JP7063033B2 - Powder shape analysis method and powder fluidity evaluation method - Google Patents

Powder shape analysis method and powder fluidity evaluation method Download PDF

Info

Publication number
JP7063033B2
JP7063033B2 JP2018052991A JP2018052991A JP7063033B2 JP 7063033 B2 JP7063033 B2 JP 7063033B2 JP 2018052991 A JP2018052991 A JP 2018052991A JP 2018052991 A JP2018052991 A JP 2018052991A JP 7063033 B2 JP7063033 B2 JP 7063033B2
Authority
JP
Japan
Prior art keywords
powder
resin
image
shape
angularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052991A
Other languages
Japanese (ja)
Other versions
JP2018163153A (en
Inventor
公二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2018163153A publication Critical patent/JP2018163153A/en
Application granted granted Critical
Publication of JP7063033B2 publication Critical patent/JP7063033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、粉体形状の分析方法、粉体の流動性評価方法、および粉体が分散された樹脂の流動性評価方法に関する。 The present invention relates to a method for analyzing a powder shape, a method for evaluating the fluidity of a powder, and a method for evaluating the fluidity of a resin in which a powder is dispersed.

微細な粉体の製造では、粉体製品の流動性が品質管理の一項目となる場合がある。流動性に係わる因子は多く、各因子が複雑に影響して粉体の流動性が特徴付けられる。その因子の一つとして粉体形状がある。 In the production of fine powder, the fluidity of powder products may be one of the items of quality control. There are many factors related to fluidity, and each factor has a complex effect to characterize the fluidity of the powder. One of the factors is the powder shape.

粉砕により粉体製品を製造する場合、粉砕方法・条件によって形状が変化し、結果的に流動性が大きく変化してしまうことがある。その際、粉体形状を評価する必要が生じるが、一般的には光学顕微鏡や走査型電子顕微鏡(以下、SEMともいう)を用いて観察し、感覚的な評価が行われる。一方、形状を数値化する方法としては、観察像を二値化して画像解析をすることで、例えば円形度やアスペクト比を求める方法などがある(例えば特許文献1を参照)。その他には、画像解析式粒度分布計を用いて測定し、各種形状指標を得て評価する方法もある(例えば、特許文献2を参照)。 When a powder product is manufactured by crushing, the shape may change depending on the crushing method and conditions, and as a result, the fluidity may change significantly. At that time, it is necessary to evaluate the powder shape, but generally, observation is performed using an optical microscope or a scanning electron microscope (hereinafter, also referred to as SEM), and sensory evaluation is performed. On the other hand, as a method of quantifying the shape, there is, for example, a method of obtaining circularity and an aspect ratio by binarizing an observation image and performing image analysis (see, for example, Patent Document 1). In addition, there is also a method of measuring using an image analysis type particle size distribution meter and obtaining various shape indexes for evaluation (see, for example, Patent Document 2).

特許第4822826号公報Japanese Patent No. 4822826 特開平11-326177号公報Japanese Unexamined Patent Publication No. 11-326177

しかし、光学顕微鏡や画像解析式粒度分布計では分解能が不十分であるため、対象となる粉体のサイズが数ミクロンとなると、粉体の形状を精度よく分析することが困難となる。 However, since the resolution is insufficient with an optical microscope or an image analysis type particle size distribution meter, it becomes difficult to accurately analyze the shape of the powder when the size of the target powder is several microns.

また、SEMは分解能が高く微細な粉体の形状を分析できるものの、その分析は感覚的なものであり、粉体流動性に影響を及ぼすような形状についての微小な違いを数値化して評価することが困難である。 In addition, although SEM has high resolution and can analyze the shape of fine powder, the analysis is sensuous, and minute differences in shape that affect powder fluidity are quantified and evaluated. Is difficult.

一方、SEMによって得た反射電子像を画像解析することにより微細な粉体の形状を数値化して評価することが考えられる。画像解析では、反射電子像を二値化処理によって粉体部と背景部とに切り分けて粉体像を抽出した後に粉体の形状を解析することができる。 On the other hand, it is conceivable to quantify and evaluate the shape of fine powder by image analysis of the reflected electron image obtained by SEM. In the image analysis, the shape of the powder can be analyzed after the reflected electron image is separated into a powder portion and a background portion by binarization processing and the powder image is extracted.

しかし、一般的に微細な粉体は凝集しやすく、SEMで得られる観察像でも凝集した状態で観察されてしまうため、粉体の形状を正確に評価することが困難である。 However, in general, fine powder is easily aggregated, and even an observation image obtained by SEM is observed in an aggregated state, so that it is difficult to accurately evaluate the shape of the powder.

本発明は、上記課題に鑑みてなされたものであり、粉体が凝集を形成するような場合であっても、粉体形状を正確に解析する技術を提供することを一目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for accurately analyzing the powder shape even when the powder forms agglomerates.

本発明者は上記課題を解決するために検討を行い、粉体を樹脂に埋め込み樹脂包埋試料を作製し、その断面に電子線を照射して反射電子像を取得したときに、反射電子像における樹脂部分を取り除いて粉体部分を抽出するとともに二値化して画像処理を行うことに着目した。このような画像処理によれば、粉体が凝集した状態で観察される反射電子像を、粉体が単一分散するような粉体粒子像に変換することができる。そして粉体粒子像について形状を分析することにより粉体形状を正確に分析することができる。 The present inventor conducted a study to solve the above problems, and when a powder was embedded in a resin to prepare a resin-embedded sample and the cross section thereof was irradiated with an electron beam to obtain a backscattered electron image, the backscattered electron image was obtained. We focused on removing the resin part in the above to extract the powder part and binarizing it to perform image processing. According to such image processing, the backscattered electron image observed in the state where the powder is aggregated can be converted into a powder particle image in which the powder is singly dispersed. Then, by analyzing the shape of the powder particle image, the powder shape can be accurately analyzed.

すなわち、本発明の第1の態様は、
粉体の形状を分析する方法であって、
粉体を樹脂に埋め込み樹脂包埋試料を形成する樹脂包埋工程と、
前記樹脂包埋試料に対して前記粉体が露出する断面を形成する断面形成工程と、
前記断面に電子線を照射し、複数のグレイレベルを有する反射電子像を取得する取得工程と、
前記反射電子像について、画像処理により樹脂部分を取り除いて粉体部分を抽出することで粉体粒子像を得る画像処理工程と、
前記粉体粒子像を画像解析して前記粉体の形状を解析する解析工程と、を有する、粉体形状の分析方法が提供される。
That is, the first aspect of the present invention is
It is a method to analyze the shape of powder.
The resin embedding process of embedding powder in resin to form a resin embedding sample,
A cross-section forming step of forming a cross-section in which the powder is exposed with respect to the resin-embedded sample,
The acquisition step of irradiating the cross section with an electron beam to acquire a reflected electron image having a plurality of gray levels, and
An image processing step of obtaining a powder particle image by removing a resin portion from the backscattered electron image by image processing and extracting a powder portion.
Provided is an analysis method for analyzing a powder shape, which comprises an analysis step of analyzing an image of the powder particle image to analyze the shape of the powder.

本発明の第2の態様は、第1の態様の粉体形状の分析方法において、
前記画像処理工程では、グレイレベルの閾値として、前記樹脂部分よりも大きく、かつ前記粉体が単一分散して示されるような値を求め、前記閾値未満の部分を取り除き、前記閾値以上の部分を抽出する。
A second aspect of the present invention is the method for analyzing the powder shape of the first aspect.
In the image processing step, as the threshold value of the gray level, a value larger than the resin portion and such that the powder is uniformly dispersed is obtained, a portion less than the threshold value is removed, and a portion above the threshold value is obtained. To extract.

本発明の第3の態様は、第1又は第2の態様の粉体形状の分析方法において、
前記画像処理工程では、前記グレイレベルの閾値を20以上250以下とする。
A third aspect of the present invention is the method for analyzing the powder shape of the first or second aspect.
In the image processing step, the threshold value of the gray level is set to 20 or more and 250 or less.

本発明の第4の態様は、第1~第3の態様のいずれかの粉体形状の分析方法において、
前記取得工程では、前記反射電子像における前記樹脂部分のグレイレベルが0、前記粉体部分のグレイレベルが255となるように輝度およびコントラストを調整する。
A fourth aspect of the present invention is the method for analyzing the powder shape according to any one of the first to third aspects.
In the acquisition step, the brightness and contrast are adjusted so that the gray level of the resin portion in the backscattered electron image is 0 and the gray level of the powder portion is 255.

本発明の第5の態様は、第1~第4の態様のいずれかの粉体形状の分析方法において、
前記解析工程では、前記粉体の円形度および角張度を算出して形状を解析する。
A fifth aspect of the present invention is the method for analyzing the powder shape according to any one of the first to fourth aspects.
In the analysis step, the circularity and angularity of the powder are calculated and the shape is analyzed.

本発明の第6の態様は、第1~第5の態様のいずれかの粉体形状の分析方法において、
全自動鉱物分析装置を用いて、前記樹脂包埋試料に含まれる前記粉体の平均形状を解析する。
A sixth aspect of the present invention is the method for analyzing the powder shape according to any one of the first to fifth aspects.
A fully automatic mineral analyzer is used to analyze the average shape of the powder contained in the resin-embedded sample.

本発明の第7の態様は、第5の態様の粉体形状の分析方法で算出された前記円形度および前記角張度に基づき、前記粉体の流動性を評価する、粉体流動性の評価方法が提供される。 A seventh aspect of the present invention is an evaluation of powder fluidity, which evaluates the fluidity of the powder based on the circularity and the angularity calculated by the powder shape analysis method of the fifth aspect. The method is provided.

本発明の第8の態様は、第5の態様の粉体形状の分析方法で算出された前記円形度および前記角張度に基づき、前記粉体が分散された樹脂の流動性を評価する、粉体が分散された樹脂の流動性評価方法が提供される。 An eighth aspect of the present invention is to evaluate the fluidity of the resin in which the powder is dispersed based on the circularity and the angularity calculated by the powder shape analysis method of the fifth aspect. A method for evaluating the fluidity of a resin in which a body is dispersed is provided.

本発明によれば、粉体が凝集を形成するような場合であっても、粉体形状を正確に解析することができる。 According to the present invention, the powder shape can be accurately analyzed even when the powder forms agglomerates.

図1は、本発明の一実施形態にかかる粉体形状の分析方法の工程図である。FIG. 1 is a process diagram of a powder shape analysis method according to an embodiment of the present invention. 図2は、樹脂包埋試料の断面の反射電子像である。FIG. 2 is a reflected electron image of a cross section of a resin-embedded sample. 図3は、図2の反射電子像から粉体部分を抽出するとともに2値化した粉体粒子像である。FIG. 3 is a powder particle image obtained by extracting a powder portion from the backscattered electron image of FIG. 2 and binarizing it. 図4は、角張度を説明するための図である。FIG. 4 is a diagram for explaining the degree of angularity.

<本発明の一実施形態>
本発明の一実施形態にかかる粉体形状の分析方法について、全自動鉱物分析装置(Mineral Liberation Analyzer、以下、単に「MLA」ともいう)を用いて分析する場合を例に説明する。
<One Embodiment of the present invention>
The method for analyzing the powder shape according to the embodiment of the present invention will be described by exemplifying a case where analysis is performed using a fully automatic mineral analyzer (hereinafter, also simply referred to as “MLA”).

MLAは、鉱物粒子等の無機化合物粒子の同定を行う分析装置であって、エネルギー分散型X線分析器(以下、単に「EDS」ともいう)が2基備えられた走査電子顕微鏡(以下、単に「SEM」ともいう)がプラットフォームとなっている。そして、SEM・EDSを全自動制御し、画像処理やスペクトルマッチングを行い、鉱物粒子等の無機化合物粒子の同定操作を実施する制御PCを備えた分析装置である。 The MLA is an analyzer that identifies inorganic compound particles such as mineral particles, and is a scanning electron microscope equipped with two energy dispersive X-ray analyzers (hereinafter, also simply referred to as “EDS”) (hereinafter, simply referred to as “EDS”). (Also called "SEM") is the platform. Then, it is an analyzer equipped with a control PC that fully automatically controls SEM / EDS, performs image processing and spectrum matching, and performs an operation for identifying inorganic compound particles such as mineral particles.

MLAの測定原理について簡単に説明する。
MLAでは、測定対象の粉体と樹脂とを混合して固結した樹脂包埋試料の表面を研磨し、得られた断面に対して測定を行う。MLAの測定では、まず断面へ電子線を照射して反射電子像(以下、単に「BSE像」ともいう)を取得し、画像処理によって樹脂部分を除去し、断面に現れた鉱物粒子等の粉体の位置、大きさ、断面形状のデータを取得する。そして、異なる場所の断面の反射電子像を取得して画像処理を行うことを繰り返して、自動で測定を行うものである。例えば、MLAでは、100万個といった極めて多数の粉体粒子を対象に、これらの作業を全自動で実行させることが可能なため、作業が開始されれば、人的な工数は殆ど不要となり、粉体の形状のデータ測定を完了してしまうことが可能である。
The measurement principle of MLA will be briefly described.
In MLA, the surface of the resin-embedded sample obtained by mixing and solidifying the powder to be measured and the resin is polished, and the measurement is performed on the obtained cross section. In the measurement of MLA, first, the cross section is irradiated with an electron beam to obtain a backscattered electron image (hereinafter, also simply referred to as "BSE image"), the resin portion is removed by image processing, and powder such as mineral particles appearing on the cross section. Acquire data on body position, size, and cross-sectional shape. Then, the backscattered electron images of the cross sections of different places are acquired and the image processing is repeated repeatedly to perform the measurement automatically. For example, in MLA, it is possible to execute these operations fully automatically on an extremely large number of powder particles such as 1 million, so once the operations are started, man-hours are almost unnecessary. It is possible to complete the data measurement of the shape of the powder.

次に、本実施形態の粉体形状の分析方法について図1を用いて説明する。図1は本発明の一実施形態にかかる粉体形状の分析方法の工程図である。図1に示すように、本実施形態の粉体形状の分析方法は、樹脂包埋工程S1、断面形成工程S2、取得工程S3、画像処理工程S4および解析工程S5を有する。以下、各工程について詳述する。 Next, the powder shape analysis method of the present embodiment will be described with reference to FIG. FIG. 1 is a process diagram of a powder shape analysis method according to an embodiment of the present invention. As shown in FIG. 1, the powder shape analysis method of the present embodiment includes a resin embedding step S1, a cross-section forming step S2, an acquisition step S3, an image processing step S4, and an analysis step S5. Hereinafter, each step will be described in detail.

(樹脂包埋工程S1)
まず、形状分析の対象となる粉体を準備する。粉体としては、例えば、金属粉、金属酸化物粉、複合酸化物粉がある。
(Resin embedding step S1)
First, the powder to be the target of shape analysis is prepared. Examples of the powder include metal powder, metal oxide powder, and composite oxide powder.

また、粉体を包埋する樹脂としては液状または固形の樹脂を用いることができる。
液状樹脂としては、熱硬化性または光硬化性の樹脂を用いることができる。熱硬化性樹脂としては、例えば常温硬化型または加熱硬化型のエポキシ樹脂を用いることができる。光硬化性樹脂としては、例えばアクリル樹脂やエポキシアクリレート樹脂などを用いることができる。
固形樹脂としては、フェノール樹脂などの熱硬化性樹脂を用いることができる。
Further, as the resin for embedding the powder, a liquid or solid resin can be used.
As the liquid resin, a thermosetting or photocurable resin can be used. As the thermosetting resin, for example, a room temperature curable type or a heat curable type epoxy resin can be used. As the photocurable resin, for example, an acrylic resin, an epoxy acrylate resin, or the like can be used.
As the solid resin, a thermosetting resin such as a phenol resin can be used.

樹脂包埋工程S1では、液状樹脂を用いる場合、液状樹脂に粉体を添加混合して光や熱により液状樹脂を硬化させるとよく、固形樹脂を用いる場合、固形樹脂に粉体を添加混合して熱により溶融硬化させるとよい。これにより、樹脂中に粉体が分散して埋め込まれる樹脂包埋試料を作製する。 In the resin embedding step S1, when a liquid resin is used, it is preferable to add and mix powder to the liquid resin and cure the liquid resin by light or heat. When using a solid resin, the powder is added and mixed with the solid resin. It is advisable to melt and cure by heat. As a result, a resin-embedded sample in which powder is dispersed and embedded in the resin is prepared.

(断面形成工程S2)
続いて、樹脂包埋試料の断面出しを行う。例えばバフ研磨機を用いて樹脂包埋試料に粗研磨、中間研磨および鏡面研磨を行い、粉体が露出する平滑な断面を形成する。バフ研磨の他にクロスセクションポリッシャーや集束イオンビーム加工等のイオン研磨を行ってもよい。この断面は後述の取得工程にて電子線を照射して観察する観察面となる。なお、断面には電子線照射によるチャージアップを抑制するために必要に応じてカーボン等の導電性物質を蒸着させて導電膜を設けてもよい。
(Cross section forming step S2)
Subsequently, the cross section of the resin-embedded sample is taken out. For example, a buffing machine is used to perform rough polishing, intermediate polishing, and mirror polishing on a resin-embedded sample to form a smooth cross section on which powder is exposed. In addition to buffing, ion polishing such as cross section polisher or focused ion beam processing may be performed. This cross section becomes an observation surface to be observed by irradiating an electron beam in the acquisition step described later. In addition, in order to suppress charge-up due to electron beam irradiation, a conductive film such as carbon may be vapor-deposited on the cross section as needed to provide a conductive film.

(反射電子像の取得工程S3)
続いて、樹脂包埋試料の断面に電子線を照射し、断面の反射電子像(以下、BSE像ともいう)を取得する。BSE像は断面における組成分布をグレイレベルの濃淡で反映しており、複数のグレイレベルを有する。BSE像では、樹脂部分はグレイレベルが比較的小さな暗部として、粉体部分はグレイレベルの比較的大きな明部としてそれぞれ観察される。なお、電子線の照射条件は反射電子像を取得できれば特に限定されない。
(Acquisition step of backscattered electron image S3)
Subsequently, the cross section of the resin-embedded sample is irradiated with an electron beam to obtain a reflected electron image (hereinafter, also referred to as a BSE image) of the cross section. The BSE image reflects the composition distribution in the cross section with shades of gray level and has multiple gray levels. In the BSE image, the resin portion is observed as a dark portion having a relatively small gray level, and the powder portion is observed as a bright portion having a relatively large gray level. The irradiation conditions of the electron beam are not particularly limited as long as the reflected electron image can be obtained.

取得工程S3では、後述の画像処理工程S4での処理効率を高める観点からは、反射電子像を取得する際、反射電子像における樹脂部分のグレイレベルが0(黒)、粉体部分のグレイレベルが255(白)となるように輝度およびコントラストを調整することが好ましい。これにより樹脂部分と粉体部分のグレイレベル差を明確にし、画像処理工程S4での粉体部分を効率的に抽出することができる。 In the acquisition step S3, from the viewpoint of improving the processing efficiency in the image processing step S4 described later, when the backscattered electron image is acquired, the gray level of the resin portion in the backscattered electron image is 0 (black) and the gray level of the powder portion. It is preferable to adjust the brightness and contrast so that the value is 255 (white). As a result, the difference in gray level between the resin portion and the powder portion can be clarified, and the powder portion in the image processing step S4 can be efficiently extracted.

(反射電子像の画像処理工程S4)
続いて、得られたBSE像に画像処理を施す。具体的には、BSE像において、グレイレベルの比較的小さな暗部(樹脂部分)を取り除き、グレイレベルの比較的大きな明部(粉体部分)を抽出するとともに、二値化する。すなわち、反射電子像の各画素について、所定のグレイレベルを満たさない画素は除去して白で表示する一方、所定のグレイレベルを満たす画素は黒に置き換えることで、各画素をモノクロ二値化する。これにより、粉体形状を正確かつ鮮明に反映する粉体粒子像を得る。
(Image processing step S4 of reflected electron image)
Subsequently, image processing is performed on the obtained BSE image. Specifically, in the BSE image, a dark portion (resin portion) having a relatively small gray level is removed, a bright portion (powder portion) having a relatively large gray level is extracted, and binarization is performed. That is, for each pixel of the backscattered electron image, the pixel that does not satisfy the predetermined gray level is removed and displayed in white, while the pixel that satisfies the predetermined gray level is replaced with black, so that each pixel is binarized in monochrome. .. As a result, a powder particle image that accurately and clearly reflects the powder shape is obtained.

画像処理工程S4では、粉体部分の抽出の際、グレイレベルの閾値として、樹脂部分よりも大きく、かつ粉体が単一分散して表示されるようなグレイレベルを求め、閾値未満の部分を取り除き、閾値以上の部分を抽出することが好ましい。取得工程S3で得られるBSE像では、例えば図2に示すように粉体を構成する複数の粉体粒子が密集して、各粉体粒子から形状を正確に分析しにくいことがある。一方、グレイレベルとして所定の閾値を求め、その閾値に基づいて画像処理することで、例えば図3に示すように粉体が単一分散したように表示される粉体粒子像を得ることができる。このような粉体粒子像によれば、粉体の各粉体粒子から形状を正確に解析することができる。なお、反射電子像から粉体粒子像へ画像処理する際に、粉体粒子の一部も抜け落ちてしまうが、粉体形状の解析精度には影響しない。 In the image processing step S4, when extracting the powder portion, the gray level that is larger than the resin portion and is displayed in a single dispersion is obtained as the threshold value of the gray level, and the portion less than the threshold value is determined. It is preferable to remove and extract the portion above the threshold value. In the BSE image obtained in the acquisition step S3, for example, as shown in FIG. 2, a plurality of powder particles constituting the powder may be densely packed, and it may be difficult to accurately analyze the shape from each powder particle. On the other hand, by obtaining a predetermined threshold value as the gray level and performing image processing based on the threshold value, it is possible to obtain a powder particle image displayed as if the powder is singly dispersed, for example, as shown in FIG. .. According to such a powder particle image, the shape can be accurately analyzed from each powder particle of the powder. When the image is processed from the backscattered electron image to the powder particle image, a part of the powder particles also falls off, but this does not affect the analysis accuracy of the powder shape.

グレイレベルの閾値としては、少なくとも樹脂部分を取り除く観点からは20以上とすることが好ましく、さらに粉体が単一分散するように表示する観点からは100以上とすることがより好ましい。一方、閾値の引き上げにともなって画像処理による粉体の抜け落ちが増えるが、閾値を250以下とすることにより、粉体の抜け落ちを抑制しつつ、十分な解析精度を維持することができる。すなわち、閾値を好ましくは20以上250以下、より好ましくは100以上250以下として、この閾値以上のグレイレベルを有する画素を抽出することにより、粉体が単一分散して粉体形状をより正確に分析しやすい粉体粒子像が得られる。 The threshold value of the gray level is preferably 20 or more, at least from the viewpoint of removing the resin portion, and more preferably 100 or more from the viewpoint of displaying the powder as a single dispersion. On the other hand, as the threshold value is raised, powder dropout due to image processing increases, but by setting the threshold value to 250 or less, it is possible to maintain sufficient analysis accuracy while suppressing powder dropout. That is, by setting the threshold value to preferably 20 or more and 250 or less, more preferably 100 or more and 250 or less, and extracting the pixels having a gray level of this threshold value or more, the powder is single-dispersed and the powder shape is more accurately formed. A powder particle image that is easy to analyze can be obtained.

(粉体粒子像の解析工程S5)
続いて、画像処理工程で得られた粉体粒子像を画像解析する。これにより粉体粒子の大きさや形状のデータを得る。本実施形態では、MLAを用いて、樹脂包埋試料の断面における異なる領域について形状のデータを繰り返し取得することで、粉体の平均的な形状のデータを得ることができる。
(Analysis step S5 of powder particle image)
Subsequently, the powder particle image obtained in the image processing step is image-analyzed. As a result, data on the size and shape of the powder particles can be obtained. In the present embodiment, the average shape data of the powder can be obtained by repeatedly acquiring the shape data for different regions in the cross section of the resin-embedded sample using MLA.

形状としては、例えば円形度や角張度を求めるとよい。円形度および角張度は以下のように定義される。 As the shape, for example, the degree of circularity or the degree of angularity may be obtained. Circularity and angularity are defined as follows.

粉体粒子像における粉体粒子の円形度をC、その周囲長をL、その面積をSとしたとき、円形度Cは、下記式(1)で求められる。本実施形態では、MLAにより全ての粉体粒子の円形度を総計して粒子数で除することで、粉体の平均的な球形度を算出することができる。

Figure 0007063033000001
When the circularity of the powder particles in the powder particle image is C, the peripheral length thereof is L, and the area thereof is S, the circularity C is obtained by the following formula (1). In the present embodiment, the average sphericity of the powder can be calculated by summing up the circularity of all the powder particles by MLA and dividing by the number of particles.
Figure 0007063033000001

粉体粒子像における粉体粒子の角張度は、図4に示すように、粉体粒子に外接する長方形に対して内接する楕円を置き、その中心から楕円までの距離(D)と粉体粒子の外周までの距離(D)との差について着目した値である。具体的には、角張度(Angularity)は、下記式(2)に示すように、楕円までの距離Dと粉体粒子の外周までの距離Dとの差を二乗した値を楕円までの距離Dを二乗した値で割り、それを1°~360°まで楕円の全周にわたって求めて総和することで算出される。本実施形態では、MLAにより全ての粉体の角張度を総計して粒子数で除することで、粉体の平均的な角張度を算出することができる。

Figure 0007063033000002
As shown in FIG. 4, the angularity of the powder particles in the powder particle image is obtained by placing an ellipse inscribed in the ellipse inscribed in the rectangle inscribed in the powder particles, and the distance (D p ) from the center to the ellipse and the powder. It is a value focusing on the difference from the distance ( De ) to the outer periphery of the particle. Specifically, the angularity is the squared value of the difference between the distance D p to the ellipse and the distance De to the outer circumference of the powder particles, as shown in the following equation (2), up to the ellipse. It is calculated by dividing the distance De by the squared value, finding it over the entire circumference of the ellipse from 1 ° to 360 °, and summing it up. In the present embodiment, the average degree of angularity of the powder can be calculated by summing up the degree of angularity of all the powders by MLA and dividing by the number of particles.
Figure 0007063033000002

以上により、樹脂包埋試料に含まれる粉体の形状を正確に分析することができる。 From the above, the shape of the powder contained in the resin-embedded sample can be accurately analyzed.

また、粉体の形状について得られた解析結果、例えば、粉体の円形度および角張度などに基づいて、粉体の流動性を評価することができる。更には、粉体が分散された樹脂の流動性も評価することができる。流動性は、粉体もしくは粉体が分散された樹脂に対して、単位重量もしくは単位体積当たりに加えた力に相関するものである。定性的には、粉体そのものの流動性の場合、粉体に力を与えたときに、その力に対応して粉体が流動すれば流動性が高く、反対に、加えた力の一部のみが粉体の流動に寄与するものの、残りの力は粉体の凝集に寄与するようであれば流動性が低いと評価される。また、粉体が分散された樹脂の場合、樹脂を流動させるときに要する力が小さければ流動性が高く、要する力が大きければ流動性が低いと評価される。 In addition, the fluidity of the powder can be evaluated based on the analysis results obtained for the shape of the powder, for example, the circularity and the angularity of the powder. Furthermore, the fluidity of the resin in which the powder is dispersed can also be evaluated. The fluidity correlates with the powder or the force applied per unit weight or unit volume to the powder-dispersed resin. Qualitatively, in the case of the fluidity of the powder itself, when a force is applied to the powder, if the powder flows in response to the force, the fluidity is high, and conversely, a part of the applied force. If only contributes to the flow of the powder, but the remaining force contributes to the aggregation of the powder, the fluidity is evaluated to be low. Further, in the case of a resin in which powder is dispersed, it is evaluated that the fluidity is high if the force required for flowing the resin is small, and the fluidity is low if the force required is large.

例えば、円形度および角張度により流動性を評価する場合、以下に示す式(3)に基づいて粉体の流動性または、粉体が分散された樹脂の流動性を評価する。式(3)において、係数AおよびBは、流動性を表す指標と円形度や角張度との相関から予め求めておく。流動性を表す指標は、例えば、加える力が所定の一定値の場合の単位時間単位重量当たりの粉体が移動した距離であり、粉体が分散された樹脂の場合には樹脂が移動した距離であるが、これに限定されるものではない。対象となる粉体について、円形度および角張度を算出したら、下記式(3)に基づいて、流動性を表す指標を求め、粉体の流動性、または粉体が分散された樹脂の流動性の程度を評価する。
(粉体の流動性、粉体が分散された樹脂の流動性を表す指標)=係数A×(円形度)+係数B×(角張度)・・・(3)
上記式(3)中の係数A値は、粉体の流動性に対応する場合と、粉体が分散された樹脂の流動性に対応する場合とにおいて必ずしも同じ値ではない。係数Bについても同様に、粉体の流動性に対応する場合と、粉体が分散された樹脂の流動性に対応する場合とにおいて必ずしも同じ値ではない。
なお、粉体、樹脂の流動性はこれらの製造過程における加工性にも相関するものと考えられることから、上記式(3)で求めた流動性を表す指標は、粉体もしくは粉体が分散された樹脂の製造過程における加工性を表す指標としも使用することが可能である。
For example, when the fluidity is evaluated by the circularity and the angularity, the fluidity of the powder or the fluidity of the resin in which the powder is dispersed is evaluated based on the following formula (3). In the formula (3), the coefficients A and B are obtained in advance from the correlation between the index representing the fluidity and the circularity and the angularity. The index indicating the fluidity is, for example, the distance traveled by the powder per unit time unit weight when the applied force is a predetermined constant value, and the distance traveled by the resin in the case of a resin in which the powder is dispersed. However, it is not limited to this. After calculating the circularity and angularity of the target powder, the index representing the fluidity is obtained based on the following formula (3), and the fluidity of the powder or the fluidity of the resin in which the powder is dispersed is obtained. Evaluate the degree of.
(Indicator showing the fluidity of the powder and the fluidity of the resin in which the powder is dispersed) = coefficient A × (circularity) + coefficient B × (squareness) ... (3)
The coefficient A value in the above formula (3) is not necessarily the same value when it corresponds to the fluidity of the powder and when it corresponds to the fluidity of the resin in which the powder is dispersed. Similarly, the coefficient B is not necessarily the same value when it corresponds to the fluidity of the powder and when it corresponds to the fluidity of the resin in which the powder is dispersed.
Since the fluidity of powders and resins is considered to correlate with the processability in these manufacturing processes, the index representing the fluidity obtained by the above formula (3) is that the powders or powders are dispersed. It can also be used as an index showing the processability in the manufacturing process of the resin.

<本実施形態に係る効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<Effects of this embodiment>
According to this embodiment, one or more of the following effects are exhibited.

本実施形態では、樹脂包埋試料の断面から取得できる複数のグレイレベルを有するBSE像について、画像処理により樹脂部分を取り除いて粉体部分を抽出するとともに二値化することで粉体粒子像を得て、この粉体粒子像の画像解析から粉体形状を分析している。粉体粒子像では、粉体が分散した状態で観察され、また二値化により粉体形状が明確に反映されているため、画像解析により各粉体粒子の形状を正確に分析することができる。しかも、MLAを用いることにより、すべての粉体粒子について形状データを採取して、粉体の平均的な形状を正確に分析することができる。 In the present embodiment, for a BSE image having a plurality of gray levels that can be obtained from a cross section of a resin-embedded sample, the resin portion is removed by image processing to extract the powder portion and binarize the powder particle image. Obtained, the powder shape is analyzed from the image analysis of this powder particle image. In the powder particle image, the powder is observed in a dispersed state, and the powder shape is clearly reflected by binarization, so that the shape of each powder particle can be accurately analyzed by image analysis. .. Moreover, by using MLA, it is possible to collect shape data for all powder particles and accurately analyze the average shape of the powder.

また、画像処理において粉体部分を抽出する際には、樹脂部分よりも大きく、かつ粉体が単一分散して示されるようなグレイレベルを閾値として求め、閾値未満の部分を取り除き、閾値以上の部分を抽出することが好ましい。これにより、粉体が凝集しているような場合であっても、粉体粒子像において粉体を単一分散した状態で表示し、それを画像解析することにより、各粉体粒子について形状をより正確に分析することができる。 Further, when extracting the powder portion in the image processing, a gray level that is larger than the resin portion and is shown in a single dispersion of the powder is obtained as a threshold value, the portion less than the threshold value is removed, and the threshold value or more is obtained. It is preferable to extract the portion of. As a result, even when the powder is agglomerated, the shape of each powder particle can be obtained by displaying the powder in a single dispersed state in the powder particle image and analyzing the image. It can be analyzed more accurately.

また、反射電子像を取得する際には、反射電子像における樹脂部分のグレイレベルが0、粉体部分のグレイレベルが255となるように輝度およびコントラストを調整することが好ましい。このように抽出したい部分と取り除きたい部分との間でコントラストをつけることで、画像処理の効率を高めることができる。 Further, when acquiring the backscattered electron image, it is preferable to adjust the brightness and the contrast so that the gray level of the resin portion in the backscattered electron image is 0 and the gray level of the powder portion is 255. By adding contrast between the portion to be extracted and the portion to be removed in this way, the efficiency of image processing can be improved.

また、粉体の形状としては、粉体の円形度および角張度を算出して形状を分析することが好ましい。これまで、粉体流動性の評価では円形度が採用されるのが一般的であったが、本発明者の検討によると、同じような円形度であっても角張度の違いによって粉体流動性が大きく相違することから角張度も重要であることが見出された。ただし、角張度は粉体粒子を分散した状態で分析する必要があり、これまで精度よく分析することが困難となっていた。一方、本実施形態では、粉体部分を抽出するように画像処理して画像解析することで、粉体の円形度とともに角張度を求めて精度よく分析することができる。 Further, as the shape of the powder, it is preferable to calculate the circularity and the angularity of the powder and analyze the shape. Until now, circularity was generally adopted in the evaluation of powder fluidity, but according to the study of the present inventor, powder flow is due to the difference in angularity even if the circularity is similar. It was found that the degree of angularity is also important because the sexes differ greatly. However, it is necessary to analyze the degree of angularity in a state where the powder particles are dispersed, and it has been difficult to analyze the degree of angularity with high accuracy. On the other hand, in the present embodiment, by performing image processing so as to extract the powder portion and performing image analysis, it is possible to obtain the circularity and the angularity of the powder and analyze them with high accuracy.

また、本実施形態によれば、粉体について算出された円形度および角張度に基づき、粉体の流動性または、粉体が分散された樹脂の流動性を評価することができる。これにより、円形度だけでは十分に評価しきれなかった流動性を、円形度および角張度により評価することができる。 Further, according to the present embodiment, the fluidity of the powder or the fluidity of the resin in which the powder is dispersed can be evaluated based on the calculated circularity and angularity of the powder. Thereby, the fluidity that could not be sufficiently evaluated only by the circularity can be evaluated by the circularity and the angularity.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist of the present invention.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

(実施例1)
まず、流動性が異なる粉体を3種類準備した。この粉体をNo.1~No.3の粉体とする。なお、粉体に含まれる粉体粒子の粒径はおおよそ2~3μmであった。
続いて、粉体を0.5cc、2液混合の常温硬化型のエポキシ樹脂を3cc計り取って、直径25mmの円筒状の型の中で混合し、静置して硬化させた。そして、硬化物の上におよそ7ccのエポキシ樹脂を追加して硬化させ、直径25mm、高さがおよそ15mmの円柱状の樹脂包埋試料を得た。No.1~No.3の粉体を用いてNo.1~No.3の樹脂包埋試料(以下、単に試料ともいう)をそれぞれ作製した。
(Example 1)
First, three types of powders having different fluidities were prepared. This powder is referred to as No. 1 to No. It is the powder of 3. The particle size of the powder particles contained in the powder was approximately 2 to 3 μm.
Subsequently, 0.5 cc of the powder and 3 cc of a room temperature curable epoxy resin mixed with two liquids were weighed, mixed in a cylindrical mold having a diameter of 25 mm, and allowed to stand for curing. Then, about 7 cc of epoxy resin was added on the cured product and cured to obtain a cylindrical resin-embedded sample having a diameter of 25 mm and a height of about 15 mm. No. 1 to No. Using the powder of No. 3, No. 1 to No. 3 resin-embedded samples (hereinafter, also simply referred to as samples) were prepared.

次に、得られた試料へ、バフ研磨機を用いて断面研磨を施し、粉体が露出する断面(研磨面)を得た。この研磨面にカーボン蒸着を施し、これをMLA内に導入した。MLAにて、まず、SEMを用いてBSE像に粉体粒子が鮮明に写し出されるように加速電圧、観察倍率と解像度を調整した。ここでは、加速電圧を5kV、観察倍率を6000倍、解像度を1000×1000とした。次に、BSE像のグレイレベルにおいて、粉体部分が255、樹脂部分が0となるように輝度とコントラストを調整してBSE像を取得した。続いて、得られたBSE像について、MLA制御ソフトウェアのバックグラウンド除去機能を活用して、粉体が単一分散して抽出されるようにバックグラウンドとして除去されるグレイレベルの範囲を調整した。本実施例では、閾値を200として、グレイレベル0以上200未満を取り除き、200以上を抽出するように調整した。さらに二値化することで、粉体粒子像を得た。そして、粉体粒子像についてMLAの自動測定を実行し、1万個の粒子分の形状データを得て、円形度と角張度を算出した。本実施例では、試料について異なる断面で2回の測定を行った。 Next, the obtained sample was subjected to cross-section polishing using a buffing machine to obtain a cross-section (polished surface) on which the powder was exposed. Carbon vapor deposition was applied to this polished surface, and this was introduced into the MLA. In MLA, first, the acceleration voltage, the observation magnification and the resolution were adjusted by using SEM so that the powder particles were clearly projected on the BSE image. Here, the acceleration voltage is 5 kV, the observation magnification is 6000 times, and the resolution is 1000 × 1000. Next, at the gray level of the BSE image, the brightness and the contrast were adjusted so that the powder portion was 255 and the resin portion was 0, and the BSE image was acquired. Subsequently, for the obtained BSE image, the range of the gray level to be removed as the background was adjusted so that the powder was extracted in a single dispersion by utilizing the background removal function of the MLA control software. In this example, the threshold value was set to 200, the gray level of 0 or more and less than 200 was removed, and 200 or more was extracted. Further binarization gave a powder particle image. Then, automatic measurement of MLA was performed on the powder particle image, shape data for 10,000 particles was obtained, and circularity and angularity were calculated. In this example, the sample was measured twice with different cross sections.

各試料について2回の測定で求められた円形度および角張度を以下の表1に示す。これらの数値は1万個の粒子の平均値である。 Table 1 below shows the circularity and angularity obtained by two measurements for each sample. These numbers are the average of 10,000 particles.

Figure 0007063033000003
Figure 0007063033000003

また、No.1~No.3の試料のそれぞれから薄片試料を作製し、透過電子顕微鏡で観察した。その結果、No.1は、No.2およびNo.3と比較して、角張の度合いが小さく、円形の度合いが大きいと判断されたが、これらの観察結果は表1の角張度及び円形度と相関していること分かった。また、No.1の試料の流動性は、No.2およびNo.3の流動性に比較し大であることが確認された。従って、流動性と角張度及び円形度が相関していることが分かった。 In addition, No. 1 to No. A flaky sample was prepared from each of the three samples and observed with a transmission electron microscope. As a result, No. 1 is No. 2 and No. It was judged that the degree of angularity was small and the degree of circularity was large as compared with No. 3, but these observation results were found to correlate with the degree of angularity and circularity in Table 1. In addition, No. The fluidity of the sample of No. 1 was No. 2 and No. It was confirmed that it was larger than the liquidity of 3. Therefore, it was found that the fluidity was correlated with the angularity and the circularity.

以上説明したように、樹脂包埋試料の断面の反射電子像から粉体部分を抽出して二値化することで粉体粒子像を得て、それを画像解析することにより、円形度や角張度など粉体流動性に影響を及ぼす粉体形状を正確に分析することができる。 As described above, the powder portion is extracted from the reflected electron image of the cross section of the resin-embedded sample and binarized to obtain a powder particle image, which is then image-analyzed to obtain circularity and angularity. It is possible to accurately analyze the powder shape that affects the powder fluidity such as degree.

Claims (3)

粉体の形状を分析する方法であって、
粉体を樹脂に埋め込み樹脂包埋試料を形成する樹脂包埋工程と、
前記樹脂包埋試料に対して前記粉体が露出する断面を形成する断面形成工程と、
前記断面に電子線を照射し、複数のグレイレベルを有する反射電子像を取得する取得工程と、
前記反射電子像について、画像処理により樹脂部分を取り除いて粉体部分を抽出することで粉体粒子像を得る画像処理工程と、
前記粉体粒子像を画像解析して前記粉体の形状を解析する解析工程と、を有し、
前記取得工程では、前記反射電子像における前記樹脂部分のグレイレベルが0、前記粉体部分のグレイレベルが255となるように輝度およびコントラストを調整し、
前記画像処理工程では、グレイレベルの閾値として、20以上250以下の範囲内で、前記樹脂部分よりも大きく、かつ前記粉体が単一分散して示されるような値を求め、前記閾値未満の部分を取り除き、前記閾値以上の部分を抽出し、
前記解析工程では、下記式(1)に基づき前記粉体の円形度を、下記式(2)に基づき前記粉体の角張度を算出して形状を解析する、
粉体形状の分析方法。
Figure 0007063033000004
なお、式中、Cは円形度を、Lは前記粉体の粒子の周囲長を、Sは前記粉体の粒子の面積をそれぞれ示す。
Figure 0007063033000005
なお、式中、Angularityは角張度を、D p は、前記粉体の粒子に外接する長方形に内接する楕円において中心から楕円までの距離を、D e は、前記楕円の中心から前記粒子の外周までの距離を、それぞれ示す。
It is a method to analyze the shape of powder.
The resin embedding process of embedding powder in resin to form a resin embedding sample,
A cross-section forming step of forming a cross-section in which the powder is exposed with respect to the resin-embedded sample,
The acquisition step of irradiating the cross section with an electron beam to acquire a reflected electron image having a plurality of gray levels, and
An image processing step of obtaining a powder particle image by removing a resin portion from the backscattered electron image by image processing and extracting a powder portion.
It has an analysis step of analyzing the image of the powder particle image and analyzing the shape of the powder.
In the acquisition step, the brightness and contrast are adjusted so that the gray level of the resin portion in the backscattered electron image is 0 and the gray level of the powder portion is 255.
In the image processing step, as the threshold value of the gray level, a value that is larger than the resin portion and is shown as a single dispersion of the powder in the range of 20 or more and 250 or less is obtained, and is less than the threshold value. The part is removed, and the part above the threshold value is extracted.
In the analysis step, the circularity of the powder is calculated based on the following formula (1), and the angularity of the powder is calculated based on the following formula (2) to analyze the shape.
Powder shape analysis method.
Figure 0007063033000004
In the formula, C indicates circularity, L indicates the peripheral length of the powder particles, and S indicates the area of the powder particles.
Figure 0007063033000005
In the formula, Angularity is the angularity, D p is the distance from the center to the ellipse in the ellipse inscribed in the ellipse inscribed in the powder particles, and De is the outer circumference of the particles from the center of the ellipse. The distance to each is shown.
全自動鉱物分析装置を用いて、前記樹脂包埋試料に含まれる前記粉体の平均形状を解析する、請求項に記載の粉体形状の分析方法。 The powder shape analysis method according to claim 1 , wherein the average shape of the powder contained in the resin-embedded sample is analyzed using a fully automatic mineral analyzer. 請求項1又は2に記載の粉体形状の分析方法で算出された前記円形度および前記角張度に基づき、前記粉体の流動性を評価する、粉体の流動性評価方法。 A powder fluidity evaluation method for evaluating the fluidity of the powder based on the circularity and the angularity calculated by the powder shape analysis method according to claim 1 or 2 .
JP2018052991A 2017-03-24 2018-03-20 Powder shape analysis method and powder fluidity evaluation method Active JP7063033B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059592 2017-03-24
JP2017059592 2017-03-24

Publications (2)

Publication Number Publication Date
JP2018163153A JP2018163153A (en) 2018-10-18
JP7063033B2 true JP7063033B2 (en) 2022-05-09

Family

ID=63859912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052991A Active JP7063033B2 (en) 2017-03-24 2018-03-20 Powder shape analysis method and powder fluidity evaluation method

Country Status (1)

Country Link
JP (1) JP7063033B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398323A (en) * 2020-03-10 2020-07-10 浙江中科锐晨智能科技有限公司 Calculation method for automatically acquiring X-ray analysis position in mineral automatic analysis system
JP6818934B1 (en) * 2020-11-13 2021-01-27 東邦チタニウム株式会社 Evaluation method of metal powder, evaluation program for evaluating metal powder, and storage medium in which the evaluation program is recorded.
CN113776469A (en) * 2021-08-10 2021-12-10 同济大学 Method and system for detecting surface roughness of powder particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258544A (en) 2005-03-16 2006-09-28 Ricoh Co Ltd Evaluation method of toner kneaded matter, manufacturing method of toner for electrostatic development using the method, manufacturing apparatus, toner for electrostatic development obtained thereby and developing method using the toner
JP2012242171A (en) 2011-05-17 2012-12-10 Taiheiyo Cement Corp Coal ash evaluation method and manufacturing method of cement or concrete
JP2013224932A (en) 2012-03-22 2013-10-31 Taiheiyo Cement Corp Noise removal method in reflection electron image, method for estimating constituent phase ratio of cement using noise removal method and manufacturing method, and method for estimating hydration reaction rate
JP2015111088A (en) 2013-12-06 2015-06-18 花王株式会社 Powder mass inspection apparatus
JP2016508882A (en) 2013-02-26 2016-03-24 チョウダハリ, ディーパックCHOWDHARY, Deepak Computer-aided system and method for sand optimization aimed at reducing casting rejects
US20170028410A1 (en) 2015-07-31 2017-02-02 Colorado School Of Mines Beneficiation of rare earth elements bearing ancylite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258544A (en) 2005-03-16 2006-09-28 Ricoh Co Ltd Evaluation method of toner kneaded matter, manufacturing method of toner for electrostatic development using the method, manufacturing apparatus, toner for electrostatic development obtained thereby and developing method using the toner
JP2012242171A (en) 2011-05-17 2012-12-10 Taiheiyo Cement Corp Coal ash evaluation method and manufacturing method of cement or concrete
JP2013224932A (en) 2012-03-22 2013-10-31 Taiheiyo Cement Corp Noise removal method in reflection electron image, method for estimating constituent phase ratio of cement using noise removal method and manufacturing method, and method for estimating hydration reaction rate
JP2016508882A (en) 2013-02-26 2016-03-24 チョウダハリ, ディーパックCHOWDHARY, Deepak Computer-aided system and method for sand optimization aimed at reducing casting rejects
JP2015111088A (en) 2013-12-06 2015-06-18 花王株式会社 Powder mass inspection apparatus
US20170028410A1 (en) 2015-07-31 2017-02-02 Colorado School Of Mines Beneficiation of rare earth elements bearing ancylite

Also Published As

Publication number Publication date
JP2018163153A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP7205399B2 (en) Powder shape analysis method
JP7063033B2 (en) Powder shape analysis method and powder fluidity evaluation method
Du Plessis et al. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis
US10783348B2 (en) Method and system for detection and classification of particles based on processing of microphotographic images
JP5254441B2 (en) Flow type particle image analysis method and apparatus
JP6094230B2 (en) Microscopic image analysis method for sintered ore
CN110827311B (en) Imaging method-based cable conductor sectional area measurement method and system
KR102176815B1 (en) Method for quantifying the purity of microscopic particle samples
CN104390895B (en) Microimaging-based method for measuring particle size by utilizing image gray scale
Crouzier et al. Methodology to evaluate the uncertainty associated with nanoparticle dimensional measurements by SEM
JP2010060389A (en) Particle analyzer, data analyzer, x-ray analyzer, particle analysis method and computer program
JP7163878B2 (en) Sintered ore mineral type discrimination method and sintered ore structure analysis method
CN109191479A (en) The method for automatic measurement of compound calcium ferrite mine phase content in a kind of sinter
JP2018044829A (en) Method for preparing particulate/resin-embedded sample for use in surface analysis, method for analyzing sample, and method for evaluating sample preparation condition
JP2017173301A (en) Method for analyzing foreign matter in powder of metal oxide
JP2020153738A (en) Method for acquiring data related to abundance ratio of mineral contained in sample
KR101371663B1 (en) Method and apparatus for quantitative measuring the particles
CN115272292A (en) Method and system for quantifying coal ash bead-shaped particles based on digital image
JP6747320B2 (en) Method for analyzing foreign matter contained in metal oxide powder
JP6747321B2 (en) Method for analyzing foreign matter contained in metal oxide powder
JP6673147B2 (en) Method of identifying inclusions in steel
JP6155110B2 (en) Dispersibility evaluation method, dispersibility evaluation apparatus, and computer-readable recording medium recording a program for causing a computer to realize the dispersibility evaluation function
CN107255450B (en) Screening method of tungsten carbide alloy powder
Antonenkov Method of the aquatic environment image processing for determining the mineral suspension parameters
Jatti Segmentation of microscopic bone images

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7063033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150