WO2023119923A1 - Soft magnetic material evaluation method and evaluation system - Google Patents

Soft magnetic material evaluation method and evaluation system Download PDF

Info

Publication number
WO2023119923A1
WO2023119923A1 PCT/JP2022/041698 JP2022041698W WO2023119923A1 WO 2023119923 A1 WO2023119923 A1 WO 2023119923A1 JP 2022041698 W JP2022041698 W JP 2022041698W WO 2023119923 A1 WO2023119923 A1 WO 2023119923A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic material
coercive force
variation
image
Prior art date
Application number
PCT/JP2022/041698
Other languages
French (fr)
Japanese (ja)
Inventor
亮子 荒木
宇輝 池田
慎一 加藤
悠介 安部
悠介 中村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023119923A1 publication Critical patent/WO2023119923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to an evaluation method and evaluation system for soft magnetic materials.
  • Soft magnetic materials are processed into desired shapes and then combined with coils to form electromagnets, which are applied to various industrial and medical equipment. As the functions and accuracy required for these industrial equipment and medical equipment are becoming more sophisticated, the accuracy required for electromagnets is also becoming more sophisticated.
  • the electromagnetic lens that controls the trajectory of primary and secondary electrons needs to be downsized and improve controllability, Stabilizing quality by minimizing variations in performance (instrumental differences) is required.
  • Patent Document 1 it is described that the miniaturization of the motor is achieved by improving the magnetic flux density (saturation magnetic flux density) that can be excited.
  • Patent Document 1 describes that the miniaturization of the motor is achieved by improving the magnetic flux density (saturation magnetic flux density) that can be excited. There is no mention of stabilizing the quality by suppressing the variation in performance between devices (instrumental difference) as much as possible.
  • the quality of soft magnetic materials can be controlled using mill sheets, but in order to evaluate the variation in coercive force (Hc) of soft magnetic materials, it is necessary to measure the magnetic properties, which takes time. . Moreover, if the electronic lens incorporated in the device does not exhibit the desired performance, a backtracking step of removing the electronic lens from the device is required, resulting in an increase in man-hours.
  • Hc coercive force
  • the present invention solves the above-described problems of the prior art, and makes it possible to evaluate the magnetic properties of soft magnetic materials used in electromagnets, particularly variations in coercive force, before they are assembled into products such as electronic lenses.
  • An evaluation method and an evaluation system for soft magnetic materials are provided.
  • the structure of the soft magnetic material is imaged by an imaging unit to obtain a crystal structure image of the soft magnetic material, and the obtained crystal structure image of the soft magnetic material is obtained.
  • the coercive force variation of the soft magnetic material is evaluated by processing it in the information processing system and comparing it with the separately measured coercive force variation value. This was used as an evaluation method for the soft magnetic material to be displayed.
  • the present invention provides a soft magnetic material evaluation system comprising an imaging unit for capturing an image of the surface of the soft magnetic material to acquire a crystal structure image of the soft magnetic material, and An information processing system that processes the crystal structure image of the soft magnetic material captured by the imaging unit and evaluates the variation in the coercive force of the soft magnetic material, and the variation in the coercive force of the soft magnetic material evaluated by this information processing system. and a display terminal for displaying information about.
  • the magnetic properties of the soft magnetic material used for the electromagnet can be determined from the crystal structure image obtained by imaging the soft magnetic material, and the product can be assembled. In the previous stage, it was possible to evaluate the magnetic properties of soft magnetic materials, especially the variation in coercive force.
  • FIG. 1 is a block diagram showing a schematic configuration of an evaluation system for evaluating variations in coercive force of a soft magnetic material from surface grain size distribution information obtained by imaging the soft magnetic material according to an embodiment of the present invention; FIG. . It is a block diagram which shows the structure of the information processing part in the evaluation system based on the Example of this invention.
  • FIG. 4 is a flowchart showing a procedure for creating a database for estimating a coercive force variation coefficient from information on the size of particles on the surface of a soft magnetic material according to an example of the present invention
  • FIG. 5 is a flow chart showing a procedure for estimating a coercive force variation coefficient from a crystal structure image of a soft magnetic material and determining whether or not the material can be accepted when the soft magnetic material according to the embodiment of the present invention is received.
  • FIG. 5 is a flowchart showing a procedure for estimating a coercive force variation coefficient from a soft magnetic material crystal structure image, mapping and displaying coercive force variations according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing a procedure for estimating a coercive force variation coefficient from a soft magnetic material crystal structure image, mapping and displaying coercive force variations according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a screen showing a result of estimating a coercive force variation coefficient from a soft magnetic material crystal structure image at the time of arrival of the soft magnetic material according to the embodiment of the present invention
  • FIG. 5 is a diagram showing an example of a screen showing a result of mapping coercive force variation by estimating a coercive force variation coefficient from a soft magnetic material crystal structure image according to an example of the present invention.
  • FIG. 1(a) shows an example of a grain boundary image 11 of a permendur material.
  • Fig. 1(b) shows the distribution of the particle size (particle diameter) in this grain boundary image 11 as a box plot: 12.
  • the vertical axis indicates the particle size, and the unit is ⁇ m. From this figure, it can be seen that the 25% to 75% portion 121 of the particle size distribution ranges in size from 20 ⁇ m to 60 ⁇ m, the median size 122 is 35 ⁇ m, and the mean value 123 is 45 ⁇ m.
  • Graph 13 in FIG. 1(c) is a histogram showing the particle size distribution.
  • the histogram of FIG. 1(c) is represented by a histogram 131 in which the particle size is divided by 10 ⁇ m pitch. From the histogram 131, two peaks can be confirmed at 20 ⁇ m to 40 ⁇ m and 60 ⁇ m.
  • a curve 132 is obtained by fitting the distribution represented by the histogram 131 with a logarithmic normal distribution curve. It can be seen that there is a distribution peak between 20 ⁇ m and 30 ⁇ m, there is a large distribution in the range of 10 ⁇ m to 60 ⁇ m, and the largest one is distributed up to about 150 ⁇ m. However, it can be seen that this fitting cannot reproduce the two peaks that can be confirmed in the histogram. Also, two peaks cannot be represented in the boxplot described above.
  • the present invention has been made based on the above-mentioned new findings.
  • the soft magnetic materials can be detected from an image obtained by imaging the soft magnetic materials in place of magnetic measurement. This makes it possible to relatively easily determine variations in magnetic properties (coercive force) of materials.
  • FIG. 3 shows a schematic configuration of an evaluation system 100 for evaluating the magnetic properties of the soft magnetic material according to this example.
  • the evaluation system 100 includes a sample table 1 on which a sample 20 is placed, an imaging unit 2 for capturing an image of the surface of the sample 20 placed on the sample table 1, and an image of the sample 20 captured by the imaging unit 2.
  • An information processing system 8 for processing and an image display terminal 9 for displaying information processed by the information processing system 8 are provided.
  • the imaging unit 2 includes a light source 3 and a half mirror 4 that reflects part of the light emitted from the light source 3 toward the sample 20 placed on the sample stage 1 and transmits part of the light reflected by the sample 20. , and a detector 5 for detecting the image of the surface of the sample 20 by receiving reflected light from the sample 20 that has passed through the half mirror 4 .
  • the information processing system 8 includes an information processing section 6 that receives and processes signals from the detector 5 that has imaged the surface of the sample 20 and an information storage section 7 that stores the information processed by the information processing section 6 .
  • the information processing unit 6 includes a coercive force data storage unit 61, an image storage unit 62, a particle size measurement unit 63, a particle size analysis unit 64, a database 65, a coercivity variation coefficient calculation unit 66, a coercivity variation evaluation unit 67, and a network adapter. 68 and CPU 69 , which are connected to each other by a common line 60 and connected to a network 70 .
  • the coercive force data storage unit 61 stores the coercive forces of a plurality of points of the sample 20 obtained by measuring the sample 20 mounted on the sample table 1 with a coercive force measuring device (for example, a DC magnetization measuring device) (not shown). are stored in association with the sample 20.
  • a coercive force measuring device for example, a DC magnetization measuring device
  • the image of the sample 20 captured by the imaging unit 2 (corresponding to the grain boundary image 11 in FIG. 1) is stored in the image storage unit 62 .
  • the particle size measuring unit 63 measures the size of particles (corresponding to the particles 111 and 112 in FIG. 1) on the surface of the sample 20 from the image of the sample 20 stored in the image storage unit 62 .
  • calculation is performed using general image analysis software.
  • the information on the particle size measured by the particle size measuring unit 63 is sent to the particle size analyzing unit 64, where the first quartile of the particle size distribution and the average value of the particle size are obtained.
  • a value (hereinafter referred to as a particle size index value) is calculated by dividing the value of one quartile by the average value of the particle size.
  • the coercive force variation coefficient calculation unit 66 the coercive force variation coefficient of the sample 20 (the standard deviation of the coercive force variation is divided by the average coercive force).
  • the particle size index value obtained by the particle size analysis unit 64 is sent to the database 65 in association with information on the coercive force variation coefficient calculated by the coercive force variation coefficient calculation unit 66 .
  • Each operation of the coercive force data storage unit 61, the image storage unit 62, the particle size measurement unit 63, the particle size analysis unit 64, the database 65, the coercive force variation coefficient calculation unit 66, and the coercive force variation evaluation unit 67 is performed by the common line 60. It is controlled by the connected CPU 69 .
  • n is set to 1 in S501, and the coercive force of the first sample 20 is measured at a plurality of points using coercive force measuring means (not shown),
  • the data is stored in the coercive force data storage unit 61 (S502), and the coercive force variation coefficient calculating unit 66 calculates the standard deviation and average value of the measured coercive force.
  • the sample 20 whose coercive force has been measured is placed on the sample table 1 of the evaluation system 100 shown in FIG. (S503). Specifically, the sample 20 placed on the sample table 1 is irradiated with light from the light source 3, and the crystal structure image thereof is detected by the detector 5. Stored in the storage unit 62 .
  • the crystal structure image data stored in the image storage unit 62 is processed, the grain size included in this crystal structure image is measured, and the grain size analysis unit In step 64, the particle size distribution is analyzed, and the particle size in the first quartile and the average particle size are obtained (S504).
  • FIG. 6 shows the flow of processing when the present invention is applied to an acceptance inspection performed when purchasing soft magnetic material from a material manufacturer.
  • the particle size analysis unit 64 analyzes the particle size (S602), obtains the first quartile and average particle size (S603), and stores the coercive force variation coefficient and particle size index value stored in the database. (corresponding to the straight line 23 in FIG. 2), the coercive force variation coefficient is determined, and it is determined whether or not the determined coercive force variation coefficient is smaller than a preset reference value (S604).
  • Soft magnetic materials with a coercive force variation coefficient A determination are used in processes corresponding to products that require a relatively small range of coercive force variation. After the manufacturing process (S607), the product is assembled in the product assembly process (S608).
  • the soft magnetic material determined to have a coercive force variation coefficient B is adopted in a process corresponding to a product that can have a relatively large variation range of coercive force, and undergoes the part manufacturing process (S609).
  • the product is assembled in the product assembly process (S610).
  • the distribution of the coercive force variation coefficient is examined over the entire surface of the soft magnetic material to be processed. It is determined whether the coercive force variation is large or small. As a result, it is possible to distinguish between a region to be processed for a product that requires a small variation in coercive force and a region to be processed for a product that is allowed to have a relatively large variation in coercive force.
  • FIG. 7 The flow of FIG. 7 will be described below. First, the entire surface of the soft magnetic material to be processed is sequentially imaged with the field size of the detector 5 in the imaging unit 2 of the evaluation system 100 shown in FIG. An image is comprehensively acquired for the entire surface of the soft magnetic material (S701).
  • the acquired image is processed by the information processing unit 6, and the grain size of the soft magnetic material to be processed is analyzed for each image (each imaging region) (S702), and in each image (each imaging region)
  • the first quartile of particle size and the average particle size are obtained, and the particle size index value obtained by dividing the first quartile by the average particle size value is extracted (S703).
  • each image (each imaged area), and it is determined whether the calculated coercive force variation coefficient is larger or smaller than a preset threshold value (S704).
  • the coercive force variation coefficient is smaller than the preset threshold value (YES), it is determined that the coercive force variation is small within the range of the image (each imaging region) (S705), and the coercive force variation coefficient is If it is larger than the preset threshold value (NO), it is determined that the coercive force variation is large within the range of the image (each imaging area) (S706).
  • FIG. 8 shows an example of a GUI 80 that displays the results of the inspection performed during the material acceptance inspection described in the flowchart of FIG.
  • the GUI 80 includes an information input area 82, an acquired image display area 83 for displaying an acquired image of the surface of the material, and a grain size included in the image obtained by processing the acquired grain boundary image of the material in the information processing unit 6.
  • a determination result display area 87 is provided.
  • the information input area 82 includes a material name input section 821 for inputting the material name of the material to be inspected, a composition ratio data input section 822 for inputting data on the composition ratio of the material input in the material name input section 821, and a material name input section.
  • a mill sheet number input section 823 for inputting the number of the mill sheet attached to the material input to 821
  • a coercive force input section 824 for inputting the coercive force of the material to be inspected displayed on the mill sheet
  • a magnetic flux density input section for inputting the magnetic flux density.
  • 825 a magnetic permeability input unit 826 for inputting the magnetic permeability
  • a DB calling unit 827 for calling information stored in the database 65.
  • An acquired image display area 83 displays an image 831 of the material surface acquired by the imaging unit 2 and stored in the image storage unit 62 of the information processing unit 6.
  • a particle size distribution display area 84 displays an acquired image display area. The particle size distribution of the material surface in the image 831 measured by the particle size measurement unit 63 of the information processing unit 6 and analyzed by the particle size analysis unit 64 from the image 831 labeled in 83 is shown in FIG.
  • a graphical boxplot display area 842 is provided.
  • the coercive force variation coefficient correlation expression display area 85 data corresponding to the material input in the material name input section 821 among the data stored in the database 65 by clicking the DB call section 827 in the information input area 82 is displayed.
  • a graph 851 representing the relationship between the particle size index value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coercive force variation coefficient as shown in FIG.
  • the selected material name 854 is displayed.
  • the graph 851 shows a straight line 852 obtained by linearly approximating the relationship between the value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coercive force variation coefficient, and the coercive force variation coefficient at the time of acceptance inspection.
  • a straight line 853 indicates a reference value for the determination of .
  • an image 831 of the surface of the material displayed in the acquired image display area 83 is measured by the particle size measurement unit 63 of the information processing unit 6, analyzed by the particle size analysis unit 64, and is analyzed by the coercive force variation evaluation unit.
  • a graph 861 displaying the results 863 evaluated in 67 on the same graph as the graph 851, an average value display portion 865 displaying the average value of the particle size corresponding to the evaluation results 863, and the first quartile of the particle size distribution.
  • a first quartile data display 866 is provided for displaying data.
  • the graph 861 displays a straight line 862 corresponding to the straight line 852 of the graph 851 and a straight line 864 corresponding to the straight line 853 indicating the reference value for determination of the coercive force variation coefficient at the time of acceptance inspection.
  • a coercive force variation display portion 871 for displaying the variation in coercive force corresponding to the evaluation result 863 indicated in the graph 861 in the analysis result display area 86, and a soft magnetic material to be inspected this time.
  • An adaptable product display section 872 for displaying the name of the product to be processed and incorporated with the material is displayed, and the material evaluated by the coercive force variation evaluation section 67 is applied to the product displayed in the adaptable product display section 872. and a DB registration button 874 for registering the judgment result in the database 65 .
  • the conventional coercive force measuring means can be used. In a comparatively short period of time compared to the case of using a measuring device, it is possible to easily determine whether or not the material can be accepted, and furthermore, to establish an optimum processing policy.
  • FIG. 9 shows a GUI 90 showing the result of evaluating the coercive force variation coefficient performed at the stage of processing the soft magnetic material delivered after passing the acceptance inspection described in the flowchart of FIG.
  • the GUI 90 shown in FIG. Particle size distribution display area 94 for displaying information on the particle size contained in the processed image, coercive force variation coefficient correlation formula 95 for displaying information on the coefficient of variation of the coercive force of the sample, and analysis result display area 96. , and a determination result display area 97 for displaying determination results.
  • a coercive force variation mapping display area 86 showing the variation in coercive force at locations corresponding to a plurality of images is displayed.
  • the information input area 92 includes a material name input section 921 for inputting the material name of the material to be inspected, a composition ratio data input section 922 for inputting data on the composition ratio of the material input in the material name input section 921, and a material name input section.
  • a mill sheet number input section 923 for inputting the number of the mill sheet attached to the material input to 921
  • a coercive force input section 924 for inputting the coercive force of the material to be inspected displayed on the mill sheet
  • a magnetic flux density input section for inputting the magnetic flux density.
  • 825 a magnetic permeability input unit 926 for inputting magnetic permeability, and a DB calling unit 927 for calling information stored in the database 65.
  • an image display section 931 for displaying the image of the material surface acquired by the imaging section 2 and stored in the image storage section 62 of the information processing section 6, and an area for displaying this image are set.
  • a display area setting portion 932 is displayed.
  • the particle size distribution display area 94 the particle surface of the material measured by the particle size measurement unit 63 of the information processing unit 6 from the image displayed on the image display unit 931 of the acquired image display area 93 and analyzed by the particle size analysis unit 64 is displayed.
  • a graph display area 941 for displaying data corresponding to the histogram 131 as described in FIG. and a boxplot display area 942 for displaying the distribution of particle sizes displayed by this histogram in a boxplot.
  • the graph display area 941 displays the grain size distribution of the entire imaged area of the material to be inspected as a histogram. A curve obtained by fitting a logarithmic normal distribution curve corresponding to the histogram is displayed.
  • the boxplot display area 942 also displays data corresponding to the distribution of particle diameters in the entire area.
  • the material name entered in the material name input section 921 among the data stored in the database 65 by clicking the DB call section 927 in the information input area 92 is displayed.
  • the material name 955 entered in section 921 is displayed.
  • the graph 951 shows a straight line obtained by linearly approximating the relationship between the particle size index value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coercive force variation coefficient stored in the database 65.
  • 952 and data 953 corresponding to a plurality of regions marked in the coercive force variation mapping display area 96 are displayed.
  • a straight line 954 is displayed as a reference value for determination of the coercive force variation coefficient at the time of acceptance inspection.
  • the results of analyzing the images of the material surface in a plurality of regions are displayed, for example, in a graph 951 according to the magnitude of the coercive force variation for each region corresponding to the image captured by the imaging unit 2.
  • an all area button 962 and a specified area button 963 are displayed.
  • the image display unit 931 displays the evaluation result of the coercive force variation for the entire area captured by the imaging unit 2 for the material corresponding to the mill sheet input to the mill sheet number input unit 923.
  • the specified area button 963 is clicked, the evaluation result of the coercive force variation in the area set by the display area setting section 932 and its surrounding area is displayed.
  • a coercive force variation display portion 971 for displaying the coercive force variation in the region indicated in the mapping display portion 961 of the coercive force variation mapping display area 96, and a soft magnetic material to be inspected this time. is displayed, and the material evaluated by the coercive force variation evaluation unit 67 is the material to be applied to the product displayed in the applicable product display unit 972.
  • a judgment display portion 973 for displaying the result of judging whether or not to accept the request, and a DB registration button 974 for registering the judged result in the database 65 are provided.
  • the range of variation in the coercive force of the soft magnetic material is guaranteed when the product is assembled into a processed product. It is possible to prevent the backtracking process of disassembling a once-assembled product and replacing parts caused by a defect (when the variation range of coercive force is larger than the reference value).
  • the variation in coercive force is individually evaluated for each material before being processed and assembled into a product, so it is possible to ensure stable quality of the assembled product.
  • the method of evaluating the variation in coercive force before processing the soft magnetic material was explained, but the variation in coercive force was evaluated after processing the soft magnetic material and before incorporating it into the product. may be evaluated. By evaluating after processing, the variation in coercive force can be evaluated in a state closer to the product.
  • this embodiment When this embodiment is applied to an electron lens, the variation in the coercive force of the soft magnetic material can be evaluated before the coil is wound. It is possible to prevent the occurrence of backtracking processes for subsequent products.
  • permendur material as the soft magnetic material has been described, but iron or electromagnetic steel sheets can also be used.

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

To make it possible to evaluate the magnetic properties, especially a variation in coercive force, of a soft magnetic material used in electromagnets at a stage prior to being assembled into electronic lenses and other products, this soft magnetic material evaluation method involves: imaging the surface of the soft magnetic material by using an imaging unit to acquire a crystal structure image of the soft magnetic material; processing the obtained crystal structure image of the soft magnetic material by using an information processing system to evaluate the variation in the coercive force of the soft magnetic material; and displaying information pertaining to the variation of the coercive force of the evaluated soft magnetic material on a display terminal.

Description

軟磁性体材料の評価方法及び評価システムSOFT MAGNETIC MATERIAL EVALUATION METHOD AND EVALUATION SYSTEM
 本発明は、軟磁性体材料の評価方法及び評価システムに関する。 The present invention relates to an evaluation method and evaluation system for soft magnetic materials.
 軟磁性体材料は、所望の形状に加工されたうえでコイルと組み合わせて電磁石を形成して種々の産業機器や医療機器などに応用されている。これら産業機器や医療機器に求められる機能や精度が高度化するに伴い、電磁石に求められる精度も高度化している。 Soft magnetic materials are processed into desired shapes and then combined with coils to form electromagnets, which are applied to various industrial and medical equipment. As the functions and accuracy required for these industrial equipment and medical equipment are becoming more sophisticated, the accuracy required for electromagnets is also becoming more sophisticated.
 産業機器の一例として走査型電子顕微鏡(Scanning Electron Microscope : SEM)の場合、1次電子や2次電子の軌道を制御する電磁レンズには、小型化でき制御性を良くすることとともに、装置間の性能のばらつき(機差)をできるだけ小さくして品質を安定化させることが求められる。 In the case of a scanning electron microscope (SEM) as an example of industrial equipment, the electromagnetic lens that controls the trajectory of primary and secondary electrons needs to be downsized and improve controllability, Stabilizing quality by minimizing variations in performance (instrumental differences) is required.
 特許文献1には、励磁可能な磁束密度(飽和磁束密度)を向上させることによりモータの小型化を図ることが記載されている。 In Patent Document 1, it is described that the miniaturization of the motor is achieved by improving the magnetic flux density (saturation magnetic flux density) that can be excited.
特開2011-174103号公報JP 2011-174103 A
 装置間の性能のばらつき(機差)をできるだけ小さくして品質を安定化させるには、電磁石に用いられる磁性体材料(軟磁性体)の特性のばらつきをできるだけ小さくすることが望まれる。 In order to minimize variations in performance between devices (instrumental differences) and stabilize quality, it is desirable to minimize variations in the characteristics of the magnetic materials (soft magnetic materials) used in electromagnets.
 走査型電子顕微鏡(SEM)において機差ばらつきを低減し品質を安定化するためには,電子レンズ(対物レンズ)に用いられる電磁石の軟磁性体の磁気特性,特に保磁力のばらつきを抑制することが重要になる。 In order to reduce machine-to-machine variation and stabilize quality in scanning electron microscopes (SEMs), it is necessary to suppress variations in the magnetic properties of the electromagnet used in the electron lens (objective lens), especially in the coercive force. becomes important.
 特許文献1には、励磁可能な磁束密度(飽和磁束密度)を向上させることによりモータの小型化を図ることが記載されているが、電磁石の軟磁性体材料の磁気特性,特に保磁力のばらつきを抑制して装置間の性能のばらつき(機差)をできるだけ小さくして品質を安定化させることについては触れられていない。 Patent Document 1 describes that the miniaturization of the motor is achieved by improving the magnetic flux density (saturation magnetic flux density) that can be excited. There is no mention of stabilizing the quality by suppressing the variation in performance between devices (instrumental difference) as much as possible.
 軟磁性体材料の品質はミルシートで管理することができるが、軟磁性体材料の保磁力(Hc)のばらつきを評価するためには、磁気特性を測定することが必要になり時間がかかってしまう。また、装置に組み込んだ電子レンズが所期の性能を発揮しない場合、電子レンズを装置から取り外すという後戻りの工程が発生してしまい、作業工数が増えてしまう。 The quality of soft magnetic materials can be controlled using mill sheets, but in order to evaluate the variation in coercive force (Hc) of soft magnetic materials, it is necessary to measure the magnetic properties, which takes time. . Moreover, if the electronic lens incorporated in the device does not exhibit the desired performance, a backtracking step of removing the electronic lens from the device is required, resulting in an increase in man-hours.
 本発明は、上記した従来技術の課題を解決して、電磁石に用いる軟磁性体材料の磁気特性,特に保磁力のばらつきを電子レンズなどの製品に組み立てる前の段階で評価することを可能にする軟磁性体材料の評価方法及び評価システムを提供するものである。 The present invention solves the above-described problems of the prior art, and makes it possible to evaluate the magnetic properties of soft magnetic materials used in electromagnets, particularly variations in coercive force, before they are assembled into products such as electronic lenses. An evaluation method and an evaluation system for soft magnetic materials are provided.
 上記した課題を解決するために、本発明では、軟磁性体材料の組織を撮像部で撮像して軟磁性体材料の結晶組織像を取得し、この取得した軟磁性体材料の結晶組織像を情報処理系で処理し,別途測定した保磁力ばらつきの値と比較することで軟磁性体材料の保磁力のばらつきを評価し,評価した軟磁性体材料の保磁力のばらつきに関する情報を表示端末に表示する軟磁性体材料の評価方法とした。 In order to solve the above problems, in the present invention, the structure of the soft magnetic material is imaged by an imaging unit to obtain a crystal structure image of the soft magnetic material, and the obtained crystal structure image of the soft magnetic material is obtained. The coercive force variation of the soft magnetic material is evaluated by processing it in the information processing system and comparing it with the separately measured coercive force variation value. This was used as an evaluation method for the soft magnetic material to be displayed.
 また、上記した課題を解決するために、本発明では、軟磁性体材料の評価システムを、軟磁性体材料の表面を撮像して軟磁性体材料の結晶組織像を取得する撮像部と、この撮像部で撮像した軟磁性体材料の結晶組織像を処理して軟磁性体材料の保磁力のばらつきを評価する情報処理系と,この情報処理系で評価した軟磁性体材料の保磁力のばらつきに関する情報を表示する表示端末とを備えて構成した。 Further, in order to solve the above-described problems, the present invention provides a soft magnetic material evaluation system comprising an imaging unit for capturing an image of the surface of the soft magnetic material to acquire a crystal structure image of the soft magnetic material, and An information processing system that processes the crystal structure image of the soft magnetic material captured by the imaging unit and evaluates the variation in the coercive force of the soft magnetic material, and the variation in the coercive force of the soft magnetic material evaluated by this information processing system. and a display terminal for displaying information about.
 本発明によれば、電磁石に用いる軟磁性体材料の磁気特性,特に保磁力のばらつきを軟磁性体材料を撮像して得られた結晶組織像から判定することができるようになり、製品に組み立てる前の段階で軟磁性体材料の磁気特性、特に保磁力のばらつきを評価することを可能にした。 According to the present invention, the magnetic properties of the soft magnetic material used for the electromagnet, especially the variation in the coercive force, can be determined from the crystal structure image obtained by imaging the soft magnetic material, and the product can be assembled. In the previous stage, it was possible to evaluate the magnetic properties of soft magnetic materials, especially the variation in coercive force.
(a)は軟磁性体材料表面の光学顕微鏡写真から得た粒界像、(b)は軟磁性体材料表面の粒子の大きさのばらつきを示す箱ひげ図、(c)は軟磁性体材料表面の粒子の大きさの分布を示すヒストグラムである。(a) is a grain boundary image obtained from an optical micrograph of the surface of the soft magnetic material, (b) is a boxplot showing the variation in grain size on the surface of the soft magnetic material, and (c) is the soft magnetic material. 4 is a histogram showing surface particle size distribution; 軟磁性体材料の表面の粒子の大きさと保磁力変動係数の関係を示すグラフである。4 is a graph showing the relationship between the size of particles on the surface of a soft magnetic material and the coefficient of variation of coercive force. 本発明の実施例に係る軟磁性体材料を撮像して得られる表面の結晶粒径の分布情報から軟磁性体材料の保磁力のばらつきを評価する評価システムの概略の構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an evaluation system for evaluating variations in coercive force of a soft magnetic material from surface grain size distribution information obtained by imaging the soft magnetic material according to an embodiment of the present invention; FIG. . 本発明の実施例に係る評価システムにおける情報処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the information processing part in the evaluation system based on the Example of this invention. 本発明の実施例に係る軟磁性体材料表面の粒子の大きさの情報から保磁力変動係数を推定するためのデータベースを作成する手順を示すフロー図である。FIG. 4 is a flowchart showing a procedure for creating a database for estimating a coercive force variation coefficient from information on the size of particles on the surface of a soft magnetic material according to an example of the present invention; 本発明の実施例に係る軟磁性体材料の入荷時に軟磁性体材料結晶組織像から保磁力変動係数を推定して材料受け入れ可否を判定する手順を示すフロー図である。FIG. 5 is a flow chart showing a procedure for estimating a coercive force variation coefficient from a crystal structure image of a soft magnetic material and determining whether or not the material can be accepted when the soft magnetic material according to the embodiment of the present invention is received. 本発明の実施例に係る軟磁性体材料結晶組織像から保磁力変動係数を推定して保磁力ばらつきをマッピングして表示する手順を示すフロー図である。FIG. 5 is a flowchart showing a procedure for estimating a coercive force variation coefficient from a soft magnetic material crystal structure image, mapping and displaying coercive force variations according to an embodiment of the present invention. 本発明の実施例に係る軟磁性体材料の入荷時に軟磁性体材料結晶組織像から保磁力変動係数を推定した結果を示す画面の一例を示す図である。FIG. 5 is a diagram showing an example of a screen showing a result of estimating a coercive force variation coefficient from a soft magnetic material crystal structure image at the time of arrival of the soft magnetic material according to the embodiment of the present invention; 本発明の実施例に係る軟磁性体材料結晶組織像から保磁力変動係数を推定して保磁力ばらつきをマッピングした結果を示す画面の一例を示す図である。FIG. 5 is a diagram showing an example of a screen showing a result of mapping coercive force variation by estimating a coercive force variation coefficient from a soft magnetic material crystal structure image according to an example of the present invention.
 軟磁性体材料として鉄(Fe)とコバルト(Co)との合金であるパーメンジュール材を用いた場合、軟磁性体材料の表面には大小さまざまな大きさを持つ粒子が表れる。図1(a)にパーメンジュール材の粒界像11の一例を示す。 When permendur, an alloy of iron (Fe) and cobalt (Co), is used as the soft magnetic material, particles of various sizes appear on the surface of the soft magnetic material. FIG. 1(a) shows an example of a grain boundary image 11 of a permendur material.
 図1(a)の粒界像11において、材料表面には比較的大きな粒径の粒子111と比較的小さい粒径の粒子112が混在していることがわかる。 In the grain boundary image 11 of FIG. 1(a), it can be seen that particles 111 with a relatively large particle size and particles 112 with a relatively small particle size are mixed on the surface of the material.
 この粒界像11における粒子の大きさ(粒子径)の分布を箱ひげ図:12で表したものが、図1(b)である。図1(b)で縦軸は粒子の大きさを示しており、単位はμmである。この図から、粒径分布の25%から75%の部分121が大きさ20μm~60μmの範囲にあり、大きさの中央値122が35μm、平均値が123が45μmであることがわかる。 Fig. 1(b) shows the distribution of the particle size (particle diameter) in this grain boundary image 11 as a box plot: 12. In FIG. 1(b), the vertical axis indicates the particle size, and the unit is μm. From this figure, it can be seen that the 25% to 75% portion 121 of the particle size distribution ranges in size from 20 μm to 60 μm, the median size 122 is 35 μm, and the mean value 123 is 45 μm.
 また、粒径分布をヒストグラムで表したものが図1(c)のグラフ13である。図1(c)のヒストグラムは、粒子の大きさを10μmピッチで分けてヒストグラム131で表している。ヒストグラム131から,20μm~40μmと,60μmの2か所にピークが確認できる。また、曲線132はヒストグラム131で表した分布を対数正規分布曲線でフィッティングしたものである。20μmと30μmとの間に分布のピークが有り、10μm~60μmの範囲で多く分布し、大きい方は150μmぐらいまで分布していることがわかる。ただしこのフィッティングではヒストグラムで確認できる2つのピークを再現できていないことがわかる。また,前述した箱ひげ図においても2つのピークを表現することができない。 Graph 13 in FIG. 1(c) is a histogram showing the particle size distribution. The histogram of FIG. 1(c) is represented by a histogram 131 in which the particle size is divided by 10 μm pitch. From the histogram 131, two peaks can be confirmed at 20 μm to 40 μm and 60 μm. A curve 132 is obtained by fitting the distribution represented by the histogram 131 with a logarithmic normal distribution curve. It can be seen that there is a distribution peak between 20 μm and 30 μm, there is a large distribution in the range of 10 μm to 60 μm, and the largest one is distributed up to about 150 μm. However, it can be seen that this fitting cannot reproduce the two peaks that can be confirmed in the histogram. Also, two peaks cannot be represented in the boxplot described above.
 種々の粒径分布について評価した結果、結晶粒径の分布と保磁力のばらつき(変動範囲)との間に、ある関係が存在することを見出した。 As a result of evaluating various grain size distributions, it was found that there is a certain relationship between the grain size distribution and the coercive force variation (fluctuation range).
 すなわち、図2のグラフ21に示すように、表面に現れる粒径22の分布(ばらつき範囲)における第1四分位数を粒径の平均値で割った値と保磁力の変動係数(保磁力の標準偏差を保磁力の平均値で割った値)との間には、直線23で表される線形な関係が有ることを見出した。 That is, as shown in the graph 21 of FIG. 2, the value obtained by dividing the first quartile in the distribution (variation range) of the grain size 22 appearing on the surface by the average value of the grain size and the coefficient of variation of the coercive force (coercive force It was found that there is a linear relationship represented by a straight line 23 between the standard deviation of .
 すなわち、粒径22の分布における第1四分位数を粒径の平均値で割った値が小さいほど保磁力の変動係数が小さくて保磁力のばらつきが小さく、逆に粒径22の分布における第1四分位数を粒径の平均値で割った値が大きいほど保磁力の変動係数が大きくて保磁力のばらつきが大きいということが判った。 That is, the smaller the value obtained by dividing the first quartile in the distribution of the particle size 22 by the average value of the particle size, the smaller the coefficient of variation of the coercive force and the smaller the variation in the coercive force. It was found that the larger the value obtained by dividing the first quartile by the average particle size, the larger the coefficient of variation of coercive force and the greater the variation in coercive force.
 このことから、軟磁性体材料を光学顕微鏡や磁気力顕微鏡(Magnetic Force Microscopy;MFM)等で検察して得られる画像を解析して得られる粒径分布と軟磁性体材料の保磁力との関係から図2における直線23に相当する関係を求めておくことで、新たな軟磁性体材料について保磁力を実際に測定しなくても材料を光学顕微鏡等で検察して得られる画像を解析することで、この新たな軟磁性体材料の保磁力のばらつきを推定することができることがわかる。 From this, the relationship between the particle size distribution obtained by analyzing the image obtained by examining the soft magnetic material with an optical microscope or magnetic force microscope (MFM) and the coercive force of the soft magnetic material By obtaining the relationship corresponding to the straight line 23 in FIG. , the variation in coercive force of this new soft magnetic material can be estimated.
 本発明は、上記した新たな知見に基づいてなされたものであって、電子レンズ等に用いる軟磁性体材料について、磁気測定に替えて軟磁性体材料を撮像して得られる画像から軟磁性体材料の磁気特性(保磁力)のばらつきを比較的容易に判定できるようにしたものである。 The present invention has been made based on the above-mentioned new findings. With respect to soft magnetic materials used in electron lenses and the like, the soft magnetic materials can be detected from an image obtained by imaging the soft magnetic materials in place of magnetic measurement. This makes it possible to relatively easily determine variations in magnetic properties (coercive force) of materials.
 以下に、本発明の実施の形態を図面に基づいて詳細に説明する。本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In all the drawings for explaining this embodiment, parts having the same functions are denoted by the same reference numerals, and repeated explanation thereof will be omitted in principle.
 ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 However, the present invention should not be construed as being limited to the descriptions of the embodiments shown below. Those skilled in the art will easily understand that the specific configuration can be changed without departing from the idea or gist of the present invention.
 図3に、本実施例に係る軟磁性体材料の磁気特性を評価するための評価システム100の概略の構成を示す。 FIG. 3 shows a schematic configuration of an evaluation system 100 for evaluating the magnetic properties of the soft magnetic material according to this example.
 本実施例に係る評価システム100は、試料20を載置する試料台1、試料台1に載置された試料20の表面を撮像する撮像部2,撮像部2で撮像した試料20の画像を処理する情報処理系8,情報処理系8で処理した情報を表示する画像表示端末9を備えている。 The evaluation system 100 according to the present embodiment includes a sample table 1 on which a sample 20 is placed, an imaging unit 2 for capturing an image of the surface of the sample 20 placed on the sample table 1, and an image of the sample 20 captured by the imaging unit 2. An information processing system 8 for processing and an image display terminal 9 for displaying information processed by the information processing system 8 are provided.
 撮像部2は、光源3,光源3から発射された光の一部を試料台1に載置された試料20の側に反射するとともに試料20で反射した光の一部を透過するハーフミラー4,ハーフミラー4を透過した試料20からの反射光を受光して試料20の表面の像を検出する検出器5を備えている。 The imaging unit 2 includes a light source 3 and a half mirror 4 that reflects part of the light emitted from the light source 3 toward the sample 20 placed on the sample stage 1 and transmits part of the light reflected by the sample 20. , and a detector 5 for detecting the image of the surface of the sample 20 by receiving reflected light from the sample 20 that has passed through the half mirror 4 .
 情報処理系8は,試料20の表面を撮像した検出器5からの信号を受けて処理する情報処理部6,情報処理部6で処理した情報を記憶する情報記憶部7を備えている。 The information processing system 8 includes an information processing section 6 that receives and processes signals from the detector 5 that has imaged the surface of the sample 20 and an information storage section 7 that stores the information processed by the information processing section 6 .
 情報処理部6の内部の構成を図4に示す。情報処理部6は、保磁力データ記憶部61、画像記憶部62、粒径測定部63、粒径解析部64,データベース65,保磁力変動係数算出部66,保磁力ばらつき評価部67,ネットワークアダプタ68,CPU69を備え、これらは共通線路60で互いに接続され、ネットワーク70と接続している。 The internal configuration of the information processing section 6 is shown in FIG. The information processing unit 6 includes a coercive force data storage unit 61, an image storage unit 62, a particle size measurement unit 63, a particle size analysis unit 64, a database 65, a coercivity variation coefficient calculation unit 66, a coercivity variation evaluation unit 67, and a network adapter. 68 and CPU 69 , which are connected to each other by a common line 60 and connected to a network 70 .
 保磁力データ記憶部61には、試料台1に搭載した試料20について図示していない保磁力測定装置(例えば、直流磁化測定装置)で測定して得られた試料20の複数の個所の保磁力のデータが試料20と関連付けて記憶されている。 The coercive force data storage unit 61 stores the coercive forces of a plurality of points of the sample 20 obtained by measuring the sample 20 mounted on the sample table 1 with a coercive force measuring device (for example, a DC magnetization measuring device) (not shown). are stored in association with the sample 20.
 撮像部2で撮像した試料20の画像(図1の粒界像11に相当)は画像記憶部62に記憶される。粒径測定部63では、画像記憶部62に記憶され試料20の画像から試料20表面の粒子(図1の粒子111や112に相当)の径を測定する。ここで、試料20の画像から試料20表面の粒径の測定には、一般的な画像解析ソフトを用いて算出する。 The image of the sample 20 captured by the imaging unit 2 (corresponding to the grain boundary image 11 in FIG. 1) is stored in the image storage unit 62 . The particle size measuring unit 63 measures the size of particles (corresponding to the particles 111 and 112 in FIG. 1) on the surface of the sample 20 from the image of the sample 20 stored in the image storage unit 62 . Here, for the measurement of the particle size on the surface of the sample 20 from the image of the sample 20, calculation is performed using general image analysis software.
 粒径測定部63で測定された粒径の情報は粒径解析部64に送られ、粒径解析部64において粒径の分布における第1四分位、粒子径の平均値が求められ、第1四分位の値を粒子径の平均値で割った値(以下、これを粒径指標値と記す)を算出する。 The information on the particle size measured by the particle size measuring unit 63 is sent to the particle size analyzing unit 64, where the first quartile of the particle size distribution and the average value of the particle size are obtained. A value (hereinafter referred to as a particle size index value) is calculated by dividing the value of one quartile by the average value of the particle size.
 一方、保磁力変動係数算出部66において、保磁力データ記憶部61に記憶されている試料20の複数の個所の保磁力にデータから試料20の保磁力変動係数(保磁力のばらつきの標準偏差を保磁力の平均値で除した値)を算出する。 On the other hand, in the coercive force variation coefficient calculation unit 66, the coercive force variation coefficient of the sample 20 (the standard deviation of the coercive force variation is divided by the average coercive force).
 粒径解析部64で求められた粒径指標値は、保磁力変動係数算出部66で算出された保磁力変動係数の情報と関連付けてデータベース65に送られる。 The particle size index value obtained by the particle size analysis unit 64 is sent to the database 65 in association with information on the coercive force variation coefficient calculated by the coercive force variation coefficient calculation unit 66 .
 データベース65に保磁力変動係数の情報と関連付けられた粒径指標値の情報が所定の数蓄積された後、これらのデータは保磁力ばらつき評価部67に送られ、保磁力ばらつき評価部67において、保磁力変動係数と粒径指標値の組合せのばらつきを回帰分析することにより、図2の直線23のような保磁力変動係数と粒径指標値との関係を求め、データベース65に記憶しておく。 After a predetermined number of pieces of information on the particle diameter index value associated with the information on the coercive force variation coefficient are stored in the database 65, these data are sent to the coercive force variation evaluating unit 67, where the coercive force variation evaluating unit 67 By performing regression analysis on variations in combinations of coercive force variation coefficients and particle size index values, relationships between coercive force variation coefficients and particle size index values, such as the straight line 23 in FIG. .
 保磁力データ記憶部61、画像記憶部62、粒径測定部63、粒径解析部64,データベース65,保磁力変動係数算出部66,保磁力ばらつき評価部67の各動作は、共通線路60で接続されているCPU69により制御される。 Each operation of the coercive force data storage unit 61, the image storage unit 62, the particle size measurement unit 63, the particle size analysis unit 64, the database 65, the coercive force variation coefficient calculation unit 66, and the coercive force variation evaluation unit 67 is performed by the common line 60. It is controlled by the connected CPU 69 .
 このような評価システム100を用いて、試料20の結晶組織像から試料20の保磁力のばらつきを評価するためのデータベースを作成する手順を、図5のフロー図を用いて説明する。 A procedure for creating a database for evaluating the coercive force variation of the sample 20 from the crystal structure image of the sample 20 using such an evaluation system 100 will be described with reference to the flowchart of FIG.
 データベースの作成に当たっては複数の試料についてデータを取得するので、S501でnを1に設定し、図示していない保磁力測定手段を用いて最初の試料20について複数の個所の保磁力を測定し、保磁力データ記憶部61に記憶する(S502) とともに、保磁力変動係数算出部66において測定した保磁力の標準偏差と平均値とを求める。 Since data is acquired for a plurality of samples in creating the database, n is set to 1 in S501, and the coercive force of the first sample 20 is measured at a plurality of points using coercive force measuring means (not shown), The data is stored in the coercive force data storage unit 61 (S502), and the coercive force variation coefficient calculating unit 66 calculates the standard deviation and average value of the measured coercive force.
 次に、この保磁力を測定した試料20を図3に示した評価システム100の試料台1に載置して、撮像部2で試料20の結晶組織像を撮像して情報処理部6に記録する(S503)。具体的には、光源3からの光を試料台1に載置した試料20に照射してその結晶組織像を検出器5で検出し、検出した結晶組織像のデータを情報処理部6の画像記憶部62に記憶する。 Next, the sample 20 whose coercive force has been measured is placed on the sample table 1 of the evaluation system 100 shown in FIG. (S503). Specifically, the sample 20 placed on the sample table 1 is irradiated with light from the light source 3, and the crystal structure image thereof is detected by the detector 5. Stored in the storage unit 62 .
 次に、情報処理部6の粒径測定部63において、画像記憶部62に記憶された結晶組織像のデータを処理して、この結晶組織像に含まれる粒径を測定し、粒径解析部64において粒径の分布を解析し、第1四分位の粒径や粒径の平均値を求める(S504)。 Next, in the grain size measurement unit 63 of the information processing unit 6, the crystal structure image data stored in the image storage unit 62 is processed, the grain size included in this crystal structure image is measured, and the grain size analysis unit In step 64, the particle size distribution is analyzed, and the particle size in the first quartile and the average particle size are obtained (S504).
 次にnの値が予め設定したNに達したかを判定し(S505)、Nに達していない場合(No)にはnに1を加算して(S508)S502に戻る。 Next, it is determined whether the value of n has reached the preset N (S505), and if it has not reached N (No), 1 is added to n (S508) and the process returns to S502.
 一方、nの値が予め設定したNに達した場合(Yes)には次のステップに進んで、保磁力の変動係数と第1四分位数/平均粒径の関係を評価して図2の直線23のような保磁力変動係数と粒径指標値との関係を求め(S506)、データベース65に記憶する(S507)。 On the other hand, if the value of n reaches the preset N (Yes), proceed to the next step, evaluate the relationship between the coefficient of variation of coercive force and the first quartile/average particle size, and A relationship between the coercive force variation coefficient and the particle diameter index value, such as the straight line 23 in (S506), is stored in the database 65 (S507).
 次に、このようにして作成したデータベースを用いて軟磁性体で形成された試料20の結晶組織像から保磁力のばらつきを推定する方法について説明する。 Next, a method for estimating the variation in coercive force from the crystal structure image of the sample 20 made of a soft magnetic material using the database thus created will be described.
 図6は、軟磁性体の材料を素材メーカーから仕入れるときに行う受入検査に本発明を適用した場合の処理の流れを示している。 FIG. 6 shows the flow of processing when the present invention is applied to an acceptance inspection performed when purchasing soft magnetic material from a material manufacturer.
 まず、入荷した軟磁性体の材料について、図3に示した評価システム100の撮像部2で軟磁性体の材料結晶組織像を取得し(S601)、粒径測定部63で測定した粒径のデータを用いて粒径解析部64で粒径を解析し(S602)、第1四分位や平均粒径を求め(S603)、データベースに記憶しておいた保磁力変動係数と粒径指標値との関係(図2の直線23に相当)から保磁力変動係数を求め、この求めた保磁力変動係数が予め設定した基準値よりも小さいか否かを判定する(S604)。 First, for the received soft magnetic material, the imaging unit 2 of the evaluation system 100 shown in FIG. Using the data, the particle size analysis unit 64 analyzes the particle size (S602), obtains the first quartile and average particle size (S603), and stores the coercive force variation coefficient and particle size index value stored in the database. (corresponding to the straight line 23 in FIG. 2), the coercive force variation coefficient is determined, and it is determined whether or not the determined coercive force variation coefficient is smaller than a preset reference value (S604).
 判定の結果、求めた保磁力変動係数が予め設定した基準値よりも大きい場合(NG)には、受け入れ基準値を満たしていないとして、入荷した軟磁性体の材料をメーカーに返却する(S605)。 As a result of the determination, if the calculated coercive force variation coefficient is larger than the preset reference value (NG), it is determined that the acceptance reference value is not satisfied, and the incoming soft magnetic material is returned to the manufacturer (S605). .
 一方、求めた保磁力変動係数が予め設定した基準値よりも小さい場合(OK)には、受け入れ基準値を満たしているので入荷した軟磁性体の材料の納入を認可する(S606)。 On the other hand, if the obtained coefficient of variation of coercive force is smaller than the preset reference value (OK), it satisfies the acceptance reference value, so delivery of the received soft magnetic material is approved (S606).
 納入された軟磁性体材料については、保磁力変動係数の大きさに応じて、保磁力変動係数が基準値よりも0に近い保磁力変動係数A判定のものと保磁力変動係数が基準値に近い保磁力変動係数B判定のものに分けられ、保磁力変動係数A判定の軟磁性体の材料は保磁力の変動範囲が比較的小さいことが求められる製品に対応する工程に採用されて、部品製造の工程(S607)を経て、製品組立の工程(S608)で製品に組み立てる。 Regarding the delivered soft magnetic material, depending on the magnitude of the coercive force variation coefficient, the one with the coercive force variation coefficient A judgment that the coercive force variation coefficient is closer to 0 than the reference value and the one with the coercive force variation coefficient equal to the reference value Soft magnetic materials with a coercive force variation coefficient A determination are used in processes corresponding to products that require a relatively small range of coercive force variation. After the manufacturing process (S607), the product is assembled in the product assembly process (S608).
 一方、保磁力変動係数Bと判定した軟磁性体の材料については、保磁力の変動範囲が比較的大きくてもよい製品に対応する工程に採用されて、部品製造の工程(S609)を経て、製品組立の工程(S610)で製品に組み立てる。 On the other hand, the soft magnetic material determined to have a coercive force variation coefficient B is adopted in a process corresponding to a product that can have a relatively large variation range of coercive force, and undergoes the part manufacturing process (S609). The product is assembled in the product assembly process (S610).
 この場合、組み立てられた製品に使われた軟磁性体材料がA判定のものであるかB判定のものであるかが判っているので、各製品に要求される保磁力の変動範囲の大きさに応じて適用する製品を変えることができる。 In this case, since it is known whether the soft magnetic material used in the assembled product is A grade or B grade, the size of the coercive force variation range required for each product Depending on the application, the product applied can be varied.
 次に、図6で説明した受入検査に合格して納入された軟磁性体材料を加工する段階において行う保磁力変動係数を評価する手順について、図7を用いて説明する。 Next, the procedure for evaluating the coercive force variation coefficient at the stage of processing the soft magnetic material delivered after passing the acceptance inspection described in FIG. 6 will be described with reference to FIG.
 図6で説明した受入れ検査に合格して納入された軟磁性体材料について、A判定又はB判定とされたものであっても、その材料の面内で保磁力変動係数が大きい部分(保磁力のばらつきが大きい部分)や保磁力変動係数が小さい部分(保磁力のばらつきが小さい部分)が存在する可能性がある。 Even if the soft magnetic material that has passed the acceptance inspection described in FIG. There may be a portion where the coercive force variation coefficient is large) and a portion where the coercive force variation coefficient is small (a portion where the coercive force variation is small).
 すなわち、図6で説明した受入れ検査でA判定と評価された部材の中にも、部分的にB評価レベルの保磁力変動係数が大きい部分が有ったり、又は、B判定と評価された部材の中にも、部分的にA評価レベルの保磁力変動係数が小さい部分が有る可能性がある。 That is, even among the members evaluated as A in the acceptance inspection described in FIG. Among them, there is a possibility that there is a part where the coercive force variation coefficient of the A evaluation level is small.
 そこで、図7に示すように軟磁性体材料を加工する前の段階で、加工対象の軟磁性体材料の全面について保磁力変動係数の分布を調べて、加工対象の軟磁性体材料の面内における保磁力ばらつきの大きい領域と小さい領域とを判別するようにした。これにより、保磁力のばらつきが小さいことが要求される製品向けに加工する領域と、保磁力のばらつきが比較的大きくても許容される製品向けに加工する領域とを識別できるようになる。 Therefore, as shown in FIG. 7, before the soft magnetic material is processed, the distribution of the coercive force variation coefficient is examined over the entire surface of the soft magnetic material to be processed. It is determined whether the coercive force variation is large or small. As a result, it is possible to distinguish between a region to be processed for a product that requires a small variation in coercive force and a region to be processed for a product that is allowed to have a relatively large variation in coercive force.
 図7のフローについて以下に説明する。
  まず、加工対象の軟磁性体材料の全面を、図3に示した評価システム100の撮像部2における検出器5の視野サイズで、加工対象の軟磁性体材料の全面を順次撮像し、加工対象の軟磁性体材料の全面について網羅的に画像を取得する(S701)。
The flow of FIG. 7 will be described below.
First, the entire surface of the soft magnetic material to be processed is sequentially imaged with the field size of the detector 5 in the imaging unit 2 of the evaluation system 100 shown in FIG. An image is comprehensively acquired for the entire surface of the soft magnetic material (S701).
 次に、取得した画像について情報処理部6で処理して、各画像(各撮像領域)ごとに加工対象の軟磁性体材料の粒径を解析し(S702)、各画像(各撮像領域)における粒径の第1四分位及び平均粒径を求めて第1四分位を平均粒径値で除した粒径指標値を抽出する(S703)。 Next, the acquired image is processed by the information processing unit 6, and the grain size of the soft magnetic material to be processed is analyzed for each image (each imaging region) (S702), and in each image (each imaging region) The first quartile of particle size and the average particle size are obtained, and the particle size index value obtained by dividing the first quartile by the average particle size value is extracted (S703).
 次に、S703で求めた粒径指標値に基づいて,データベース65に記憶しておいた図2の直線23に示すような保磁力変動係数と粒径指標値との関係から各画像(各撮像領域)の範囲における保磁力変動係数を求め、この求めた保磁力変動係数が予め設定した閾値よりも大きいか小さいかを判定する(S704)。 Next, based on the particle size index value obtained in S703, each image (each imaged area), and it is determined whether the calculated coercive force variation coefficient is larger or smaller than a preset threshold value (S704).
 判定の結果、保磁力変動係数が予め設定した閾値よりも小さい場合(YES)には、その画像(各撮像領域)の範囲において保磁力ばらつきが小さいと判定し(S705)、保磁力変動係数が予め設定した閾値よりも大きい場合(NO)には、その画像(各撮像領域)の範囲において保磁力ばらつきが大きいと判定する(S706)。 As a result of the determination, if the coercive force variation coefficient is smaller than the preset threshold value (YES), it is determined that the coercive force variation is small within the range of the image (each imaging region) (S705), and the coercive force variation coefficient is If it is larger than the preset threshold value (NO), it is determined that the coercive force variation is large within the range of the image (each imaging area) (S706).
 次に、保磁力ばらつきが小さいと判定したもの(S705)及び保磁力ばらつきが大きいと判定したもの(S706)それぞれについて、保磁力を解析したエリアの保磁力のばらつきマッピングを作成し(S707)、その結果をGUI(Graphic User Interface)に標示する(S708)。 Next, for each of the areas determined to have small coercive force variations (S705) and those determined to have large coercive force variations (S706), create a coercive force variation mapping of the area analyzed for coercive force (S707), The result is displayed on a GUI (Graphic User Interface) (S708).
 図8には、図6のフロー図で説明した材料受け入れ検査時に検査した結果を表示するGUI80の一例を示す。 FIG. 8 shows an example of a GUI 80 that displays the results of the inspection performed during the material acceptance inspection described in the flowchart of FIG.
 GUI80には、情報入力エリア82,取得した材料表面の画像を表示する取得画像表示エリア83,取得した材料の粒界像を情報処理部6で処理して得られた画像内に含まれる粒径に関する情報を表示する粒径分布表示エリア84,試料の保磁力の変動係数に関する情報を表示する保磁力変動係数相関式表示エリア85,解析結果を表示する解析結果表示エリア86,判定結果を表示する判定結果表示エリア87を備えている。 The GUI 80 includes an information input area 82, an acquired image display area 83 for displaying an acquired image of the surface of the material, and a grain size included in the image obtained by processing the acquired grain boundary image of the material in the information processing unit 6. Particle size distribution display area 84 for displaying information about the coercive force variation coefficient correlation expression display area 85 for displaying information about the variation coefficient of the coercive force of the sample, Analysis result display area 86 for displaying analysis results, and judgment results A determination result display area 87 is provided.
 情報入力エリア82には、検査対象材料の材料名を入力する材料名入力部821,材料名入力部821に入力した材料の組成比のデータを入力する組成比データ入力部822,材料名入力部821に入力した材料に添付されたミルシートの番号を入力するミルシート番号入力部823,ミルシートに表示された検査対象材料の保磁力を入力する保磁力入力部824,磁束密度を入力する磁束密度入力部825,透磁率を入力する透磁率入力部826、データベース65に記憶した情報を呼び出すDB呼出部827を備えている。 The information input area 82 includes a material name input section 821 for inputting the material name of the material to be inspected, a composition ratio data input section 822 for inputting data on the composition ratio of the material input in the material name input section 821, and a material name input section. A mill sheet number input section 823 for inputting the number of the mill sheet attached to the material input to 821, a coercive force input section 824 for inputting the coercive force of the material to be inspected displayed on the mill sheet, and a magnetic flux density input section for inputting the magnetic flux density. 825, a magnetic permeability input unit 826 for inputting the magnetic permeability, and a DB calling unit 827 for calling information stored in the database 65.
 取得画像表示エリア83には、撮像部2で取得して情報処理部6の画像記憶部62に記憶されている材料表面の画像831を表示する
 粒径分布表示エリア84には、取得画像表示エリア83に標示された画像831から情報処理部6の粒径測定部63で測定して粒径解析部64で解析した画像831における材料表面の粒径の分布を図1(c)で説明したようなヒストグラム131と、このヒストグラム131のデータを対数正規分布曲線でフィッティングして求めた曲線132とに相当するデータを表示するグラフ表示領域841と、このヒストグラムで表示された粒径の分布を箱ひげ図で表示する箱ひげ図表示領域842を備えている。
An acquired image display area 83 displays an image 831 of the material surface acquired by the imaging unit 2 and stored in the image storage unit 62 of the information processing unit 6. A particle size distribution display area 84 displays an acquired image display area. The particle size distribution of the material surface in the image 831 measured by the particle size measurement unit 63 of the information processing unit 6 and analyzed by the particle size analysis unit 64 from the image 831 labeled in 83 is shown in FIG. A graph display area 841 for displaying data corresponding to a histogram 131 and a curve 132 obtained by fitting the data of this histogram 131 with a logarithmic normal distribution curve, and a box and whisker showing the distribution of particle sizes displayed by this histogram. A graphical boxplot display area 842 is provided.
 保磁力変動係数相関式表示エリア85には、情報入力エリア82のDB呼出部827をクリックすることによりデータベース65に記憶されたデータのうち、材料名入力部821に入力された材料に対応するデータに基づく図2に示したような粒径の第1四分位を粒径の平均値で割った粒径指標値と保磁力変動係数との関係を表すグラフ851と材料名入力部821に入力された材料名854が表示される。グラフ851には、粒径の第1四分位を粒径の平均値で割った値と保磁力変動係数との関係を直線近似して求めた直線852と、受入検査時における保磁力変動係数の判定の基準値が直線853で表示される。 In the coercive force variation coefficient correlation expression display area 85, data corresponding to the material input in the material name input section 821 among the data stored in the database 65 by clicking the DB call section 827 in the information input area 82 is displayed. A graph 851 representing the relationship between the particle size index value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coercive force variation coefficient as shown in FIG. The selected material name 854 is displayed. The graph 851 shows a straight line 852 obtained by linearly approximating the relationship between the value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coercive force variation coefficient, and the coercive force variation coefficient at the time of acceptance inspection. A straight line 853 indicates a reference value for the determination of .
 解析結果表示エリア86には、取得画像表示エリア83に表示された材料表面の画像831を情報処理部6の粒径測定部63で測定して粒径解析部64で解析し保磁力ばらつき評価部67で評価した結果863をグラフ851と同じグラフに表示したグラフ861と、評価した結果863に対応する粒径の平均値を表示する平均値表示部865,粒径分布の第1四分位のデータを表示する第1四分位データ表示部866を備えている。グラフ861には、グラフ851の直線852に相当する直線862と、受入検査時における保磁力変動係数の判定の基準値を示す直線853に対応する直線864が表示される。 In the analysis result display area 86, an image 831 of the surface of the material displayed in the acquired image display area 83 is measured by the particle size measurement unit 63 of the information processing unit 6, analyzed by the particle size analysis unit 64, and is analyzed by the coercive force variation evaluation unit. A graph 861 displaying the results 863 evaluated in 67 on the same graph as the graph 851, an average value display portion 865 displaying the average value of the particle size corresponding to the evaluation results 863, and the first quartile of the particle size distribution. A first quartile data display 866 is provided for displaying data. The graph 861 displays a straight line 862 corresponding to the straight line 852 of the graph 851 and a straight line 864 corresponding to the straight line 853 indicating the reference value for determination of the coercive force variation coefficient at the time of acceptance inspection.
 判定結果表示エリア87には、解析結果表示エリア86のグラフ861に標示された評価した結果863に対応する保磁力のばらつきを表示する保磁力ばらつき表示部871と、今回検査対象にした軟磁性体材料を加工して組み込む対象の製品名を表示する適応製品表示部872が表示され、保磁力ばらつき評価部67で評価された材料が適応製品表示部872が表示された製品に適用するための材料として受け入れの可否を判定した結果を表示する判定表示部873、判定した結果をデータベース65に登録するDB登録ボタン874が備えられている。 In the determination result display area 87, a coercive force variation display portion 871 for displaying the variation in coercive force corresponding to the evaluation result 863 indicated in the graph 861 in the analysis result display area 86, and a soft magnetic material to be inspected this time. An adaptable product display section 872 for displaying the name of the product to be processed and incorporated with the material is displayed, and the material evaluated by the coercive force variation evaluation section 67 is applied to the product displayed in the adaptable product display section 872. and a DB registration button 874 for registering the judgment result in the database 65 .
 このように、材料入荷時に材料の表面を撮像して得られる結晶組織像に基づいて求められた材料の保磁力変動範囲の評価結果がGUI80上に標示されるので、従来の保磁力測定手段を用いて測定する場合と比べて比較的短時間で、容易に材料受け入れの可否を判定することができさらには最適な加工方針を立てることができる。 In this way, since the evaluation result of the coercive force variation range of the material obtained based on the crystal structure image obtained by imaging the surface of the material when the material is received is displayed on the GUI 80, the conventional coercive force measuring means can be used. In a comparatively short period of time compared to the case of using a measuring device, it is possible to easily determine whether or not the material can be accepted, and furthermore, to establish an optimum processing policy.
 図9には、図7のフロー図で説明した受入検査に合格して納入された軟磁性体材料を加工する段階において行う保磁力変動係数を評価した結果を示すGUI90を示す。 FIG. 9 shows a GUI 90 showing the result of evaluating the coercive force variation coefficient performed at the stage of processing the soft magnetic material delivered after passing the acceptance inspection described in the flowchart of FIG.
 図9に示したGUI90は、図8で説明したGUI80と同様に、情報入力エリア92,取得した材料表面の画像を表示する取得画像表示エリア93,取得した材料表面の画像を情報処理部6で処理して得られた画像内に含まれる粒径に関する情報を表示する粒径分布表示エリア94,試料の保磁力の変動係数に関する情報を表示する保磁力変動係数相関式95と解析結果表示エリア96,判定結果を表示する判定結果表示エリア97を備えている。 Similar to the GUI 80 described with reference to FIG. 8, the GUI 90 shown in FIG. Particle size distribution display area 94 for displaying information on the particle size contained in the processed image, coercive force variation coefficient correlation formula 95 for displaying information on the coefficient of variation of the coercive force of the sample, and analysis result display area 96. , and a determination result display area 97 for displaying determination results.
 図8の解析結果を表示する解析結果表示エリア86に相当する部分には、複数の画像に対応する箇所の保磁力のばらつきを示す保磁力ばらつきマッピング表示エリア86が表示される。 In the portion corresponding to the analysis result display area 86 displaying the analysis results in FIG. 8, a coercive force variation mapping display area 86 showing the variation in coercive force at locations corresponding to a plurality of images is displayed.
 情報入力エリア92には、検査対象材料の材料名を入力する材料名入力部921,材料名入力部921に入力した材料の組成比のデータを入力する組成比データ入力部922,材料名入力部921に入力した材料に添付されたミルシートの番号を入力するミルシート番号入力部923,ミルシートに表示された検査対象材料の保磁力を入力する保磁力入力部924,磁束密度を入力する磁束密度入力部825,透磁率を入力する透磁率入力部926、データベース65に記憶した情報を呼び出すDB呼出部927を備えている。 The information input area 92 includes a material name input section 921 for inputting the material name of the material to be inspected, a composition ratio data input section 922 for inputting data on the composition ratio of the material input in the material name input section 921, and a material name input section. A mill sheet number input section 923 for inputting the number of the mill sheet attached to the material input to 921, a coercive force input section 924 for inputting the coercive force of the material to be inspected displayed on the mill sheet, and a magnetic flux density input section for inputting the magnetic flux density. 825, a magnetic permeability input unit 926 for inputting magnetic permeability, and a DB calling unit 927 for calling information stored in the database 65.
 取得画像表示エリア93には、撮像部2で取得して情報処理部6の画像記憶部62に記憶されている材料表面の画像を表示する画像表示部931と、この画像を表示する領域を設定する表示領域設定部932が表示される。 In the acquired image display area 93, an image display section 931 for displaying the image of the material surface acquired by the imaging section 2 and stored in the image storage section 62 of the information processing section 6, and an area for displaying this image are set. A display area setting portion 932 is displayed.
 粒径分布表示エリア94には、取得画像表示エリア93の画像表示部931に表示された画像から情報処理部6の粒径測定部63で測定して粒径解析部64で解析した材料表面の粒径の分布を図1(c)で説明したようなヒストグラム131と、このヒストグラム131のデータを対数正規分布曲線でフィッティングして求めた曲線132とに相当するデータを表示するグラフ表示領域941と、このヒストグラムで表示された粒径の分布を箱ひげ図で表示する箱ひげ図表示領域942を備えている。 In the particle size distribution display area 94, the particle surface of the material measured by the particle size measurement unit 63 of the information processing unit 6 from the image displayed on the image display unit 931 of the acquired image display area 93 and analyzed by the particle size analysis unit 64 is displayed. A graph display area 941 for displaying data corresponding to the histogram 131 as described in FIG. , and a boxplot display area 942 for displaying the distribution of particle sizes displayed by this histogram in a boxplot.
 ただし、後述する保磁力ばらつきマッピング表示エリア96における全領域ボタン962が設定された場合には、グラフ表示領域941には検査対象材料の撮像した全領域の粒径の分布がヒストグラムで表示され、そのヒストグラムに対応する対数正規分布曲線でフィッティングして求めた曲線が表示される。また、箱ひげ図表示領域942にも、全領域の粒径の分布に対応するデータが表示される。 However, when an all area button 962 in the coercive force variation mapping display area 96, which will be described later, is set, the graph display area 941 displays the grain size distribution of the entire imaged area of the material to be inspected as a histogram. A curve obtained by fitting a logarithmic normal distribution curve corresponding to the histogram is displayed. The boxplot display area 942 also displays data corresponding to the distribution of particle diameters in the entire area.
 保磁力変動係数相関式と解析結果表示エリア95には、情報入力エリア92のDB呼出部927をクリックすることによりデータベース65に記憶されたデータのうち、材料名入力部921に入力された材料名に対応するデータに基づく図2に示したような粒径の第1四分位を粒径の平均値で割った粒径指標値と保磁力変動係数との関係を表すグラフ951と材料名入力部921に入力された材料名955が表示される。 In the coercive force variation coefficient correlation equation and analysis result display area 95, the material name entered in the material name input section 921 among the data stored in the database 65 by clicking the DB call section 927 in the information input area 92 is displayed. A graph 951 representing the relationship between the particle size index value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coefficient of variation of the coercive force as shown in FIG. The material name 955 entered in section 921 is displayed.
 グラフ951には、データベース65に記憶されている、粒径の第1四分位を粒径の平均値で割った粒径指標値と保磁力変動係数との関係を直線近似して求めた直線952と、保磁力ばらつきマッピング表示エリア96に標示された複数の領域に対応するデータ953が表示される。また、グラフ951には、受入検査時における保磁力変動係数の判定の基準値が直線954で表示される。 The graph 951 shows a straight line obtained by linearly approximating the relationship between the particle size index value obtained by dividing the first quartile of the particle size by the average value of the particle size and the coercive force variation coefficient stored in the database 65. 952 and data 953 corresponding to a plurality of regions marked in the coercive force variation mapping display area 96 are displayed. In the graph 951, a straight line 954 is displayed as a reference value for determination of the coercive force variation coefficient at the time of acceptance inspection.
 保磁力ばらつきマッピング表示エリア96には、複数の領域の材料表面の画像を解析した結果が、撮像部2で撮像した画像に対応する領域ごとに保磁力ばらつきの大小に応じて、例えばグラフ951に標示された直線954より上の場合(保磁力ばらつき大)と下の場合(保磁力ばらつき小)とを区別して表示されるマッピング表示部961と、このマッピング表示部961に標示する領域を指定する、全領域ボタン962と指定領域ボタン963が表示される。 In the coercive force variation mapping display area 96, the results of analyzing the images of the material surface in a plurality of regions are displayed, for example, in a graph 951 according to the magnitude of the coercive force variation for each region corresponding to the image captured by the imaging unit 2. Designate a mapping display portion 961 that distinguishes between the case above the indicated straight line 954 (large coercive force variation) and the case below it (small coercive force variation), and the area to be marked on this mapping display portion 961. , an all area button 962 and a specified area button 963 are displayed.
 全領域ボタン962をクリックした場合、画像表示部931にはミルシート番号入力部923に入力されたミルシートに対応する材料について撮像部2で撮像された全領域に関する保磁力ばらつきの評価結果が表示され、指定領域ボタン963がクリックされた場合には、表示領域設定部932で設定された領域とその周辺の領域における保磁力ばらつきの評価結果が表示される。 When the all area button 962 is clicked, the image display unit 931 displays the evaluation result of the coercive force variation for the entire area captured by the imaging unit 2 for the material corresponding to the mill sheet input to the mill sheet number input unit 923. When the specified area button 963 is clicked, the evaluation result of the coercive force variation in the area set by the display area setting section 932 and its surrounding area is displayed.
 判定結果表示エリア97には、保磁力ばらつきマッピング表示エリア96のマッピング表示部961に標示された領域の保磁力のばらつきを表示する保磁力ばらつき表示部971と、今回検査対象にした軟磁性体材料を加工して組み込む対象の製品名を表示する適応製品表示部972が表示され、保磁力ばらつき評価部67で評価された材料が適応製品表示部972に表示された製品に適用するための材料としての可否を判定した結果を表示する判定表示部973、判定した結果をデータベース65に登録するDB登録ボタン974が備えられている。 In the determination result display area 97, a coercive force variation display portion 971 for displaying the coercive force variation in the region indicated in the mapping display portion 961 of the coercive force variation mapping display area 96, and a soft magnetic material to be inspected this time. is displayed, and the material evaluated by the coercive force variation evaluation unit 67 is the material to be applied to the product displayed in the applicable product display unit 972. A judgment display portion 973 for displaying the result of judging whether or not to accept the request, and a DB registration button 974 for registering the judged result in the database 65 are provided.
 このように、軟磁性体材料を加工する前に材料の表面を撮像して得られる結晶粒径像に基づいて求められた材料の保磁力変動範囲の評価結果をGUI90に表示することで、材料ごとに個別に保磁力のばらつきを評価したうえで加工することができる。 In this way, by displaying on the GUI 90 the evaluation result of the coercive force variation range of the material obtained based on the crystal grain size image obtained by imaging the surface of the soft magnetic material before processing the material, It is possible to evaluate the variation in coercive force individually for each, and then process it.
 これにより、本実施例によれば、加工した製品に組み立てた状態における軟磁性体材料の保磁力のばらつきの範囲が保証されているので、製品組み立て後に軟磁性体材料の保磁力のばらつき範囲の不良(保磁力のばらつき範囲が基準値よりも大きい場合)により生ずる一度組立てた製品を分解して部品を入れ替える後戻りの工程が発生するのを防止することができる。 As a result, according to this embodiment, the range of variation in the coercive force of the soft magnetic material is guaranteed when the product is assembled into a processed product. It is possible to prevent the backtracking process of disassembling a once-assembled product and replacing parts caused by a defect (when the variation range of coercive force is larger than the reference value).
 また、本実施例によれば、材料ごとに個別に保磁力のばらつきを評価したうえで加工して製品に組立てるので、組立後の製品について安定した品質を確保することができる。 In addition, according to the present embodiment, the variation in coercive force is individually evaluated for each material before being processed and assembled into a product, so it is possible to ensure stable quality of the assembled product.
 なお、本実施例では軟磁性体材料を加工前の段階でその保磁力のばらつきを評価する方法について説明したが、軟磁性体材料を加工した後、製品に組み込む前の段階で保磁力のばらつきを評価するようにしてもよい。加工後に評価することにより、より製品に近い状態において保磁力のばらつきを評価することができる。 In the present embodiment, the method of evaluating the variation in coercive force before processing the soft magnetic material was explained, but the variation in coercive force was evaluated after processing the soft magnetic material and before incorporating it into the product. may be evaluated. By evaluating after processing, the variation in coercive force can be evaluated in a state closer to the product.
 本実施例を電子レンズに適用した場合、コイルを巻きつける前の段階で軟磁性体の保磁力のばらつきを評価できるので、評価の結果合格した軟磁性体材料を用いることによりコイルを巻きつけた後の製品について後戻りの工程が発生することを防止することができる。 When this embodiment is applied to an electron lens, the variation in the coercive force of the soft magnetic material can be evaluated before the coil is wound. It is possible to prevent the occurrence of backtracking processes for subsequent products.
 また、軟磁性体材料としてパーメンジュール材の場合について説明したが、鉄や電磁鋼板を用いることもできる。 Also, the case of permendur material as the soft magnetic material has been described, but iron or electromagnetic steel sheets can also be used.
 以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the invention made by the present inventor has been specifically described above based on the embodiments, it goes without saying that the invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. stomach. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1…試料台、2…撮像部、3…光源、4…ハーフミラー、5…検出器、6…情報処理部、7…情報記憶部、8…情報処理系、9…画像表示端末、60…共通線路、61…保磁力データ記憶部、62…画像記憶部、63…粒径測定部、64…粒径解析部、65…データベース、66…保磁力変動係数算出部、67…保磁力ばらつき評価部、68…ネットワークアダプタ、69…CPU、70…ネットワーク、80,90…GUI DESCRIPTION OF SYMBOLS 1... Sample stand 2... Imaging part 3... Light source 4... Half mirror 5... Detector 6... Information processing part 7... Information storage part 8... Information processing system 9... Image display terminal 60... Common line 61 Coercive force data storage unit 62 Image storage unit 63 Particle size measurement unit 64 Particle size analysis unit 65 Database 66 Coercive force variation coefficient calculation unit 67 Coercive force variation evaluation Part 68... Network adapter 69... CPU 70... Network 80, 90... GUI

Claims (10)

  1.  軟磁性体材料の表面を撮像部で撮像して前記軟磁性体材料の結晶組織像を取得し、
     前記取得した前記軟磁性体材料の表面の前記結晶組織像を情報処理系で処理して前記軟磁性体材料の保磁力のばらつきを評価し,
     前記評価した前記軟磁性体材料の保磁力のばらつきに関する情報を表示端末に表示することを特徴とする軟磁性体材料の評価方法。
    Acquiring a crystal structure image of the soft magnetic material by imaging the surface of the soft magnetic material with an imaging unit,
    processing the acquired crystal structure image of the surface of the soft magnetic material with an information processing system to evaluate the variation in the coercive force of the soft magnetic material,
    A method for evaluating a soft magnetic material, characterized in that information about the variation in coercive force of the evaluated soft magnetic material is displayed on a display terminal.
  2.  請求項1記載の軟磁性体材料の評価方法であって、
     前記表示端末に表示する前記軟磁性体材料の前記保磁力のばらつきに関する情報として、前記軟磁性体材料の前記保磁力のばらつきを前記軟磁性体材料の領域ごとに分けてマッピング表示を含むことを特徴とする軟磁性体材料の評価方法。
    The evaluation method for the soft magnetic material according to claim 1,
    The information on the variation in the coercive force of the soft magnetic material displayed on the display terminal includes a mapping display of the variation in the coercive force of the soft magnetic material by dividing it into each region of the soft magnetic material. A method for evaluating a soft magnetic material characterized by:
  3.  請求項1記載の軟磁性体材料の評価方法であって、
     前記表示端末に表示する前記軟磁性体材料の前記保磁力のばらつきに関する情報として、前記撮像部で撮像した前記軟磁性体材料の表面の前記結晶組織像と、前記軟磁性体材料の表面の前記結晶組織像を処理して得られる前記軟磁性体材料の表面の粒径の分布に関する情報とを更に含むことを特徴とする軟磁性体材料の評価方法。
    A method for evaluating a soft magnetic material according to claim 1,
    As information about the variation in the coercive force of the soft magnetic material displayed on the display terminal, the crystal structure image of the surface of the soft magnetic material imaged by the imaging unit and the surface of the soft magnetic material A method for evaluating a soft magnetic material, further comprising information on the distribution of grain sizes on the surface of the soft magnetic material obtained by processing a crystal structure image.
  4.  請求項1記載の軟磁性体材料の評価方法であって、
     前記表示端末に表示する前記軟磁性体材料の前記保磁力のばらつきに関する情報として、前記軟磁性体材料の前記保磁力のばらつきを評価した結果を含むことを特徴とする軟磁性体材料の評価方法。
    A method for evaluating a soft magnetic material according to claim 1,
    A method for evaluating a soft magnetic material, wherein the information about the variation in the coercive force of the soft magnetic material displayed on the display terminal includes an evaluation result of the variation in the coercive force of the soft magnetic material. .
  5.  請求項1記載の軟磁性体材料の評価方法であって、
     前記情報処理系において、前記撮像部で撮像した前記軟磁性体材料の表面の前記結晶組織像を画像処理部で処理して前記軟磁性体材料の粒径を測定して前記粒径のばらつきを求め、前記軟磁性体材料とは異なる軟磁性体材料について予め測定した保磁力のばらつきと粒径のばらつきとの関係を記憶部に記憶しておき、前記画像処理部で求めた前記軟磁性体材料の前記粒径のばらつきのデータと前記記憶部に記憶しておいた前記保磁力のばらつきと粒径のばらつきとの関係とに基づいて保磁力ばらつき評価部で前記軟磁性体材料の保磁力のばらつきを評価することを特徴とする軟磁性体材料の評価方法。
    The evaluation method for the soft magnetic material according to claim 1,
    In the information processing system, the grain size of the soft magnetic material is measured by processing the crystal structure image of the surface of the soft magnetic material imaged by the imaging unit by the image processing unit, and the variation of the grain size is calculated. The relationship between the variation in coercive force and the variation in particle diameter measured in advance for a soft magnetic material different from the soft magnetic material is stored in a storage unit, and the soft magnetic material obtained by the image processing unit The coercive force variation evaluation unit evaluates the coercive force of the soft magnetic material based on the data on the variation in particle size of the material and the relationship between the variation in coercive force and the variation in particle size stored in the storage unit. A method for evaluating a soft magnetic material, characterized by evaluating the variation of.
  6.  軟磁性体材料の表面を撮像して前記軟磁性体材料の結晶組織像を取得する撮像部と、
     前記撮像部で撮像した前記軟磁性体材料の表面の前記結晶組織像を処理して前記軟磁性体材料の保磁力のばらつきを評価する情報処理系と,
     前記情報処理系で評価した前記軟磁性体材料の保磁力のばらつきに関する情報を表示する表示端末と
    を備えることを特徴とする軟磁性体材料の保磁力評価システム。
    an imaging unit that captures an image of the surface of a soft magnetic material to acquire a crystal structure image of the soft magnetic material;
    an information processing system that processes the crystal structure image of the surface of the soft magnetic material captured by the imaging unit and evaluates variations in coercive force of the soft magnetic material;
    A coercive force evaluation system for a soft magnetic material, comprising: a display terminal for displaying information about variations in the coercive force of the soft magnetic material evaluated by the information processing system.
  7.  請求項6記載の軟磁性体材料の保磁力評価システムであって、
     前記表示端末は、前記軟磁性体材料の前記保磁力のばらつきに関する情報として、前記軟磁性体材料の前記保磁力のばらつきを前記軟磁性体材料の領域ごとに分けてマッピング表示することを特徴とする軟磁性体材料の保磁力評価システム。
    A coercive force evaluation system for a soft magnetic material according to claim 6,
    The display terminal is characterized in that, as the information about the variation in the coercive force of the soft magnetic material, the variation in the coercive force of the soft magnetic material is mapped and displayed for each region of the soft magnetic material. Coercivity evaluation system for soft magnetic materials.
  8.  請求項6記載の軟磁性体材料の保磁力評価システムであって、
     前記表示端末は、前記軟磁性体材料の前記保磁力のばらつきに関する情報として、前記撮像部で撮像した前記軟磁性体材料の表面の前記結晶組織像と、前記軟磁性体材料の表面の前記結晶組織像を処理して得られる前記軟磁性体材料の表面の粒径の分布に関する情報とを更に表示することを特徴とする軟磁性体材料の保磁力評価システム。
    A coercive force evaluation system for a soft magnetic material according to claim 6,
    The display terminal displays the crystal structure image of the surface of the soft magnetic material imaged by the imaging unit and the crystal structure of the surface of the soft magnetic material as information about the variation in the coercive force of the soft magnetic material. A coercive force evaluation system for a soft magnetic material, further displaying information on the distribution of grain sizes on the surface of the soft magnetic material obtained by processing a tissue image.
  9.  請求項6記載の軟磁性体材料の保磁力評価システムであって、
     前記表示端末は、前記軟磁性体材料の前記保磁力のばらつきに関する情報として、前記軟磁性体材料の前記保磁力のばらつきを評価した結果を表示することを特徴とする軟磁性体材料の保磁力評価システム。
    A coercive force evaluation system for a soft magnetic material according to claim 6,
    The display terminal displays an evaluation result of the coercive force variation of the soft magnetic material as the information about the coercive force variation of the soft magnetic material. rating system.
  10.  請求項6記載の軟磁性体材料の保磁力評価システムであって、
     前記情報処理系は、前記撮像部で撮像した前記軟磁性体材料の表面の前記結晶組織像を処理して前記軟磁性体材料の粒径を測定して前記粒径のばらつきを求める画像処理部と、前記軟磁性体材料とは異なる軟磁性体材料について予め測定した保磁力のばらつきと粒径のばらつきとの関係を記憶しておく記憶部と、前記画像処理部で求めた前記軟磁性体材料の前記粒径のばらつきのデータと前記記憶部に記憶しておいた前記保磁力のばらつきと粒径のばらつきとの関係とに基づいて前記軟磁性体材料の保磁力のばらつきを評価する保磁力ばらつき評価部とを備えることを特徴とする軟磁性体材料の保磁力評価システム。
    A coercive force evaluation system for a soft magnetic material according to claim 6,
    The information processing system processes the crystal structure image of the surface of the soft magnetic material captured by the imaging unit, measures the grain size of the soft magnetic material, and obtains the variation in the grain size. and a storage unit for storing the relationship between the variation in coercive force and the variation in grain size measured in advance for a soft magnetic material different from the soft magnetic material, and the soft magnetic material obtained by the image processing unit. A coercive force variability of the soft magnetic material is evaluated based on the data of the variability of the grain size of the material and the relationship between the coercive force variability and the grain size variability stored in the storage unit. A coercive force evaluation system for a soft magnetic material, comprising: a magnetic force variation evaluation unit.
PCT/JP2022/041698 2021-12-23 2022-11-09 Soft magnetic material evaluation method and evaluation system WO2023119923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-209401 2021-12-23
JP2021209401A JP2023094120A (en) 2021-12-23 2021-12-23 Evaluation method of soft magnetic material, and evaluation system

Publications (1)

Publication Number Publication Date
WO2023119923A1 true WO2023119923A1 (en) 2023-06-29

Family

ID=86902099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041698 WO2023119923A1 (en) 2021-12-23 2022-11-09 Soft magnetic material evaluation method and evaluation system

Country Status (2)

Country Link
JP (1) JP2023094120A (en)
WO (1) WO2023119923A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281017A (en) * 2006-04-03 2007-10-25 Jeol Ltd Soft magnetic material and method of manufacturing the same
JP2013165251A (en) * 2012-01-12 2013-08-22 Kobe Steel Ltd Soft magnetic iron-based powder and method of manufacturing the same
JP2019215788A (en) * 2018-06-14 2019-12-19 日立金属株式会社 Material composition analyzing method and analyzing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281017A (en) * 2006-04-03 2007-10-25 Jeol Ltd Soft magnetic material and method of manufacturing the same
JP2013165251A (en) * 2012-01-12 2013-08-22 Kobe Steel Ltd Soft magnetic iron-based powder and method of manufacturing the same
JP2019215788A (en) * 2018-06-14 2019-12-19 日立金属株式会社 Material composition analyzing method and analyzing system

Also Published As

Publication number Publication date
JP2023094120A (en) 2023-07-05

Similar Documents

Publication Publication Date Title
De Temmerman et al. Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles
US8878925B2 (en) Observation method and observation device
JP2006215020A (en) Method for evaluating pattern shapes with high accuracy, and apparatus thereof
JP2006215020A5 (en)
WO2009116634A1 (en) Microstructure inspection method, microstructure inspection apparatus, and microstructure inspection program
Crouzier et al. Methodology to evaluate the uncertainty associated with nanoparticle dimensional measurements by SEM
WO2010087149A1 (en) Charged particle beam device
WO2023119923A1 (en) Soft magnetic material evaluation method and evaluation system
JP2018025513A (en) Method for separate visualization of ferrite phase, martensite phase, and austenite phase in multiple-phase steel by observation with electron scanning microscope, and multiple-phase steel piece for tissue observation
JP2007329081A (en) Charged particle beam device and program for controlling the same
JP7063033B2 (en) Powder shape analysis method and powder fluidity evaluation method
JP6410434B2 (en) Charged particle beam equipment
JP4548432B2 (en) Electron microscope method, electron microscope array biological sample inspection method and biological inspection apparatus using the same
US8822920B2 (en) Charged particle beam apparatus
TWI845074B (en) Processor system, semiconductor inspection system, and program
JP5388703B2 (en) Surface observation apparatus and surface observation method
JP6133603B2 (en) Inspection data processing equipment for charged particle beam equipment
JP7291618B2 (en) Image acquisition system and image acquisition method
JP2000311645A (en) Electron microscope
JP6838511B2 (en) Analysis method for polycrystalline materials
Lifshin et al. A software approach to improving SEM resolution, image quality, and productivity
JPS5842732A (en) Measuring method for characteristic of sintered ore
JP2019109960A (en) Evaluation method of charged particle beam, computer program for evaluating charged particle beam, and evaluation device of charged particle beam
WO2023058456A1 (en) Inspection device
van der Laak et al. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE