JP2006275672A - State measuring instrument of fluid heat accumulating material and state measuring method using it - Google Patents

State measuring instrument of fluid heat accumulating material and state measuring method using it Download PDF

Info

Publication number
JP2006275672A
JP2006275672A JP2005093439A JP2005093439A JP2006275672A JP 2006275672 A JP2006275672 A JP 2006275672A JP 2005093439 A JP2005093439 A JP 2005093439A JP 2005093439 A JP2005093439 A JP 2005093439A JP 2006275672 A JP2006275672 A JP 2006275672A
Authority
JP
Japan
Prior art keywords
light
heat storage
storage material
fluid heat
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005093439A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kudo
一彦 工藤
Masasuke Nakajima
雅祐 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2005093439A priority Critical patent/JP2006275672A/en
Publication of JP2006275672A publication Critical patent/JP2006275672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and rapidly measure the phase state of a fluid heat accumulating material. <P>SOLUTION: This state measuring instrument is equipped with a measuring light irradiation means for irradiating the fluid heat accumulating material being a measuring target with predetermined measuring light, an evaluation light detecting means for detecting the reflected or transmitted light from the fluid heat accumulating material of the measuring light as evaluation light and a data processing means for storing the phase state evaluation data showing the correlation of the luminous intensity of the evaluation light with the phase state of the fluid heat accumulating material and evaluating the phase state of the fluid heat accumulating material on the basis of the phase state evaluation data and the luminous intensity inputted from the evaluation light detecting means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流動型蓄熱材の状態測定装置及び方法に関する。   The present invention relates to a state measuring apparatus and method for a fluid heat storage material.

蓄熱装置の1つとして、流動型蓄熱材の潜熱を利用するものがある。流動型蓄熱材は、水に微細粒子状の潜熱蓄熱材(例えば油脂)を分散させたものであり、当該潜熱蓄熱材の相転移に伴って潜熱を蓄えるものである。このような流動型蓄熱材には、例えば下記論文に記載されているように、潜熱蓄熱材をマイクロカプセル化して水中に分散させたものや、潜熱蓄熱材を界面活性剤を用いてエマルジョン化して水中に分散させたものがある。   One type of heat storage device uses the latent heat of a fluid heat storage material. The fluid-type heat storage material is obtained by dispersing fine particulate latent heat storage material (for example, fats and oils) in water, and stores latent heat with the phase transition of the latent heat storage material. For example, as described in the following paper, the fluid heat storage material is obtained by microcapsulating the latent heat storage material and dispersing it in water, or by emulsifying the latent heat storage material using a surfactant. Some are dispersed in water.

そして、このような流動型蓄熱材(より正確には潜熱蓄熱材)の相状態(固相率)を測定する方法としては、周知のカロリーメータ法がある。すなわち、この相状態測定法では、測定対象である流動型蓄熱材をサンプリングして温度及び質量を計測し、当該流動型蓄熱材に温度及び質量が既知である水を混合すると共に当該混合後の到達温度を計測し、上記各温度、質量、比熱及び潜熱量に基づいて流動型蓄熱材の凝固度(固相率)を算出する。
稲葉英男 他、「低温潜熱物質を分散体としたO/W型エマルジョンを用いた蓄熱システムに関する基礎研究(第1報、熱物質の評価)」、日本機械学会論文集、59-565, B, p282(1993)
As a method for measuring the phase state (solid phase ratio) of such a fluid heat storage material (more precisely, a latent heat storage material), there is a known calorimeter method. That is, in this phase state measurement method, the fluid type heat storage material to be measured is sampled and the temperature and mass are measured, water having a known temperature and mass is mixed with the fluid type heat storage material, and after the mixing The ultimate temperature is measured, and the degree of solidification (solid phase ratio) of the fluid heat storage material is calculated based on each temperature, mass, specific heat, and amount of latent heat.
Hideo Inaba et al., "Fundamental study on heat storage system using O / W emulsion with low-temperature latent heat substance dispersion (1st report, Evaluation of thermal material)", Transactions of the Japan Society of Mechanical Engineers, 59-565, B, p282 (1993)

ところで、上記カロリーメータ法に基づく相状態測定法では、測定対象の流動型蓄熱材をサンプリングしたり、当該流動型蓄熱材水を混合した後に到達温度を計測する等の必要があるために計測に時間を要し、よってリアルタイム計測を実現できないと共に、計測手順が煩雑であり連続計測を実現できない、という問題点がある。   By the way, in the phase state measurement method based on the calorimeter method, it is necessary to sample the fluid type heat storage material to be measured or to measure the temperature reached after mixing the fluid type heat storage material water. There is a problem that it takes time and therefore real-time measurement cannot be realized, and the measurement procedure is complicated and continuous measurement cannot be realized.

本発明は、上述した事情に鑑みてなされたものであり、以下の点を目的とするものである。
(1)流動型蓄熱材の相状態を簡単かつ迅速に測定する。
(2)流動型蓄熱材の相状態についてリアルタイム計測及び連続計測を実現する。
The present invention has been made in view of the above-described circumstances, and has the following objects.
(1) The phase state of the fluid heat storage material is measured easily and quickly.
(2) Real-time measurement and continuous measurement are realized for the phase state of the fluid heat storage material.

上記目的を達成するために、本発明では、流動型蓄熱材の状態測定装置に係る第1の解決手段として、所定の計測光を測定対象物である流動型蓄熱材に照射する計測光照射手段と、前記計測光の流動型蓄熱材からの反射光あるいは透過光を評価光として受光する評価光受光手段と、前記評価光の光強度と流動型蓄熱材の相状態との相関関係を示す相状態評価情報を記憶し、当該相状態評価情報と前記評価光受光手段から入力された評価光の光強度とに基づいて流動型蓄熱材の相状態を特定する情報処理手段とを具備する、という手段を採用する。
また、流動型蓄熱材の状態測定装置に係る第2の解決手段として、上記第1の解決手段において、流動型蓄熱材の種類を情報処理手段に指示する操作手段をさらに備え、
情報処理手段は、前記種類毎に相状態評価情報を記憶すると共に、操作手段によって指定された種類に対応する相状態評価情報と評価光受光手段から入力された評価光の光強度とに基づいて流動型蓄熱材の相状態を特定する、という手段を採用する。
流動型蓄熱材の状態測定装置に係る第3の解決手段として、上記第1または第2の解決手段において、計測光は流動型蓄熱材の光吸収波長外の波長に設定される、という手段を採用する。
一方、本発明では、流動型蓄熱材の状態測定方法に係る第1の解決手段として、所定の計測光を測定対象物である流動型蓄熱材に照射し、該計測光の流動型蓄熱材からの反射光あるいは透過光を評価光として受光し、該評価光の光強度と流動型蓄熱材の相状態との相関関係に基づいて流動型蓄熱材の相状態を特定する、という手段を採用する。
流動型蓄熱材の状態測定方法に係る第2の解決手段として、上記第1の解決手段において、計測光は流動型蓄熱材の光吸収波長外の波長に設定される、という手段を採用する。
In order to achieve the above object, in the present invention, measurement light irradiation means for irradiating a fluid heat storage material, which is a measurement object, with predetermined measurement light as a first solution means for a state measurement device for a fluid heat storage material And an evaluation light receiving means for receiving reflected light or transmitted light of the measurement light from the fluid heat storage material as evaluation light, and a phase indicating a correlation between the light intensity of the evaluation light and the phase state of the fluid heat storage material Storing state evaluation information, and comprising information processing means for specifying the phase state of the fluid heat storage material based on the phase state evaluation information and the light intensity of the evaluation light input from the evaluation light receiving means. Adopt means.
Further, as a second solving means related to the state measuring device of the fluid heat storage material, the first solution means further includes an operation means for instructing the information processing means of the type of the fluid heat storage material,
The information processing means stores phase state evaluation information for each type, and based on the phase state evaluation information corresponding to the type designated by the operation means and the light intensity of the evaluation light input from the evaluation light receiving means. A means of specifying the phase state of the fluid heat storage material is adopted.
As a third solving means related to the state measuring device for the fluid heat storage material, in the first or second solution means, the measuring light is set to a wavelength outside the light absorption wavelength of the fluid heat storage material. adopt.
On the other hand, in the present invention, as a first solving means related to the state measurement method of the fluid heat storage material, the fluid heat storage material that is the measurement object is irradiated with a predetermined measurement light, and the fluid heat storage material of the measurement light is used. The reflected light or transmitted light is received as evaluation light, and the phase state of the fluid heat storage material is specified based on the correlation between the light intensity of the evaluation light and the phase state of the fluid heat storage material .
As the second solving means related to the state measurement method of the fluid heat storage material, a means is adopted in which the measurement light is set to a wavelength outside the light absorption wavelength of the fluid heat storage material in the first solution means.

本発明によれば、測定対象物である流動型蓄熱材に計測光を照射して得られる反射光あるいは透過光の光強度と流動型蓄熱材の相状態との相関関係に基づいて流動型蓄熱材の相状態を特定するので、流動型蓄熱材の相状態を従来よりも簡単かつ迅速に測定することが可能であり、またリアルタイム計測及び連続計測を十分に実現することができる。   According to the present invention, the fluid heat storage material is based on the correlation between the light intensity of reflected light or transmitted light obtained by irradiating measurement light to the fluid heat storage material that is the measurement object and the phase state of the fluid heat storage material. Since the phase state of the material is specified, the phase state of the fluid-type heat storage material can be measured more easily and quickly than before, and real-time measurement and continuous measurement can be sufficiently realized.

以下、図面を参照して、本発明の一実施形態について説明する。
図1は、本実施形態に係る相状態測定装置の機能構成を示すブロック図である。この図において、符号Xは流動型蓄熱材、1は光源、2は光検出器、3は制御・処理部である。また、制御・処理部3において、符号3aは光源制御部、3bはA/D変換部、3cは演算部、3dは記憶部、3eは相状態評価テーブル、3fは操作部、3gは出力部である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a functional configuration of the phase state measuring apparatus according to the present embodiment. In this figure, reference numeral X denotes a fluid heat storage material, 1 denotes a light source, 2 denotes a photodetector, and 3 denotes a control / processing unit. In the control / processing unit 3, reference numeral 3a denotes a light source control unit, 3b denotes an A / D conversion unit, 3c denotes a calculation unit, 3d denotes a storage unit, 3e denotes a phase state evaluation table, 3f denotes an operation unit, and 3g denotes an output unit. It is.

流動型蓄熱材Xは、蓄熱装置の構成要素である蓄熱槽中または搬送配管に貯留されており、潜熱を蓄熱するという基本的な性質に加え、その相状態(液相率あるいは固相率)に応じて光透過度が変化するという性質を有する。図2は、このような流動型蓄熱材Xの光特性を示す特性図である。この図2は、流動型蓄熱材Xの液相率が高い程、つまり流動型蓄熱材Xにおける潜熱蓄熱材の液体割合が高い(固体割合が低い)程、評価光(透過光)の光強度が高いこと、つまり流動型蓄熱材Xの光透過率が高いことを示している。なお、このような流動型蓄熱材Xの光特性は、光を流動型蓄熱材Xに照射して得られる反射光の性質として捉えた場合、流動型蓄熱材Xの液相率が高い程、評価光(反射光)の光強度が低いこと、つまり流動型蓄熱材Xの光反射率が低いことを示している。   The fluid heat storage material X is stored in a heat storage tank or a transfer pipe that is a component of the heat storage device, and in addition to the basic property of storing latent heat, its phase state (liquid phase rate or solid phase rate) The light transmittance changes according to the above. FIG. 2 is a characteristic diagram showing the optical characteristics of such a fluid heat storage material X. As shown in FIG. FIG. 2 shows that the light intensity of the evaluation light (transmitted light) increases as the liquid phase ratio of the fluid heat storage material X increases, that is, the liquid ratio of the latent heat storage material X in the fluid heat storage material X increases (the solid ratio decreases). Is high, that is, the light transmittance of the fluid heat storage material X is high. In addition, when the optical characteristics of such fluid heat storage material X are regarded as the property of reflected light obtained by irradiating the fluid heat storage material X with light, the higher the liquid phase ratio of the fluid heat storage material X, It shows that the light intensity of the evaluation light (reflected light) is low, that is, the light reflectance of the fluid heat storage material X is low.

本発明は、このような流動型蓄熱材Xの光特性に着目したものである。このような光特性を有する流動型蓄熱材Xには、例えば光透過性のマイクロカプセルに油脂等の潜熱蓄熱材を封入して水中に分散させたもの、あるいは油脂等の潜熱蓄熱材を界面活性剤を用いてエマルジョン化して水中に分散させたもの等がある。なお、このような流動型蓄熱材Xにおいて潜熱蓄熱材に対する溶媒は、水に限定されるものではない。   The present invention focuses on the optical characteristics of such a fluid heat storage material X. For the fluid heat storage material X having such light characteristics, for example, a latent heat storage material such as oil or fat enclosed in a light transmissive microcapsule and dispersed in water, or a latent heat storage material such as oil or fat is surface-active. And emulsified with an agent and dispersed in water. In such a fluid heat storage material X, the solvent for the latent heat storage material is not limited to water.

光源1は、光検出器2と共に上記流動型蓄熱材X中に浸漬されており、光検出器2と所定距離を隔てて対向配置されている。すなわち、この光源1は、光出射面が光検出器2の光受光面と所定距離を隔てて平行対峙する状態で流動型蓄熱材X中に浸漬されている。このように設けられた光源1は、光源制御部3aによる制御の下に、一定の光強度の白色光あるいは単色光を測定光として流動型蓄熱材Xに出射するものであり、例えば白色LEDや単色LEDである。また、光源1は、例えば波長フィルタを用いることにより、波長スペクトル内に流動型蓄熱材Xの光吸収波長が存在しない測定光、つまり流動型蓄熱材Xの光吸収波長外の波長を波長スペクトルとする測定光を流動型蓄熱材Xに向けて出射する。   The light source 1 is immersed in the fluid heat storage material X together with the photodetector 2 and is disposed opposite to the photodetector 2 with a predetermined distance. That is, the light source 1 is immersed in the fluid heat storage material X in a state where the light emitting surface is in parallel with the light receiving surface of the photodetector 2 at a predetermined distance. The light source 1 provided in this way emits white light or monochromatic light having a constant light intensity as measurement light to the fluid heat storage material X under the control of the light source control unit 3a. It is a single color LED. Further, the light source 1 uses, for example, a wavelength filter, and the measurement light in which the light absorption wavelength of the fluid heat storage material X does not exist in the wavelength spectrum, that is, the wavelength outside the light absorption wavelength of the fluid heat storage material X is defined as the wavelength spectrum. The measurement light to be emitted is emitted toward the fluid heat storage material X.

光検出器2は、上記測定光が流動型蓄熱材Xを透過して入射される透過光を評価光として受光(光/電変換)するものであり、例えばフォトダイオードやフォトトランジスタである。すなわち、この光検出器2は、評価光(透過光)の光強度に応じた電圧値の評価信号を制御・処理部3のA/D変換器3bに出力する。なお、流動型蓄熱材Xを貯留する蓄熱槽または搬送配管は、光検出器2が評価光以外の外光(外乱光)を受光しないように工夫されている。   The photodetector 2 receives (measures light / electrically converts) the transmitted light, which is transmitted through the flow type heat storage material X, as the evaluation light, and is, for example, a photodiode or a phototransistor. That is, the photodetector 2 outputs an evaluation signal having a voltage value corresponding to the light intensity of the evaluation light (transmitted light) to the A / D converter 3 b of the control / processing unit 3. In addition, the thermal storage tank or conveyance piping which stores the fluid-type thermal storage material X is devised so that the photodetector 2 may not receive external light (disturbance light) other than the evaluation light.

制御・処理部3における光源制御部3aは、上記光源1の点滅制御及び光強度の安定制御を行うものである。A/D変換部3bは、演算部3cによる制御の下に、アナログ信号である上記評価信号を所定インターバルで標本化してデジタル信号(評価データ)に変換し、当該評価データを演算部3cに出力する。演算部3cは、記憶部3dに記憶された処理プログラム及び操作部3fはから入力された操作指示に基づいて所定の情報処理を行うものであり、より具体的には、上記評価データ及び操作指示に基づいて記憶部3d内の相状態評価テーブル3eを検索することにより評価データ及び操作指示に応じた流動型蓄熱材Xの相状態を特定して出力部3gに出力する。   The light source control unit 3a in the control / processing unit 3 performs blinking control of the light source 1 and stable control of light intensity. The A / D conversion unit 3b samples the evaluation signal, which is an analog signal, at predetermined intervals under the control of the calculation unit 3c, converts the sampled signal into a digital signal (evaluation data), and outputs the evaluation data to the calculation unit 3c. To do. The calculation unit 3c performs predetermined information processing based on the processing program stored in the storage unit 3d and the operation instruction input from the operation unit 3f, and more specifically, the evaluation data and the operation instruction. By searching the phase state evaluation table 3e in the storage unit 3d based on the above, the phase state of the fluid heat storage material X corresponding to the evaluation data and the operation instruction is specified and output to the output unit 3g.

記憶部3dは、上述した処理プログラム及び相状態評価テーブル3eを記憶するものである。相状態評価テーブル3eは、上述した図2の光特性、つまり上記評価光の光強度と流動型蓄熱材Xの相状態(例えば液相率)との相関関係を示すデータテーブルである。複数種類の流動型蓄熱材Xについて上記相関関係が実験的に予め求められ、記憶部3dにはその実験結果が相状態評価テーブル3eとして流動型蓄熱材Xの種類毎に記憶されている。   The storage unit 3d stores the processing program and the phase state evaluation table 3e described above. The phase state evaluation table 3e is a data table showing the correlation between the optical characteristics of FIG. 2 described above, that is, the light intensity of the evaluation light and the phase state (for example, liquid phase ratio) of the fluid heat storage material X. The above correlation is experimentally obtained in advance for a plurality of types of fluid heat storage materials X, and the storage section 3d stores the experimental results for each type of fluid heat storage materials X as a phase state evaluation table 3e.

操作部3fは、測定対象である流動型蓄熱材Xの種類等の測定条件を演算部3cに入力するためのものであり、例えばマウス等のポインティングデバイスやキーボードである。出力部3gは、上記演算部3cの処理結果、つまり測定対象である流動型蓄熱材Xの相状態を出力するものであり、例えばディスプレイ、記憶装置あるいは/及びプリンタである。   The operation unit 3f is for inputting measurement conditions such as the type of the fluid heat storage material X to be measured to the calculation unit 3c, and is, for example, a pointing device such as a mouse or a keyboard. The output unit 3g outputs a processing result of the calculation unit 3c, that is, a phase state of the fluid heat storage material X that is a measurement target, and is, for example, a display, a storage device, and / or a printer.

次に、このように構成された本相状態測定装置の動作について図1及び図2を参照して説明する。   Next, the operation of the phase state measurement apparatus configured as described above will be described with reference to FIGS. 1 and 2.

測定に先立って操作部3fが操作されることにより、流動型蓄熱材Xの相状態を測定するための測定条件が操作部3fから演算部3cに入力される。この測定条件の1つは測定対象である流動型蓄熱材Xの種類であり、演算部3cは、操作部3fから流動型蓄熱材Xの種類が指定されると、当該種類に対応した相状態評価テーブル3eを用いて以下のように流動型蓄熱材Xの相状態を特定する。   By operating the operation unit 3f prior to measurement, measurement conditions for measuring the phase state of the fluid heat storage material X are input from the operation unit 3f to the calculation unit 3c. One of the measurement conditions is the type of the fluid heat storage material X to be measured. When the type of the fluid heat storage material X is specified from the operation unit 3f, the calculation unit 3c is in a phase state corresponding to the type. The phase state of the fluid heat storage material X is specified as follows using the evaluation table 3e.

さて、光源制御部3aは、例えば常時点灯状態となるように光源1を制御し、計測光が流動型蓄熱材Xに常時照射された状態とする。この結果、光検出器2は、上記測定光が流動型蓄熱材Xを透過して入射される透過光(評価光)を常時受光し、当該評価光の光強度に応じた評価信号をA/D変換器3bに順次出力する。そして、A/D変換部3bは、演算部3cによって指示された所定インターバルで評価信号を順次標本化し、当該標本化によって生成された評価データを演算部3cに順次出力する。   Now, the light source control part 3a controls the light source 1 so that it will always be in a lighting state, for example, and it is set as the state by which measurement light was always irradiated to the fluid type heat storage material X. As a result, the photodetector 2 always receives the transmitted light (evaluation light) incident on the measurement light through the fluid heat storage material X, and outputs an evaluation signal corresponding to the light intensity of the evaluation light as A / The data is sequentially output to the D converter 3b. Then, the A / D conversion unit 3b sequentially samples the evaluation signal at a predetermined interval specified by the calculation unit 3c, and sequentially outputs the evaluation data generated by the sampling to the calculation unit 3c.

演算部3cは、このようにA/D変換部3bから時系列的に順次入力される評価データを用いて操作部3fで指定された流動型蓄熱材Xの種類の相状態評価テーブル3eを検索することにより流動型蓄熱材Xの相状態を特定し、その結果を測定結果として出力部3gに出力する。例えば、図2の光強度Paに該当する評価データが入力されると、演算部3cは、この評価データに対応する液相率Laを相状態評価テーブル3eから読み出し、測定結果として出力部3gに出力する。   The calculation unit 3c searches the phase state evaluation table 3e of the type of the fluid heat storage material X specified by the operation unit 3f using the evaluation data sequentially input in time series from the A / D conversion unit 3b. Thus, the phase state of the fluid heat storage material X is specified, and the result is output to the output unit 3g as a measurement result. For example, when evaluation data corresponding to the light intensity Pa in FIG. 2 is input, the calculation unit 3c reads the liquid phase ratio La corresponding to the evaluation data from the phase state evaluation table 3e, and outputs the measurement result to the output unit 3g. Output.

ここで、例えば流動型蓄熱材Xが流動しており、光源1と光検出器2との間に位置する流動型蓄熱材Xが変化する場合、光源1と光検出器2との間を通過する流動型蓄熱材Xに計測光が順次照射され、この流動型蓄熱材Xからの評価光が光検出器2で順次受光されるので、光源1と光検出器2との間を順次通過する流動型蓄熱材Xの相状態(液相率)が連続的に順次測定されることになる。   Here, for example, when the fluid heat storage material X is flowing and the fluid heat storage material X located between the light source 1 and the photodetector 2 changes, it passes between the light source 1 and the photodetector 2. Since the measurement light is sequentially irradiated to the fluid heat storage material X to be evaluated, and the evaluation light from the fluid heat storage material X is sequentially received by the light detector 2, it sequentially passes between the light source 1 and the light detector 2. The phase state (liquid phase rate) of the fluid heat storage material X is continuously and sequentially measured.

このような本相状態測定装置によれば、評価光に基づいて相状態評価テーブル3eを検索することのみによって流動型蓄熱材Xの相状態を測定するので、流動型蓄熱材Xの相状態を従来よりも簡単かつ迅速に測定することが可能であり、また相状態のリアルタイム計測及び連続計測を十分に実現することができる。
また、本相状態測定装置によれば、流動型蓄熱材Xの光吸収波長外の波長を波長スペクトルとする測定光を流動型蓄熱材Xに照射するので、流動型蓄熱材Xによる計測光の光吸収の影響を排除することが可能であり、よって当該光吸収の影響が存在する場合に比較して相状態の測定精度を向上させることができる。
According to such a main phase state measuring apparatus, since the phase state of the fluid heat storage material X is measured only by searching the phase state evaluation table 3e based on the evaluation light, the phase state of the fluid heat storage material X is determined. It is possible to measure more easily and quickly than in the past, and real-time measurement and continuous measurement of the phase state can be sufficiently realized.
Moreover, according to this phase state measurement apparatus, since the flow type heat storage material X is irradiated with measurement light having a wavelength spectrum outside the light absorption wavelength of the flow type heat storage material X, the measurement light of the flow type heat storage material X It is possible to eliminate the influence of light absorption, so that the measurement accuracy of the phase state can be improved compared to the case where the influence of light absorption exists.

なお、本発明は、上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、測定光が流動型蓄熱材Xを透過して得られる透過光を評価光として受光するように構成したが、透過光に代えて、測定光を外部から所定の角度で流動型蓄熱材Xに照射し、この測定光が流動型蓄熱材Xで反射して発生する反射光を流動型蓄熱材Xの外部に設けた光検出器で評価光としても受光するようにしても良い。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, the measurement light is configured to receive the transmitted light obtained by passing through the fluid heat storage material X as the evaluation light. However, instead of the transmitted light, the measurement light is externally transmitted at a predetermined angle. The fluid-type heat storage material X is irradiated with the reflected light generated by the measurement light being reflected by the fluid-type heat storage material X and received as evaluation light by the photodetector provided outside the fluid-type heat storage material X. May be.

(2)上記実施形態では、光源1及び光検出器2を流動型蓄熱材X中に浸漬するように構成したが、光源1及び光検出器2に代えて光ファイバ等の光導波路を流動型蓄熱材X中に浸漬するような構成を採用しても良い。すなわち、光源1から出射された計測光を先端部が流動型蓄熱材Xに浸漬された第1の光導波路に入射すると共に、一端が流動型蓄熱材X中において上記第1の光導波路の先端部に対向配置された第2の光導波路に評価光を入射させることにより流動型蓄熱材Xの外部に設けられた光検出器2に供給する。
また、流動型蓄熱材X中に浸漬される光源1及び光検出器2、または光導波器は、光路を妨げない範囲で保護具を有していても良い。
(2) In the above embodiment, the light source 1 and the light detector 2 are configured to be immersed in the fluid heat storage material X. However, instead of the light source 1 and the light detector 2, an optical waveguide such as an optical fiber is flowed. You may employ | adopt the structure which is immersed in the thermal storage material X. FIG. That is, the measurement light emitted from the light source 1 is incident on the first optical waveguide whose tip is immersed in the fluid heat storage material X, and one end of the measurement light is in the fluid heat storage material X. The evaluation light is incident on a second optical waveguide disposed opposite to the part to be supplied to the photodetector 2 provided outside the fluid heat storage material X.
Further, the light source 1 and the photodetector 2 or the optical waveguide immersed in the fluid heat storage material X may have a protector as long as the optical path is not obstructed.

本発明の一実施形態に係わる相状態測定装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the phase state measuring apparatus concerning one Embodiment of this invention. 本発明の一実施形態に係わる相状態測定装置における相状態評価テーブル3eの概念図である。It is a conceptual diagram of the phase state evaluation table 3e in the phase state measuring apparatus concerning one Embodiment of this invention.

符号の説明Explanation of symbols

X…流動型蓄熱材、1…光源、2…光検出器、3…制御・処理部、3a…光源制御部、3b…A/D変換部、3c…演算部、3d…記憶部、3e…相状態評価テーブル、3f…操作部、3g…出力部

X ... fluid heat storage material, 1 ... light source, 2 ... photodetector, 3 ... control / processing unit, 3a ... light source control unit, 3b ... A / D conversion unit, 3c ... calculation unit, 3d ... storage unit, 3e ... Phase state evaluation table, 3f ... operation unit, 3g ... output unit

Claims (5)

所定の計測光を測定対象物である流動型蓄熱材に照射する計測光照射手段と、
前記計測光の流動型蓄熱材からの反射光あるいは透過光を評価光として受光する評価光受光手段と、
前記評価光の光強度と流動型蓄熱材の相状態との相関関係を示す相状態評価情報を記憶し、当該相状態評価情報と前記評価光受光手段から入力された評価光の光強度とに基づいて流動型蓄熱材の相状態を特定する情報処理手段と
を具備することを特徴とする流動型蓄熱材の状態測定装置。
Measuring light irradiation means for irradiating a fluid heat storage material that is a measurement object with predetermined measurement light; and
Evaluation light receiving means for receiving reflected light or transmitted light from the fluid heat storage material of the measurement light as evaluation light;
Phase state evaluation information indicating a correlation between the light intensity of the evaluation light and the phase state of the fluid heat storage material is stored, and the phase state evaluation information and the light intensity of the evaluation light input from the evaluation light receiving unit are stored. An information processing means for specifying the phase state of the fluid heat storage material based on the information processing means.
流動型蓄熱材の種類を情報処理手段に指示する操作手段をさらに備え、
情報処理手段は、前記種類毎に相状態評価情報を記憶すると共に、操作手段によって指定された種類に対応する相状態評価情報と評価光受光手段から入力された評価光の光強度とに基づいて流動型蓄熱材の相状態を特定する
ことを特徴とする請求項1記載の流動型蓄熱材の状態測定装置。
It further comprises an operation means for instructing the information processing means of the type of fluid heat storage material,
The information processing means stores phase state evaluation information for each type, and based on the phase state evaluation information corresponding to the type designated by the operation means and the light intensity of the evaluation light input from the evaluation light receiving means. The phase state of a fluid type heat storage material is specified. The state measurement device for a fluid type heat storage material according to claim 1.
計測光は流動型蓄熱材の光吸収波長外の波長に設定されることを特徴とする請求項1または2記載の流動型蓄熱材の状態測定装置。   3. The fluid-type heat storage material state measuring device according to claim 1, wherein the measurement light is set to a wavelength outside the light absorption wavelength of the fluid-type heat storage material. 所定の計測光を測定対象物である流動型蓄熱材に照射し、該計測光の流動型蓄熱材からの反射光あるいは透過光を評価光として受光し、該評価光の光強度と流動型蓄熱材の相状態との相関関係に基づいて流動型蓄熱材の相状態を特定する
ことを特徴とする流動型蓄熱材の状態測定方法。
Irradiates a fluid heat storage material, which is a measurement object, with a predetermined measurement light, receives reflected light or transmitted light from the fluid heat storage material of the measurement light as evaluation light, the light intensity of the evaluation light and fluid heat storage A method for measuring a state of a fluid heat storage material, wherein the phase state of the fluid heat storage material is specified based on a correlation with a phase state of the material.
計測光は流動型蓄熱材の光吸収波長外の波長に設定されることを特徴とする請求項4記載の流動型蓄熱材の状態測定方法。
5. The method for measuring a state of a fluid heat storage material according to claim 4, wherein the measurement light is set to a wavelength outside the light absorption wavelength of the fluid heat storage material.
JP2005093439A 2005-03-29 2005-03-29 State measuring instrument of fluid heat accumulating material and state measuring method using it Pending JP2006275672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093439A JP2006275672A (en) 2005-03-29 2005-03-29 State measuring instrument of fluid heat accumulating material and state measuring method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093439A JP2006275672A (en) 2005-03-29 2005-03-29 State measuring instrument of fluid heat accumulating material and state measuring method using it

Publications (1)

Publication Number Publication Date
JP2006275672A true JP2006275672A (en) 2006-10-12

Family

ID=37210600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093439A Pending JP2006275672A (en) 2005-03-29 2005-03-29 State measuring instrument of fluid heat accumulating material and state measuring method using it

Country Status (1)

Country Link
JP (1) JP2006275672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114657A (en) * 2016-12-28 2019-08-09 威拓股份有限公司 Optical means for phase-change material
CN114235691A (en) * 2021-12-01 2022-03-25 中车石家庄车辆有限公司 Cold quantity detection device and detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940165A (en) * 1982-08-31 1984-03-05 Nippon Kokan Kk <Nkk> Method for measuring characteristic of sintered ore
JPS63105218A (en) * 1986-10-22 1988-05-10 Mazda Motor Corp Thermo-energy storage-transmission device
JPH05264450A (en) * 1992-03-19 1993-10-12 Tabai Espec Corp Detecting method of flash state of fluid
JP2000275176A (en) * 1999-03-29 2000-10-06 Takeda Chem Ind Ltd Probe for measuring light transmissivity
JP2001356609A (en) * 2000-06-09 2001-12-26 Fuji Photo Film Co Ltd Concentration detector
JP2002350345A (en) * 2001-05-29 2002-12-04 Kuraray Co Ltd Method for measuring degree of insolubility in water of powder containing fat-soluble material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940165A (en) * 1982-08-31 1984-03-05 Nippon Kokan Kk <Nkk> Method for measuring characteristic of sintered ore
JPS63105218A (en) * 1986-10-22 1988-05-10 Mazda Motor Corp Thermo-energy storage-transmission device
JPH05264450A (en) * 1992-03-19 1993-10-12 Tabai Espec Corp Detecting method of flash state of fluid
JP2000275176A (en) * 1999-03-29 2000-10-06 Takeda Chem Ind Ltd Probe for measuring light transmissivity
JP2001356609A (en) * 2000-06-09 2001-12-26 Fuji Photo Film Co Ltd Concentration detector
JP2002350345A (en) * 2001-05-29 2002-12-04 Kuraray Co Ltd Method for measuring degree of insolubility in water of powder containing fat-soluble material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114657A (en) * 2016-12-28 2019-08-09 威拓股份有限公司 Optical means for phase-change material
JP2020504823A (en) * 2016-12-28 2020-02-13 ヴィート エヌブイ Optical methods for phase change materials
JP7086966B2 (en) 2016-12-28 2022-06-20 ヴィート エヌブイ Optical methods for phase change materials
CN110114657B (en) * 2016-12-28 2022-08-05 威拓股份有限公司 Optical method for phase change materials
CN114235691A (en) * 2021-12-01 2022-03-25 中车石家庄车辆有限公司 Cold quantity detection device and detection method
CN114235691B (en) * 2021-12-01 2023-02-14 中车石家庄车辆有限公司 Cold quantity detection device and detection method

Similar Documents

Publication Publication Date Title
US5577137A (en) Optical chemical sensor and method using same employing a multiplicity of fluorophores contained in the free volume of a polymeric optical waveguide or in pores of a ceramic waveguide
JP6116117B2 (en) Calibration method and calibration apparatus for moisture concentration measuring apparatus
Roudet et al. Experimental investigation of interfacial mass transfer mechanisms for a confined high‐reynolds‐number bubble rising in a thin gap
KR101902666B1 (en) Method for non-intrusive measurement of low water content in oil
NO335902B1 (en) Method for measuring a water phase in a flow, as well as infrared water fraction meter
Tian et al. High spatial resolution laser cavity extinction and laser-induced incandescence in low-soot-producing flames
JPWO2012161067A1 (en) Measuring unit and gas analyzer
JP2008008794A (en) Analyzing device
CN102939529A (en) Apparatus and method for replicating liquid blends and identifying the ratios of their liquid ingredients
CN107750333A (en) The optical fiber used in the system that one or more compounds in for convection body are detected
US20170307521A1 (en) Device and method for determining a refractive index
US9291563B2 (en) FRET measurement device and FRET measurement method
JP4842028B2 (en) Scattering absorber measuring method and scattering absorber measuring apparatus
US10866225B2 (en) Wide range gas detection using an infrared gas detector
Sadat Determining the adulteration of diesel by an optical method
JP2006275672A (en) State measuring instrument of fluid heat accumulating material and state measuring method using it
EP2766714A1 (en) Optical measurement
CN106537127B (en) Method and apparatus for concentrating a sample
JPH11295220A (en) Liquid sample inspection method and device
Iwano et al. Power spectrum of high Schmidt number scalar in a turbulent jet at a moderate Reynolds number
JP5786191B2 (en) Temperature sensitive body, optical temperature sensor, temperature measuring device and heat flux measuring device
JP2017026345A (en) Gas component detector
TW201009318A (en) Device for measuring silicon concentration
JP5001226B2 (en) Photothermal conversion measuring device and method
JP2009288067A (en) Analyzing method and analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201