:実測値、マクロ:推定値)が得られ
ることにより、焼結鉱性状と強い相関を有する2
次ヘマタイトの組織割合を求めることができる。
即ち、元鉱部を除くヘマタイト、つまり原鉱石の
ヘマタイトが還元されてマグネタイトになり焼結
によつて再びヘマタイトに酸化された所謂2次ヘ
マタイト(マクロ組成中の焼結部に含まれる)は
還元粉化率と強い相関があるが、上記2次ヘマタ
イトと元鉱部のヘマタイトと反射率が同じであ
り、従つて上記マクロ組織はもとよりミクロ組織
単独の画像処理だけからでは両者を判別すること
は不可能である。本発明では上記判別された元鉱
組織とミクロ組織中のヘマタイト組織とから、
(ヘマタイト量)−(元鉱量)=(2次ヘマタイト量)
(いずれも面積比)によつて2次ヘマタイト量を
求めることができる。そして、以上のようにして
求められた各定量分析値、即ちミクロ組織中のヘ
マタイト、マグネタイト、カルシウム・フエライ
ト、スラグ及びミクロ気孔、マクロ組織中の元鉱
部、焼結部及びマクロ気孔、さらに2次ヘマタイ
トの各定量分析値に基づき焼結鉱の各物理的性状
が算定され、例えば前記マクロ気孔の定量分析値
によつて被還元率がそれぞれ算定される。
As described above, the composition ratio of the microstructure and macrostructure in the sample is determined, and the sintered ore properties are determined based on the relationship between the composition ratio in the microstructure and macrostructure determined in advance and the sintered ore properties. However, as mentioned above, by obtaining both the micro and macro structure ratios (micro: actual value, macro: estimated value), it is possible to obtain 2, which has a strong correlation with the properties of sintered ore.
Next, the tissue proportion of hematite can be determined.
In other words, the so-called secondary hematite (included in the sintered part in the macro composition), which is hematite excluding the original ore part, that is, the hematite in the original ore, is reduced to magnetite and oxidized to hematite again by sintering. Although there is a strong correlation with the pulverization rate, the reflectance of the secondary hematite is the same as that of the hematite in the original ore, and therefore it is difficult to distinguish between the two by image processing alone, let alone the macrostructure. It's impossible. In the present invention, from the above determined original ore structure and hematite structure in the microstructure,
(Amount of hematite) - (Original ore amount) = (Amount of secondary hematite)
The amount of secondary hematite can be determined by (area ratio). Then, each quantitative analysis value obtained as above, that is, hematite, magnetite, calcium ferrite, slag, and micropores in the microstructure, the original ore part, sintered part, and macropores in the macrostructure, and 2 Next, each physical property of the sintered ore is calculated based on each quantitative analysis value of hematite, and, for example, the reduction rate is calculated based on the quantitative analysis value of the macropores.

以上のプロセスは具体的には自動化された測定
システムが用いられる。このシステムは顕微鏡、
撮像装置、及び画像処理及びこれに基づく一連の
算定を行うための処理装置を含み、顕微鏡を介し
て撮像されたミクロ組織の画像から一連のプロセ
スを経て各組成物の定量とこれに基づく物理的性
状を算定し、これを表示する。このため前記処理
装置には、各反射率と各組織分との関係等が予め
記憶されており、最終的に各組織分に応じた演算
により焼結鉱の性状を示す指数が求められる。
Specifically, an automated measurement system is used for the above process. This system is a microscope,
It includes an imaging device and a processing device for performing image processing and a series of calculations based on the image processing, and quantifies each composition through a series of processes from images of the microstructure taken through a microscope and performs physical calculations based on this. Calculate the properties and display them. For this reason, the processing device stores in advance the relationship between each reflectance and each structure component, and finally an index indicating the properties of the sintered ore is determined by calculation according to each structure component.

第1図はこのような自動化された測定システム
を示すもので、1は顕微鏡、2はテレビカメラ、
3はカメラコントローラ、4は上記演算処理を行
う電子計算機、5はモニターテレビ、6はハード
コピー、7はプロツタ、8はラインプリンタ、9
はデイスクフアイルである。これら測定システム
によれば、上記顕微鏡1により反射像をテレビカ
メラ2によつてビデオ信号に変換し、これを電子
計算機4に送給する。電子計算機では1視野当た
り約65000個に分割した画素によつて各々の輝度
レベルが検出され、これに幾何学的、統計学的演
算を加えてミクロ組織の各組織割合とこれに基づ
く焼結鉱性状を示す指数が求められる。このよう
な演算結果はモニターテレビ、ハードコピー、プ
ロツター、ラインプリンタ等に表示され、また測
定されたデータはデイスクフアイル等に保存され
る。なお上記試料の撮像に際しては、その撮像前
後に標準反射板による輝度測定を実施し、組織の
反射率校正を行う。
Figure 1 shows such an automated measurement system, where 1 is a microscope, 2 is a television camera,
3 is a camera controller, 4 is an electronic computer that performs the above calculation processing, 5 is a monitor television, 6 is a hard copy, 7 is a plotter, 8 is a line printer, 9
is a disk file. According to these measurement systems, the image reflected by the microscope 1 is converted into a video signal by the television camera 2, and this is sent to the computer 4. The electronic computer detects each brightness level using pixels divided into approximately 65,000 pixels per field of view, and performs geometric and statistical calculations to determine the proportion of each microstructure and the sintered ore based on this. An index indicating the properties is required. The results of such calculations are displayed on a monitor television, hard copy, plotter, line printer, etc., and the measured data is stored in a disk file, etc. Note that when imaging the sample, the brightness is measured using a standard reflector before and after the imaging, and the reflectance of the tissue is calibrated.

第2図及び第3図は本発明法を使用し、焼結鉱
組織と性状の関係を調べた一例を示すものであ
る。このうち第2図はマクロ気孔定量分析と被還
元率との関係を、また第3図は2次ヘマタイト定
量分析値と還元粉化率との関係を示すものであ
り、これらによれば、それぞれの組織と性状の間
には強い相関が認められる。そして本発明では、
例えば、 (被還元率)=a×(マクロ気孔定量分析値) (還元粉化率)=a×(2次ヘマタイト定量分析
値) −b×(元鉱定量分析値)+c ※但し、a,b,c…定数 の如き式により、各物理的性状が求められる。
FIGS. 2 and 3 show an example of investigating the relationship between sintered ore structure and properties using the method of the present invention. Of these, Figure 2 shows the relationship between macropore quantitative analysis and reduction rate, and Figure 3 shows the relationship between secondary hematite quantitative analysis value and reduction powdering rate. A strong correlation is observed between the structure and properties of . And in the present invention,
For example, (reduction rate) = a x (macropore quantitative analysis value) (reduction powdering rate) = a x (secondary hematite quantitative analysis value) -b x (original ore quantitative analysis value) + c *However, a, Each physical property is determined by an expression such as b, c...constants.

以上のように本発明によるときは、焼結鉱の性
状を測定するに当たり、焼結鉱のミクロ組織のみ
ならずマクロ組織の組成物さらには2次ヘマタイ
トをもその測定因子とし、かかる各組織の定量化
とこれによる焼結鉱性状の測定を、ミクロ組織の
撮像、その画像処理による組織割合の定量化、ミ
クロ組織割合に基づくマクロ組織割合の定量化に
より焼結鉱の全体的な組織割合を求め、これに基
づき物理的性状を求めるという一連のプロセスを
取るようにしたので、還元粉化性、被還元性等の
焼結鉱性状を迅速にしかも精度良く測定すること
ができ、その結果、実操業へのフイードバツクも
迅速且つ正確になつて良好な性状の焼結鉱を製造
せしめ得るものであるから、工業上その効果が大
きい発明である。
As described above, according to the present invention, when measuring the properties of sintered ore, not only the microstructure of sintered ore but also the composition of macrostructure and even secondary hematite are used as measurement factors, and each of these structures is Quantification and measurement of sintered ore properties, imaging of the microstructure, quantification of the structure ratio by image processing, and quantification of the macrostructure ratio based on the microstructure ratio to determine the overall structure ratio of the sintered ore. Since we adopted a series of processes to determine the physical properties based on this, we were able to quickly and accurately measure the properties of sintered ore, such as reduction powderability and reducibility. Feedback to actual operations is quick and accurate, and sintered ore with good properties can be produced, so this invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に供される測定システム
の一例を示す説明図である。第2図はマクロ気孔
定量分析値と被還元率との関係を示すものであ
る。第3図は2次ヘマタイト定量分析値と還元粉
化率との関係を示すものである。
FIG. 1 is an explanatory diagram showing an example of a measurement system used for implementing the present invention. FIG. 2 shows the relationship between macropore quantitative analysis values and reduction rate. FIG. 3 shows the relationship between the secondary hematite quantitative analysis value and the reduction powdering rate.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結鉱試料の規定された測定範囲を小区画に
細分化して各区画についてのミクロ組織の画像を
得、各画像の反射率の差に基づく組成割合を測定
して各区画毎のヘマタイト、マグネタイト、カル
シウム・フエライト及びスラグ等の組成物に代表
されるミクロ組織割合を求めるとともに、これら
全区画の組織割合から測定範囲全体のミクロ組織
割合を求め、一方、元鉱、焼結部及び気孔に区別
されるマクロ組織割合を求めるに当たり、各区画
について、それらのヘマタイト量(H)、マグネ
タイト量(M)及びカルシウム・フエライト量
(C)及びスラグ量(S)から、(H+M+C+
S)≦10%の区画は気孔部、(H+M+C+S)>
10%の区画のうち(H/(H+M+C))≧35%で
且つ(H+M)/(H+M+C))≧55%の区画は
元鉱部、それ以外の区画は焼結部と判定して、こ
れら全区画の組織割合から測定範囲全体のマクロ
組織割合を求め、予め求めておいたミクロ組織及
びマクロ組織中の組成割合と焼結鉱性状との関係
に基づき焼結鉱性状を測定するようにしたことを
特徴とする焼結鉱性状の測定方法。
1. The specified measurement range of the sintered ore sample is subdivided into small sections to obtain images of the microstructure of each section, and the composition ratio based on the difference in reflectance of each image is measured to determine the hematite, In addition to determining the microstructure proportions represented by compositions such as magnetite, calcium ferrite, and slag, the microstructure proportions of the entire measurement range are determined from the structure proportions of all these sections. In calculating the differentiated macrostructure ratio, for each section, from the amount of hematite (H), amount of magnetite (M), amount of calcium ferrite (C), and amount of slag (S), (H + M + C +
S)≦10% section is stomata, (H+M+C+S)>
Among the 10% sections, sections with (H/(H+M+C))≧35% and (H+M)/(H+M+C))≧55% are determined to be former ore areas, and the other sections are determined to be sintered areas. The macrostructure ratio of the entire measurement range was determined from the structure ratio of all sections, and the sintered ore properties were measured based on the relationship between the composition ratio in the microstructure and macrostructure determined in advance and the sintered ore properties. A method for measuring the properties of sintered ore.
JP15001382A 1982-08-31 1982-08-31 Method for measuring characteristic of sintered ore Granted JPS5940165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15001382A JPS5940165A (en) 1982-08-31 1982-08-31 Method for measuring characteristic of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15001382A JPS5940165A (en) 1982-08-31 1982-08-31 Method for measuring characteristic of sintered ore

Publications (2)

Publication Number Publication Date
JPS5940165A JPS5940165A (en) 1984-03-05
JPH0452411B2 true JPH0452411B2 (en) 1992-08-21

Family

ID=15487564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15001382A Granted JPS5940165A (en) 1982-08-31 1982-08-31 Method for measuring characteristic of sintered ore

Country Status (1)

Country Link
JP (1) JPS5940165A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187036A (en) * 1983-04-05 1984-10-24 Kanegafuchi Chem Ind Co Ltd Expanded polyethylene based resin particle and production thereof
JPH0625761B2 (en) * 1988-08-16 1994-04-06 新日本製鐵株式会社 Inspection device for non-metallic inclusions
JP2006275672A (en) * 2005-03-29 2006-10-12 Ishikawajima Harima Heavy Ind Co Ltd State measuring instrument of fluid heat accumulating material and state measuring method using it
JP2010006203A (en) * 2008-06-26 2010-01-14 Zojirushi Baby Kk Shopping handcart
JP5841876B2 (en) * 2012-03-29 2016-01-13 住友大阪セメント株式会社 Method for measuring composition ratio of hardened cement

Also Published As

Publication number Publication date
JPS5940165A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
Kaczmarek et al. Techniques of image analysis for quantitative immunohistochemistry
Imasogie Characterization of graphite particle shape in spheroidal graphite iron using a computer-based image analyzer
JPH0424539A (en) Apparatus for judging particle aggregation pattern
JP2020024188A (en) Analysis method for powder shape, evaluation method for powder fluidity, and evaluation method for fluidity of resin with powder dispersed therein
JPH0452411B2 (en)
JP7063033B2 (en) Powder shape analysis method and powder fluidity evaluation method
JPH0148510B2 (en)
JP3324699B2 (en) Method and apparatus for measuring fiber diameter distribution
JP7381890B2 (en) Sintered ore observation evaluation method and sintered ore reducibility evaluation method
JP2019082388A (en) Porosity estimation method and porosity estimation device
Kazakov et al. Quantitative Description of Microstructural Banding in Steels
JP6818263B2 (en) Fracture surface analysis device and fracture surface analysis method
JP3165429B2 (en) Aggregation image judgment method
RU2519005C1 (en) Method of prestart check of printboards
JP3745075B2 (en) Film thickness measuring device
JPH08212341A (en) Method and device for image processing of radiograph
JPH0337564A (en) Automatic magnetic-particle examination apparatus
RU2733922C1 (en) Method of estimating state of surface of particles on their planar image
JP3146255B2 (en) Micro Dimension Measurement Method
TWI275787B (en) Judge method of black-lead texture in a grey casting iron, judge program record medium and judge system
JP2017181030A (en) Central segregation evaluation method for steel material
JP2820030B2 (en) Image display device
JPH06331621A (en) Method for analysis of mineral by image processing
Bhagvati et al. Gaussian normalisation of morphological size distributions for increasing sensitivity to texture variations and its applications to pavement distress classification
JP2024145687A (en) Methods for Analysing Metal-Containing Samples