CN104498654A - Blast furnace temperature change trend determination method and device - Google Patents

Blast furnace temperature change trend determination method and device Download PDF

Info

Publication number
CN104498654A
CN104498654A CN201410850959.4A CN201410850959A CN104498654A CN 104498654 A CN104498654 A CN 104498654A CN 201410850959 A CN201410850959 A CN 201410850959A CN 104498654 A CN104498654 A CN 104498654A
Authority
CN
China
Prior art keywords
temperature
furnace
temperature index
index
furnace temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410850959.4A
Other languages
Chinese (zh)
Other versions
CN104498654B (en
Inventor
华长春
吴金花
李军朋
关新平
李祥龙
王雅洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201410850959.4A priority Critical patent/CN104498654B/en
Publication of CN104498654A publication Critical patent/CN104498654A/en
Application granted granted Critical
Publication of CN104498654B publication Critical patent/CN104498654B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

本发明公开了一种高炉炉温变化趋势确定方法及装置,包括:获取对高炉风口回旋区拍照得到的图像;并基于该图像中像素点的像素值,采用辐射测温法,确定该图像中风口回旋区的火焰温度和火焰相对亮度;并当火焰温度大于第一火焰温度阈值,且火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数;当火焰温度小于第二火焰温度阈值,且火焰相对亮度小于第二火焰相对亮度阈值时,确定第一炉温指数为第二预设炉温指数;否则,确定第一炉温指数为零;以及基于第一炉温指数,确定高炉炉温的变化趋势。采用本发明实施例提供的方案,能够更准确的确定高炉炉温变化趋势。

The invention discloses a method and device for determining the temperature change trend of a blast furnace. The flame temperature and the relative brightness of the flame in the tuyere swirl area; and when the flame temperature is greater than the first flame temperature threshold and the relative brightness of the flame is greater than the first flame relative brightness threshold, the first furnace temperature index is determined to be the first preset furnace temperature index; When the flame temperature is less than the second flame temperature threshold and the relative brightness of the flame is less than the second flame relative brightness threshold, determine that the first furnace temperature index is the second preset furnace temperature index; otherwise, determine that the first furnace temperature index is zero; and Based on the first furnace temperature index, the variation trend of the blast furnace temperature is determined. By adopting the solution provided by the embodiment of the present invention, the temperature variation trend of the blast furnace can be determined more accurately.

Description

一种高炉炉温变化趋势确定方法及装置A method and device for determining the trend of blast furnace temperature variation

技术领域technical field

本发明涉及高炉冶炼技术领域,尤其涉及一种高炉炉温变化趋势确定方法及装置。The invention relates to the technical field of blast furnace smelting, in particular to a method and device for determining the variation trend of blast furnace temperature.

背景技术Background technique

高炉炼铁是钢铁工业中的一个重要环节,其过程特点为非线性、强耦合、大时滞,并且包含了上百种物理化学反应,导致很难利用某种方法监测高炉内部状态。Blast furnace ironmaking is an important link in the iron and steel industry. Its process is characterized by nonlinearity, strong coupling, large time delay, and contains hundreds of physical and chemical reactions, making it difficult to use a certain method to monitor the internal state of the blast furnace.

为了保证高炉炉况稳定顺行,有利于降低成本,增加产量,提高经济效益,符合绿色节能的要求。高炉炉温是高炉稳定顺行的体现,所以对高炉炉温的判断尤为关键。In order to ensure the stable and smooth operation of the blast furnace, it is beneficial to reduce costs, increase production, improve economic benefits, and meet the requirements of green energy conservation. The blast furnace temperature is the embodiment of the blast furnace's stable operation, so the judgment of the blast furnace temperature is particularly critical.

在实际工业过程中,人工根据人为经验判断高炉内部热状态,缺少统一的判别标准。并且参考信息复杂多样,高炉各种炉温征兆变化对炉温影响大小不一,给人工判断带来了很大的困难。In the actual industrial process, the internal thermal state of the blast furnace is judged manually based on human experience, and there is a lack of unified criteria for judging. Moreover, the reference information is complex and diverse, and the changes in various furnace temperature symptoms of the blast furnace have different effects on the furnace temperature, which brings great difficulties to manual judgment.

发明内容Contents of the invention

本发明实施例提供一种高炉炉温变化趋势确定方法及装置,用以解决现有技术中存在的无法准确的确定高炉炉温变化趋势的问题。The embodiments of the present invention provide a method and device for determining the variation trend of the blast furnace temperature to solve the problem in the prior art that the variation trend of the blast furnace temperature cannot be accurately determined.

本发明实施例提供一种高炉炉温变化趋势确定方法,包括:An embodiment of the present invention provides a method for determining the temperature variation trend of a blast furnace, including:

获取对高炉风口回旋区拍照得到的图像;Obtain the image obtained by taking pictures of the tuyere swirl area of the blast furnace;

基于所述图像中像素点的像素值,采用辐射测温法,确定所述图像中风口回旋区的火焰温度和火焰相对亮度;Based on the pixel value of the pixel point in the image, the temperature of the flame and the relative brightness of the flame in the tuyere swirl area in the image are determined by using a radiation thermometry method;

当所述火焰温度大于第一火焰温度阈值,且所述火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,所述第一预设炉温指数表示高炉炉温变化趋势为温度升高;When the flame temperature is greater than the first flame temperature threshold and the flame relative brightness is greater than the first flame relative brightness threshold, the first furnace temperature index is determined to be the first preset furnace temperature index, and the first preset furnace temperature The index indicates that the temperature change trend of the blast furnace is temperature increase;

当所述火焰温度小于第二火焰温度阈值,且所述火焰相对亮度小于第二火焰相对亮度阈值时,确定所述第一炉温指数为第二预设炉温指数,其中,所述第一火焰温度阈值大于所述第二火焰温度阈值,所述第一火焰相对亮度阈值大于第二火焰相对亮度阈值,所述第二预设炉温指数表示高炉炉温变化趋势为温度降低;When the flame temperature is less than the second flame temperature threshold and the flame relative brightness is less than the second flame relative brightness threshold, it is determined that the first furnace temperature index is the second preset furnace temperature index, wherein the first The flame temperature threshold is greater than the second flame temperature threshold, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the temperature change trend of the blast furnace is temperature decrease;

否则,确定所述第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内;Otherwise, it is determined that the first furnace temperature index is zero, indicating that the furnace temperature change trend of the blast furnace is to keep the temperature within a reasonable range;

基于所述第一炉温指数,确定高炉炉温的变化趋势。Based on the first furnace temperature index, the variation trend of the furnace temperature of the blast furnace is determined.

进一步的,在基于所述第一炉温指数,确定高炉炉温的变化趋势之前,还包括:Further, before determining the change trend of the blast furnace temperature based on the first furnace temperature index, it also includes:

确定第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数中至少之一;determining at least one of the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index;

其中,采用如下步骤确定所述第二炉温指数:Wherein, adopt the following steps to determine the second furnace temperature index:

确定高炉炉喉的边缘温度指数和中心温度指数,其中,所述边缘温度指数表征高炉炉喉的边缘温度相对高炉炉喉平均温度的情况,所述中心温度指数表征高炉炉喉的中心温度相对高炉炉喉平均温度的情况;Determine the edge temperature index and central temperature index of the blast furnace throat, wherein the edge temperature index represents the situation of the edge temperature of the blast furnace throat relative to the average temperature of the blast furnace throat, and the central temperature index represents the relative temperature of the center temperature of the blast furnace throat The condition of the average temperature of the furnace throat;

当所述边缘温度指数大于第一边缘温度指数阈值,且所述中心温度指数大于第一中心温度指数阈值时,确定所述第二炉温指数为所述第一预设炉温指数;When the edge temperature index is greater than the first edge temperature index threshold and the center temperature index is greater than the first center temperature index threshold, determine that the second furnace temperature index is the first preset furnace temperature index;

当所述边缘温度指数小于第二边缘温度指数阈值,且所述中心温度指数小于第二中心温度指数阈值时,确定所述第二炉温指数为所述第二预设炉温指数,其中,所述第一边缘温度指数阈值大于所述第二边缘温度指数阈值,所述第一中心温度指数阈值大于所述第二中心温度指数阈值;When the edge temperature index is less than the second edge temperature index threshold and the center temperature index is less than the second center temperature index threshold, the second furnace temperature index is determined to be the second preset furnace temperature index, wherein, the first edge temperature index threshold is greater than the second edge temperature index threshold, and the first core temperature index threshold is greater than the second core temperature index threshold;

否则,确定所述第二炉温指数为零;Otherwise, determine that the second furnace temperature index is zero;

采用如下步骤确定所述第三炉温指数:Adopt the following steps to determine the third furnace temperature index:

确定多个探尺各自对应的下料加速度,以及所述多个探尺各自对应的所述下料加速度的加速度标准差;Determining the blanking acceleration corresponding to each of the multiple probes, and the acceleration standard deviation of the blanking acceleration corresponding to each of the multiple probes;

当针对每个探尺,该探尺对应的所述下料加速度小于第一速度阈值与所述加速度标准差之和的负值时,确定第三炉温指数为所述第一预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is less than the negative value of the sum of the first speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the first preset furnace temperature index;

当针对每个探尺,该探尺对应的所述下料加速度大于第二速度阈值与所述加速度标准差之和时,确定所述第三炉温指数为所述第二预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is greater than the sum of the second speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the second preset furnace temperature index ;

否则,确定所述第三炉温指数为零;Otherwise, determine that the third furnace temperature index is zero;

采用如下步骤确定所述第四炉温指数:The following steps are adopted to determine the fourth furnace temperature index:

获取高炉炉壁内多个不同高度的高炉炉壁温度,以及该多个不同高度的冷却壁外表面温度;Obtain the temperature of the blast furnace wall at multiple different heights in the blast furnace wall, and the temperature of the outer surface of the stave at the multiple different heights;

基于所述多个不同高度的所述高炉炉壁温度和所述冷却壁外表面温度,根据高炉炉壁横截面二维传热机理模型,确定所述多个不同高度的高炉内表面温度;Based on the temperature of the blast furnace wall at the multiple different heights and the temperature of the outer surface of the stave, and according to the two-dimensional heat transfer mechanism model of the cross section of the blast furnace wall, determine the inner surface temperature of the blast furnace at the multiple different heights;

当针对每个高度,该高度的高炉内表面温度大于该高度对应的第一高炉内表面温度阈值时,确定第四炉温指数为所述第一预设炉温指数;When for each height, the blast furnace inner surface temperature at the height is greater than the first blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the first preset furnace temperature index;

当针对每个高度,该高度的高炉内表面温度小于该高度对应的第二高炉内表面温度阈值时,确定所述第四炉温指数为所述第二预设炉温指数,其中,针对每个高度,该高度对应的所述第一高炉内表面温度阈值大于该高度对应的所述第二高炉内表面温度阈值;When for each height, the blast furnace inner surface temperature at that height is less than the second blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the second preset furnace temperature index, wherein, for each height, the temperature threshold of the first blast furnace inner surface corresponding to the height is greater than the second blast furnace inner surface temperature threshold corresponding to the height;

否则,确定所述第四温度指数为零;Otherwise, determine that the fourth temperature index is zero;

采用如下步骤确定所述第五炉温指数:Use the following steps to determine the fifth furnace temperature index:

获取基于铁水硅含量预测模型确定高炉铁水硅含量所需的各种输入参量的当前值;Obtain the current values of various input parameters required to determine the silicon content of the blast furnace hot metal based on the silicon content prediction model of the molten iron;

基于获取的所述各种输入参量的当前值,根据所述铁水硅含量预测模型,确定高炉铁水硅含量;Determining the silicon content of the blast furnace molten iron according to the obtained current values of the various input parameters and according to the prediction model for the silicon content of the molten iron;

当所述高炉铁水硅含量大于第一预设高炉铁水硅阈值时,确定第五炉温指数为所述第一预设炉温指数;When the silicon content of the blast furnace hot metal is greater than the first preset blast furnace silicon threshold, the fifth furnace temperature index is determined as the first preset furnace temperature index;

当所述高炉铁水硅含量小于第二预设高炉铁水硅阈值时,确定所述第五炉温指数为所述第二预设炉温指数,其中,所述第一预设高炉铁水硅阈值大于所述第二预设高炉铁水硅阈值;When the silicon content of the blast furnace molten iron is less than the second preset blast furnace silicon threshold, the fifth furnace temperature index is determined to be the second preset furnace temperature index, wherein the first preset blast furnace silicon threshold is greater than The second preset blast furnace molten iron silicon threshold;

否则,确定所述第五炉温指数为零;Otherwise, determine that the fifth furnace temperature index is zero;

基于所述第一炉温指数,确定高炉炉温的变化趋势,包括:Based on the first furnace temperature index, determining the variation trend of the blast furnace temperature includes:

基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,确定高炉炉温的变化趋势。Determine the blast furnace based on the first furnace temperature index and at least one of the determined second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index Variation trend of furnace temperature.

进一步的,所述边缘温度指数为对高炉炉喉进行十字测温得到的边缘温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的4倍;Further, the edge temperature index is the sum of the edge temperatures obtained by cross-measurement of the blast furnace throat, divided by four times the average top temperature of the throat temperature obtained by the cross-measurement;

所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍;或者,所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍与预设常数的乘积,所述预设常数大于1。The central temperature index is the sum of the central temperature obtained by performing the cross temperature measurement and the temperature of the four points close to the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement; or, The center temperature index is the sum of the center temperature obtained by performing the cross temperature measurement and the temperature of the four points near the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement and the preset The product of constants, the preset constant is greater than 1.

进一步的,采用如下步骤确定所述铁水硅含量预测模型:Further, the following steps are adopted to determine the prediction model of the silicon content in molten iron:

在预设时间段内,按照预设时间间隔,采集铁水硅含量预测模型的各种输入参量值,并分别对采集的每种输入参量的多个值进行归一化处理,得到归一化后的各种输入参量值;In the preset time period, according to the preset time interval, various input parameter values of the molten iron silicon content prediction model are collected, and the multiple values of each input parameter collected are normalized respectively, and the normalized Various input parameter values of ;

在所述预设时间段内,在产生高炉铁水的时刻,采集此时产生的所述高炉铁水的铁水硅含量;During the preset time period, at the moment when the blast furnace molten iron is produced, the silicon content of the molten iron in the blast furnace produced at this time is collected;

基于多次采集的铁水硅含量,按照时间轴进行曲线拟合,得到所述预设时间段内铁水硅含量曲线;Based on the silicon content of molten iron collected multiple times, curve fitting is performed according to the time axis to obtain a silicon content curve of molten iron within the preset time period;

确定所述铁水硅含量曲线中,按照所述预设时间间隔的每个采样时刻对应的铁水硅含量;Determining the silicon content of molten iron corresponding to each sampling moment according to the preset time interval in the silicon content curve of the molten iron;

基于所述归一化后的各种输入参量值,和确定的按照所述预设时间间隔的每个采样时刻对应的铁水硅含量,根据支持向量回归方法建立铁水硅含量预测模型。Based on the normalized various input parameter values and the determined silicon content of molten iron corresponding to each sampling time interval according to the preset time interval, a prediction model of silicon content in molten iron is established according to a support vector regression method.

进一步的,基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,确定高炉炉温的变化趋势,具体包括:Further, based on the first furnace temperature index and at least one of the determined second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index , to determine the variation trend of blast furnace temperature, including:

基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,以及各炉温指数对应的权重,进行加权求和,得到炉温综合指数;Based on the first furnace temperature index, and at least one of the determined second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index, and each The weight corresponding to the furnace temperature index is weighted and summed to obtain the comprehensive furnace temperature index;

当所述炉温综合指数大于第一炉温指数阈值时,确定高炉炉温的变化趋势为温度升高,所述第一炉温指数阈值大于零且小于所述第一预设炉温指数;When the comprehensive furnace temperature index is greater than the first furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is temperature rise, and the first furnace temperature index threshold is greater than zero and less than the first preset furnace temperature index;

当所述炉温综合指数小于第二炉温指数阈值时,确定高炉炉温的变化趋势为温度降低,所述第二炉温指数阈值大于所述第二预设炉温指数且小于零,所述第二预设炉温指数为负的所述第一预设炉温指数;When the comprehensive furnace temperature index is less than the second furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is a temperature decrease, and the second furnace temperature index threshold is greater than the second preset furnace temperature index and less than zero, so The second preset furnace temperature index is negative for the first preset furnace temperature index;

否则,确定高炉炉温变化趋势为保持温度在合理范围内。Otherwise, determine the variation trend of blast furnace temperature to keep the temperature within a reasonable range.

本发明实施例还提供一种高炉炉温变化趋势确定装置,包括:The embodiment of the present invention also provides a blast furnace temperature change trend determination device, including:

图像获取单元,用于获取对高炉风口回旋区拍照得到的图像;an image acquisition unit, configured to acquire an image obtained by taking pictures of the blast furnace tuyere swirl;

温度及亮度确定单元,用于基于所述图像中像素点的像素值,采用辐射测温法,确定所述图像中风口回旋区的火焰温度和火焰相对亮度;The temperature and brightness determination unit is used to determine the flame temperature and the relative brightness of the flame in the tuyere swirl area in the image based on the pixel values of the pixel points in the image by means of radiation thermometry;

第一炉温指数确定单元,用于当所述火焰温度大于第一火焰温度阈值,且所述火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,所述第一预设炉温指数表示高炉炉温变化趋势为温度升高;以及The first furnace temperature index determining unit is configured to determine the first furnace temperature index as the first preset furnace temperature when the flame temperature is greater than the first flame temperature threshold and the relative brightness of the flame is greater than the first flame relative brightness threshold index, the first preset furnace temperature index indicates that the temperature change trend of the blast furnace is a temperature increase; and

当所述火焰温度小于第二火焰温度阈值,且所述火焰相对亮度小于第二火焰相对亮度阈值时,确定所述第一炉温指数为第二预设炉温指数,其中,所述第一火焰温度阈值大于所述第二火焰温度阈值,所述第一火焰相对亮度阈值大于第二火焰相对亮度阈值,所述第二预设炉温指数表示高炉炉温变化趋势为温度降低;以及When the flame temperature is less than the second flame temperature threshold and the flame relative brightness is less than the second flame relative brightness threshold, it is determined that the first furnace temperature index is the second preset furnace temperature index, wherein the first The flame temperature threshold is greater than the second flame temperature threshold, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the furnace temperature of the blast furnace tends to decrease in temperature; and

否则,确定所述第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内;Otherwise, it is determined that the first furnace temperature index is zero, indicating that the furnace temperature change trend of the blast furnace is to keep the temperature within a reasonable range;

变化趋势确定单元,用于基于所述第一炉温指数,确定高炉炉温的变化趋势。The change trend determination unit is configured to determine the change trend of the blast furnace temperature based on the first furnace temperature index.

本发明有益效果包括:The beneficial effects of the present invention include:

本发明实施例提供的方法中,在高炉冶炼的过程中,可以对高炉风口回旋区拍照,并获取得到的图像,然后基于图像中像素点的像素值,采用辐射测温法,确定该图像中风口回旋区的火焰温度和火焰相对亮度,当火焰温度大于第一火焰温度阈值,且火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,第一预设炉温指数表示高炉炉温变化趋势为温度升高,当火焰温度小于第二火焰温度阈值,且火焰相对亮度小于第二火焰相对亮度阈值时,确定第一炉温指数为第二预设炉温指数,第二预设炉温指数表示高炉炉温变化趋势为温度降低,否则,确定第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内,然后基于第一炉温指数,确定高炉炉温的变化趋势,从而实现了对高炉炉温变化趋势的准确确定。In the method provided by the embodiment of the present invention, during the blast furnace smelting process, the tuyere swirl area of the blast furnace can be photographed, and the obtained image can be obtained, and then based on the pixel values of the pixels in the image, the radiation temperature measurement method can be used to determine the temperature in the image. The flame temperature and flame relative brightness in the tuyere swirl area, when the flame temperature is greater than the first flame temperature threshold, and the flame relative brightness is greater than the first flame relative brightness threshold, determine the first furnace temperature index as the first preset furnace temperature index, the first A preset furnace temperature index indicates that the temperature change trend of the blast furnace is temperature rise. When the flame temperature is less than the second flame temperature threshold and the relative brightness of the flame is smaller than the second flame relative brightness threshold, the first furnace temperature index is determined to be the second predetermined value. The furnace temperature index is set, and the second preset furnace temperature index indicates that the temperature change trend of the blast furnace is temperature reduction; otherwise, the first furnace temperature index is determined to be zero, indicating that the temperature change trend of the blast furnace is to keep the temperature within a reasonable range, and then A furnace temperature index to determine the change trend of the blast furnace temperature, thereby realizing the accurate determination of the change trend of the blast furnace temperature.

本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the application will be set forth in the description which follows, and, in part, will be obvious from the description, or may be learned by practice of the application. The objectives and other advantages of the application may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

附图说明Description of drawings

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute a limitation to the present invention. In the attached picture:

图1为本发明实施例提供的高炉炉温变化趋势确定方法的流程图;Fig. 1 is a flow chart of the method for determining the variation trend of blast furnace temperature provided by an embodiment of the present invention;

图2为本发明实施例中基于高炉炉喉的温度情况,确定表示高炉炉温变化趋势的第二温度指数的流程图;Fig. 2 is a flow chart of determining the second temperature index representing the variation trend of the blast furnace temperature based on the temperature of the blast furnace throat in an embodiment of the present invention;

图3为本发明实施例中基于高炉原料的下料速度情况,确定表示高炉炉温变化趋势的第三温度指数的流程图;Fig. 3 is a flow chart of determining the third temperature index representing the variation trend of blast furnace temperature based on the blanking speed of blast furnace raw materials in an embodiment of the present invention;

图4为本发明实施例中基于高炉内表面温度情况,确定表示高炉炉温变化趋势的第四温度指数的流程图;Fig. 4 is a flow chart of determining the fourth temperature index representing the variation trend of the blast furnace temperature based on the temperature of the inner surface of the blast furnace in an embodiment of the present invention;

图5为本发明实施例中基于高炉铁水硅含量情况,确定表示高炉炉温变化趋势的第五温度指数的流程图;Fig. 5 is a flow chart of determining the fifth temperature index representing the variation trend of blast furnace temperature based on the silicon content of blast furnace molten iron in an embodiment of the present invention;

图6为本发明实施例中确定铁水硅含量模型的方法流程图;Fig. 6 is the flow chart of the method for determining the silicon content model of molten iron in the embodiment of the present invention;

图7为本发明实施例中基于五个炉温指数确定高炉炉温的变化趋势的流程图;Fig. 7 is a flowchart of determining the change trend of blast furnace temperature based on five furnace temperature indices in an embodiment of the present invention;

图8为本发明实施例提供的高炉炉温变化趋势确定装置的结构示意图。Fig. 8 is a schematic structural diagram of a blast furnace temperature variation trend determination device provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了给出准确的确定高炉炉温变化趋势的实现方案,本发明实施例提供了一种高炉炉温变化趋势确定方法及装置,以下结合说明书附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。In order to provide an accurate implementation plan for determining the variation trend of the blast furnace temperature, the embodiment of the present invention provides a method and device for determining the variation trend of the blast furnace temperature. The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that, The preferred embodiments described here are only used to illustrate and explain the present invention, not to limit the present invention. And in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.

本发明实施例提供一种高炉炉温变化趋势确定方法,如图1所示,包括:The embodiment of the present invention provides a method for determining the variation trend of blast furnace temperature, as shown in FIG. 1 , including:

步骤11、获取对高炉风口回旋区拍照得到的图像。Step 11. Obtain an image obtained by taking pictures of the tuyere swirl area of the blast furnace.

步骤12、基于该图像中像素点的像素值,采用辐射测温法,确定该图像中风口回旋区的火焰温度和火焰相对亮度。Step 12. Based on the pixel values of the pixel points in the image, the temperature of the flame and the relative brightness of the flame in the tuyere swirl area in the image are determined by means of radiation temperature measurement.

步骤13、当火焰温度大于第一火焰温度阈值,且火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,第一预设炉温指数表示高炉炉温变化趋势为温度升高。Step 13. When the flame temperature is greater than the first flame temperature threshold and the relative brightness of the flame is greater than the first flame relative brightness threshold, determine that the first furnace temperature index is the first preset furnace temperature index, and the first preset furnace temperature index indicates that the blast furnace The trend of furnace temperature is temperature rise.

步骤14、当火焰温度小于第二火焰温度阈值,且火焰相对亮度小于第二火焰相对亮度阈值时,确定第一炉温指数为第二预设炉温指数,其中,第一火焰温度阈值大于第二火焰温度阈值,第一火焰相对亮度阈值大于第二火焰相对亮度阈值,第二预设炉温指数表示高炉炉温变化趋势为温度降低。Step 14. When the flame temperature is less than the second flame temperature threshold and the relative flame brightness is less than the second flame relative brightness threshold, determine that the first furnace temperature index is the second preset furnace temperature index, wherein the first flame temperature threshold is greater than the second flame temperature threshold Two flame temperature thresholds, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the temperature change trend of the blast furnace is temperature decrease.

步骤15、否则,确定第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内。Step 15. Otherwise, it is determined that the first furnace temperature index is zero, which means that the variation trend of the blast furnace temperature is to keep the temperature within a reasonable range.

步骤16、基于第一炉温指数,确定高炉炉温的变化趋势。Step 16. Based on the first furnace temperature index, determine the variation trend of the blast furnace temperature.

其中,火焰温度阈值和火焰相对亮度阈值,可以参考实际应用时所处的各种实际情况,根据需要进行灵活设置,例如,高炉自身的各种属性,高炉原料的各种属性等。Among them, the flame temperature threshold and the flame relative brightness threshold can be flexibly set according to the needs with reference to various actual situations in the actual application, for example, various attributes of the blast furnace itself, various attributes of the blast furnace raw materials, etc.

在上述图1所示的高炉温度变化趋势确定方法中,可以通过在高炉风口窥视孔端部安装探测器,并使用探测器的摄像机对高炉风口回旋区进行拍照,从而得到高炉风口回旋区的图像。In the method for determining the temperature change trend of the blast furnace shown in Figure 1 above, a detector can be installed at the end of the blast furnace tuyere peep hole, and the camera of the detector can be used to take pictures of the blast furnace tuyere roundabout area, thereby obtaining an image of the blast furnace tuyere roundabout area .

并且,确定图像中风口回旋区的火焰温度和火焰相对亮度时,具体可以使用三基色辐射测温法,通过提取图像的灰度值,确定火焰温度和火焰相对亮度,具体的算法可参照现有的图像处理的有关技术,在此不再详细描述。Moreover, when determining the flame temperature and the relative brightness of the flame in the tuyere swirl area in the image, the three-primary color radiation temperature measurement method can be used to determine the flame temperature and the relative brightness of the flame by extracting the gray value of the image. The specific algorithm can refer to the existing Relevant technologies of image processing will not be described in detail here.

采用上述图1所示的方法,基于对高炉风口回旋区拍摄的图像,确定高炉风口回旋区的火焰温度和火焰相对亮度,从而实现对高炉炉温变化趋势的确定,由于有标准的判断标准,所以可以准确的确定出高炉炉温变化趋势。Using the method shown in Figure 1 above, based on the images taken of the tuyere swirl area of the blast furnace, the flame temperature and the relative brightness of the flame in the tuyere swirl area of the blast furnace are determined, so as to realize the determination of the temperature change trend of the blast furnace. Since there are standard judgment criteria, Therefore, the variation trend of blast furnace temperature can be accurately determined.

本发明实施例中,为了更准确的确定高炉炉温变化趋势,还可以对高炉冶炼过程中的其他特性进行采集,并结合高炉风口回旋区的火焰温度和火焰相对亮度进行综合考虑,以确定高炉炉温变化趋势,例如,还可以参考高炉炉喉的温度情况、高炉原料的下料速度情况、高炉内表面温度情况以及高炉铁水硅含量情况,下面对结合这几种情况进行综合考虑,以确定高炉炉温变化趋势的方案进行详细描述。In the embodiment of the present invention, in order to determine the change trend of the blast furnace temperature more accurately, other characteristics in the blast furnace smelting process can also be collected, and combined with the flame temperature and the relative brightness of the flame in the tuyere swirl area of the blast furnace, to determine the temperature of the blast furnace. Furnace temperature change trend, for example, can also refer to the temperature of the blast furnace throat, the feeding speed of the blast furnace raw materials, the temperature of the inner surface of the blast furnace, and the silicon content of the blast furnace molten iron. The scheme for determining the variation trend of blast furnace temperature is described in detail.

图2为基于高炉炉喉的温度情况,确定表示高炉炉温变化趋势的第二温度指数的流程图,具体可以包括如下步骤:Fig. 2 is a flow chart of determining the second temperature index representing the variation trend of the blast furnace temperature based on the temperature of the blast furnace throat, which may specifically include the following steps:

步骤21、基于高炉炉喉的温度情况,确定表示高炉炉温变化趋势的第二温度指数的流程图、获取对高炉炉喉进行十字测温得到的各炉喉温度。Step 21, based on the temperature of the blast furnace throat, determine the flow chart of the second temperature index representing the variation trend of the blast furnace temperature, and obtain the temperatures of each throat of the blast furnace obtained by cross-measuring the blast furnace throat.

对高炉炉喉进行十字测温,可以使用测温枪,分别在高炉炉喉十字形的中心,边缘,以及中心和边缘之间的各预设位置进行温度测量,得到四个边缘温度,一个中心温度,以及中心和边缘之间的各预设位置的温度。For the cross temperature measurement of the blast furnace throat, you can use a temperature measuring gun to measure the temperature at the center, edge, and preset positions between the center and the edge of the blast furnace throat respectively to obtain four edge temperatures and one center temperature. temperature, and the temperature at each preset position between the center and the edge.

步骤22、确定获取的进行十字测温得到的各炉喉温度的平均值,作为顶温平均值。Step 22. Determine the average value of the temperature of each furnace throat obtained by cross temperature measurement as the average value of the top temperature.

步骤23、确定高炉炉喉的边缘温度指数,边缘温度指数表征高炉炉喉的边缘温度相对高炉炉喉平均温度的情况。Step 23, determine the edge temperature index of the blast furnace throat, and the edge temperature index represents the situation of the edge temperature of the blast furnace throat relative to the average temperature of the blast furnace throat.

边缘温度指数可以为对高炉炉喉进行十字测温得到的边缘温度之和,除以进行十字测温得到的炉喉温度的顶温平均值的4倍,具体可以采用如下公式:The edge temperature index can be the sum of the edge temperatures obtained by cross-measuring the blast furnace throat, divided by 4 times the average top temperature of the throat temperature obtained by cross-measuring, and the following formula can be used specifically:

Ff bb == TT aa ++ TT bb ++ TT cc ++ TT dd 44 TT ;;

其中,Fb为边缘温度指数,Ta、Tb、Tc和Td为十字测温得到的4个边缘温度,T为顶温平均值。Among them, F b is the edge temperature index, T a , T b , T c and T d are the four edge temperatures obtained by cross temperature measurement, and T is the average top temperature.

步骤24、确定高炉炉喉的中心温度指数,中心温度指数表征高炉炉喉的中心温度相对高炉炉喉平均温度的情况。Step 24. Determine the central temperature index of the blast furnace throat, which represents the situation of the central temperature of the blast furnace throat relative to the average temperature of the blast furnace throat.

中心温度指数可以为进行十字测温得到的中心温度与靠近中心的四点温度之和,除以进行十字测温得到的炉喉温度的顶温平均值的5倍,具体可以采用如下公式:The central temperature index can be the sum of the central temperature obtained by cross temperature measurement and the temperature of four points close to the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by cross temperature measurement. The following formula can be used specifically:

Ff zz == TT ee ++ TT ff ++ TT gg ++ TT hh ++ TT ii 55 TT ;;

其中,Fz为中心温度指数,Te、Tf、Tg和Th为十字测温得到的靠近中心的四点温度,Ti为十字测温得到的中心温度,T为顶温平均值。Among them, F z is the center temperature index, T e , T f , T g and Th are the temperatures of the four points near the center obtained by cross temperature measurement, T i is the center temperature obtained by cross temperature measurement, and T is the average top temperature .

考虑到中心温度比较高,所以,在确定中心温度指数时,也可以为进行十字测温得到的中心温度与靠近中心的四点温度之和,除以进行十字测温得到的炉喉温度的顶温平均值的5倍与预设常数的乘积,且该预设常数大于1,例如,该预设常数为2.5,具体可以采用如下公式:Considering that the center temperature is relatively high, when determining the center temperature index, it can also be the sum of the center temperature obtained by cross temperature measurement and the temperature of the four points near the center, divided by the top of the furnace throat temperature obtained by cross temperature measurement. The product of 5 times the average temperature and a preset constant, and the preset constant is greater than 1. For example, the preset constant is 2.5. The following formula can be used specifically:

Ff zz == TT ee ++ TT ff ++ TT gg ++ TT hh ++ TT ii 2.52.5 ×× 55 TT ..

步骤25、确定缘温度指数是否大于第一边缘温度指数阈值,且中心温度指数是否大于第一中心温度指数阈值,如果均大于,进入步骤26,否则,进入步骤27。Step 25. Determine whether the edge temperature index is greater than the first edge temperature index threshold and whether the core temperature index is greater than the first core temperature index threshold. If both are greater, go to step 26; otherwise, go to step 27.

步骤26、确定第二炉温指数为第一预设炉温指数。Step 26. Determine the second furnace temperature index as the first preset furnace temperature index.

步骤27、确定边缘温度指数是否小于第二边缘温度指数阈值,且中心温度指数是否小于第二中心温度指数阈值,如果均小于,进入步骤28,否则,进入步骤29。Step 27. Determine whether the edge temperature index is less than the second edge temperature index threshold and whether the core temperature index is less than the second core temperature index threshold. If both are less than, go to step 28; otherwise, go to step 29.

其中,第一边缘温度指数阈值大于第二边缘温度指数阈值,第一中心温度指数阈值大于第二中心温度指数阈值,各阈值的取值,可以参考实际应用时所处的各种实际情况,并根据需要进行灵活设置,在此不再距离进行描述。Wherein, the first edge temperature index threshold is greater than the second edge temperature index threshold, the first core temperature index threshold is greater than the second core temperature index threshold, the values of each threshold can refer to various actual situations in actual application, and It can be set flexibly according to needs, and the distance will not be described here.

步骤28、确定第二炉温指数为第二预设炉温指数。Step 28. Determine the second furnace temperature index as the second preset furnace temperature index.

步骤29、确定第二炉温指数为零。Step 29. Determine that the second furnace temperature index is zero.

图3为基于高炉原料的下料速度情况,确定表示高炉炉温变化趋势的第三温度指数的流程图,具体可以包括如下步骤:Fig. 3 is a flow chart of determining the third temperature index representing the variation trend of the blast furnace temperature based on the blanking speed of the blast furnace raw material, which may specifically include the following steps:

步骤31、在高炉冶炼过程中,需要将原料添加到高炉中,此时,可以通过探尺检测原料的下料速度,例如,可以采用如下公式确定下料速度:Step 31. During the blast furnace smelting process, raw materials need to be added to the blast furnace. At this time, the feeding speed of the raw materials can be detected by a probe. For example, the feeding speed can be determined by the following formula:

vv == ΔlΔl ΔTΔT ;;

其中,v为下料速度,ΔT为预设检测周期,Δl为当前周期内探尺下降的深度。Among them, v is the feeding speed, ΔT is the preset detection cycle, and Δl is the depth of the dipping probe in the current cycle.

步骤32、采用如下公式确定下料加速度:Step 32, adopt the following formula to determine the blanking acceleration:

aa == vv (( ii ++ 11 )) -- vv (( ii )) ΔTΔT ;;

其中,a为下料加速度,v(i+1)为当前预设检测周期检测的下料速度,v(i)为上一个预设检测周期检测的下料速度。Wherein, a is the feeding acceleration, v(i+1) is the feeding speed detected in the current preset detection cycle, and v(i) is the feeding speed detected in the previous preset detection cycle.

步骤33、采用如下公式确定多个探尺各自对应的下料加速度的加速度标准差:Step 33, using the following formula to determine the acceleration standard deviation of the blanking acceleration corresponding to each of the plurality of probes:

amax=max(ai);a max = max(a i );

amin=min(ai);a min =min(a i );

aa averaver == aa maxmax -- aa minmin ΔTΔT ;;

aa stdstd == ΣΣ ii == 11 nno (( aa ii -- aa averaver )) 22 nno -- 11 ;;

其中,ai为n个探尺中第i个探尺对应的下料加速度,amax为n个探尺各自对应的下料加速度中的最大值,amin为n个探尺各自对应的下料加速度中的最小值,astd为n个探尺各自对应的下料加速度的加速度标准差。Among them, a i is the blanking acceleration corresponding to the i-th probe in the n probes, a max is the maximum value of the blanking accelerations corresponding to the n probes, and a min is the bottom acceleration corresponding to the n probes. The minimum value of material acceleration, a std is the acceleration standard deviation of the corresponding blanking acceleration of n probes.

步骤34、针对多个探尺中的每个探尺,确定该探尺对应的下料加速度是否小于第一速度阈值与加速度标准差之和的负值,如果针对每个探尺均小于,进入步骤35,否则,进入步骤36。Step 34. For each of the plurality of probes, determine whether the blanking acceleration corresponding to the probe is less than the negative value of the sum of the first speed threshold and the acceleration standard deviation. If it is less than for each probe, enter Step 35, otherwise, go to step 36.

即确定是否ai<-(b1+astd),其中,b1为第一速度阈值。That is, it is determined whether a i <-(b 1 +a std ), where b 1 is the first speed threshold.

步骤35、确定第三炉温指数为第一预设炉温指数。Step 35. Determine the third furnace temperature index as the first preset furnace temperature index.

步骤36、针对多个探尺中的每个探尺,确定该探尺对应的下料加速度是否大于第二速度阈值与加速度标准差之和,如果针对每个探尺均大于,进入步骤37,否则,进入步骤38。Step 36. For each of the plurality of probes, determine whether the blanking acceleration corresponding to the probe is greater than the sum of the second speed threshold and the acceleration standard deviation. If it is greater than the second speed threshold for each probe, go to step 37. Otherwise, go to step 38.

即确定是否ai>(b2+astd),其中,b2为第二速度阈值。That is, it is determined whether a i >(b 2 +a std ), where b 2 is the second speed threshold.

其中,第一速度阈值和第二速度阈值的取值,可以参考实际应用时所处的各种实际情况,并根据需要进行灵活设置,例如,第一速度阈值可以取值为0.007,第二速度阈值可以取值为0.002。Among them, the values of the first speed threshold and the second speed threshold can be flexibly set according to the needs with reference to various actual situations in actual application. For example, the first speed threshold can be set to 0.007, and the second speed threshold The threshold can take a value of 0.002.

步骤37、确定第三炉温指数为第二预设炉温指数。Step 37. Determine the third furnace temperature index as the second preset furnace temperature index.

步骤38、确定第三炉温指数为零。Step 38. Determine that the third furnace temperature index is zero.

图4为基于高炉内表面温度情况,确定表示高炉炉温变化趋势的第四温度指数的流程图,具体可以包括如下步骤:Fig. 4 is a flow chart of determining the fourth temperature index representing the change trend of the blast furnace temperature based on the temperature of the inner surface of the blast furnace, which may specifically include the following steps:

步骤41、获取高炉炉壁内多个不同高度的高炉炉壁温度。Step 41. Acquire blast furnace wall temperatures at multiple different heights in the blast furnace wall.

具体可以通过在高炉炉壁的耐火砖中多个不同高度分别布置测温热电偶,用于检测高炉炉壁内多个不同高度的高炉炉壁温度。Specifically, temperature-measuring thermocouples can be arranged at multiple different heights in the refractory bricks of the blast furnace wall to detect the temperature of the blast furnace wall at multiple different heights in the blast furnace wall.

步骤42、获取该多个不同高度的冷却壁外表面温度。Step 42, obtaining the temperature of the outer surface of the cooling wall at different heights.

冷却壁外表面温度可以通过在冷却壁进出水口位置布置测温传感器进行检测。The temperature of the outer surface of the cooling wall can be detected by arranging a temperature sensor at the inlet and outlet of the cooling wall.

步骤43、基于该多个不同高度的高炉炉壁温度和冷却壁外表面温度,根据高炉炉壁横截面二维传热机理模型,确定该多个不同高度的高炉内表面温度。Step 43. Based on the multiple blast furnace wall temperatures and cooling wall outer surface temperatures at different heights, and according to the two-dimensional heat transfer mechanism model of the blast furnace wall cross-section, determine the multiple blast furnace inner surface temperatures at different heights.

例如,可以基于如下公式确定:For example, it can be determined based on the following formula:

&PartialD;&PartialD; &PartialD;&PartialD; hh (( &lambda;&lambda; &PartialD;&PartialD; TT (( rr ,, &theta;&theta; ,, hh )) &PartialD;&PartialD; hh )) ++ 11 rr &PartialD;&PartialD; &PartialD;&PartialD; rr (( &lambda;r&lambda;r &PartialD;&PartialD; TT (( rr ,, &theta;&theta; ,, hh )) &PartialD;&PartialD; rr )) ++ 11 rr &PartialD;&PartialD; &PartialD;&PartialD; &theta;&theta; (( &lambda;&lambda; rr &PartialD;&PartialD; TT (( rr ,, &theta;&theta; ,, hh )) &PartialD;&PartialD; &theta;&theta; )) ++ qq vv &rho;c&rho;c == &PartialD;&PartialD; TT (( rr ,, &theta;&theta; ,, hh )) &PartialD;&PartialD; rr ;;

其中,h为高炉轴向高度、r为半径、θ为周向弧度、λ为导热系数、qv表示内热源、ρ表示密度、c表示比热容、T为温度、τ为时间。Among them, h is the axial height of the blast furnace, r is the radius, θ is the circumferential radian, λ is the thermal conductivity, qv is the internal heat source, ρ is the density, c is the specific heat capacity, T is the temperature, and τ is the time.

步骤44、针对该多个高度中的每个高度,确定该高度的高炉内表面温度是否大于该高度对应的第一高炉内表面温度阈值,如果针对每个高度均大于,则进入步骤45,否则,进入步骤46。Step 44. For each of the multiple heights, determine whether the blast furnace inner surface temperature at the height is greater than the first blast furnace inner surface temperature threshold corresponding to the height. If it is greater than the first blast furnace inner surface temperature threshold for each height, go to step 45, otherwise , go to step 46.

步骤45、确定第四炉温指数为第一预设炉温指数。Step 45. Determine the fourth furnace temperature index as the first preset furnace temperature index.

步骤46、针对该多个高度中的每个高度,确定该高度的高炉内表面温度是否小于该高度对应的第二高炉内表面温度阈值,如果针对每个高度均小于,则进入步骤47,否则,进入步骤48。Step 46. For each of the multiple heights, determine whether the blast furnace inner surface temperature at the height is less than the second blast furnace inner surface temperature threshold corresponding to the height. If it is less than the second blast furnace inner surface temperature threshold for each height, go to step 47, otherwise , go to step 48.

其中,针对每个高度,该高度对应的第一高炉内表面温度阈值大于该高度对应的第二高炉内表面温度阈值,各阈值的取值,可以参考实际应用时所处的各种实际情况,并根据需要进行灵活设置,在此不再举例进行描述。Wherein, for each height, the first blast furnace inner surface temperature threshold corresponding to the height is greater than the second blast furnace inner surface temperature threshold corresponding to the height, and the values of each threshold can refer to various actual situations in actual application, And it can be set flexibly according to needs, and no example will be described here.

步骤47、确定第四炉温指数为第二预设炉温指数。Step 47. Determine the fourth furnace temperature index as the second preset furnace temperature index.

步骤48、确定第四温度指数为零。Step 48. Determine that the fourth temperature index is zero.

图5为基于高炉铁水硅含量情况,确定表示高炉炉温变化趋势的第五温度指数的流程图,具体可以包括如下步骤:Fig. 5 is a flow chart for determining the fifth temperature index representing the variation trend of the blast furnace temperature based on the silicon content of the blast furnace molten iron, which may specifically include the following steps:

步骤51、获取基于铁水硅含量预测模型确定高炉铁水硅含量所需的各种输入参量的当前值。Step 51. Obtain the current values of various input parameters required to determine the silicon content of the blast furnace molten iron based on the prediction model of the silicon content of the molten iron.

例如,该铁水硅含量预测模型的各种输入参量可以包括:风压、压差、风量、透气指数、顶压、顶温、风温、前一炉铁水Si含量等。For example, various input parameters of the molten iron silicon content prediction model may include: wind pressure, pressure difference, air volume, air permeability index, top pressure, top temperature, wind temperature, Si content of the previous hot metal, etc.

步骤52、基于获取的各种输入参量的当前值,根据铁水硅含量预测模型,确定高炉铁水硅含量。Step 52 , based on the obtained current values of various input parameters, and according to the silicon content prediction model of the molten iron, determine the silicon content of the blast furnace molten iron.

步骤53、确定该高炉铁水硅含量是否大于第一预设高炉铁水硅阈值,如果大于,进入步骤54,否则,进入步骤55。Step 53 : Determine whether the silicon content of the blast furnace hot metal is greater than the first preset blast furnace silicon threshold, and if so, go to step 54 ; otherwise, go to step 55 .

步骤54、确定第五炉温指数为第一预设炉温指数。Step 54. Determine the fifth furnace temperature index as the first preset furnace temperature index.

步骤55、确定高炉铁水硅含量是否小于第二预设高炉铁水硅阈值,如果小于,进入步骤56,否则,进入步骤57。Step 55 : Determine whether the silicon content of the blast furnace hot metal is less than a second preset threshold value of silicon in the blast furnace hot metal, and if so, go to step 56 ; otherwise, go to step 57 .

其中,第一预设高炉铁水硅阈值大于第二预设高炉铁水硅阈值,各阈值的取值,可以参考实际应用时所处的各种实际情况,并根据需要进行灵活设置,在此不再举例进行描述。Among them, the first preset blast furnace molten iron silicon threshold value is greater than the second preset blast furnace molten iron silicon threshold value, and the values of each threshold value can refer to various actual situations in actual application, and can be flexibly set according to needs, and will not be discussed here. Describe with an example.

步骤56、确定第五炉温指数为第二预设炉温指数。Step 56. Determine the fifth furnace temperature index as the second preset furnace temperature index.

步骤57、确定第五炉温指数为零。Step 57. Determine that the fifth furnace temperature index is zero.

上述图5所示的流程中,铁水硅含量预测模型可以采用现有技术中的各种铁水硅含量预测模型,本发明实施例中,提出一种新的确定铁水硅含量模型的方法,如图6所示,具体包括如下处理步骤:In the flow process shown in Figure 5 above, the silicon content prediction model of molten iron can adopt various silicon content prediction models of molten iron in the prior art. In the embodiment of the present invention, a new method for determining the silicon content model of molten iron is proposed, as shown in Fig. 6, specifically including the following processing steps:

步骤61、在预设时间段内,按照预设时间间隔,采集将要建立的铁水硅含量预测模型的各种输入参量值,其中,各种输入参量可以根据实际需要进行灵活设置,例如,可以是上述各种参量的全部或任意组合,在此不再举例进行描述。Step 61, within the preset time period, according to the preset time interval, collect various input parameter values of the molten iron silicon content prediction model to be established, wherein the various input parameters can be flexibly set according to actual needs, for example, can be All or any combination of the above parameters will not be described here as examples.

步骤62、由于各种参量值之间的数量级可能相差较大,所以,为了提高模型建立的合理性,可以分别对采集的每种输入参量的多个值进行归一化处理,得到归一化后的各种输入参量值,具体可以采用如下公式,对每种输入参量的多个值进行归一化处理:Step 62. Since the magnitudes of various parameter values may vary greatly, in order to improve the rationality of model establishment, the multiple values of each input parameter collected can be normalized separately to obtain normalized After various input parameter values, the following formula can be used to normalize multiple values of each input parameter:

xx -- ii (( kk )) == xx ii (( kk )) -- minmin (( xx ii (( kk )) )) maxmax (( xx ii (( kk )) )) -- minmin (( xx ii (( kk )) )) ;;

其中,xi(k)为采集的m种输入参量中第k个输入参量的n个值中的第i个值,为为采集的m种输入参量中第k个输入参量的n个值中的第i个值对应的归一化处理后的值。Among them, x i (k) is the i-th value among the n values of the k-th input parameter in the collected m kinds of input parameters, is the normalized value corresponding to the i-th value among the n values of the k-th input parameter among the collected m kinds of input parameters.

步骤63、在该预设时间段内,在产生高炉铁水的时刻,采集此时产生的高炉铁水的铁水硅含量。Step 63, within the preset time period, at the moment when the blast furnace molten iron is produced, collect the silicon content of the molten iron in the blast furnace produced at this time.

步骤64、基于在该预设时间段内多次采集的铁水硅含量,按照时间轴进行曲线拟合,得到该预设时间段内铁水硅含量曲线。Step 64: Based on the silicon content of the molten iron collected multiple times within the preset time period, perform curve fitting according to the time axis to obtain a silicon content curve of the molten iron within the preset time period.

步骤65、确定该铁水硅含量曲线中,按照预设时间间隔的每个采样时刻对应的铁水硅含量。Step 65 , determining the silicon content of the molten iron corresponding to each sampling time according to the preset time interval in the silicon content curve of the molten iron.

步骤66、基于上述归一化后的各种输入参量值,和确定的按照预设时间间隔的每个采样时刻对应的铁水硅含量,根据支持向量回归方法建立铁水硅含量预测模型。Step 66 : Based on the above-mentioned normalized various input parameter values and the determined silicon content of molten iron corresponding to each sampling moment according to the preset time interval, a prediction model of silicon content in molten iron is established according to the support vector regression method.

具体可以基于如下公式建立铁水硅含量预测模型:Specifically, a prediction model for silicon content in molten iron can be established based on the following formula:

ff (( xx )) == &Sigma;&Sigma; ii == 11 nno (( cc ii -- cc ii ** )) kk (( xx ii ,, xx )) ++ dd ;;

其中,x为待预测的样本,xi为训练样本,ci,ci *为拉格朗日乘子,d为偏差,k(xi,x)可以选择为RBF核函数,具体可以如下:Among them, x is the sample to be predicted, xi is the training sample, ci , ci * is the Lagrangian multiplier, d is the deviation, k( xi ,x) can be selected as the RBF kernel function, the details can be as follows :

kk (( xx ii ,, xx jj )) == expexp (( -- || || xx ii -- xx jj || || 22 &sigma;&sigma; 22 ))

本发明实施例中,在通过上述图2-图5所示的流程确定出第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数至少之一时,相应的,基于第一炉温指数,确定高炉炉温的变化趋势,即可以为:In the embodiment of the present invention, when at least one of the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index is determined through the processes shown in the above-mentioned Figures 2-5, correspondingly, Based on the first furnace temperature index, determine the change trend of blast furnace temperature, which can be expressed as:

基于第一炉温指数,以及确定的第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数中至少之一,确定高炉炉温的变化趋势。Based on the first furnace temperature index and at least one of the determined second furnace temperature index, third furnace temperature index, fourth furnace temperature index and fifth furnace temperature index, the variation trend of the blast furnace temperature is determined.

例如,可以分别确定参与确定高炉炉温的变化趋势的各炉温指数中,为第一预设炉温指数的数量,以及为第二预设炉温指数的数量,如果前者数量大于后者数量,则确定高炉炉温变化趋势为温度升高,如果前者数量小于后者数量,则确定高炉炉温变化趋势为温度降低,如果相等,则高炉炉温变化趋势为保持温度在合理范围内。For example, among the various furnace temperature indices involved in determining the variation trend of the blast furnace temperature, the number of the first preset furnace temperature index and the number of the second preset furnace temperature index can be determined separately, if the former number is greater than the latter number , then it is determined that the temperature change trend of the blast furnace is temperature increase. If the former number is less than the latter number, then the blast furnace temperature change trend is determined as temperature decrease. If they are equal, the blast furnace temperature change trend is to keep the temperature within a reasonable range.

又例如,也可以对参与确定高炉炉温的变化趋势的各炉温指数设置优先级,并按照优先级从高到低的顺序进行判断,如果根据当前的炉温指数确定高炉炉温变化趋势为温度升高或温度降低,则确定最终结果即为温度升高或温度降低,如果当前的炉温指数为零,则将当前的炉温指数变更为按照优先级从高到低的顺序的下一个炉温指数,并再次根据当前的炉温指数确定高炉炉温变化趋势,以此类推,直至确定出高炉炉温变化趋势为温度升高或温度降低,或者根据最后一个炉温指数确定高炉炉温变化趋势为保持温度在合理范围内为止。For another example, it is also possible to set priorities for each furnace temperature index involved in determining the variation trend of the blast furnace temperature, and judge according to the order of priority from high to low. If the blast furnace temperature variation trend is determined according to the current furnace temperature index as If the temperature increases or decreases, then the final result is determined to be the temperature increase or the temperature decreases. If the current furnace temperature index is zero, the current furnace temperature index is changed to the next one in order of priority from high to low. Furnace temperature index, and determine the change trend of blast furnace temperature according to the current furnace temperature index again, and so on, until it is determined that the change trend of blast furnace temperature is temperature increase or temperature decrease, or determine the blast furnace temperature according to the last furnace temperature index The change trend is to keep the temperature within a reasonable range.

本发明实施例中,还提出另外一种基于第一炉温指数,以及确定的第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数中至少之一,确定高炉炉温的变化趋势的方案,这里以基于该五个炉温指数确定高炉炉温的变化趋势为例,如图7所示,可以包括如下处理步骤In the embodiment of the present invention, another method is proposed based on the first furnace temperature index and at least one of the determined second furnace temperature index, third furnace temperature index, fourth furnace temperature index and fifth furnace temperature index to determine The scheme of the changing trend of the blast furnace temperature, here, taking the determination of the changing trend of the blast furnace temperature based on the five furnace temperature indices as an example, as shown in Figure 7, may include the following processing steps

步骤71、基于第一炉温指数、第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数,以及各炉温指数对应的权重,进行加权求和,得到炉温综合指数。Step 71: Based on the first furnace temperature index, the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index, and the weights corresponding to each furnace temperature index, perform weighted summation to obtain the furnace temperature index Temperature Composite Index.

可以采用如下公式:The following formula can be used:

Index=μ1*Index1+μ2*Index2+μ3*Index3+μ4*Index4+μ5*Index5;Index=μ1*Index1+μ2*Index2+μ3*Index3+μ4*Index4+μ5*Index5;

其中,Index为炉温综合指数,Index1、Index2、Index3、Index4和Index5分别为第一炉温指数、第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数,μ1、μ2、μ3、μ4和μ5分别为第一炉温指数、第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数对应的权重,并且μ1、μ2、μ3、μ4和μ5之和为1。Among them, Index is the comprehensive index of furnace temperature, Index1, Index2, Index3, Index4 and Index5 are respectively the first furnace temperature index, the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index, μ1, μ2, μ3, μ4 and μ5 are the weights corresponding to the first furnace temperature index, the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index respectively, and μ1, μ2, μ3 The sum of , μ4 and μ5 is 1.

步骤72、确定炉温综合指数是否大于第一炉温指数阈值,如果大于,进入步骤73,否则,进入步骤74。Step 72 : Determine whether the furnace temperature comprehensive index is greater than the first furnace temperature index threshold, if so, go to step 73 , otherwise, go to step 74 .

第一炉温指数阈值大于零且小于第一预设炉温指数。The first furnace temperature index threshold is greater than zero and smaller than a first preset furnace temperature index.

步骤73、确定高炉炉温的变化趋势为温度升高。Step 73, determining that the change trend of the blast furnace temperature is temperature rise.

步骤74、确定炉温综合指数是否小于第二炉温指数阈值,如果小于,进入步骤75,否则,进入步骤76。Step 74 , determine whether the comprehensive furnace temperature index is less than the second furnace temperature index threshold, if so, go to step 75 , otherwise, go to step 76 .

第二炉温指数阈值大于第二预设炉温指数且小于零。The second furnace temperature index threshold is greater than a second preset furnace temperature index and less than zero.

步骤75、确定高炉炉温的变化趋势为温度降低。Step 75, determining that the change trend of the blast furnace temperature is temperature decrease.

步骤76、确定高炉炉温变化趋势为保持温度在合理范围内。Step 76, determining the temperature change trend of the blast furnace to keep the temperature within a reasonable range.

上述图7所示流程中,第一炉温指数阈值和第二炉温指数阈值,可以根据实际需要进行灵活设置,例如,第一炉温指数阈值可以为0.5倍的第一预设炉温指数,第二炉温指数阈值可以为0.5倍的第二预设炉温指数。In the process shown in Figure 7 above, the first furnace temperature index threshold and the second furnace temperature index threshold can be flexibly set according to actual needs, for example, the first furnace temperature index threshold can be 0.5 times the first preset furnace temperature index , the second furnace temperature index threshold may be 0.5 times the second preset furnace temperature index.

为了计算方便,本发明实施例中,第二预设炉温指数可以为负的第一预设炉温指数,例如,第一预设炉温指数可以为1,相应的,第二预设炉温指数为-1。For the convenience of calculation, in the embodiment of the present invention, the second preset furnace temperature index can be the negative first preset furnace temperature index, for example, the first preset furnace temperature index can be 1, and correspondingly, the second preset furnace temperature index can be 1. The temperature index is -1.

采用本发明实施例提供的上述方法,相比现有技术中人工判断,能够更准确的确定高炉炉温变化趋势,并且,当基于上述多种炉温指数进行确定时,能够进一步提高确定的准确性。Using the above method provided by the embodiment of the present invention, compared with the manual judgment in the prior art, it is possible to more accurately determine the variation trend of the blast furnace temperature, and when the determination is based on the above-mentioned various furnace temperature indices, the accuracy of determination can be further improved sex.

基于同一发明构思,根据本发明上述实施例提供的高炉炉温变化趋势确定方法,相应地,本发明另一实施例还提供了一种高炉炉温变化趋势确定装置,其结构示意图如图8所示,具体包括:Based on the same inventive concept, according to the method for determining the variation trend of the blast furnace temperature provided by the above-mentioned embodiments of the present invention, another embodiment of the present invention also provides a device for determining the variation trend of the blast furnace temperature, the structural diagram of which is shown in Figure 8 , specifically include:

图像获取单元81,用于获取对高炉风口回旋区拍照得到的图像;An image acquisition unit 81, configured to acquire an image obtained by taking pictures of the blast furnace tuyere swirl area;

温度及亮度确定单元82,用于基于所述图像中像素点的像素值,采用辐射测温法,确定所述图像中风口回旋区的火焰温度和火焰相对亮度;The temperature and brightness determining unit 82 is used to determine the flame temperature and the relative brightness of the flame in the tuyere swirl area in the image based on the pixel values of the pixel points in the image by means of radiation thermometry;

第一炉温指数确定单元83,用于当所述火焰温度大于第一火焰温度阈值,且所述火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,所述第一预设炉温指数表示高炉炉温变化趋势为温度升高;以及The first furnace temperature index determining unit 83 is used to determine that the first furnace temperature index is the first preset furnace when the flame temperature is greater than the first flame temperature threshold and the relative brightness of the flame is greater than the first flame relative brightness threshold temperature index, the first preset furnace temperature index indicates that the temperature change trend of the blast furnace is temperature increase; and

当所述火焰温度小于第二火焰温度阈值,且所述火焰相对亮度小于第二火焰相对亮度阈值时,确定所述第一炉温指数为第二预设炉温指数,其中,所述第一火焰温度阈值大于所述第二火焰温度阈值,所述第一火焰相对亮度阈值大于第二火焰相对亮度阈值,所述第二预设炉温指数表示高炉炉温变化趋势为温度降低;以及When the flame temperature is less than the second flame temperature threshold and the flame relative brightness is less than the second flame relative brightness threshold, it is determined that the first furnace temperature index is the second preset furnace temperature index, wherein the first The flame temperature threshold is greater than the second flame temperature threshold, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the furnace temperature of the blast furnace tends to decrease in temperature; and

否则,确定所述第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内;Otherwise, it is determined that the first furnace temperature index is zero, indicating that the furnace temperature change trend of the blast furnace is to keep the temperature within a reasonable range;

变化趋势确定单元84,用于基于所述第一炉温指数,确定高炉炉温的变化趋势。A change trend determining unit 84, configured to determine a change trend of the blast furnace temperature based on the first furnace temperature index.

进一步的,还包括:Further, it also includes:

第二炉温指数确定单元85、第三炉温指数确定单元86、第四炉温指数确定单元87和第五炉温指数确定单元88中至少之一;At least one of the second furnace temperature index determination unit 85, the third furnace temperature index determination unit 86, the fourth furnace temperature index determination unit 87 and the fifth furnace temperature index determination unit 88;

其中,所述第二炉温指数确定单元85,用于采用如下步骤确定所述第二炉温指数:Wherein, the second furnace temperature index determining unit 85 is used to determine the second furnace temperature index by adopting the following steps:

确定高炉炉喉的边缘温度指数和中心温度指数,其中,所述边缘温度指数表征高炉炉喉的边缘温度相对高炉炉喉平均温度的情况,所述中心温度指数表征高炉炉喉的中心温度相对高炉炉喉平均温度的情况;Determine the edge temperature index and central temperature index of the blast furnace throat, wherein the edge temperature index represents the situation of the edge temperature of the blast furnace throat relative to the average temperature of the blast furnace throat, and the central temperature index represents the relative temperature of the center temperature of the blast furnace throat The condition of the average temperature of the furnace throat;

当所述边缘温度指数大于第一边缘温度指数阈值,且所述中心温度指数大于第一中心温度指数阈值时,确定所述第二炉温指数为所述第一预设炉温指数;When the edge temperature index is greater than the first edge temperature index threshold and the center temperature index is greater than the first center temperature index threshold, determine that the second furnace temperature index is the first preset furnace temperature index;

当所述边缘温度指数小于第二边缘温度指数阈值,且所述中心温度指数小于第二中心温度指数阈值时,确定所述第二炉温指数为所述第二预设炉温指数,其中,所述第一边缘温度指数阈值大于所述第二边缘温度指数阈值,所述第一中心温度指数阈值大于所述第二中心温度指数阈值;When the edge temperature index is less than the second edge temperature index threshold and the center temperature index is less than the second center temperature index threshold, the second furnace temperature index is determined to be the second preset furnace temperature index, wherein, the first edge temperature index threshold is greater than the second edge temperature index threshold, and the first core temperature index threshold is greater than the second core temperature index threshold;

否则,确定所述第二炉温指数为零;Otherwise, determine that the second furnace temperature index is zero;

所述第三炉温指数确定单元86,用于采用如下步骤确定所述第三炉温指数:The third furnace temperature index determination unit 86 is used to determine the third furnace temperature index by adopting the following steps:

确定多个探尺各自对应的下料加速度,以及所述多个探尺各自对应的所述下料加速度的加速度标准差;Determining the blanking acceleration corresponding to each of the multiple probes, and the acceleration standard deviation of the blanking acceleration corresponding to each of the multiple probes;

当针对每个探尺,该探尺对应的所述下料加速度小于第一速度阈值与所述加速度标准差之和的负值时,确定第三炉温指数为所述第一预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is less than the negative value of the sum of the first speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the first preset furnace temperature index;

当针对每个探尺,该探尺对应的所述下料加速度大于第二速度阈值与所述加速度标准差之和时,确定所述第三炉温指数为所述第二预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is greater than the sum of the second speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the second preset furnace temperature index ;

否则,确定所述第三炉温指数为零;Otherwise, determine that the third furnace temperature index is zero;

所述第四炉温指数确定单元87,用于采用如下步骤确定所述第四炉温指数:The fourth furnace temperature index determining unit 87 is configured to determine the fourth furnace temperature index by adopting the following steps:

获取高炉炉壁内多个不同高度的高炉炉壁温度,以及该多个不同高度的冷却壁外表面温度;Obtain the temperature of the blast furnace wall at multiple different heights in the blast furnace wall, and the temperature of the outer surface of the stave at the multiple different heights;

基于所述多个不同高度的所述高炉炉壁温度和所述冷却壁外表面温度,根据高炉炉壁横截面二维传热机理模型,确定所述多个不同高度的高炉内表面温度;Based on the temperature of the blast furnace wall at the multiple different heights and the temperature of the outer surface of the stave, and according to the two-dimensional heat transfer mechanism model of the cross section of the blast furnace wall, determine the inner surface temperature of the blast furnace at the multiple different heights;

当针对每个高度,该高度的高炉内表面温度大于该高度对应的第一高炉内表面温度阈值时,确定第四炉温指数为所述第一预设炉温指数;When for each height, the blast furnace inner surface temperature at the height is greater than the first blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the first preset furnace temperature index;

当针对每个高度,该高度的高炉内表面温度小于该高度对应的第二高炉内表面温度阈值时,确定所述第四炉温指数为所述第二预设炉温指数,其中,针对每个高度,该高度对应的所述第一高炉内表面温度阈值大于该高度对应的所述第二高炉内表面温度阈值;When for each height, the blast furnace inner surface temperature at that height is less than the second blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the second preset furnace temperature index, wherein, for each height, the temperature threshold of the first blast furnace inner surface corresponding to the height is greater than the second blast furnace inner surface temperature threshold corresponding to the height;

否则,确定所述第四温度指数为零;Otherwise, determine that the fourth temperature index is zero;

所述第五炉温指数确定单元88,用于采用如下步骤确定所述第五炉温指数:The fifth furnace temperature index determination unit 88 is configured to determine the fifth furnace temperature index by the following steps:

获取基于铁水硅含量预测模型确定高炉铁水硅含量所需的各种输入参量的当前值;Obtain the current values of various input parameters required to determine the silicon content of the blast furnace hot metal based on the silicon content prediction model of the molten iron;

基于获取的所述各种输入参量的当前值,根据所述铁水硅含量预测模型,确定高炉铁水硅含量;Determining the silicon content of the blast furnace molten iron according to the obtained current values of the various input parameters and according to the prediction model for the silicon content of the molten iron;

当所述高炉铁水硅含量大于第一预设高炉铁水硅阈值时,确定第五炉温指数为所述第一预设炉温指数;When the silicon content of the blast furnace hot metal is greater than the first preset blast furnace silicon threshold, the fifth furnace temperature index is determined as the first preset furnace temperature index;

当所述高炉铁水硅含量小于第二预设高炉铁水硅阈值时,确定所述第五炉温指数为所述第二预设炉温指数,其中,所述第一预设高炉铁水硅阈值大于所述第二预设高炉铁水硅阈值;When the silicon content of the blast furnace molten iron is less than the second preset blast furnace silicon threshold, the fifth furnace temperature index is determined to be the second preset furnace temperature index, wherein the first preset blast furnace silicon threshold is greater than The second preset blast furnace molten iron silicon threshold;

否则,确定所述第五炉温指数为零;Otherwise, determine that the fifth furnace temperature index is zero;

所述变化趋势确定单元84,具体用于基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,确定高炉炉温的变化趋势。The change trend determination unit 84 is specifically configured to determine the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the first furnace temperature index based on the first furnace temperature index and the determined At least one of the five furnace temperature indices determines the variation trend of the blast furnace temperature.

进一步的,所述边缘温度指数为对高炉炉喉进行十字测温得到的边缘温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的4倍;Further, the edge temperature index is the sum of the edge temperatures obtained by cross-measurement of the blast furnace throat, divided by four times the average top temperature of the throat temperature obtained by the cross-measurement;

所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍;或者,所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍与预设常数的乘积,所述预设常数大于1。The central temperature index is the sum of the central temperature obtained by performing the cross temperature measurement and the temperature of the four points close to the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement; or, The center temperature index is the sum of the center temperature obtained by performing the cross temperature measurement and the temperature of the four points near the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement and the preset The product of constants, the preset constant is greater than 1.

进一步的,所述第五炉温指数确定单元88,还用于采用如下步骤确定所述铁水硅含量预测模型:Further, the fifth furnace temperature index determination unit 88 is also used to determine the silicon content prediction model of molten iron by adopting the following steps:

在预设时间段内,按照预设时间间隔,采集铁水硅含量预测模型的各种输入参量值,并分别对采集的每种输入参量的多个值进行归一化处理,得到归一化后的各种输入参量值;In the preset time period, according to the preset time interval, various input parameter values of the molten iron silicon content prediction model are collected, and the multiple values of each input parameter collected are normalized respectively, and the normalized Various input parameter values of ;

在所述预设时间段内,在产生高炉铁水的时刻,采集此时产生的所述高炉铁水的铁水硅含量;During the preset time period, at the moment when the blast furnace molten iron is produced, the silicon content of the molten iron in the blast furnace produced at this time is collected;

基于多次采集的铁水硅含量,按照时间轴进行曲线拟合,得到所述预设时间段内铁水硅含量曲线;Based on the silicon content of molten iron collected multiple times, curve fitting is performed according to the time axis to obtain a silicon content curve of molten iron within the preset time period;

确定所述铁水硅含量曲线中,按照所述预设时间间隔的每个采样时刻对应的铁水硅含量;Determining the silicon content of molten iron corresponding to each sampling moment according to the preset time interval in the silicon content curve of the molten iron;

基于所述归一化后的各种输入参量值,和确定的按照所述预设时间间隔的每个采样时刻对应的铁水硅含量,根据支持向量回归方法建立铁水硅含量预测模型。Based on the normalized various input parameter values and the determined silicon content of molten iron corresponding to each sampling time interval according to the preset time interval, a prediction model of silicon content in molten iron is established according to a support vector regression method.

进一步的,所述变化趋势确定单元84,具体用于基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,以及各炉温指数对应的权重,进行加权求和,得到炉温综合指数;Further, the change trend determination unit 84 is specifically configured to determine based on the first furnace temperature index, the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and At least one of the fifth furnace temperature index and the weights corresponding to each furnace temperature index are weighted and summed to obtain a comprehensive furnace temperature index;

当所述炉温综合指数大于第一炉温指数阈值时,确定高炉炉温的变化趋势为温度升高,所述第一炉温指数阈值大于零且小于所述第一预设炉温指数;When the comprehensive furnace temperature index is greater than the first furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is temperature rise, and the first furnace temperature index threshold is greater than zero and less than the first preset furnace temperature index;

当所述炉温综合指数小于第二炉温指数阈值时,确定高炉炉温的变化趋势为温度降低,所述第二炉温指数阈值大于所述第二预设炉温指数且小于零,所述第二预设炉温指数为负的所述第一预设炉温指数;When the comprehensive furnace temperature index is less than the second furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is a temperature decrease, and the second furnace temperature index threshold is greater than the second preset furnace temperature index and less than zero, so The second preset furnace temperature index is negative for the first preset furnace temperature index;

否则,确定高炉炉温变化趋势为保持温度在合理范围内。Otherwise, determine the variation trend of blast furnace temperature to keep the temperature within a reasonable range.

上述各单元的功能可对应于图1至图7所示流程中的相应处理步骤,在此不再赘述。The functions of the above units may correspond to the corresponding processing steps in the flow shown in FIG. 1 to FIG. 7 , which will not be repeated here.

综上所述,本发明实施例提供的方案,包括:获取对高炉风口回旋区拍照得到的图像;并基于该图像中像素点的像素值,采用辐射测温法,确定该图像中风口回旋区的火焰温度和火焰相对亮度;并当火焰温度大于第一火焰温度阈值,且火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,第一预设炉温指数表示高炉炉温变化趋势为温度升高;当火焰温度小于第二火焰温度阈值,且火焰相对亮度小于第二火焰相对亮度阈值时,确定第一炉温指数为第二预设炉温指数,其中,第一火焰温度阈值大于第二火焰温度阈值,第一火焰相对亮度阈值大于第二火焰相对亮度阈值,第二预设炉温指数表示高炉炉温变化趋势为温度降低;否则,确定第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内,以及基于第一炉温指数,确定高炉炉温的变化趋势。采用本发明实施例提供的方案,能够更准确的确定高炉炉温变化趋势。To sum up, the solution provided by the embodiment of the present invention includes: obtaining an image obtained by photographing the tuyere swirl of the blast furnace; flame temperature and flame relative brightness; and when the flame temperature is greater than the first flame temperature threshold, and the flame relative brightness is greater than the first flame relative brightness threshold, it is determined that the first furnace temperature index is the first preset furnace temperature index, and the first preset furnace temperature index is determined to be the first preset furnace temperature index. Let the furnace temperature index indicate that the temperature change trend of the blast furnace is temperature rise; when the flame temperature is less than the second flame temperature threshold and the relative brightness of the flame is smaller than the second flame relative brightness threshold, the first furnace temperature index is determined to be the second preset furnace Temperature index, wherein, the first flame temperature threshold is greater than the second flame temperature threshold, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the temperature change trend of the blast furnace is a decrease in temperature; otherwise, Determining that the first furnace temperature index is zero indicates that the change trend of the blast furnace temperature is to keep the temperature within a reasonable range, and based on the first furnace temperature index, determine the change trend of the blast furnace temperature. By adopting the solution provided by the embodiment of the present invention, the temperature variation trend of the blast furnace can be determined more accurately.

本申请的实施例所提供的高炉炉温变化趋势确定装置可通过计算机程序实现。本领域技术人员应该能够理解,上述的模块划分方式仅是众多模块划分方式中的一种,如果划分为其他模块或不划分模块,只要高炉炉温变化趋势确定装置具有上述功能,都应该在本申请的保护范围之内。The device for determining the variation trend of the blast furnace temperature provided by the embodiments of the present application can be realized by a computer program. Those skilled in the art should be able to understand that the above-mentioned module division method is only one of many module division methods. If it is divided into other modules or not divided into modules, as long as the blast furnace temperature change trend determination device has the above functions, it should be in this within the scope of the application.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowcharts and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow diagram procedure or procedures and/or block diagram procedures or blocks.

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.

Claims (10)

1.一种高炉炉温变化趋势确定方法,其特征在于,包括:1. A method for determining the variation trend of blast furnace temperature, characterized in that, comprising: 获取对高炉风口回旋区拍照得到的图像;Obtain the image obtained by taking pictures of the tuyere swirl area of the blast furnace; 基于所述图像中像素点的像素值,采用辐射测温法,确定所述图像中风口回旋区的火焰温度和火焰相对亮度;Based on the pixel value of the pixel point in the image, the temperature of the flame and the relative brightness of the flame in the tuyere swirl area in the image are determined by using a radiation thermometry method; 当所述火焰温度大于第一火焰温度阈值,且所述火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,所述第一预设炉温指数表示高炉炉温变化趋势为温度升高;When the flame temperature is greater than the first flame temperature threshold and the flame relative brightness is greater than the first flame relative brightness threshold, the first furnace temperature index is determined to be the first preset furnace temperature index, and the first preset furnace temperature The index indicates that the temperature change trend of the blast furnace is temperature increase; 当所述火焰温度小于第二火焰温度阈值,且所述火焰相对亮度小于第二火焰相对亮度阈值时,确定所述第一炉温指数为第二预设炉温指数,其中,所述第一火焰温度阈值大于所述第二火焰温度阈值,所述第一火焰相对亮度阈值大于第二火焰相对亮度阈值,所述第二预设炉温指数表示高炉炉温变化趋势为温度降低;When the flame temperature is less than the second flame temperature threshold and the flame relative brightness is less than the second flame relative brightness threshold, it is determined that the first furnace temperature index is the second preset furnace temperature index, wherein the first The flame temperature threshold is greater than the second flame temperature threshold, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the temperature change trend of the blast furnace is temperature decrease; 否则,确定所述第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内;Otherwise, it is determined that the first furnace temperature index is zero, indicating that the furnace temperature change trend of the blast furnace is to keep the temperature within a reasonable range; 基于所述第一炉温指数,确定高炉炉温的变化趋势。Based on the first furnace temperature index, the variation trend of the furnace temperature of the blast furnace is determined. 2.如权利要求1所述的方法,其特征在于,在基于所述第一炉温指数,确定高炉炉温的变化趋势之前,还包括:2. The method according to claim 1, further comprising: before determining the variation trend of blast furnace temperature based on the first furnace temperature index: 确定第二炉温指数、第三炉温指数、第四炉温指数和第五炉温指数中至少之一;determining at least one of the second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index; 其中,采用如下步骤确定所述第二炉温指数:Wherein, adopt the following steps to determine the second furnace temperature index: 确定高炉炉喉的边缘温度指数和中心温度指数,其中,所述边缘温度指数表征高炉炉喉的边缘温度相对高炉炉喉平均温度的情况,所述中心温度指数表征高炉炉喉的中心温度相对高炉炉喉平均温度的情况;Determine the edge temperature index and central temperature index of the blast furnace throat, wherein the edge temperature index represents the situation of the edge temperature of the blast furnace throat relative to the average temperature of the blast furnace throat, and the central temperature index represents the relative temperature of the center temperature of the blast furnace throat The condition of the average temperature of the furnace throat; 当所述边缘温度指数大于第一边缘温度指数阈值,且所述中心温度指数大于第一中心温度指数阈值时,确定所述第二炉温指数为所述第一预设炉温指数;When the edge temperature index is greater than the first edge temperature index threshold and the center temperature index is greater than the first center temperature index threshold, determine that the second furnace temperature index is the first preset furnace temperature index; 当所述边缘温度指数小于第二边缘温度指数阈值,且所述中心温度指数小于第二中心温度指数阈值时,确定所述第二炉温指数为所述第二预设炉温指数,其中,所述第一边缘温度指数阈值大于所述第二边缘温度指数阈值,所述第一中心温度指数阈值大于所述第二中心温度指数阈值;When the edge temperature index is less than the second edge temperature index threshold and the center temperature index is less than the second center temperature index threshold, the second furnace temperature index is determined to be the second preset furnace temperature index, wherein, the first edge temperature index threshold is greater than the second edge temperature index threshold, and the first core temperature index threshold is greater than the second core temperature index threshold; 否则,确定所述第二炉温指数为零;Otherwise, determine that the second furnace temperature index is zero; 采用如下步骤确定所述第三炉温指数:Adopt the following steps to determine the third furnace temperature index: 确定多个探尺各自对应的下料加速度,以及所述多个探尺各自对应的所述下料加速度的加速度标准差;Determining the blanking acceleration corresponding to each of the multiple probes, and the acceleration standard deviation of the blanking acceleration corresponding to each of the multiple probes; 当针对每个探尺,该探尺对应的所述下料加速度小于第一速度阈值与所述加速度标准差之和的负值时,确定第三炉温指数为所述第一预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is less than the negative value of the sum of the first speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the first preset furnace temperature index; 当针对每个探尺,该探尺对应的所述下料加速度大于第二速度阈值与所述加速度标准差之和时,确定所述第三炉温指数为所述第二预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is greater than the sum of the second speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the second preset furnace temperature index ; 否则,确定所述第三炉温指数为零;Otherwise, determine that the third furnace temperature index is zero; 采用如下步骤确定所述第四炉温指数:The following steps are adopted to determine the fourth furnace temperature index: 获取高炉炉壁内多个不同高度的高炉炉壁温度,以及该多个不同高度的冷却壁外表面温度;Obtain the temperature of the blast furnace wall at multiple different heights in the blast furnace wall, and the temperature of the outer surface of the stave at the multiple different heights; 基于所述多个不同高度的所述高炉炉壁温度和所述冷却壁外表面温度,根据高炉炉壁横截面二维传热机理模型,确定所述多个不同高度的高炉内表面温度;Based on the temperature of the blast furnace wall at the multiple different heights and the temperature of the outer surface of the stave, and according to the two-dimensional heat transfer mechanism model of the cross section of the blast furnace wall, determine the inner surface temperature of the blast furnace at the multiple different heights; 当针对每个高度,该高度的高炉内表面温度大于该高度对应的第一高炉内表面温度阈值时,确定第四炉温指数为所述第一预设炉温指数;When for each height, the blast furnace inner surface temperature at the height is greater than the first blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the first preset furnace temperature index; 当针对每个高度,该高度的高炉内表面温度小于该高度对应的第二高炉内表面温度阈值时,确定所述第四炉温指数为所述第二预设炉温指数,其中,针对每个高度,该高度对应的所述第一高炉内表面温度阈值大于该高度对应的所述第二高炉内表面温度阈值;When for each height, the blast furnace inner surface temperature at that height is less than the second blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the second preset furnace temperature index, wherein, for each height, the temperature threshold of the first blast furnace inner surface corresponding to the height is greater than the second blast furnace inner surface temperature threshold corresponding to the height; 否则,确定所述第四温度指数为零;Otherwise, determine that the fourth temperature index is zero; 采用如下步骤确定所述第五炉温指数:Use the following steps to determine the fifth furnace temperature index: 获取基于铁水硅含量预测模型确定高炉铁水硅含量所需的各种输入参量的当前值;Obtain the current values of various input parameters required to determine the silicon content of the blast furnace hot metal based on the silicon content prediction model of the molten iron; 基于获取的所述各种输入参量的当前值,根据所述铁水硅含量预测模型,确定高炉铁水硅含量;Determining the silicon content of the blast furnace molten iron according to the obtained current values of the various input parameters and according to the prediction model for the silicon content of the molten iron; 当所述高炉铁水硅含量大于第一预设高炉铁水硅阈值时,确定第五炉温指数为所述第一预设炉温指数;When the silicon content of the blast furnace hot metal is greater than the first preset blast furnace silicon threshold, the fifth furnace temperature index is determined as the first preset furnace temperature index; 当所述高炉铁水硅含量小于第二预设高炉铁水硅阈值时,确定所述第五炉温指数为所述第二预设炉温指数,其中,所述第一预设高炉铁水硅阈值大于所述第二预设高炉铁水硅阈值;When the silicon content of the blast furnace molten iron is less than the second preset blast furnace silicon threshold, the fifth furnace temperature index is determined to be the second preset furnace temperature index, wherein the first preset blast furnace silicon threshold is greater than The second preset blast furnace molten iron silicon threshold; 否则,确定所述第五炉温指数为零;Otherwise, determine that the fifth furnace temperature index is zero; 基于所述第一炉温指数,确定高炉炉温的变化趋势,包括:Based on the first furnace temperature index, determining the variation trend of the blast furnace temperature includes: 基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,确定高炉炉温的变化趋势。Determine the blast furnace based on the first furnace temperature index and at least one of the determined second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index Variation trend of furnace temperature. 3.如权利要求2所述的方法,其特征在于,所述边缘温度指数为对高炉炉喉进行十字测温得到的边缘温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的4倍;3. The method according to claim 2, wherein the edge temperature index is the sum of the edge temperatures obtained by cross-measuring the blast furnace throat, divided by the throat temperature obtained by performing the cross-measuring 4 times the average top temperature; 所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍;或者,所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍与预设常数的乘积,所述预设常数大于1。The central temperature index is the sum of the central temperature obtained by performing the cross temperature measurement and the temperature of the four points close to the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement; or, The center temperature index is the sum of the center temperature obtained by performing the cross temperature measurement and the temperature of the four points near the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement and the preset The product of constants, the preset constant is greater than 1. 4.如权利要求2所述的方法,其特征在于,采用如下步骤确定所述铁水硅含量预测模型:4. method as claimed in claim 2, is characterized in that, adopts the following steps to determine described molten iron silicon content prediction model: 在预设时间段内,按照预设时间间隔,采集铁水硅含量预测模型的各种输入参量值,并分别对采集的每种输入参量的多个值进行归一化处理,得到归一化后的各种输入参量值;In the preset time period, according to the preset time interval, various input parameter values of the molten iron silicon content prediction model are collected, and the multiple values of each input parameter collected are normalized respectively, and the normalized Various input parameter values of ; 在所述预设时间段内,在产生高炉铁水的时刻,采集此时产生的所述高炉铁水的铁水硅含量;During the preset time period, at the moment when the blast furnace molten iron is produced, the silicon content of the molten iron in the blast furnace produced at this time is collected; 基于多次采集的铁水硅含量,按照时间轴进行曲线拟合,得到所述预设时间段内铁水硅含量曲线;Based on the silicon content of molten iron collected multiple times, curve fitting is performed according to the time axis to obtain a silicon content curve of molten iron within the preset time period; 确定所述铁水硅含量曲线中,按照所述预设时间间隔的每个采样时刻对应的铁水硅含量;Determining the silicon content of molten iron corresponding to each sampling moment according to the preset time interval in the silicon content curve of the molten iron; 基于所述归一化后的各种输入参量值,和确定的按照所述预设时间间隔的每个采样时刻对应的铁水硅含量,根据支持向量回归方法建立铁水硅含量预测模型。Based on the normalized various input parameter values and the determined silicon content of molten iron corresponding to each sampling time interval according to the preset time interval, a prediction model of silicon content in molten iron is established according to a support vector regression method. 5.如权利要求2-4任一所述的方法,其特征在于,基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,确定高炉炉温的变化趋势,具体包括:5. The method according to any one of claims 2-4, characterized in that, based on the first furnace temperature index, and the determined second furnace temperature index, the third furnace temperature index, the first At least one of the four furnace temperature indices and the fifth furnace temperature index determines the variation trend of the blast furnace temperature, specifically including: 基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,以及各炉温指数对应的权重,进行加权求和,得到炉温综合指数;Based on the first furnace temperature index, and at least one of the determined second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index, and each The weight corresponding to the furnace temperature index is weighted and summed to obtain the comprehensive furnace temperature index; 当所述炉温综合指数大于第一炉温指数阈值时,确定高炉炉温的变化趋势为温度升高,所述第一炉温指数阈值大于零且小于所述第一预设炉温指数;When the comprehensive furnace temperature index is greater than the first furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is temperature rise, and the first furnace temperature index threshold is greater than zero and less than the first preset furnace temperature index; 当所述炉温综合指数小于第二炉温指数阈值时,确定高炉炉温的变化趋势为温度降低,所述第二炉温指数阈值大于所述第二预设炉温指数且小于零,所述第二预设炉温指数为负的所述第一预设炉温指数;When the comprehensive furnace temperature index is less than the second furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is a temperature decrease, and the second furnace temperature index threshold is greater than the second preset furnace temperature index and less than zero, so The second preset furnace temperature index is negative for the first preset furnace temperature index; 否则,确定高炉炉温变化趋势为保持温度在合理范围内。Otherwise, determine the variation trend of blast furnace temperature to keep the temperature within a reasonable range. 6.一种高炉炉温变化趋势确定装置,其特征在于,包括:6. A blast furnace temperature variation trend determining device, characterized in that it comprises: 图像获取单元,用于获取对高炉风口回旋区拍照得到的图像;an image acquisition unit, configured to acquire an image obtained by taking pictures of the blast furnace tuyere swirl; 温度及亮度确定单元,用于基于所述图像中像素点的像素值,采用辐射测温法,确定所述图像中风口回旋区的火焰温度和火焰相对亮度;The temperature and brightness determination unit is used to determine the flame temperature and the relative brightness of the flame in the tuyere swirl area in the image based on the pixel values of the pixel points in the image by means of radiation thermometry; 第一炉温指数确定单元,用于当所述火焰温度大于第一火焰温度阈值,且所述火焰相对亮度大于第一火焰相对亮度阈值时,确定第一炉温指数为第一预设炉温指数,所述第一预设炉温指数表示高炉炉温变化趋势为温度升高;以及The first furnace temperature index determining unit is configured to determine the first furnace temperature index as the first preset furnace temperature when the flame temperature is greater than the first flame temperature threshold and the relative brightness of the flame is greater than the first flame relative brightness threshold index, the first preset furnace temperature index indicates that the temperature change trend of the blast furnace is a temperature increase; and 当所述火焰温度小于第二火焰温度阈值,且所述火焰相对亮度小于第二火焰相对亮度阈值时,确定所述第一炉温指数为第二预设炉温指数,其中,所述第一火焰温度阈值大于所述第二火焰温度阈值,所述第一火焰相对亮度阈值大于第二火焰相对亮度阈值,所述第二预设炉温指数表示高炉炉温变化趋势为温度降低;以及When the flame temperature is less than the second flame temperature threshold and the flame relative brightness is less than the second flame relative brightness threshold, it is determined that the first furnace temperature index is the second preset furnace temperature index, wherein the first The flame temperature threshold is greater than the second flame temperature threshold, the first flame relative brightness threshold is greater than the second flame relative brightness threshold, and the second preset furnace temperature index indicates that the furnace temperature of the blast furnace tends to decrease in temperature; and 否则,确定所述第一炉温指数为零,表示高炉炉温变化趋势为保持温度在合理范围内;Otherwise, it is determined that the first furnace temperature index is zero, indicating that the furnace temperature change trend of the blast furnace is to keep the temperature within a reasonable range; 变化趋势确定单元,用于基于所述第一炉温指数,确定高炉炉温的变化趋势。The change trend determination unit is configured to determine the change trend of the blast furnace temperature based on the first furnace temperature index. 7.如权利要求6所述的装置,其特征在于,还包括:7. The device of claim 6, further comprising: 第二炉温指数确定单元、第三炉温指数确定单元、第四炉温指数确定单元和第五炉温指数确定单元中至少之一;At least one of the second furnace temperature index determination unit, the third furnace temperature index determination unit, the fourth furnace temperature index determination unit and the fifth furnace temperature index determination unit; 其中,所述第二炉温指数确定单元,用于采用如下步骤确定所述第二炉温指数:Wherein, the second furnace temperature index determination unit is used to determine the second furnace temperature index by adopting the following steps: 确定高炉炉喉的边缘温度指数和中心温度指数,其中,所述边缘温度指数表征高炉炉喉的边缘温度相对高炉炉喉平均温度的情况,所述中心温度指数表征高炉炉喉的中心温度相对高炉炉喉平均温度的情况;Determine the edge temperature index and central temperature index of the blast furnace throat, wherein the edge temperature index represents the situation of the edge temperature of the blast furnace throat relative to the average temperature of the blast furnace throat, and the central temperature index represents the relative temperature of the center temperature of the blast furnace throat The condition of the average temperature of the furnace throat; 当所述边缘温度指数大于第一边缘温度指数阈值,且所述中心温度指数大于第一中心温度指数阈值时,确定所述第二炉温指数为所述第一预设炉温指数;When the edge temperature index is greater than the first edge temperature index threshold and the center temperature index is greater than the first center temperature index threshold, determine that the second furnace temperature index is the first preset furnace temperature index; 当所述边缘温度指数小于第二边缘温度指数阈值,且所述中心温度指数小于第二中心温度指数阈值时,确定所述第二炉温指数为所述第二预设炉温指数,其中,所述第一边缘温度指数阈值大于所述第二边缘温度指数阈值,所述第一中心温度指数阈值大于所述第二中心温度指数阈值;When the edge temperature index is less than the second edge temperature index threshold and the center temperature index is less than the second center temperature index threshold, the second furnace temperature index is determined to be the second preset furnace temperature index, wherein, the first edge temperature index threshold is greater than the second edge temperature index threshold, and the first core temperature index threshold is greater than the second core temperature index threshold; 否则,确定所述第二炉温指数为零;Otherwise, determine that the second furnace temperature index is zero; 所述第三炉温指数确定单元,用于采用如下步骤确定所述第三炉温指数:The third furnace temperature index determining unit is configured to determine the third furnace temperature index by adopting the following steps: 确定多个探尺各自对应的下料加速度,以及所述多个探尺各自对应的所述下料加速度的加速度标准差;Determining the blanking acceleration corresponding to each of the multiple probes, and the acceleration standard deviation of the blanking acceleration corresponding to each of the multiple probes; 当针对每个探尺,该探尺对应的所述下料加速度小于第一速度阈值与所述加速度标准差之和的负值时,确定第三炉温指数为所述第一预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is less than the negative value of the sum of the first speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the first preset furnace temperature index; 当针对每个探尺,该探尺对应的所述下料加速度大于第二速度阈值与所述加速度标准差之和时,确定所述第三炉温指数为所述第二预设炉温指数;When for each probe, the feeding acceleration corresponding to the probe is greater than the sum of the second speed threshold and the acceleration standard deviation, determine the third furnace temperature index as the second preset furnace temperature index ; 否则,确定所述第三炉温指数为零;Otherwise, determine that the third furnace temperature index is zero; 所述第四炉温指数确定单元,用于采用如下步骤确定所述第四炉温指数:The fourth furnace temperature index determination unit is used to determine the fourth furnace temperature index by adopting the following steps: 获取高炉炉壁内多个不同高度的高炉炉壁温度,以及该多个不同高度的冷却壁外表面温度;Obtain the temperature of the blast furnace wall at multiple different heights in the blast furnace wall, and the temperature of the outer surface of the stave at the multiple different heights; 基于所述多个不同高度的所述高炉炉壁温度和所述冷却壁外表面温度,根据高炉炉壁横截面二维传热机理模型,确定所述多个不同高度的高炉内表面温度;Based on the temperature of the blast furnace wall at the multiple different heights and the temperature of the outer surface of the stave, and according to the two-dimensional heat transfer mechanism model of the cross section of the blast furnace wall, determine the inner surface temperature of the blast furnace at the multiple different heights; 当针对每个高度,该高度的高炉内表面温度大于该高度对应的第一高炉内表面温度阈值时,确定第四炉温指数为所述第一预设炉温指数;When for each height, the blast furnace inner surface temperature at the height is greater than the first blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the first preset furnace temperature index; 当针对每个高度,该高度的高炉内表面温度小于该高度对应的第二高炉内表面温度阈值时,确定所述第四炉温指数为所述第二预设炉温指数,其中,针对每个高度,该高度对应的所述第一高炉内表面温度阈值大于该高度对应的所述第二高炉内表面温度阈值;When for each height, the blast furnace inner surface temperature at that height is less than the second blast furnace inner surface temperature threshold corresponding to the height, determine the fourth furnace temperature index as the second preset furnace temperature index, wherein, for each height, the temperature threshold of the first blast furnace inner surface corresponding to the height is greater than the second blast furnace inner surface temperature threshold corresponding to the height; 否则,确定所述第四温度指数为零;Otherwise, determine that the fourth temperature index is zero; 所述第五炉温指数确定单元,用于采用如下步骤确定所述第五炉温指数:The fifth furnace temperature index determining unit is configured to determine the fifth furnace temperature index by adopting the following steps: 获取基于铁水硅含量预测模型确定高炉铁水硅含量所需的各种输入参量的当前值;Obtain the current values of various input parameters required to determine the silicon content of the blast furnace hot metal based on the silicon content prediction model of the molten iron; 基于获取的所述各种输入参量的当前值,根据所述铁水硅含量预测模型,确定高炉铁水硅含量;Determining the silicon content of the blast furnace molten iron according to the obtained current values of the various input parameters and according to the prediction model for the silicon content of the molten iron; 当所述高炉铁水硅含量大于第一预设高炉铁水硅阈值时,确定第五炉温指数为所述第一预设炉温指数;When the silicon content of the blast furnace hot metal is greater than the first preset blast furnace silicon threshold, the fifth furnace temperature index is determined as the first preset furnace temperature index; 当所述高炉铁水硅含量小于第二预设高炉铁水硅阈值时,确定所述第五炉温指数为所述第二预设炉温指数,其中,所述第一预设高炉铁水硅阈值大于所述第二预设高炉铁水硅阈值;When the silicon content of the blast furnace molten iron is less than the second preset blast furnace silicon threshold, the fifth furnace temperature index is determined to be the second preset furnace temperature index, wherein the first preset blast furnace silicon threshold is greater than The second preset blast furnace molten iron silicon threshold; 否则,确定所述第五炉温指数为零;Otherwise, determine that the fifth furnace temperature index is zero; 所述变化趋势确定单元,具体用于基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,确定高炉炉温的变化趋势。The change trend determining unit is specifically configured to be based on the first furnace temperature index, and the determined second furnace temperature index, the third furnace temperature index, the fourth furnace temperature index and the fifth furnace temperature index. At least one of the furnace temperature indices determines the variation trend of the blast furnace temperature. 8.如权利要求7所述的装置,其特征在于,所述边缘温度指数为对高炉炉喉进行十字测温得到的边缘温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的4倍;8. The device according to claim 7, characterized in that, the edge temperature index is the sum of the edge temperatures obtained by cross-measuring the blast furnace throat, divided by the throat temperature obtained by performing the cross-measuring 4 times the average top temperature; 所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍;或者,所述中心温度指数为进行所述十字测温得到的中心温度与靠近中心的四点温度之和,除以进行所述十字测温得到的炉喉温度的顶温平均值的5倍与预设常数的乘积,所述预设常数大于1。The central temperature index is the sum of the central temperature obtained by performing the cross temperature measurement and the temperature of the four points close to the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement; or, The center temperature index is the sum of the center temperature obtained by performing the cross temperature measurement and the temperature of the four points near the center, divided by 5 times the average top temperature of the furnace throat temperature obtained by performing the cross temperature measurement and the preset The product of constants, the preset constant is greater than 1. 9.如权利要求7所述的装置,其特征在于,所述第五炉温指数确定单元,还用于采用如下步骤确定所述铁水硅含量预测模型:9. The device according to claim 7, characterized in that, the fifth furnace temperature index determination unit is also used to determine the silicon content prediction model of molten iron by adopting the following steps: 在预设时间段内,按照预设时间间隔,采集铁水硅含量预测模型的各种输入参量值,并分别对采集的每种输入参量的多个值进行归一化处理,得到归一化后的各种输入参量值;In the preset time period, according to the preset time interval, various input parameter values of the molten iron silicon content prediction model are collected, and the multiple values of each input parameter collected are normalized respectively, and the normalized Various input parameter values of ; 在所述预设时间段内,在产生高炉铁水的时刻,采集此时产生的所述高炉铁水的铁水硅含量;During the preset time period, at the moment when the blast furnace molten iron is produced, the silicon content of the molten iron in the blast furnace produced at this time is collected; 基于多次采集的铁水硅含量,按照时间轴进行曲线拟合,得到所述预设时间段内铁水硅含量曲线;Based on the silicon content of molten iron collected multiple times, curve fitting is performed according to the time axis to obtain a silicon content curve of molten iron within the preset time period; 确定所述铁水硅含量曲线中,按照所述预设时间间隔的每个采样时刻对应的铁水硅含量;Determining the silicon content of molten iron corresponding to each sampling moment according to the preset time interval in the silicon content curve of the molten iron; 基于所述归一化后的各种输入参量值,和确定的按照所述预设时间间隔的每个采样时刻对应的铁水硅含量,根据支持向量回归方法建立铁水硅含量预测模型。Based on the normalized various input parameter values and the determined silicon content of molten iron corresponding to each sampling time interval according to the preset time interval, a prediction model of silicon content in molten iron is established according to a support vector regression method. 10.如权利要求7-9任一所述的装置,其特征在于,所述变化趋势确定单元,具体用于基于所述第一炉温指数,以及确定的所述第二炉温指数、所述第三炉温指数、所述第四炉温指数和所述第五炉温指数中至少之一,以及各炉温指数对应的权重,进行加权求和,得到炉温综合指数;10. The device according to any one of claims 7-9, wherein the change trend determining unit is specifically configured to be based on the first furnace temperature index, the determined second furnace temperature index, the determined At least one of the third furnace temperature index, the fourth furnace temperature index, and the fifth furnace temperature index, and the weights corresponding to each furnace temperature index, are weighted and summed to obtain the comprehensive furnace temperature index; 当所述炉温综合指数大于第一炉温指数阈值时,确定高炉炉温的变化趋势为温度升高,所述第一炉温指数阈值大于零且小于所述第一预设炉温指数;When the comprehensive furnace temperature index is greater than the first furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is temperature rise, and the first furnace temperature index threshold is greater than zero and less than the first preset furnace temperature index; 当所述炉温综合指数小于第二炉温指数阈值时,确定高炉炉温的变化趋势为温度降低,所述第二炉温指数阈值大于所述第二预设炉温指数且小于零,所述第二预设炉温指数为负的所述第一预设炉温指数;When the comprehensive furnace temperature index is less than the second furnace temperature index threshold, it is determined that the change trend of the blast furnace temperature is a temperature decrease, and the second furnace temperature index threshold is greater than the second preset furnace temperature index and less than zero, so The second preset furnace temperature index is negative for the first preset furnace temperature index; 否则,确定高炉炉温变化趋势为保持温度在合理范围内。Otherwise, determine the variation trend of blast furnace temperature to keep the temperature within a reasonable range.
CN201410850959.4A 2014-12-29 2014-12-29 Blast furnace temperature change trend determination method and device Expired - Fee Related CN104498654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410850959.4A CN104498654B (en) 2014-12-29 2014-12-29 Blast furnace temperature change trend determination method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410850959.4A CN104498654B (en) 2014-12-29 2014-12-29 Blast furnace temperature change trend determination method and device

Publications (2)

Publication Number Publication Date
CN104498654A true CN104498654A (en) 2015-04-08
CN104498654B CN104498654B (en) 2017-02-08

Family

ID=52940104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410850959.4A Expired - Fee Related CN104498654B (en) 2014-12-29 2014-12-29 Blast furnace temperature change trend determination method and device

Country Status (1)

Country Link
CN (1) CN104498654B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928421A (en) * 2015-06-30 2015-09-23 攀钢集团西昌钢钒有限公司 Method for changing too large temperature range of furnace throat in blast furnace smelting process
CN105160195A (en) * 2015-09-12 2015-12-16 内蒙古科技大学 A Blast Furnace Temperature Prediction Model and Its Application
CN106227699A (en) * 2016-07-04 2016-12-14 东北大学 A kind of blast furnace throat cross temperature measurer center band temperature predicting method and system
CN106595868A (en) * 2016-11-15 2017-04-26 北京科技大学 Blast furnace combustion zone temperature field detection method based on improved three-color method
CN108048608A (en) * 2017-12-12 2018-05-18 山西太钢不锈钢股份有限公司 A kind of method for quantifying to adjust blast furnace edge airflow
CN112465223A (en) * 2020-11-26 2021-03-09 中冶南方工程技术有限公司 Blast furnace temperature state prediction method
CN112501368A (en) * 2020-11-17 2021-03-16 中冶南方工程技术有限公司 Blast furnace smelting method and computer equipment
CN113343440A (en) * 2021-05-21 2021-09-03 东北大学 Blast furnace tuyere convolution region three-dimensional temperature field construction method based on image data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844409A (en) * 2006-03-14 2006-10-11 中南大学 Detection method and monitoring system of temperature field and material surface distribution based on infrared image
CN102732660A (en) * 2012-06-27 2012-10-17 浙江大学 Burden surface temperature field detection method based on multi-source information fusion
CN104392213A (en) * 2014-11-19 2015-03-04 郑可尧 Image information state recognizing system applicable to melting process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844409A (en) * 2006-03-14 2006-10-11 中南大学 Detection method and monitoring system of temperature field and material surface distribution based on infrared image
CN102732660A (en) * 2012-06-27 2012-10-17 浙江大学 Burden surface temperature field detection method based on multi-source information fusion
CN104392213A (en) * 2014-11-19 2015-03-04 郑可尧 Image information state recognizing system applicable to melting process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
欧阳奇: "基于辐射图像的高炉回旋区温度场重构关键技术研究", 《中国博士学位论文全文数据库》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928421A (en) * 2015-06-30 2015-09-23 攀钢集团西昌钢钒有限公司 Method for changing too large temperature range of furnace throat in blast furnace smelting process
CN105160195A (en) * 2015-09-12 2015-12-16 内蒙古科技大学 A Blast Furnace Temperature Prediction Model and Its Application
CN106227699A (en) * 2016-07-04 2016-12-14 东北大学 A kind of blast furnace throat cross temperature measurer center band temperature predicting method and system
CN106227699B (en) * 2016-07-04 2018-10-23 东北大学 A kind of blast furnace throat cross temperature measurer center band temperature predicting method and system
CN106595868A (en) * 2016-11-15 2017-04-26 北京科技大学 Blast furnace combustion zone temperature field detection method based on improved three-color method
CN108048608A (en) * 2017-12-12 2018-05-18 山西太钢不锈钢股份有限公司 A kind of method for quantifying to adjust blast furnace edge airflow
CN108048608B (en) * 2017-12-12 2019-07-23 山西太钢不锈钢股份有限公司 A method of quantization adjusts blast furnace edge airflow
CN112501368A (en) * 2020-11-17 2021-03-16 中冶南方工程技术有限公司 Blast furnace smelting method and computer equipment
CN112501368B (en) * 2020-11-17 2022-07-08 中冶南方工程技术有限公司 Blast furnace smelting method and computer equipment
CN112465223A (en) * 2020-11-26 2021-03-09 中冶南方工程技术有限公司 Blast furnace temperature state prediction method
CN113343440A (en) * 2021-05-21 2021-09-03 东北大学 Blast furnace tuyere convolution region three-dimensional temperature field construction method based on image data

Also Published As

Publication number Publication date
CN104498654B (en) 2017-02-08

Similar Documents

Publication Publication Date Title
CN104498654B (en) Blast furnace temperature change trend determination method and device
Pan et al. Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision
CN105005632B (en) The blast furnace crucible corrosion Forecasting Methodology of multiple layer refractory tile stove wall construction
JP6414102B2 (en) Refining furnace discharge flow determination apparatus, refining furnace discharge flow determination method, and molten metal refining method
CN103388054A (en) System and method for on-line control of molten steel temperature in LF refining
JP2021507115A (en) Reactor condition management equipment and method
CN111705174B (en) Method for detecting blast furnace wall junction thickness
NUMERI et al. Setting a numerical simulation of filling and solidification of heavy steel ingots based on real casting conditions
CN104215334A (en) Real-time online monitoring method of temperature of molten steel in RH refining furnace
CN102183288A (en) Refining aluminum consumption control method based on remote infrared monitoring
CN113930600B (en) A monitoring and control method of bell furnace annealing process based on digital twin technology
CN104531932A (en) Blast furnace inner surface temperature distribution model establishing method and device
CN116997900A (en) A smelting optimization method and device for copper-containing concentrates
CN115900378B (en) Real-time monitoring system and method for smelting state and molten steel temperature in RH refining furnace
CN114058778B (en) Steelmaking equipment temperature acquisition safety monitoring system
Jiang et al. A new monitoring method for the blocking time of the taphole of blast furnace using molten iron flow images
CN111830084A (en) A kind of furnace lining refractory damage detection method
CN104568187B (en) A kind of kiln temperature detection method and device
JP2020112429A (en) Slag quantification method
CN114623935B (en) Ladle accurate casting accurate stopping model application method based on infrared thermal imager imaging data
CN104537177A (en) Method and device for determining position of softening face of softening and melting band in blast furnace
CN106868249A (en) The decision-making system and method for the metallurgical furnace furnace lining safety based on temperature pre-warning mechanism
CN216524095U (en) Thermal state monitoring system for empty ladle and tapping process of steel ladle
KR102263588B1 (en) Method and apparatus for measuring slag thickness using artificial neural network
JP2023535032A (en) System and method for metal level monitoring during casting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170208

Termination date: 20211229

CF01 Termination of patent right due to non-payment of annual fee