JPH1082699A - Method and apparatus for mesuring two-dimensional temperature distribution of fluid - Google Patents

Method and apparatus for mesuring two-dimensional temperature distribution of fluid

Info

Publication number
JPH1082699A
JPH1082699A JP26147096A JP26147096A JPH1082699A JP H1082699 A JPH1082699 A JP H1082699A JP 26147096 A JP26147096 A JP 26147096A JP 26147096 A JP26147096 A JP 26147096A JP H1082699 A JPH1082699 A JP H1082699A
Authority
JP
Japan
Prior art keywords
temperature
light
image
fluorescent substance
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26147096A
Other languages
Japanese (ja)
Other versions
JP3379352B2 (en
Inventor
Kazuhiro Akihama
一弘 秋濱
Taketoshi Fujikawa
武敏 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP26147096A priority Critical patent/JP3379352B2/en
Publication of JPH1082699A publication Critical patent/JPH1082699A/en
Application granted granted Critical
Publication of JP3379352B2 publication Critical patent/JP3379352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the instantaneous temperature distribution of two-dimensional area of a fluid to be detected without contact at a desired time, by calculating the ratio of measured fluorescence intensities of first and second images to first and second band lights in the same coordinates and obtaining temperature. SOLUTION: An observed light 35 is divided by a divisional mirror 12, transmitted light 351 is passed through a filter 211, photographed by a camera 221, and its reflected light 352 is photographed by a camera 222 via a filter 212. Video outputs 11, 12 of the cameras 221, 222 are input to an arithmetic means 40. If excitation light is emitted to gas obtained by mixing toluene as first fluorescent substance and diethyl ketone as second fluorescent substance, the toluene and diethyl ketone emit fluorescences of first and second band lights having different wavelengths. The means 40 calculates a ratio 11/12 of the fluorescent intensity from the outputs 11, 12 in a predetermined region of the cameras 221, 222, and decides a temperature in the region from the relationship between the ratio and the temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,流体の2次元領域の温度分布を
非接触で測定することのできる温度測定方法または温度
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring method or a temperature measuring device capable of measuring a temperature distribution in a two-dimensional region of a fluid without contact.

【0002】[0002]

【従来技術】気体や液体等の流体の温度を測定する方法
としては,熱電対を用いる方法が最も一般的である。し
かしながら,熱電対を用いる方法は,被検流体に接触し
なければならず,かつ1個の熱電対は1点又はその近傍
に於ける温度の計測であるから,2次元領域における温
度分布を連続的に計測することは出来ない。
2. Description of the Related Art The most common method for measuring the temperature of a fluid such as a gas or a liquid is to use a thermocouple. However, in the method using a thermocouple, the temperature distribution must be in contact with the fluid to be measured and one thermocouple measures the temperature at or near one point. Can not be measured.

【0003】一方,非接触にて被検流体の温度を測定す
る方法には,光学的な測定法が知られていいる。光学的
な温度計測方法では,赤外吸収・放射法が簡便な方法で
ある(Charles A.Amann,SAEpap
er 850395(1985)等参照)。しかしなが
ら,この方法では,計測値に吸収・放射光の光軸上の全
ての情報が含まれるため,例えば光軸上の任意の2次元
断面における温度分布を得ることは困難である。
On the other hand, as a method for measuring the temperature of a test fluid in a non-contact manner, an optical measuring method is known. As an optical temperature measurement method, an infrared absorption / emission method is a simple method (Charles A. Amann, SAEpap).
er 850395 (1985) and the like). However, in this method, it is difficult to obtain, for example, a temperature distribution in an arbitrary two-dimensional cross section on the optical axis because the measured value includes all information on the optical axis of the absorbed / emitted light.

【0004】更に,CARS(コヒーレントアンティス
トークス分光法)やラマン分光法も知られているが,こ
の方法も点における温度の計測法であり,同一時間にお
ける2次元領域の温度分布を得ることは困難である
(T.Michal Dayer,SAEpaper
85036(1985)等参照)。
[0004] Further, CARS (Coherent Anti-Stokes spectroscopy) and Raman spectroscopy are also known, but these methods are also methods of measuring a temperature at a point, and it is difficult to obtain a temperature distribution in a two-dimensional area at the same time. (T. Michael Dayer, SAEpaper)
85036 (1985) etc.).

【0005】そして,レーザ誘起蛍光法が,2次元の温
度分布を測定する有力な方法として知られている(A.
Arnold,et al.,Ber.Bunseng
es.Phys.Chem.Vol.96,No10,
1388(1992)参照)。この方法では,異なった
2つの波長のレーザー光を,被検流体に照射し,レーザ
ー光によって励起される2次元の蛍光像を,2つのレー
ザー光のそれぞれについて計測する。そして,その蛍光
像の強度の比と分子またはラジカルのボルツマン分布か
ら,温度の2次元分布を測定する。
The laser-induced fluorescence method is known as a powerful method for measuring a two-dimensional temperature distribution (A.
Arnold, et al. , Ber. Bunseng
es. Phys. Chem. Vol. 96, No10,
1388 (1992)). In this method, a test fluid is irradiated with laser light having two different wavelengths, and a two-dimensional fluorescent image excited by the laser light is measured for each of the two laser lights. Then, a two-dimensional temperature distribution is measured from the intensity ratio of the fluorescent image and the Boltzmann distribution of molecules or radicals.

【0006】[0006]

【解決しようとする課題】しかしながら,上記レーザ誘
起蛍光法は,OH等のラジカルを励起するものであるた
め,例えば燃焼場の温度測定などラジカルが存在する被
検流体に限定されるという問題点がある。また,計測に
一定の時間を要し,瞬時あるいは極めて短時間における
被検流体の温度分布は測定出来ないという問題がある。
即ち,2つのレーザー光により励起されるそれぞれの蛍
光の波長帯域は,通常ほぼ同一の波長帯域であるため,
2つの蛍光像は時間を置いて測定する必要がある。
However, since the laser-induced fluorescence method excites radicals such as OH, there is a problem in that the method is limited to a test fluid containing radicals, for example, temperature measurement of a combustion field. is there. In addition, there is a problem that a certain time is required for the measurement, and the temperature distribution of the test fluid in an instant or an extremely short time cannot be measured.
That is, since the wavelength bands of the respective fluorescences excited by the two laser beams are usually almost the same,
The two fluorescent images need to be measured at an interval.

【0007】そのため,時間と共に温度分布が変化する
非定常な場の温度を計測する場合には,所望の時間にお
ける瞬時の温度分布を測定することが出来ない。それ
故,例えば動作中のエンジンの筒内の温度分布等は,計
測することができない。本発明は,かかる従来の問題点
に鑑みてなされたものであり,被検流体の所望の時刻に
おける瞬時の2次元領域の温度分布を非接触のまま測定
することができる測定方法及び測定装置を提供しようと
するものである。
Therefore, when measuring the temperature of an unsteady field where the temperature distribution changes with time, the instantaneous temperature distribution at a desired time cannot be measured. Therefore, for example, the temperature distribution in the cylinder of the operating engine cannot be measured. The present invention has been made in view of such a conventional problem, and provides a measuring method and a measuring apparatus capable of measuring a temperature distribution of a two-dimensional region of a test fluid at a desired time instantaneously without contact. It is something to offer.

【0008】[0008]

【課題の解決手段】本願の第1発明は,流体の2次元領
域の温度分布を非接触で測定する温度測定法であって,
励起光の波長と異なる中心波長λ1の第1帯域光Δλ1
の蛍光を発する第1の蛍光物質と,同一励起光に対して
上記λ1と異なる中心波長λ2の第2帯域光Δλ2の蛍
光を発する第2蛍光物質とであって,上記第1帯域光Δ
λ1の蛍光強度I1と第2帯域光Δλ2の強度I2との
比が所望の温度領域において温度と共に変化するものを
用意し,被検流体に上記第1蛍光物質及び第2蛍光物質
を混合し,測定しようとする2次元領域S(x,y)の
範囲に広がる上記波長の励起光を上記被検流体に対して
照射し,上記領域Sにおける前記第1帯域光Δλ1に対
する第1の画像と上記領域Sにおける前記第2帯域光Δ
λ2に対する第2の画像とを計測し,同一座標(x,
y)における上記第1画像の測定強度I1(x,y)と
第2画像の測定強度I2(x,y)との比R(x,y)
を算出し,この比Rの値から温度Tを求め上記領域Sの
温度分布T(x,y)を決定することを特徴とする流体
の2次元温度分布の測定方法にある。
A first invention of the present application is a temperature measurement method for measuring a temperature distribution in a two-dimensional region of a fluid in a non-contact manner,
First band light Δλ1 having a center wavelength λ1 different from the wavelength of the excitation light
And a second fluorescent substance that emits fluorescence of a second band light Δλ2 having a center wavelength λ2 different from λ1 with respect to the same excitation light, wherein the first band light Δ
A sample in which the ratio between the fluorescence intensity I1 of λ1 and the intensity I2 of the second band light Δλ2 changes with temperature in a desired temperature region is prepared, and the first and second fluorescent materials are mixed with the test fluid, The test fluid is irradiated with the excitation light having the above-described wavelength extending in the range of the two-dimensional area S (x, y) to be measured, and a first image of the first band light Δλ1 in the area S and the The second band light Δ in the region S
The second image with respect to λ2 is measured, and the same coordinates (x,
The ratio R (x, y) of the measured intensity I1 (x, y) of the first image and the measured intensity I2 (x, y) of the second image in y).
And calculating the temperature T from the value of the ratio R to determine the temperature distribution T (x, y) of the region S.

【0009】本発明において,最も注目すべきことは,
同一波長の励起光に対する第1蛍光物質の蛍光波長帯域
Δλ1と第2蛍光物質の蛍光波長帯域Δλ2とが異なっ
ていると共に,上記第1帯域光Δλ1の蛍光強度I1と
第2帯域光Δλ2の強度I2との比が所望の温度領域に
おいて温度と共に変化することである。即ち,例えば図
6に示すように,励起光の波長をλoとしたとき,曲線
61で示す第1帯域光Δλ1の波長と曲線62で示す第
2帯域光Δλ2の波長との間には,例えば光学フィルタ
ー等により分離可能な程度の差が存在する。
In the present invention, the most remarkable thing is
The fluorescent wavelength band Δλ1 of the first fluorescent substance and the fluorescent wavelength band Δλ2 of the second fluorescent substance for the excitation light having the same wavelength are different, and the fluorescent intensity I1 of the first band light Δλ1 and the intensity of the second band light Δλ2. The ratio with I2 varies with temperature in the desired temperature range. That is, for example, as shown in FIG. 6, when the wavelength of the excitation light is λo, the wavelength between the wavelength of the first band light Δλ1 shown by the curve 61 and the wavelength of the second band light Δλ2 shown by the curve 62 is, for example, There is a difference that can be separated by an optical filter or the like.

【0010】そして,第1蛍光物質の蛍光強度I1の温
度特性と第2蛍光物質の蛍光強度I2の温度特性との間
に差があり,I1/I2(又はI2/I1)が温度Tと
共に変化する。即ち,例えば図7に示すように,第1蛍
光物質の単位濃度当たりの蛍光強度F1と第2蛍光物質
の単位濃度当たりの蛍光強度F2とは,温度特性に差が
あり,例えば図8の曲線63に示すように,上記蛍光強
度F1とF2との比率は温度と共に変化する。
There is a difference between the temperature characteristic of the fluorescent intensity I1 of the first fluorescent substance and the temperature characteristic of the fluorescent intensity I2 of the second fluorescent substance, and I1 / I2 (or I2 / I1) changes with the temperature T. I do. That is, as shown in FIG. 7, for example, there is a difference in the temperature characteristic between the fluorescence intensity F1 per unit concentration of the first fluorescent substance and the fluorescent intensity F2 per unit concentration of the second fluorescent substance. As shown at 63, the ratio between the fluorescence intensities F1 and F2 changes with temperature.

【0011】励起光の強度をIo,第1蛍光物質の被検
流体中の濃度をC1,第2蛍光物質の被検流体中の濃度
をC2,第1蛍光物質の温度Tにおける単位濃度当たり
の蛍光強度をF1(T),第2蛍光物質の温度Tにおけ
る単位濃度当たりの蛍光強度をF2(T)とすると,上
記蛍光強度I1,I2は次式のようになる。 I1=K*Io*C1*F1(T) ・・・(1) I2=K*Io*C2*F2(T) ・・・(2) 但し,上式において,Kは測定装置に固有の定数であ
る。
The intensity of the excitation light is Io, the concentration of the first fluorescent substance in the test fluid is C1, the concentration of the second fluorescent substance in the test fluid is C2, and the temperature of the first fluorescent substance is T per unit concentration. Assuming that the fluorescence intensity is F1 (T) and the fluorescence intensity per unit concentration at the temperature T of the second fluorescent substance is F2 (T), the above-mentioned fluorescence intensities I1 and I2 are as follows. I1 = K * Io * C1 * F1 (T) (1) I2 = K * Io * C2 * F2 (T) (2) In the above equation, K is a constant specific to the measuring device. It is.

【0012】そして,上記濃度C1の第1蛍光物質と濃
度C2の第2蛍光物質とを含む被検流体を,上記励起光
で励起した場合の強度I1とI2の比率Rは,次式とな
る。 R≡(I1/I2)=(C1/C2)*{F1(T)/F2(T)} (3) そして,上記のように,F1(T)/F2(T)は温度
に対して一定でなく,温度に対して変化する。また,F
1(T)/F2(T)を下記(4)式で定義する特性関
数F12(T)により置換すると,次のようになる。
The ratio R of the intensities I1 and I2 when the test fluid containing the first fluorescent substance having the concentration C1 and the second fluorescent substance having the concentration C2 is excited by the excitation light is given by the following equation. . R {(I1 / I2) = (C1 / C2) * {F1 (T) / F2 (T)} (3) As described above, F1 (T) / F2 (T) is constant with respect to temperature. But changes with temperature. Also, F
When 1 (T) / F2 (T) is replaced by a characteristic function F12 (T) defined by the following equation (4), the following is obtained.

【0013】 F12(T)≡F1(T)/F2(T) ・・・(4) R≡(I1/I2)=(C1/C2)*F12(T) ・・・(5) F12(T)= (I1/I2)*(C1/C2) ・・・(6) そして,(C1/C2)は定数であるから,測定値(I
1/I2)とF12(T)とは比例関係にあり,F12
(T)(又は,より直接的に測定値(I1/I2)と温
度Tとの関係)を予め既知としておけば,測定値(I1
/I2)から温度Tを求めることができる。
F12 (T) ≡F1 (T) / F2 (T) (4) R≡ (I1 / I2) = (C1 / C2) * F12 (T) (5) F12 (T) ) = (I1 / I2) * (C1 / C2) (6) Since (C1 / C2) is a constant, the measured value (I
1 / I2) and F12 (T) are in a proportional relationship.
If (T) (or more directly the relationship between the measured value (I1 / I2) and the temperature T) is known in advance, the measured value (I1
/ I2), the temperature T can be obtained.

【0014】そして,本発明の方法では,測定しようと
する2次元領域S(x,y)の範囲に広がる励起光(例
えば領域Sにシート状に広がる等)を被検流体に対して
照射する。そして,上記領域Sでの第1帯域光Δλ1に
よる第1の画像と領域Sでの第2帯域光Δλ2による第
2の画像とを計測する。続いて,同一点(x,y)にお
ける第1画像の測定強度I1(x,y)と第2画像の測
定強度I2(x,y)との比R(x,y)を算出する。
その結果,上記(5)または(6)式からそれぞれの位
置(x,y)におけるF12(T)の値が分かり,2次
元領域S(x,y)の温度Tの分布T(x,y)を決定
することができる。
In the method of the present invention, the test fluid is irradiated with excitation light (for example, spread in the area S in a sheet shape) extending in the range of the two-dimensional area S (x, y) to be measured. . Then, a first image of the region S with the first band light Δλ1 and a second image of the region S with the second band light Δλ2 are measured. Subsequently, a ratio R (x, y) between the measured intensity I1 (x, y) of the first image and the measured intensity I2 (x, y) of the second image at the same point (x, y) is calculated.
As a result, the value of F12 (T) at each position (x, y) is known from the above equation (5) or (6), and the distribution T (x, y) of the temperature T in the two-dimensional area S (x, y) is obtained. ) Can be determined.

【0015】本発明の測定方法では,第1帯域光Δλ1
と第2帯域光Δλ2とが異なった帯域であることから,
被検流体から発せられる蛍光を,帯域フィルター等によ
り第1帯域光Δλ1と第2帯域光Δλ2とに分離し,同
一時刻における上記第1画像と第2画像とを同時に計測
することができる。従って,所望の時刻(瞬時又は極め
て短時間)における2次元の温度分布を測定することが
できる。
According to the measuring method of the present invention, the first band light Δλ1
And the second band light Δλ2 are different bands,
The fluorescence emitted from the test fluid is separated into the first band light Δλ1 and the second band light Δλ2 by a band filter or the like, and the first image and the second image at the same time can be measured simultaneously. Therefore, it is possible to measure a two-dimensional temperature distribution at a desired time (instant or very short time).

【0016】即ち,従来のレーザ誘起蛍光法では,通常
2つのレーザー光により励起されるそれぞれの蛍光の波
長帯域がほぼ同一の波長帯域であるため,2つの蛍光像
は一定の時間間隔を置いて別個にデータ採取することし
かできなかったのに対して,本発明は,同時刻の2つの
画像データ採取が可能であり,その結果,瞬時の温度計
測が可能である。上記のように,本発明によれば,被検
流体の一定の時刻における瞬時の2次元領域の温度分布
を非接触のまま測定することができる測定方法を提供す
ることができる。
That is, in the conventional laser-induced fluorescence method, the wavelength bands of the respective fluorescences excited by two laser beams are almost the same, so that the two fluorescent images are spaced at a fixed time interval. In contrast to only being able to separately collect data, the present invention allows two image data to be collected at the same time, and as a result, instantaneous temperature measurement is possible. As described above, according to the present invention, it is possible to provide a measuring method capable of measuring the instantaneous temperature distribution of a test fluid in a two-dimensional region at a fixed time without contact.

【0017】一方,本願の第2発明は,流体の2次元領
域の温度分布を非接触で測定する温度測定装置であっ
て,励起光の波長と異なる中心波長λ1の第1帯域光Δ
λ1の蛍光を発する第1の蛍光物質と,同一励起光に対
して上記λ1と異なる中心波長λ2の第2帯域光Δλ2
の蛍光を発する第2蛍光物質とであって,上記第1帯域
光Δλ1の蛍光強度I1と第2帯域光Δλ2の強度I2
との比が所望の温度領域において温度と共に変化するも
のを用意し,被検流体に上記第1蛍光物質及び第2蛍光
物質を混合する蛍光物質混合手段と,測定しようとする
2次元領域S(x,y)の範囲に広がる上記励起光を被
検流体に対して照射する光源と,上記領域Sにおける前
記第1帯域光Δλ1に対する第1の画像と上記領域Sに
おける前記第2帯域光Δλ2に対する第2の画像とを計
測する画像計測手段と,この画像計測手段の出力信号を
受けて同一座標(x,y)における上記第1画像の測定
強度I1(x,y)と第2画像の測定強度I2(x,
y)との比R(x,y)を算出すると共にこの比Rの値
から温度Tを求め上記領域Sの温度分布T(x,y)を
決定する演算手段とを有することを特徴とする流体の2
次元温度分布の測定装置にある。
On the other hand, the second invention of the present application is a temperature measuring device for measuring the temperature distribution of a two-dimensional region of a fluid in a non-contact manner, wherein the first band light Δ1 having a center wavelength λ1 different from the wavelength of the excitation light.
a first fluorescent substance that emits fluorescence of λ1, and a second band light Δλ2 of a center wavelength λ2 different from λ1 for the same excitation light.
A second fluorescent substance that emits fluorescence of the first band light Δλ1 and the intensity I2 of the second band light Δλ2.
And a fluorescent substance mixing means for mixing the first fluorescent substance and the second fluorescent substance with the test fluid, and a two-dimensional area S ( a light source for irradiating the test fluid with the excitation light extending in the range of (x, y), a first image for the first band light Δλ1 in the region S, and a light source for the second band light Δλ2 in the region S Image measurement means for measuring the second image, and measurement of the measurement intensity I1 (x, y) of the first image and the measurement of the second image at the same coordinates (x, y) in response to the output signal of the image measurement means Intensity I2 (x,
and calculating means for calculating a temperature T from the value of the ratio R and determining a temperature distribution T (x, y) of the region S. Fluid 2
It is in the measuring device of dimensional temperature distribution.

【0018】第2発明は,第1発明の方法を実施する装
置であり,上記第1蛍光物質及び第2蛍光物質を混合す
る蛍光物質混合手段と,2次元領域S(x,y)の範囲
に広がる励起光を被検流体に対して照射する光源と,第
1画像と第2画像とを計測する画像計測手段と,この画
像計測手段の出力信号を受けて強度I1(x,y)と強
度I2(x,y)との比R(x,y)を算出し前記のよ
うに温度分布T(x,y)を決定する演算手段とを有し
ている。その結果,第1発明と同様に被検流体の一定の
時刻における瞬時の2次元の温度分布を非接触のまま測
定することができる測定装置を提供することができる。
A second aspect of the present invention is an apparatus for performing the method of the first aspect of the present invention, wherein a fluorescent substance mixing means for mixing the first fluorescent substance and the second fluorescent substance and a two-dimensional area S (x, y) are provided. A light source for irradiating the test fluid with excitation light that spreads, image measurement means for measuring the first image and the second image, and intensity I1 (x, y) upon receiving an output signal from the image measurement means. And calculating means for calculating the ratio R (x, y) to the intensity I2 (x, y) and determining the temperature distribution T (x, y) as described above. As a result, it is possible to provide a measuring device capable of measuring the instantaneous two-dimensional temperature distribution of the test fluid at a fixed time without contact in the same manner as the first invention.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本例は,図1に示すように,加熱定容容器80内の被検
流体81の2次元の温度分布を非接触で測定する温度測
定装置1である。そして,図2の曲線611〜614,
620に示すように,励起光の波長λo(図示略)と異
なる中心波長λ1の第1帯域光Δλ1の蛍光を発する第
1の蛍光物質と,同一励起光に対して上記λ1と異なる
中心波長λ2の第2帯域光Δλ2の蛍光を発する第2蛍
光物質とを用意し,かつ,上記第1蛍光物質と第2蛍光
物質とは,図3の曲線630に示すように,上記第1帯
域光Δλ1の蛍光強度I1と第2帯域光Δλ2の強度I
2との比が所望の温度領域において温度Tと共に変化す
るものとする。
Embodiment 1 As shown in FIG. 1, this embodiment is a temperature measuring apparatus 1 for measuring a two-dimensional temperature distribution of a test fluid 81 in a heating constant volume container 80 in a non-contact manner. Then, curves 611 to 614 in FIG.
As shown at 620, a first fluorescent substance that emits fluorescence of the first band light Δλ1 having a center wavelength λ1 different from the wavelength λo (not shown) of the excitation light, and a center wavelength λ2 different from the above λ1 for the same excitation light. A second fluorescent substance that emits fluorescence of the second band light Δλ2 is prepared, and the first fluorescent substance and the second fluorescent substance are combined with the first band light Δλ1 as shown by a curve 630 in FIG. Fluorescence intensity I1 and second band light Δλ2 intensity I
It is assumed that the ratio to 2 changes with the temperature T in a desired temperature range.

【0020】そして,図示しない蛍光物質混合手段によ
り予め被検流体に上記第1蛍光物質及び第2蛍光物質を
所定の濃度で混合し,上記加熱定容容器80に収容す
る。温度測定装置1は,上記蛍光物質混合手段と,図1
に示すように,測定しようとする2次元領域S(x,
y)の範囲に広がるシート状の励起光を被検流体に対し
て照射する光源11と,上記領域Sにおける前記第1帯
域光Δλ1に対する第1の画像と上記領域Sにおける前
記第2帯域光Δλ2に対する第2の画像とを計測する画
像計測手段15と,画像計測手段20の出力信号を受け
て同一座標(x,y)における上記第1画像の測定強度
I1(x,y)と第2画像の測定強度I2(x,y)と
の比R(x,y)を算出すると共にこの比Rの大きさか
ら温度Tを算出し上記領域Sの温度分布T(x,y)を
決定する演算手段40とを有する。
Then, the first and second fluorescent substances are mixed in a predetermined concentration with the test fluid in advance by a fluorescent substance mixing means (not shown) and stored in the heating constant volume container 80. The temperature measuring device 1 includes the above-described fluorescent substance mixing means,
As shown in the figure, the two-dimensional area S (x,
a light source 11 for irradiating the test fluid with sheet-like excitation light extending in the range of y), a first image for the first band light Δλ1 in the region S, and the second band light Δλ2 in the region S Receiving the output signal of the image measurement means 20 and the measurement intensity I1 (x, y) of the first image at the same coordinates (x, y) and the second image Of calculating the ratio R (x, y) to the measured intensity I2 (x, y) of the above and calculating the temperature T from the magnitude of the ratio R to determine the temperature distribution T (x, y) of the region S Means 40.

【0021】以下,それぞれについて説明を補足する。
本例は,加熱定容容器80内の被検流体としての空気の
温度を測定する例である。加熱定容容器80の内部に
は,空気に第1蛍光物質としてのトルエン0.31モル
/m3 と,第2蛍光物質としてのジエチルケトン2.3
7モル/m3 を混合させた空気が充填してある。
The following is a supplementary explanation for each.
This example is an example in which the temperature of air as a test fluid in the heating constant volume container 80 is measured. Inside the heating constant volume container 80, 0.31 mol / m 3 of toluene as a first fluorescent substance and 2.3 of diethyl ketone as a second fluorescent substance are added to air.
It is filled with air mixed with 7 mol / m 3 .

【0022】光源11から放射される励起光は,YAG
レーザーの第4高調波(波長266nm)である。そし
て,ビーム状の放射光31は,レンズ111,112に
より,所定の領域Sを含む広がりを持った平行光32に
変換され,加熱定容容器80の石英窓801から容器内
に進入し,窓802から出光する。そして,加熱定容容
器80の底部には,光を透過させる観測窓803が設け
られており,観測窓803の下方にはハーフミラー或い
はダイクロイックミラー等からなる分割ミラー12が設
けられている。
The excitation light emitted from the light source 11 is YAG
The fourth harmonic of the laser (wavelength 266 nm). Then, the beam-shaped radiation light 31 is converted by the lenses 111 and 112 into parallel light 32 having a spread including a predetermined area S, enters the container from the quartz window 801 of the heating constant volume container 80, and enters the window. 802 emits light. An observation window 803 for transmitting light is provided at the bottom of the heating constant volume container 80, and a split mirror 12 made of a half mirror or a dichroic mirror is provided below the observation window 803.

【0023】分割ミラー12に入射した観測光35は,
分割ミラー12で分割され,分割ミラー12を透過した
光351は,第1フィルター211を通って第1カメラ
221により撮影される。一方,分割ミラー12で反射
された光352は,第2フィルター212を通って第1
カメラ222により撮影される。そして,上記第1フィ
ルター211は,第1帯域光Δλ1を透過させる帯域フ
ィルターであり,第2フィルター212は,第2帯域光
Δλ2を透過させる帯域フィルターである。
The observation light 35 incident on the split mirror 12 is
Light 351 split by the split mirror 12 and transmitted through the split mirror 12 is captured by the first camera 221 through the first filter 211. On the other hand, the light 352 reflected by the split mirror 12 passes through the second filter 212,
Photographed by the camera 222. The first filter 211 is a band filter that transmits the first band light Δλ1, and the second filter 212 is a band filter that transmits the second band light Δλ2.

【0024】第1,第2カメラ221,222の映像出
力(第1画像及び第2画像)I1(x,y),I2
(x,y)は,演算手段40に入力される。同図におい
て符号41は,演算手段40のディスプレイである。そ
して,図2は,空気に第1蛍光物質としてのトルエン
0.31モル/m3 を混合した気体に上記励起光を照射
した場合の蛍光スペクトルの温度特性611〜614
と,空気に第2蛍光物質としてのジエチルケトン2.3
7モル/m3 を混合した気体に上記励起光を照射した場
合の蛍光スペクトルの温度特性620とを示す(ジエチ
ルケトンの蛍光強度の温度による変化は少ないので曲線
620で一括表示)。
Video outputs (first and second images) I1 (x, y), I2 of the first and second cameras 221, 222
(X, y) is input to the calculating means 40. In the figure, reference numeral 41 denotes a display of the calculating means 40. FIG. 2 shows the temperature characteristics 611 to 614 of the fluorescence spectrum when the above-mentioned excitation light is irradiated to a gas in which air is mixed with 0.31 mol / m 3 of toluene as a first fluorescent substance.
And diethyl ketone 2.3 as a second fluorescent substance in air.
A temperature characteristic 620 of a fluorescence spectrum when the gas mixed with 7 mol / m 3 is irradiated with the excitation light is shown (the change in the fluorescence intensity of diethyl ketone due to the temperature is small, and is collectively indicated by a curve 620).

【0025】同図から分かるように,トルエンは波長約
280〜320nmの第1帯域光Δλ1の蛍光を放射
し,ジエチルケトンは波長約340〜500nmの第2
帯域光Δλ2の蛍光を放射する。そして,前記第1,第
2フィルター211,212は,それぞれ上記第1帯域
光Δλ1と第2帯域光Δλ2とを透過させる帯域フィル
ターである。また,同図に示す蛍光強度I1,I2の温
度特性611〜614と620とは,大幅に異なってお
り,蛍光の強度の比率I1/I2は,温度によって大き
く変化する。
As can be seen from the figure, toluene emits fluorescence of the first band light Δλ1 having a wavelength of about 280-320 nm, and diethyl ketone emits second fluorescence having a wavelength of about 340-500 nm.
The fluorescent light of the band light Δλ2 is emitted. The first and second filters 211 and 212 are band filters that transmit the first band light Δλ1 and the second band light Δλ2, respectively. Also, the temperature characteristics 611 to 614 and 620 of the fluorescence intensities I1 and I2 shown in the figure are greatly different, and the ratio I1 / I2 of the fluorescence intensities greatly changes depending on the temperature.

【0026】そして,演算手段40は,第1,第2カメ
ラ221,222の所定の領域S(x,y)に対する映
像出力I1(x,y),I2(x,y)から両強度の比
率R(x,y)を算出する。図3の曲線630は,上記
比率Rの大きさと温度Tとの関係を示す1例である。そ
して,演算装置40は,上記比率Rの大きさと温度Tと
の関係(曲線630)及びR(x,y)から,領域Sに
おける温度T(x,y)を決定する。
The calculating means 40 calculates the ratio of the two intensities from the video outputs I1 (x, y) and I2 (x, y) for the predetermined area S (x, y) of the first and second cameras 221 and 222. R (x, y) is calculated. A curve 630 in FIG. 3 is an example showing the relationship between the magnitude of the ratio R and the temperature T. Then, the arithmetic unit 40 determines the temperature T (x, y) in the region S from the relationship between the magnitude of the ratio R and the temperature T (curve 630) and R (x, y).

【0027】そして,演算手段40は,その結果を,デ
ィスプレイ41に表示する。上記のように,本例では,
第1画像と第2画像とを,第1カメラ221及び第2カ
メラ222により同時に計測し,瞬時又は極めて短時間
における2次元の温度分布を測定することができる。な
お,第1蛍光物質は,上記トルエンの他に,ベンゼン,
スチレン等ベンゼン環を有する炭化水素を用いることが
できる。また,第2蛍光物質は,上記ジエチルケトンの
他に,アセトン,メチルエチルケトン等のケトン類やア
ルデヒド類がある。
The calculation means 40 displays the result on the display 41. As described above, in this example,
The first image and the second image are simultaneously measured by the first camera 221 and the second camera 222, and a two-dimensional temperature distribution can be measured instantaneously or in a very short time. The first fluorescent material is benzene,
A hydrocarbon having a benzene ring such as styrene can be used. The second fluorescent substance includes ketones such as acetone and methyl ethyl ketone and aldehydes in addition to the above-mentioned diethyl ketone.

【0028】また,励起光の光源には,YAGレーザー
の第4高調波(266nm)の他に,KrFエキシマレ
ーザー(248nm),XeClエキシマレーザー(3
08nm),或いは色素レーザー(又はその高調波)な
ど,第1,第2蛍光物質の吸収波長域の光を放射する光
源がある。
In addition to the fourth harmonic (266 nm) of the YAG laser, a KrF excimer laser (248 nm) and a XeCl excimer laser (3
08 nm) or a dye laser (or a harmonic thereof) that emits light in the absorption wavelength range of the first and second fluorescent substances.

【0029】実施形態例2 本例は,図4に示すように,実施形態例1において,前
記第1画像及び第2画像を1台のカメラ23で測定する
ためにステレオスコープ24を用いたもう一つの実施形
態例である。即ち,観測光35は,ステレオスコープ2
4の第1フィルター211及び第2フィルター212に
直接入射し,ミラー241〜244からレンズ245を
経て1台のカメラ23によって撮影される。
Embodiment 2 As shown in FIG. 4, this embodiment is different from Embodiment 1 in that a stereoscope 24 is used to measure the first image and the second image with one camera 23. It is an example of one embodiment. That is, the observation light 35 is transmitted to the stereoscope 2
4 is directly incident on the first filter 211 and the second filter 212, and is photographed by one camera 23 from the mirrors 241 to 244 via the lens 245.

【0030】そして,第1フィルター211を通った第
1画像はカメラ23の検知面の1/2の領域に検出さ
れ,第2フィルター212を通った第2画像はカメラ2
3の検知面の残りの1/2の領域に検出される。 そし
て,演算手段40は,上記1/2の領域で検知された第
1画像と残り1/2の領域で検知された第2画像とにお
ける同一座標間の強度比を算出し,2次元温度分布T
(x,y)を求める。その他については,実施形態例1
と同様である。
The first image passed through the first filter 211 is detected in a half area of the detection surface of the camera 23, and the second image passed through the second filter 212 is detected by the camera 2
No. 3 is detected in the remaining 1/2 area of the detection surface. Then, the calculating means 40 calculates the intensity ratio between the same coordinates in the first image detected in the half area and the second image detected in the remaining half area, and calculates the two-dimensional temperature distribution. T
(X, y) is obtained. For others, Embodiment 1
Is the same as

【0031】実施形態例3 本例は,エンジン筒内の軸心に垂直な断面における2次
元温度分布を測定するもう一つの実施形態例である。図
5に示すように,エンジン筒51には,シート状の励起
光34を透過させる石英ガラスの窓511,512と観
測光35の出射窓513を設けると共に,ピストン52
に観測光35を透過させる石英ガラスの透明な窓521
を設ける。そして,窓521を透過した観測光35は,
ミラー531で方向を転換し,出射窓513から出射す
るように構成されている。
Embodiment 3 This embodiment is another embodiment for measuring a two-dimensional temperature distribution in a cross section perpendicular to the axis in the engine cylinder. As shown in FIG. 5, the engine cylinder 51 is provided with quartz glass windows 511 and 512 for transmitting the sheet-like excitation light 34 and an emission window 513 for the observation light 35, and a piston 52.
Window 521 made of quartz glass through which observation light 35 is transmitted
Is provided. Then, the observation light 35 transmitted through the window 521 becomes
The direction is changed by a mirror 531, and the light is emitted from the emission window 513.

【0032】被検流体は燃料のイソオクタンであり,第
1蛍光物質としてのベンゼンと第2蛍光物質としてのア
セトンを混合する。光源は,図示しないKrFエキシマ
レーザー(波長248nm)であり,シート状の励起光
34を形成し,励起光34をエンジン筒51の窓511
から入射させる。励起光34は,エンジン筒51を透過
し,これによって燃料内の第1蛍光物質と第2蛍光物質
が励起され,第1帯域光Δλ1(波長約280nm〜3
20nm)と第2帯域光Δλ2(波長約340nm〜5
00nm)とを放射する。
The test fluid is isooctane as a fuel, and benzene as the first fluorescent substance and acetone as the second fluorescent substance are mixed. The light source is a KrF excimer laser (wavelength: 248 nm), not shown, which forms a sheet-like excitation light 34 and transmits the excitation light 34 to a window 511 of the engine cylinder 51.
From. The excitation light 34 passes through the engine cylinder 51, whereby the first fluorescent material and the second fluorescent material in the fuel are excited, and the first band light Δλ1 (wavelength of about 280 nm to 3
20 nm) and the second band light Δλ2 (wavelength of about 340 nm to 5
00 nm).

【0033】上記第1帯域光Δλ1と第2帯域光Δλ2
とを含んだ観測光35は,ピストン51の窓521を透
過しミラー531で方向を転換し,出射窓513から出
射する。そして,観測光35は,図1と同様に分割ミラ
ー12により2つに分割され,第1フィルター211,
第2フィルター212を通って第1カメラ221及び第
2カメラ222により,それぞれ第1画像と第2画像が
撮影される。そして,カメラ221,222の出力は,
実施形態例1と同様に演算手段40に入力され,同様の
手順によりエンジン筒51の軸心に垂直な断面における
温度分布T(x,y)が求められる。
The first band light Δλ1 and the second band light Δλ2
Is transmitted through the window 521 of the piston 51, changes its direction by the mirror 531 and exits through the exit window 513. Then, the observation light 35 is split into two by the split mirror 12 as in FIG.
A first image and a second image are respectively captured by the first camera 221 and the second camera 222 through the second filter 212. And the outputs of the cameras 221 and 222 are
The temperature distribution T (x, y) in the section perpendicular to the axis of the engine cylinder 51 is obtained by the same procedure as in the first embodiment and input to the calculating means 40 in the same procedure.

【0034】そして,エンジンの所望のタイミングにお
ける瞬間の温度分布を測定するために,励起光34をパ
ルス状に発振させる(本例では発光時間約20ns)。
そして,カメラ221,222のシャッターを励起光3
4の発振に同期させて,高速に作動させる(本例では1
00ns以下)。その結果,エンジンの所望のタイミン
グにおけるエンジン筒51内の瞬時の2次元温度分布T
(x,y)を求めることができる。その他については,
実施形態例1と同様である。
Then, in order to measure the instantaneous temperature distribution at a desired timing of the engine, the excitation light 34 is oscillated in a pulse shape (in this example, the light emission time is about 20 ns).
Then, the shutters of the cameras 221 and 222 are set to the excitation light 3.
4 is operated at high speed in synchronization with the oscillation of
00 ns or less). As a result, the instantaneous two-dimensional temperature distribution T in the engine cylinder 51 at a desired timing of the engine is obtained.
(X, y) can be obtained. For others,
This is the same as the first embodiment.

【0035】[0035]

【発明の効果】上記のように,本発明によれば,被検流
体の一定の時刻における瞬時の2次元領域の温度分布を
非接触のまま測定することができる測定方法及び測定装
置を得ることができる。
As described above, according to the present invention, it is possible to obtain a measuring method and a measuring apparatus which can measure the temperature distribution of a two-dimensional area of a test fluid at a fixed time instantaneously without contact. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の温度測定装置のシステム構成
図。
FIG. 1 is a system configuration diagram of a temperature measuring device according to a first embodiment.

【図2】実施形態例1の第1蛍光物質と第2蛍光物質の
蛍光波長と蛍光強度との関係を温度を変えて示した図。
FIG. 2 is a diagram showing the relationship between the fluorescence wavelength and the fluorescence intensity of a first fluorescent substance and a second fluorescent substance of Embodiment 1 at different temperatures.

【図3】実施形態例1における第1帯域光Δλ1の強度
I1と第2帯域光Δλ2の強度I2の比Rと,温度との
関係を示す図。
FIG. 3 is a diagram illustrating a relationship between a temperature R and a ratio R between an intensity I1 of a first band light Δλ1 and an intensity I2 of a second band light Δλ2 in the first embodiment.

【図4】実施形態例2の温度測定装置のシステム構成
図。
FIG. 4 is a system configuration diagram of a temperature measurement device according to a second embodiment.

【図5】実施形態例3の温度測定装置のシステム構成
図。
FIG. 5 is a system configuration diagram of a temperature measuring device according to a third embodiment.

【図6】第1蛍光物質と第2蛍光物質の励起光の波長
と,蛍光波長と蛍光強度の関係を模式的に示す図。
FIG. 6 is a diagram schematically showing a relationship between a wavelength of excitation light of a first fluorescent substance and a second fluorescent substance and a fluorescent wavelength and a fluorescent intensity;

【図7】第1蛍光物質の単位濃度当たりの蛍光強度F1
及び第2蛍光物質の単位濃度当たりの蛍光強度F2と温
度との関係の1例を示す図。
FIG. 7 shows the fluorescence intensity F1 per unit concentration of the first fluorescent substance.
FIG. 7 is a diagram illustrating an example of a relationship between the fluorescence intensity F2 per unit concentration of the second fluorescent substance and the temperature.

【図8】図7のF1とF2との比率F12,または第1
蛍光物質の蛍光強度I1と第2蛍光物質の蛍光強度I2
との比率の温度に対する変化の態様の1例を示す図。
FIG. 8 shows a ratio F12 between F1 and F2 in FIG.
The fluorescent intensity I1 of the fluorescent substance and the fluorescent intensity I2 of the second fluorescent substance
The figure which shows an example of the aspect of the change with respect to temperature of the ratio with respect to.

【符号の説明】[Explanation of symbols]

1...温度測定装置, 11...光源, 15...画像計測手段, 40...演算手段, 1. . . 10. temperature measuring device, . . Light source, 15. . . Image measurement means, 40. . . Arithmetic means,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流体の2次元領域の温度分布を非接触で
測定する温度測定法であって,励起光の波長と異なる中
心波長λ1の第1帯域光Δλ1の蛍光を発する第1の蛍
光物質と,同一励起光に対して上記λ1と異なる中心波
長λ2の第2帯域光Δλ2の蛍光を発する第2蛍光物質
とであって,上記第1帯域光Δλ1の蛍光強度I1と第
2帯域光Δλ2の強度I2との比が所望の温度領域にお
いて温度と共に変化するものを用意し,被検流体に上記
第1蛍光物質及び第2蛍光物質を混合し,測定しようと
する2次元領域S(x,y)の範囲に広がる上記波長の
励起光を上記被検流体に対して照射し,上記領域Sにお
ける前記第1帯域光Δλ1に対する第1の画像と上記領
域Sにおける前記第2帯域光Δλ2に対する第2の画像
とを計測し,同一座標(x,y)における上記第1画像
の測定強度I1(x,y)と第2画像の測定強度I2
(x,y)との比R(x,y)を算出し,この比Rの値
から温度Tを求め上記領域Sの温度分布T(x,y)を
決定することを特徴とする流体の2次元温度分布の測定
方法。
1. A temperature measuring method for non-contact measurement of a temperature distribution in a two-dimensional region of a fluid, wherein the first fluorescent substance emits fluorescence of a first band light Δλ1 having a center wavelength λ1 different from a wavelength of excitation light. And a second fluorescent substance that emits fluorescence of the second band light Δλ2 having a center wavelength λ2 different from the above λ1 with respect to the same excitation light, wherein the fluorescence intensity I1 of the first band light Δλ1 and the second band light Δλ2 A sample whose ratio with the intensity I2 changes with temperature in a desired temperature region is prepared, and the first and second fluorescent materials are mixed with the test fluid, and the two-dimensional region S (x, irradiating the test fluid with the excitation light having the wavelength extending in the range of y), the first image corresponding to the first band light Δλ1 in the region S and the second image corresponding to the second band light Δλ2 in the region S. 2 and the same coordinates (x, y )) And the measured intensity I2 of the first image and the measured intensity I2 of the second image.
A fluid R is characterized by calculating a ratio R (x, y) with respect to (x, y), obtaining a temperature T from the value of the ratio R and determining a temperature distribution T (x, y) of the region S. A method for measuring a two-dimensional temperature distribution.
【請求項2】 流体の2次元領域の温度分布を非接触で
測定する温度測定装置であって,励起光の波長と異なる
中心波長λ1の第1帯域光Δλ1の蛍光を発する第1の
蛍光物質と,同一励起光に対して上記λ1と異なる中心
波長λ2の第2帯域光Δλ2の蛍光を発する第2蛍光物
質とであって,上記第1帯域光Δλ1の蛍光強度I1と
第2帯域光Δλ2の強度I2との比が所望の温度領域に
おいて温度と共に変化するものを用意し,被検流体に上
記第1蛍光物質及び第2蛍光物質を混合する蛍光物質混
合手段と,測定しようとする2次元領域S(x,y)の
範囲に広がる上記励起光を被検流体に対して照射する光
源と,上記領域Sにおける前記第1帯域光Δλ1に対す
る第1の画像と上記領域Sにおける前記第2帯域光Δλ
2に対する第2の画像とを計測する画像計測手段と,こ
の画像計測手段の出力信号を受けて同一座標(x,y)
における上記第1画像の測定強度I1(x,y)と第2
画像の測定強度I2(x,y)との比R(x,y)を算
出すると共にこの比Rの値から温度Tを求め上記領域S
の温度分布T(x,y)を決定する演算手段とを有する
ことを特徴とする流体の2次元温度分布の測定装置。
2. A temperature measuring device for measuring a temperature distribution in a two-dimensional region of a fluid in a non-contact manner, wherein the first fluorescent material emits fluorescence of a first band light Δλ1 having a center wavelength λ1 different from a wavelength of excitation light. And a second fluorescent substance that emits fluorescence of the second band light Δλ2 having a center wavelength λ2 different from the above λ1 with respect to the same excitation light, wherein the fluorescence intensity I1 of the first band light Δλ1 and the second band light Δλ2 And a fluorescent substance mixing means for mixing the first fluorescent substance and the second fluorescent substance with the test fluid, and a two-dimensional element to be measured. A light source for irradiating the test fluid with the excitation light spread over a range of a region S (x, y); a first image for the first band light Δλ1 in the region S; and a second band in the region S Light Δλ
Image measuring means for measuring the second image with respect to 2 and the same coordinates (x, y) upon receiving an output signal of the image measuring means
And the measured intensity I1 (x, y) of the first image at
A ratio R (x, y) to the measured intensity I2 (x, y) of the image is calculated, and a temperature T is obtained from the value of the ratio R to obtain the area S.
Calculating means for determining the temperature distribution T (x, y) of the fluid.
JP26147096A 1996-09-09 1996-09-09 Method and apparatus for measuring two-dimensional temperature distribution of fluid Expired - Fee Related JP3379352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26147096A JP3379352B2 (en) 1996-09-09 1996-09-09 Method and apparatus for measuring two-dimensional temperature distribution of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26147096A JP3379352B2 (en) 1996-09-09 1996-09-09 Method and apparatus for measuring two-dimensional temperature distribution of fluid

Publications (2)

Publication Number Publication Date
JPH1082699A true JPH1082699A (en) 1998-03-31
JP3379352B2 JP3379352B2 (en) 2003-02-24

Family

ID=17362359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26147096A Expired - Fee Related JP3379352B2 (en) 1996-09-09 1996-09-09 Method and apparatus for measuring two-dimensional temperature distribution of fluid

Country Status (1)

Country Link
JP (1) JP3379352B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126014A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Temperature-sensitive fluorescence material, temperature measuring method and temperature distribution measuring method
JP2015145852A (en) * 2014-02-04 2015-08-13 学校法人慶應義塾 Temperature and oxygen-concentration measurement device
CN111289484A (en) * 2020-03-11 2020-06-16 哈尔滨工业大学(威海) Cold skin detection method based on rhodamine B fluorescence characteristic

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161799B2 (en) 2015-02-25 2018-12-25 The University Of Tokyo Temperature measuring device and temperature measuring method
CN105547516B (en) * 2016-01-07 2019-11-12 复旦大学 Laser pump (ing) up-conversion fluorescence temp measuring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126014A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Temperature-sensitive fluorescence material, temperature measuring method and temperature distribution measuring method
JP2015145852A (en) * 2014-02-04 2015-08-13 学校法人慶應義塾 Temperature and oxygen-concentration measurement device
CN111289484A (en) * 2020-03-11 2020-06-16 哈尔滨工业大学(威海) Cold skin detection method based on rhodamine B fluorescence characteristic

Also Published As

Publication number Publication date
JP3379352B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
JP4425098B2 (en) Fluorescence microscope and fluorescence correlation spectroscopy analyzer
JPH10170429A (en) Adjustable excitation and/or adjustable detection microplate reader
US7059766B2 (en) Optical device and method for the non-intrusive measuring of the temperature of a flowing liquid
GB2170595A (en) Temperature measurement
Tian et al. High spatial resolution laser cavity extinction and laser-induced incandescence in low-soot-producing flames
US4986654A (en) Method and apparatus for contactless acquisition of data for the locally resolved determination of the density and temperature in a measurement volume
US5285261A (en) Dual interferometer spectroscopic imaging system
US9709382B2 (en) Light source apparatus and information acquisition apparatus including the same
JP6357245B2 (en) Optical analyzer and biomolecule analyzer
US5469255A (en) Method and apparatus for spectrometric measurement of particulate surfaces
CA1053026A (en) Generation or coherent rotational anti-stokes spectra
JP3379352B2 (en) Method and apparatus for measuring two-dimensional temperature distribution of fluid
US5406377A (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
EP0016303A1 (en) Photoacoustic rotational Raman spectroscopy
JP2002526765A (en) Identification and concentration determination of contaminant species by measuring the wavelength of the output of the intracavity laser.
JP2004163180A (en) Simultaneous measuring method and instrument for temperature, pressure and velocity distributions in flow field
JP2006300808A (en) Raman spectrometry system
JP2002526766A (en) Identification and concentration determination of contaminant species by measuring the output intensity of intracavity lasers
US6914246B2 (en) Method and apparatus for spatially resolving flame temperatures using ultraviolet light emission
Geiler et al. Characterization of the fluorescence properties of selected organic compounds for measuring the thickness of evaporating liquid fuel films
Schramm et al. Calibration of Fast-Response Temperature Sensitive Paints for Their Application in Hypersonic High Enthalpy Flows
JP2005233802A (en) Physical quantity measuring instrument and physical quantity calibration method using it
JP2002062197A (en) Temperature measuring device and method
JP2020034501A (en) Spectroscopic instrument
GB1564641A (en) Spectroscopic apparatus and method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees