JP6761596B2 - Cutting tool made of composite material - Google Patents

Cutting tool made of composite material Download PDF

Info

Publication number
JP6761596B2
JP6761596B2 JP2016150497A JP2016150497A JP6761596B2 JP 6761596 B2 JP6761596 B2 JP 6761596B2 JP 2016150497 A JP2016150497 A JP 2016150497A JP 2016150497 A JP2016150497 A JP 2016150497A JP 6761596 B2 JP6761596 B2 JP 6761596B2
Authority
JP
Japan
Prior art keywords
cemented carbide
steel
based cemented
additional layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016150497A
Other languages
Japanese (ja)
Other versions
JP2018015878A (en
Inventor
五十嵐 誠
誠 五十嵐
藤原 和崇
和崇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016150497A priority Critical patent/JP6761596B2/en
Publication of JP2018015878A publication Critical patent/JP2018015878A/en
Application granted granted Critical
Publication of JP6761596B2 publication Critical patent/JP6761596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、複合材料からなる切削工具に関し、特に、鉄鋼系材料基体の表面の一部または全部に、その表面形状を大きく変化させることなく、肉盛によるWC基超硬合金付加層を設けた複合材料からなる切削性能のすぐれた切削工具に関する。 The present invention relates to a cutting tool made of a composite material , and in particular, a WC-based cemented carbide additional layer by overlay is provided on a part or all of the surface of a steel-based material substrate without significantly changing the surface shape thereof. Related to cutting tools with excellent cutting performance made of composite materials .

鋼や鋳鉄の切削加工用工具としては、WC基超硬合金が広く利用されているが、希少金属であるタングステンの使用量を削減するために、従来から、各種の提案がなされている。 WC-based cemented carbide is widely used as a tool for cutting steel and cast iron, but various proposals have been made in order to reduce the amount of tungsten, which is a rare metal.

例えば、特許文献1には、切削用材料として炭化タングステンを使用することは、よく知られているが、鑞付けにより、炭化タングステン製インサートを、切削工具に取
り付けるのに適したプロセスではないとの観点から、結合剤がコバルト、硬質材料が炭化タングステンであるような前記硬質材料を含む混合物を鋼帯の縁部に被着させ鋼帯の一部分を融解させるために、前記移動可能な鋼帯を放射線ビームで照射し、前記硬質材料及び結合剤元素を含む前記混合物を前記鋼帯の融解部分に供給し、硬質材料により被覆された鋼帯から個々のブレードを形成するブレードの製造方法が提案されている。
For example, Patent Document 1 states that the use of tungsten carbide as a cutting material is well known, but it is not a suitable process for attaching a tungsten carbide insert to a cutting tool by brazing. From the viewpoint, the movable steel strip is provided in order to apply a mixture containing the hard material such that the binder is cobalt and the hard material is tungsten carbide to the edge of the steel strip to melt a part of the steel strip. A method for producing a blade by irradiating with a radiation beam, supplying the mixture containing the hard material and the binder element to the molten portion of the steel strip, and forming individual blades from the steel strip coated with the hard material has been proposed. ing.

また、例えば、特許文献2には、複合材料からなる切削工具インサートとして、基体(台金)にWC成分の含有量が10mass%以下であるTi基サーメットを採用し、その基体の刃先となる部分にのみ、WCと結合相形成成分(例えば、Co,Ni,Fe)を主成分とし、該結合相の面積割合が8〜30面積%であるWC基超硬合金を刃先材料として形成し、一方、基体と刃先材料との界面側のTi基サーメットの結合相(例えば、Co,Ni,Feからなる結合相)の含有量を10〜40面積%とすることによって、タングステン使用量の低減を図り得るばかりか、密着強度不足による欠損や変形を生じることもなく、かつ、すぐれた耐摩耗性を発揮するWC基超硬合金製切削工具インサートを得ること、さらに、刃先材料を溶射膜として構成した場合には、Ti基サーメットの結合相富化層の下部に結合相量が少なく、硬質層が富化した層が形成されており、WC成分の含有量が10mass%以下であり、また、適正な結合相分布が形成されているために、溶射膜との熱膨張係数差が制御され、それによる適度な残留圧縮応力が付与されることにより、より一段と密着強度にすぐれるとともに、剥離、欠損等の異常損傷を発生することもなく、すぐれた耐摩耗性を発揮するタングステン使用量を低減したWC基超硬合金製切削工具インサートを得ることが提案されている。 Further, for example, in Patent Document 2, as a cutting tool insert made of a composite material, a Ti-based cermet having a WC component content of 10 mass% or less is adopted for a substrate (base metal), and a portion serving as a cutting edge of the substrate. A WC-based cemented carbide containing WC and a bonding phase forming component (for example, Co, Ni, Fe) as a main component and having an area ratio of the bonding phase of 8 to 30 area% is formed as a cutting edge material. By setting the content of the bonding phase of the Ti-based cermet on the interface side between the substrate and the cutting edge material (for example, the bonding phase composed of Co, Ni, Fe) to 10 to 40 area%, the amount of tungsten used can be reduced. A WC-based cemented carbide cutting tool insert that not only obtains, does not cause chipping or deformation due to insufficient adhesion strength, and exhibits excellent wear resistance, and further, the cutting edge material is configured as a cermet film. In the case, a layer having a small amount of bonded phase and an enriched hard layer is formed under the bonded phase enriched layer of the Ti-based cermet, and the content of the WC component is 10 mass% or less, which is appropriate. Since the bond phase distribution is formed, the difference in thermal expansion coefficient from the cermet film is controlled, and by applying an appropriate residual compressive stress, the adhesion strength is further improved, and peeling and chipping are performed. It has been proposed to obtain a WC-based cemented carbide cutting tool insert that exhibits excellent wear resistance and uses a reduced amount of tungsten without causing abnormal damage such as.

なお、特許文献3には、金属部材表面に硬質領域を形成する方法として、処理される金属部材よりも硬質で拡散・注入しようとする元素を含んでなる硬質粒子を金属部材に対して高速で打ち込み、次いで、打ち込まれた硬質粒子と金属部材との接触界面から拡散・注入しようとする元素を金属部材へと拡散させる硬質粒子打ち込みによる金属部材への元素の拡散・注入方法が提案されており、この方法によれば、金属部材最外層は、硬質粒子が打ち込まれるため加工硬化を生じ、また、硬質粒子は鋭角面を先端として楔状に深く打ち込まれるため安定であって、脱離することはなく、金属部材との密着性にすぐれるとされている。 In Patent Document 3, as a method of forming a hard region on the surface of a metal member, hard particles that are harder than the metal member to be treated and contain an element to be diffused / injected are emitted at high speed with respect to the metal member. A method has been proposed in which the elements to be diffused / injected from the contact interface between the driven hard particles and the metal member are diffused into the metal member, and then the elements are diffused / injected into the metal member by driving the hard particles. According to this method, the outermost layer of the metal member is work-hardened because hard particles are driven in, and the hard particles are stable and cannot be detached because they are deeply driven in a wedge shape with a sharp angle surface as the tip. It is said that it has excellent adhesion to metal members.

特開2010−596号公報JP-A-2010-596 特開2013−188832号公報Japanese Unexamined Patent Publication No. 2013-188832 特開2008−24993号公報JP-A-2008-24993

前記特許文献1、2に示す、超硬合金と鉄鋼材料、あるいは、超硬合金とサーメットからなる複合材料においては、希少金属であるタングステンの使用量の低減は図られるものの、この複合材料から形成した切削工具を、切れ刃に高負荷が作用する切削条件で使用した場合には、超硬合金の硬度が不十分であるため、満足できる耐摩耗性を発揮することができず、また、超硬合金からなる厚い肉盛層が形成されるため、工具として用いるに際しては、所定の工具形状に整形・加工する必要があった。
そこで、希少金属であるタングステンの使用量を低減し得るとともに、すぐれた硬度を有し、さらに、肉盛による表面形状変化(肉盛による厚さの増加)が少ないWC基超硬合金と鉄鋼系材料からなる複合材料が望まれる。
In the composite material composed of cemented carbide and steel material or cemented carbide and cermet shown in Patent Documents 1 and 2, although the amount of tungsten used as a rare metal can be reduced, it is formed from this composite material. When the cutting tool is used under cutting conditions where a high load acts on the cutting edge, the hardness of the cemented carbide is insufficient, so that satisfactory wear resistance cannot be exhibited, and the cemented carbide cannot exhibit satisfactory wear resistance. Since a thick overlay layer made of cemented carbide is formed, it is necessary to shape and process it into a predetermined tool shape when it is used as a tool.
Therefore, the amount of tungsten, which is a rare metal, can be reduced, and the WC-based cemented carbide and steel-based alloy have excellent hardness and little surface shape change (thickness increase due to overlay) due to overlay. A composite material composed of materials is desired.

本発明者等は、上述のような観点から、タングステン使用量の低減を図るとともに、すぐれた硬度を有し、かつ、肉盛による表面形状変化(肉盛による厚さの増加)が少ないWC基超硬合金と鉄鋼系材料からなる複合材料について鋭意検討したところ、鉄鋼系材料表面の一部または全部をレーザー照射により融解し、該融解箇所にWC基超硬合金粉末を投射することにより、鉄鋼系材料表面上にWC基超硬合金付加層を有する複合材料を作製するにあたり、レーザー照射条件(レーザー出力、レーザースポット径、走査速度)を適切にコントロールするとともに、鉄鋼系材料の温度、冷却までの時間をコントロールすることにより、鉄鋼系材料への肉盛による表面形状変化(厚さの増加)を抑制しつつ、鉄鋼系材料表面へWC基超硬合金粒子を含有させることができ、これによって、鉄鋼系材料表面にWC基超硬合金付加層からなる硬化層を形成し得ることを見出したのである。
そして、前記複合材料によって切削工具を構成することにより、この切削工具は、高硬度を有するため、長期の使用にわたって、すぐれた切削性能を発揮することを見出したのである。
From the above viewpoints, the present inventors have reduced the amount of tungsten used, have excellent hardness, and have little surface shape change (increase in thickness due to overlay) due to overlay. A diligent study of a composite material consisting of cemented carbide and a steel-based material revealed that a part or all of the surface of the steel-based material was melted by laser irradiation, and WC-based cemented carbide powder was projected onto the melted portion to make steel. In producing a composite material having a WC-based cemented carbide additional layer on the surface of the system material, the laser irradiation conditions (laser output, laser spot diameter, scanning speed) are appropriately controlled, and the temperature and cooling of the steel-based material are also achieved. By controlling the time, it is possible to contain WC-based cemented carbide particles on the surface of the steel-based material while suppressing the change in surface shape (increase in thickness) due to overlaying on the steel-based material. , They have found that a hardened layer composed of a WC-based cemented carbide addition layer can be formed on the surface of a steel-based material.
Then, by constructing a cutting tool with the composite material, it has been found that this cutting tool has high hardness and therefore exhibits excellent cutting performance over a long period of use.

本発明は、上記知見に基づいてなされたものであって、
「(1)鉄鋼系材料の表面の一部または全部にWC基超硬合金付加層が設けられている複合材料からなる切削工具であって、
(a)前記WC基超硬合金付加層には、少なくとも、WC粒子が凝集する凝集組織が形成されており、
(b)前記凝集組織は、前記WC基超硬合金付加層表面を含む任意の縦断面を観察した場合、(長径+短径)/2で表される凝集組織の直径10μm以上60μm以下、かつ、長径と短径の比率が1〜2の円形状の組織であり、前記凝集組織の占める面積割合は、前記WC基超硬合金付加層の面積の20面積%以上50面積%以下であり、
(c)前記WC基超硬合金付加層を設ける以前の前記鉄鋼系材料の表面を基準面とした場合、前記WC基超硬合金層の最大侵入深さが前記鉄鋼系材料の基準面から内部へ20μm以上200μm以下に形成されている複合材料からなることを特徴とする切削工具
)前記切削工具において、前記WC基超硬合金付加層の最大厚さは、前記最大浸入深さの1〜1.5倍であることを特徴とする前記(1)に記載の切削工具
)前記切削工具において、前記WC基超硬合金付加層の結合相は、Feを20原子%以上50原子%以下およびCoを50原子%以上80原子%以下含有し、
前記WC基超硬合金付加層の表面のビッカース硬さHVは1000以上1500以下であることを特徴とする前記(1)または(2)に記載の切削工具
)前記(1)乃至()のいずれかに記載の切削工具において、鉄鋼系材料が高速度工具鋼またはダイス鋼であることを特徴とする切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings.
"(1) A cutting tool made of a composite material in which a WC-based cemented carbide additional layer is provided on a part or all of the surface of a steel-based material.
(A) At least an agglomerated structure in which WC particles aggregate is formed in the WC-based cemented carbide addition layer.
(B) When observing an arbitrary vertical cross section including the surface of the WC-based cemented carbide additional layer , the aggregated structure represented by (major axis + minor axis) / 2 has a diameter of 10 μm or more and 60 μm or less. In addition, it is a circular structure with a major axis to minor axis ratio of 1 to 2, and the area ratio occupied by the aggregated structure is 20 area% or more and 50 area% or less of the area of the WC-based cemented carbide additional layer. ,
(C) When the surface of the steel-based material before the WC-based cemented carbide additional layer is provided as a reference surface, the maximum penetration depth of the WC-based cemented carbide layer is inside the reference surface of the steel-based material. cutting tool, characterized in that it consists of double coupling material that is formed in 20μm or 200μm or less to.
(2) in the cutting tool, cutting tool according to (1), wherein the maximum thickness of the WC-based cemented carbide additional layer is 1 to 1.5 times the maximum penetration depth ..
( 3 ) In the cutting tool , the bonding phase of the WC-based cemented carbide additional layer contains 20 atomic% or more and 50 atomic% or less of Fe and 50 atomic% or more and 80 atomic% or less of Co.
The cutting tool according to (1) or (2) above, wherein the Vickers hardness HV of the surface of the WC-based cemented carbide addition layer is 1000 or more and 1500 or less.
( 4 ) The cutting tool according to any one of (1) to ( 3 ) above, wherein the steel-based material is high-speed tool steel or die steel . "
It is characterized by.

次に、この発明について、詳細に説明する。 Next, this invention will be described in detail.

図1に、本発明複合材料の縦断面概略模式図を示す。
図2(a)には、本発明複合材料の一つの具体例の縦断面SEM像を示し、また、図2(b)には、図2(a)の部分拡大図を示す。
本発明の複合材料は、図1および図2(a)に示すように、鉄鋼系材料の表面の一部または全部に、WC基超硬合金付加層が設けられている。
また、前記WC基超硬合金付加層には、図2(b)に示すように、WC粒子が凝集する凝集組織が形成されている。該凝集組織は、走査型電子顕微鏡による500倍の二次電子像において、白色系のコントラストを有する画像として特定される。なお、WC粒子は白色系のコントラストを有し、WC基超硬合金付加層が設けられた基材である鉄鋼系材料は灰色系の色調を有することから、WC粒子が凝集する凝集組織を識別することができる。
なお、本発明の複合材料を構成する鉄鋼系材料としては、特段の制限はないが、高速度工具鋼、ダイス鋼を用いることが好適である。
FIG. 1 shows a schematic vertical cross-sectional view of the composite material of the present invention.
FIG. 2 (a) shows a vertical cross-sectional SEM image of one specific example of the composite material of the present invention, and FIG. 2 (b) shows a partially enlarged view of FIG. 2 (a).
As shown in FIGS. 1 and 2 (a), the composite material of the present invention is provided with a WC-based cemented carbide addition layer on a part or all of the surface of the steel-based material.
Further, as shown in FIG. 2B, an aggregated structure in which WC particles aggregate is formed in the WC-based cemented carbide addition layer. The aggregated structure is identified as an image having white contrast in a 500x secondary electron image by a scanning electron microscope. Since the WC particles have a white contrast and the steel-based material which is the base material provided with the WC-based cemented carbide additional layer has a gray color tone, the aggregated structure in which the WC particles aggregate is identified. can do.
The steel-based material constituting the composite material of the present invention is not particularly limited, but it is preferable to use high-speed tool steel or die steel.

前記凝集組織は、図2(a)、(b)からもわかるように、WC基超硬合金付加層表面を含む任意の縦断面を観察した場合、直径10μm以上60μm以下、かつ、長径と短径の比率(長径/短径)が1〜2の円形状の組織である。
上記の直径及び長径−短径比を有する凝集組織は、後記するレーザー肉盛によって形成することができるが、直径が10μm未満では凝集組織を形成することが難しくなることから、相対的に強度が低下することにより、脆化傾向を示し、一方、直径が60μmを超えると、凝集組織が粗大となり、凝集組織の脱落が生じやすくなることから、凝集組織の直径は10μm以上60μm以下とする。
As can be seen from FIGS. 2 (a) and 2 (b), the aggregated structure has a diameter of 10 μm or more and 60 μm or less, and a major axis and a short axis when an arbitrary vertical cross section including the surface of the WC-based cemented carbide additional layer is observed. It is a circular structure having a diameter ratio (major axis / minor axis) of 1 to 2.
The aggregated structure having the above diameter and major axis-minor axis ratio can be formed by laser overlay described later, but if the diameter is less than 10 μm, it becomes difficult to form the aggregated structure, so that the strength is relatively high. When the diameter exceeds 60 μm, the aggregated structure becomes coarse and the aggregated structure tends to fall off. Therefore, the diameter of the aggregated structure is set to 10 μm or more and 60 μm or less.

また、前記凝集組織の長径と短径の比率が2を超え、非円形状の形状になると、凝集組織が非等方的な性質をもった組織となり、WC基超硬合金付加層全体としての高硬度を担保するという観点からは望ましくないことから、凝集組織における長径と短径の比率(長径/短径)は2以下(即ち、1〜2)の円形状の組織とする。 Further, when the ratio of the major axis to the minor axis of the agglomerated structure exceeds 2 and the shape becomes a non-circular shape, the agglomerated structure becomes a structure having an isotropic property, and the WC-based cemented carbide additional layer as a whole becomes. Since it is not desirable from the viewpoint of ensuring high hardness, the ratio of the major axis to the minor axis (major axis / minor axis) in the aggregated structure is 2 or less (that is, 1 to 2) in a circular structure.

また、本発明の複合材料では、例えば、レーザーを用いた肉盛法により鉄鋼系材料の表面の一部または全部にWC基超硬合金付加層を形成することにより、図1、図2に示すように、WC基超硬合金層の最大侵入深さが前記鉄鋼系材料の基準面から内部へ20μm以上200μm以下に形成する。
つまり、レーザー照射により鉄鋼系材料とWC基超硬合金を溶融させ、鉄鋼系材料表面の一部または全部に鉄鋼系材料のプールを形成するとともに、該プール内にWC基超硬合金粉末を投射して溶け込ませ、これを冷却することによって、WC基超硬合金付加層の最大浸入深さが鉄鋼系材料の基準面から20μm〜200μmの深さとなるようWC基超硬合金層を形成する。
ここで、鉄鋼系材料の基準面とは、WC基超硬合金付加層を設ける以前の鉄鋼系材料の表面をいう。
鉄鋼系材料の基準面からのWC基超硬合金付加層の最大浸入深さが20μm未満では、形成される鉄鋼系材料のプールの深さが浅く、鉄鋼系材料とWC基超硬合金との溶け込み量が少なく、鉄鋼系材料に対するWC基超硬合金付加層の密着効果が少ないため、複合部材に負荷が作用した場合、鉄鋼系材料とWC基超硬合金付加層が剥離を発生しやすい。
一方、鉄鋼系材料の基準面からのWC基超硬合金付加層の最大浸入深さが200μmを超える場合には、鉄鋼系材料の溶融量が大きいため、冷却時に割れを生じやすくなり、その結果、WC基超硬合金付加層の脱落が生じやすくなる。
したがって、鉄鋼系材料の基準面からのWC基超硬合金付加層の最大浸入深さは、20μm以上200μm以下とする。
Further, in the composite material of the present invention, for example, by forming a WC-based cemented carbide additional layer on a part or all of the surface of the steel-based material by a build-up method using a laser, it is shown in FIGS. 1 and 2. As described above, the maximum penetration depth of the WC-based cemented carbide layer is formed to be 20 μm or more and 200 μm or less inward from the reference surface of the steel-based material.
That is, the steel-based material and the WC-based cemented carbide are melted by laser irradiation to form a pool of the steel-based material on a part or all of the surface of the steel-based material, and the WC-based cemented carbide powder is projected into the pool. The WC-based cemented carbide layer is formed so that the maximum penetration depth of the WC-based cemented carbide additional layer is 20 μm to 200 μm from the reference plane of the steel-based material.
Here, the reference surface of the steel-based material refers to the surface of the steel-based material before the WC-based cemented carbide addition layer is provided.
When the maximum penetration depth of the WC-based cemented carbide additional layer from the reference plane of the steel-based material is less than 20 μm, the depth of the pool of the formed steel-based material is shallow, and the steel-based material and the WC-based cemented carbide Since the amount of penetration is small and the effect of the WC-based cemented carbide additional layer on the steel-based material is small, when a load is applied to the composite member, the steel-based material and the WC-based cemented carbide additional layer are likely to peel off.
On the other hand, when the maximum penetration depth of the WC-based cemented carbide additional layer from the reference plane of the steel-based material exceeds 200 μm, the amount of melting of the steel-based material is large, so that cracks are likely to occur during cooling, resulting in , The WC-based cemented carbide additional layer is likely to fall off.
Therefore, the maximum penetration depth of the WC-based cemented carbide addition layer from the reference plane of the steel-based material is set to 20 μm or more and 200 μm or less.

なお、鉄鋼系材料の基準面からのWC基超硬合金付加層の最大浸入深さは、走査型電子顕微鏡により取得した画像において、WC基超硬合金付加層を形成する以前の鉄鋼系材料の表面を基準面とし、該基準面からWC基超硬合金付加層を横断する線分を引き、該線分から、鉄鋼系材料とWC基超硬合金付加層の界面への垂直な距離を測定し、その最大距離をWC基超硬合金付加層の最大浸入深さとして求めることができる。 The maximum penetration depth of the WC-based cemented carbide additional layer from the reference plane of the steel-based material is the maximum penetration depth of the steel-based material before forming the WC-based cemented carbide additional layer in the image acquired by the scanning electron microscope. With the surface as the reference plane, a line crossing the WC-based cemented carbide additional layer is drawn from the reference plane, and the vertical distance from the line to the interface between the steel-based material and the WC-based cemented carbide additional layer is measured. , The maximum distance can be obtained as the maximum penetration depth of the WC-based cemented carbide additional layer.

本発明のWC基超硬合金付加層は、主として、WC基超硬合金の硬質成分であるWC粒子の凝集組織によってその高硬度を発現するが、前記WC基超硬合金付加層の縦断面観察において、該層中に占めるWC粒子の凝集組織の面積割合が20面積%未満では、十分な高硬度、耐摩耗性を発揮することができないことから、一方、WC基超硬合金付加層に占めるWC粒子の凝集組織の面積割合が50面積%を超えると、凝集組織同士が隣接し、凝集組織の脱落が生じやすくなることから、WC基超硬合金付加層の縦断面に占めるWC粒子の凝集組織の面積割合は20面積%以上50面積%以下とすることが望ましい。 The WC-based cemented carbide additional layer of the present invention exhibits its high hardness mainly due to the aggregated structure of WC particles, which is a hard component of the WC-based cemented carbide, and the vertical cross-sectional observation of the WC-based cemented carbide additional layer is observed. In the above, if the area ratio of the aggregated structure of the WC particles in the layer is less than 20 area%, sufficient high hardness and abrasion resistance cannot be exhibited. Therefore, the WC-based cemented carbide additional layer is occupied. When the area ratio of the agglomerated structure of the WC particles exceeds 50 area%, the agglomerated structures are adjacent to each other and the agglomerated structures are likely to fall off. Therefore, the agglomeration of the WC particles in the vertical cross section of the WC-based cemented carbide addition layer It is desirable that the area ratio of the tissue is 20 area% or more and 50 area% or less.

本発明の複合材料において、WC基超硬合金付加層の最大厚さは、前記WC基超硬合金付加層の最大浸入深さの1〜1.5倍とすることが望ましい。
ここで、WC基超硬合金付加層の最大厚さとは、走査型電子顕微鏡およびオージェ電子分光装置を用いて、WC基超硬合金付加層と鉄鋼系材料との接合部近傍の縦断面観察をし、WC基超硬合金付加層側からみて、WC粒子が観察される臨界位置を界面とし、WC基超硬合金付加層を設ける以前の鉄鋼系材料の表面に垂直方向に、前記界面からWC基超硬合金付加層表面までの最大距離をWC基超硬合金付加層の最大厚さという(図1参照)。
WC基超硬合金付加層の最大厚さを、最大浸入深さの1〜1.5倍とするのは、WC基超硬合金付加層の最大厚さが最大浸入深さの1倍未満であるような場合には、WC基超硬合金付加層の生成量が少なすぎるため、硬さ向上効果が少なく、一方、WC基超硬合金付加層の最大厚さが最大浸入深さの1.5倍を超えるような場合には、WC基超硬合金付加層の鉄鋼系材料の基準面からの突出高さが大きくなりすぎ、当初の鉄鋼系材料の表面形状が大幅に変更されることになるからである。
鉄鋼系材料表面への上記最大厚さのWC基超硬合金付加層は、例えば、後記するレーザー肉盛法によって形成することができる。
In the composite material of the present invention, it is desirable that the maximum thickness of the WC-based cemented carbide additional layer is 1 to 1.5 times the maximum penetration depth of the WC-based cemented carbide additional layer.
Here, the maximum thickness of the WC-based cemented carbide additional layer is the vertical cross-sectional observation of the vicinity of the joint between the WC-based cemented carbide additional layer and the steel-based material using a scanning electron microscope and an Auger electron spectroscope. However, when viewed from the WC-based cemented carbide additional layer side, the critical position where WC particles are observed is set as the interface, and the WC is WC from the interface in the direction perpendicular to the surface of the steel-based material before the WC-based cemented carbide additional layer is provided. The maximum distance to the surface of the basic cemented carbide additional layer is called the maximum thickness of the WC basic cemented carbide additional layer (see FIG. 1).
The maximum thickness of the WC-based cemented carbide additional layer is 1 to 1.5 times the maximum penetration depth when the maximum thickness of the WC-based cemented carbide additional layer is less than 1 times the maximum penetration depth. In such a case, the amount of the WC-based cemented carbide additional layer produced is too small, so that the effect of improving the hardness is small, while the maximum thickness of the WC-based cemented carbide additional layer is the maximum penetration depth. If it exceeds 5 times, the protruding height of the WC-based cemented carbide additional layer from the reference plane becomes too large, and the surface shape of the original steel-based material is significantly changed. Because it becomes.
The WC-based cemented carbide addition layer having the maximum thickness on the surface of the steel-based material can be formed, for example, by the laser overlay method described later.

本発明の複合材料において、WC基超硬合金付加層における主たる硬質成分は、該層中において20〜50面積%を占めるWC粒子の凝集組織であるが、従来から知られているTi、Zr、Cr、V、NbおよびTaの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物等からなる副硬質相成分を含有させることができる。
また、本発明では、前記WC基超硬合金付加層を構成する結合相成分として、20〜50原子%Feおよび50〜80原子%のCoを含有させる。
結合相成分のFeが20原子%未満では、鉄鋼系材料との密着強度が不十分となり剥離する恐れがあり、一方、Feの含有量が50原子%を超えると凝集組織の強度が低下し、クラックを生じやすくなることから、Feの含有量20〜50原子%、残部はCo(即ち、Co含有量は50〜80原子%)とすることが望ましい。
In the composite material of the present invention, the main hard component in the WC-based cemented carbide addition layer is an aggregated structure of WC particles occupying 20 to 50 area% in the layer, but conventionally known Ti, Zr, It can contain a sub-hard phase component composed of carbides of Cr, V, Nb and Ta, nitrides, carbonitrides, coal oxides, nitrogen oxides, carbon dioxide oxides and the like.
Further, in the present invention, 20 to 50 atomic% Fe and 50 to 80 atomic% Co are contained as the bonding phase components constituting the WC-based cemented carbide addition layer.
If the Fe content of the bonded phase component is less than 20 atomic%, the adhesion strength with the steel-based material becomes insufficient and there is a risk of peeling, while if the Fe content exceeds 50 atomic%, the strength of the aggregated structure decreases. It is desirable that the Fe content is 20 to 50 atomic% and the balance is Co (that is, the Co content is 50 to 80 atomic%) because cracks are likely to occur.

前記WC基超硬合金付加層の結合相におけるFe含有量およびCo含有量は、次のようにして求めることができる。
まず、鉄鋼系材料とWC基超硬合金付加層との界面からWC基超硬合金付加層側に、前記界面からWC基超硬合金付加層表面に向けてWC基超硬合金付加層を10等分するように、前記鉄鋼系材料表面の基準面に平行に9本の線を引き、同線上で線分析を行い、結合相中のFeおよびCoの含有量を測定し、前記9本の線についてそれぞれ測定したFeおよびCoの含有量を平均化することによって、WC基超硬合金付加層の結合相におけるFe含有量およびCo含有量をそれぞれの平均値として求めることができる。
The Fe content and Co content in the bonded phase of the WC-based cemented carbide addition layer can be determined as follows.
First, 10 WC-based cemented carbide additional layers are provided from the interface between the steel-based material and the WC-based cemented carbide additional layer to the WC-based cemented carbide additional layer side, and from the interface toward the WC-based cemented carbide additional layer surface. Nine lines are drawn parallel to the reference plane on the surface of the steel-based material so as to divide them into equal parts, line analysis is performed on the same lines, and the contents of Fe and Co in the bonded phase are measured. By averaging the Fe and Co contents measured for each of the lines, the Fe content and the Co content in the bonded phase of the WC-based cemented carbide addition layer can be obtained as their respective average values.

また、本発明では、WC基超硬合金付加層の表面のビッカース硬さHVを1000以上1500以下とすることが望ましい。
WC基超硬合金付加層の表面のビッカース硬さHVが1000未満では、WC基超硬合金付加層を形成したことによる硬さ向上効果が少なく、一方、ビッカース硬さHVが1500を超えるような場合には、WC基超硬合金付加層の靱性が低下し、チッピングを生じやすくなることから、ビッカース硬さHVは1000以上1500以下とすることが望ましい。
Further, in the present invention, it is desirable that the Vickers hardness HV of the surface of the WC-based cemented carbide addition layer is 1000 or more and 1500 or less.
When the Vickers hardness HV of the surface of the WC-based cemented carbide additional layer is less than 1000, the hardness improving effect due to the formation of the WC-based cemented carbide additional layer is small, while the Vickers hardness HV exceeds 1500. In some cases, the Vickers hardness HV is preferably 1000 or more and 1500 or less because the toughness of the WC-based cemented carbide additional layer is lowered and chipping is likely to occur.

本発明の複合材料は、硬度にすぐれ、また、肉盛による鉄鋼系材料表面の形状変化が少ないことから、WC基超硬合金付加層を切れ刃として使用する切削工具や、局所的に硬度が必要となる工具シャンク等に好適である。
なお、WC基超硬合金付加層をそのまま切れ刃として切削加工に供することができるが、WC基超硬合金付加層表面に、従来から良く知られている硬質被覆層(例えば、Ti化合物層、TiAlN層、Al層等)を物理蒸着あるいは化学蒸着等により被覆形成することによって、表面被覆切削工具として使用することもできる。
Since the composite material of the present invention has excellent hardness and the shape change of the surface of the steel-based material due to overlay is small, the cutting tool using the WC-based cemented carbide additional layer as a cutting edge and the local hardness are high. Suitable for necessary tool shanks and the like.
The WC-based cemented carbide additional layer can be used as it is for cutting as a cutting edge, but a conventionally well-known hard coating layer (for example, Ti compound layer, etc.) is provided on the surface of the WC-based cemented carbide additional layer. TiAlN layer, by coating formed by physical vapor deposition or chemical vapor deposition or the like the Al 2 O 3 layer, etc.) can also be used as a surface-coated cutting tool.

本発明の複合材料は、例えば、レーザー肉盛法によって作製することができる。
まず、WC基超硬合金付加層を形成する鉄鋼系材料の所定位置に対してレーザー照射を行い、該位置の鉄鋼系材料を溶融させてプールを形成し、該プールに向けて所定成分組成のWC基超硬合金粉末を吹きつけ、該プールにおいて溶融した鉄鋼系材料でWC基超硬合金を希釈・溶融し、その後、これを冷却することにより、本発明で規定するWC基超硬合金付加層(最大厚さ、WC粒子からなる所定形状の凝集組織、最大浸入深さ、凝集組織の面積割合、所定の結合相成分組成、硬さ)を、鉄鋼系材料の表面の一部または全部に設けた、すぐれた硬さを有する複合材料を作製することができる。
なお、レーザー照射に際して、鉄鋼系材料にクラックを発生させず、かつ、WC基超硬合金付加層を過度に厚くせず当初の鉄鋼系材料表面形状を維持するためには、大出力、大スポット径の照射は避けるべきであって、レーザー出力200W以下、スポット径2mm以下、操作速度1000mm/min以上の低エネルギー高速走査速度のレーザー照射が望ましい。
The composite material of the present invention can be produced, for example, by a laser overlay method.
First, laser irradiation is performed on a predetermined position of the steel-based material forming the WC-based cemented carbide additional layer, the steel-based material at the position is melted to form a pool, and a predetermined component composition is directed toward the pool. By spraying WC-based cemented carbide powder, diluting and melting the WC-based cemented carbide with the steel-based material melted in the pool, and then cooling it, the WC-based cemented carbide specified in the present invention is added. A layer (maximum thickness, agglomerated structure of a predetermined shape composed of WC particles, a maximum penetration depth, an area ratio of the agglomerated structure, a predetermined bonded phase component composition, hardness) is applied to a part or all of the surface of a steel-based material. It is possible to produce a provided composite material having excellent hardness.
In order to maintain the initial surface shape of the steel-based material without causing cracks in the steel-based material and without making the WC-based cemented carbide additional layer excessively thick during laser irradiation, high output and large spots are required. Irradiation with a diameter should be avoided, and laser irradiation with a laser output of 200 W or less, a spot diameter of 2 mm or less, and an operation speed of 1000 mm / min or more with a low energy and high scanning speed is desirable.

本発明によれば、鉄鋼系材料の表面の一部または全部に、鉄鋼系材料の表面形状に大きな変化を与えることなく、高硬度を有するWC基超硬合金付加層が設けられた複合材料を得ることができる。
そして、この複合材料は、そのすぐれた硬さを生かし、切削工具として好適に使用することができる。
According to the present invention, a composite material provided with a WC-based cemented carbide addition layer having high hardness on a part or all of the surface of the steel-based material without significantly changing the surface shape of the steel-based material. Obtainable.
Then, this composite material can be suitably used as a cutting tool by taking advantage of its excellent hardness.

鉄鋼系材料の表面の一部または全部にWC基超硬合金付加層が設けられている本発明に係る複合材料の縦断面模式図を示す。A schematic vertical sectional view of a composite material according to the present invention in which a WC-based cemented carbide additional layer is provided on a part or all of the surface of a steel-based material is shown. (a)は、本発明に係る複合材料の縦断面組織図を示し、(b)は、(a)の部分拡大図を示す。(A) shows a vertical cross-sectional organizational chart of the composite material according to the present invention, and (b) shows a partially enlarged view of (a).

以下、この発明を実施例に基づいて、具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

(a)表1に示す成分組成の鉄鋼系材料の表面に、表2に示す本発明条件にてレーザーを照射し、該レーザー照射箇所に向けて、表3に示す配合組成からなる造粒-仮焼したWC基超硬合金粉末を表2に示す条件で投射し、鉄鋼系材料の表面の一部または全部にWC基超硬合金付加層を形成することにより表4に示す本発明の複合材料1〜12(本発明複合材料1〜12という)を作製した。冷却機構を備えたステージに鉄鋼系材料を固定し、鉄鋼系材料を強制冷却しながらWC基超硬合金付加層を形成した。
なお、レーザー照射条件は、いずれも、レーザー出力50〜200W、スポット径0.5〜4.0mm、操作速度500〜2000mm/min、繰返し肉盛回数1〜3回の範囲内である。
なお、本発明複合材料1の縦断面組織を図2(a)に、また、WC基超硬合金付加層内の組織を図2(b)に、それぞれ示す。
(A) The surface of the steel-based material having the composition shown in Table 1 is irradiated with a laser under the conditions of the present invention shown in Table 2, and the granulation having the composition shown in Table 3 is directed toward the laser irradiation site. The composite of the present invention shown in Table 4 is formed by projecting the calcined WC-based cemented carbide powder under the conditions shown in Table 2 and forming a WC-based cemented carbide additional layer on a part or all of the surface of the steel-based material. Materials 1-12 (referred to as composite materials 1-12 of the present invention) were prepared. A steel-based material was fixed to a stage equipped with a cooling mechanism, and a WC-based cemented carbide addition layer was formed while forcibly cooling the steel-based material.
The laser irradiation conditions are all within the range of a laser output of 50 to 200 W, a spot diameter of 0.5 to 4.0 mm, an operation speed of 500 to 2000 mm / min, and a number of repeated build-ups of 1 to 3.
The vertical cross-sectional structure of the composite material 1 of the present invention is shown in FIG. 2 (a), and the structure in the WC-based cemented carbide additional layer is shown in FIG. 2 (b).

本発明複合材料1〜12について、走査型電子顕微鏡とオージェ電子分光装置を用いて、WC基超硬合金付加層と鉄鋼系材料との接合部近傍の縦断面を観察し、WC基超硬合金付加層側からみて、WC粒子が観察される臨界位置を界面とし、WC基超硬合金付加層を設ける以前の鉄鋼系材料の表面に垂直方向に、界面からWC基超硬合金付加層表面までの距離を求め、そのうちの最大値をWC基超硬合金付加層の最大厚さとして求めた。 For the composite materials 1 to 12 of the present invention, using a scanning electron microscope and an Auger electron spectroscope, the longitudinal cross section near the joint between the WC-based cemented carbide adhering layer and the steel-based material was observed, and the WC-based cemented carbide was observed. When viewed from the additional layer side, the critical position where WC particles are observed is the interface, and from the interface to the surface of the WC-based cemented carbide additional layer in the direction perpendicular to the surface of the steel-based material before the WC-based cemented carbide additional layer is provided. The maximum value of the distance was determined as the maximum thickness of the WC-based cemented carbide additional layer.

また、本発明複合材料1〜12について、500倍の走査型電子顕微鏡によりWC基超硬合金付加層表面を含む任意の縦断面箇所の画像を取得し、画像全体の面積と、該画像中に存在するWC粒子からなる凝集組織の長径、短径、合計面積を求め、この値から、WC基超硬合金付加層に占める凝集組織の直径(=(長径+短径)/2)、長径と短径の比、面積割合を算出した。 Further, for the composite materials 1 to 12 of the present invention, an image of an arbitrary vertical cross-sectional portion including the surface of the WC-based cemented carbide additional layer was acquired by a scanning electron microscope at a magnification of 500, and the area of the entire image and the image were included in the image. The major axis, minor axis, and total area of the aggregated structure consisting of the existing WC particles were obtained, and from this value, the diameter of the aggregated structure in the WC-based cemented carbide adhering layer (= (major axis + minor axis) / 2), major axis. The minor axis ratio and area ratio were calculated.

また、本発明複合材料1〜12について、2000倍の走査型電子顕微鏡を用いて、鉄鋼系材料とWC基超硬合金付加層との界面近傍の画像を取得し、まず、鉄鋼系材料とWC基超硬合金付加層との界面からWC基超硬合金付加層側に、前記界面からWC基超硬合金付加層表面に向けてWC基超硬合金付加層を10等分するように、前記鉄鋼系材料表面の基準面に平行に9本の線を引き、同線上で線分析を行い、結合相中のFeおよびCoの含有量を測定し、前記9本の線についてそれぞれ測定したFeおよびCoの含有量を平均化することによって、WC基超硬合金付加層の結合相におけるFe含有量およびCo含有量をそれぞれの平均値として求めた。 Further, for the composite materials 1 to 12 of the present invention, an image of the vicinity of the interface between the steel-based material and the WC-based cemented carbide adhering layer was acquired using a 2000x scanning electron microscope, and first, the steel-based material and WC were obtained. The WC-based cemented carbide additional layer is divided into 10 equal parts from the interface with the basic cemented carbide additional layer to the WC-based cemented carbide additional layer side and from the interface toward the surface of the WC-based cemented carbide additional layer. Nine lines are drawn parallel to the reference plane on the surface of the steel-based material, line analysis is performed on the same lines, the contents of Fe and Co in the bonded phase are measured, and Fe and the measured Fe and each of the nine lines are measured. By averaging the Co contents, the Fe content and the Co content in the bonded phase of the WC-based cemented carbide adhering layer were determined as their respective average values.

さらに、本発明複合材料1〜12について、走査型電子顕微鏡により、鉄鋼系材料とWC基超硬合金付加層との界面近傍の画像を取得し、該画像において、鉄鋼系材料の基準面((WC基超硬合金付加層を設ける以前の鉄鋼系材料の表面))からWC基超硬合金付加層を横断する線分を引き、該線分から、鉄鋼系材料とWC基超硬合金付加層の界面までの垂直な距離を測定し、その最大距離をWC基超硬合金付加層の最大浸入深さとして求めた。 Further, for the composite materials 1 to 12 of the present invention, an image of the vicinity of the interface between the steel-based material and the WC-based cemented carbide addition layer is acquired by a scanning electron microscope, and in the image, the reference plane of the steel-based material ((( A line crossing the WC-based cemented carbide additional layer is drawn from the surface of the steel-based material before the WC-based cemented carbide additional layer is provided)), and the steel-based material and the WC-based cemented carbide additional layer are separated from the line. The vertical distance to the interface was measured, and the maximum distance was determined as the maximum penetration depth of the WC-based cemented carbide additional layer.

表4に、上記で得た測定値、算出値を示す。 Table 4 shows the measured values and calculated values obtained above.






比較のため、表1に示す成分組成の鉄鋼系材料の表面に、表5に示す条件にてレーザーを照射し、該レーザー照射箇所に向けて、表3に示す配合組成からなる造粒-仮焼したWC基超硬合金粉末を投射し、鉄鋼系材料の表面の一部または全部にWC基超硬合金付加層を形成することにより表6に示す比較例の複合材料1〜12(比較例複合材料1〜12という)を作製した。
なお、レーザー照射条件は、いずれも、レーザー出力30〜500W、スポット径0.1〜10.0mm、操作速度200〜3000mm/min、繰返し肉盛回数1〜5回の範囲内である。
For comparison, the surface of the steel-based material having the composition shown in Table 1 is irradiated with a laser under the conditions shown in Table 5, and the granulation-provisional composition having the composition shown in Table 3 is directed toward the laser irradiation site. By projecting the baked WC-based cemented carbide powder and forming a WC-based cemented carbide additional layer on a part or all of the surface of the steel-based material, composite materials 1 to 12 of Comparative Examples shown in Table 6 (Comparative Examples). Composite materials 1-12) were prepared.
The laser irradiation conditions are all within the range of a laser output of 30 to 500 W, a spot diameter of 0.1 to 10.0 mm, an operation speed of 200 to 3000 mm / min, and a number of repeated build-ups of 1 to 5 times.

次いで、比較例複合材料1〜12について、本発明複合材料1〜12の場合と同様にして、WC基超硬合金付加層の最大厚さ、凝集組織の直径、凝集組織の長径と短径の比の値、面積割合を求めた。 Next, with respect to Comparative Examples Composite Materials 1 to 12, the maximum thickness of the WC-based cemented carbide additional layer, the diameter of the aggregated structure, and the major axis and the minor axis of the aggregated structure were obtained in the same manner as in the case of the composite materials 1 to 12 of the present invention. The ratio value and area ratio were calculated.

さらに、WC基超硬合金付加層の結合相中のFeおよびCoの含有量を求め、WC基超硬合金付加層の最大浸入深さを求めた。
表6に、これらの値を示す。
Further, the contents of Fe and Co in the bonded phase of the WC-based cemented carbide addition layer were determined, and the maximum penetration depth of the WC-based cemented carbide addition layer was determined.
Table 6 shows these values.



つぎに、上記本発明複合材料1〜12および比較例複合材料1〜12のWC基超硬合金付加層の表面について、それぞれのマイクロビッカース硬さHVを測定した。
表4および表6に、その値を示す。
Next, the micro Vickers hardness HV of each of the surfaces of the WC-based cemented carbide addition layers of the composite materials 1 to 12 of the present invention and the composite materials 1 to 12 of Comparative Examples was measured.
The values are shown in Tables 4 and 6.

ついで、上記本発明複合材料1〜12および比較例複合材料1〜12から、WC基超硬合金付加層をそれぞれの切れ刃とする、本発明ドリル1〜12、本発明エンドミル1〜12、比較例ドリル1〜12、比較例エンドミル1〜12を作製した。
また、参考のため、表1に示される高速度工具鋼A及び合金工具鋼Bから参考ドリルA、参考エンドミルA、参考ドリルB、参考エンドミルBを作製した。
これらのドリル、エンドミルを切削試験に供することによって切削性能を調査した。
Next, from the composite materials 1 to 12 of the present invention and the composite materials 1 to 12 of the comparative example, the drills 1 to 12 of the present invention and the end mills 1 to 12 of the present invention, each of which uses a WC-based cemented carbide additional layer as a cutting edge, are compared. Example drills 1 to 12 and comparative example end mills 1 to 12 were prepared.
For reference, a reference drill A, a reference end mill A, a reference drill B, and a reference end mill B were manufactured from the high-speed tool steel A and the alloy tool steel B shown in Table 1.
Cutting performance was investigated by subjecting these drills and end mills to cutting tests.

なお、前記エンドミルは、いずれも、切刃部の直径×長さが10mm×20mmの寸法、並びにねじれ角30度の2枚刃スクエア形状のサイズ・形状をもち、また、前記ドリルは、いずれも、溝形成部の直径×長さがそれぞれ5mm×63.5mmの寸法、並びにねじれ角27度の2枚刃形状をもつ。 All of the end mills have dimensions of a cutting edge portion diameter x length of 10 mm x 20 mm, and a two-blade square shape with a twist angle of 30 degrees, and all of the drills have a size and shape. , The diameter x length of the groove forming portion is 5 mm × 63.5 mm, respectively, and has a two-flute shape with a twist angle of 27 degrees.

前記の各ドリルについて、次に示す切削条件Aで穴あけ加工試験条件を実施し、前記の各エンドミルについて、次に示す切削条件Bで側面切削加工試験を実施した。
[切削条件A]
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S25Cの板材
回転速度:1500min.−1
送り:0.15mm/rev、
穴深さ:15mm、
の条件での炭素鋼の湿式穴あけ切削加工試験を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
[切削条件B]
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:31.4m/min、
回転速度:1000min.−1
切り込み: ae1.5mm、ap15mm、
送り速度(1刃当り):0.075mm/tooth、
切削長:200m、
の条件での炭素鋼の側面切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
表7に、これらの試験結果を示す。
For each of the above drills, a drilling test condition was carried out under the following cutting condition A, and for each of the above end mills, a side cutting test was carried out under the following cutting condition B.
[Cutting condition A]
Work Material-Plane Dimension: 100 mm x 250 mm, Thickness: 50 mm JIS / S25C Plate Rotation Speed: 1500 min. -1 ,
Feed: 0.15 mm / rev,
Hole depth: 15 mm,
Wet drilling and cutting test of carbon steel was performed under the conditions of (using water-soluble cutting oil), and the number of drilling operations until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured.
[Cutting condition B]
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S45C plate material,
Cutting speed: 31.4 m / min,
Rotation speed: 1000 min. -1 ,
Notch: ae1.5mm, ap15mm,
Feed rate (per blade): 0.075 mm / tooth,
Cutting length: 200m,
A side cutting test of carbon steel was carried out under the conditions of, and the flank wear width of the cutting edge was measured.
Table 7 shows the results of these tests.


表7に示される結果から、本発明複合材料1〜12は、硬度、切削性能ともに、優れていることがわかる。 From the results shown in Table 7, it can be seen that the composite materials 1 to 12 of the present invention are excellent in both hardness and cutting performance.

本発明の複合材料は、硬度に優れ、かつ、鉄鋼系材料の当初表面形状を大幅に変更することはないから、本発明複合材料により、例えば、切削工具を構成した場合には、長期の使用にわたってすぐれた耐摩耗性を発揮し、切削加工の省エネ化、低コスト化、高能率化に寄与するものである。









Since the composite material of the present invention has excellent hardness and does not significantly change the initial surface shape of the steel-based material, for example, when a cutting tool is constructed by the composite material of the present invention, it can be used for a long period of time. It exhibits excellent wear resistance over a long period of time, and contributes to energy saving, cost reduction, and high efficiency of cutting.









Claims (4)

鉄鋼系材料の表面の一部または全部にWC基超硬合金付加層が設けられている複合材料からなる切削工具であって、
(a)前記WC基超硬合金付加層には、少なくとも、WC粒子が凝集する凝集組織が形成されており、
(b)前記凝集組織は、前記WC基超硬合金付加層表面を含む任意の縦断面を観察した場合、(長径+短径)/2で表される凝集組織の直径10μm以上60μm以下、かつ、長径と短径の比率が1〜2の円形状の組織であり、前記凝集組織の占める面積割合は、前記WC基超硬合金付加層の面積の20面積%以上50面積%以下であり、
(c)前記WC基超硬合金付加層を設ける以前の前記鉄鋼系材料の表面を基準面とした場合、前記WC基超硬合金層の最大侵入深さが前記鉄鋼系材料の基準面から内部へ20μm以上200μm以下に形成されている複合材料からなることを特徴とする切削工具
A cutting tool made of a composite material in which a WC-based cemented carbide additional layer is provided on a part or all of the surface of a steel-based material.
(A) At least an agglomerated structure in which WC particles aggregate is formed in the WC-based cemented carbide addition layer.
(B) When observing an arbitrary vertical cross section including the surface of the WC-based cemented carbide additional layer , the aggregated structure represented by (major axis + minor axis) / 2 has a diameter of 10 μm or more and 60 μm or less. In addition, it is a circular structure with a major axis to minor axis ratio of 1 to 2, and the area ratio occupied by the aggregated structure is 20 area% or more and 50 area% or less of the area of the WC-based cemented carbide additional layer. ,
(C) When the surface of the steel-based material before the WC-based cemented carbide additional layer is provided as a reference surface, the maximum penetration depth of the WC-based cemented carbide layer is inside the reference surface of the steel-based material. cutting tool, characterized in that it consists of double coupling material that is formed in 20μm or 200μm or less to.
前記切削工具において、前記WC基超硬合金付加層の最大厚さは、前記最大浸入深さの1〜1.5倍であることを特徴とする請求項1に記載の切削工具In the cutting tool, cutting tool according to claim 1, wherein the maximum thickness of the WC-based cemented carbide additional layer is characterized in that 1 to 1.5 times the maximum penetration depth. 前記切削工具において、前記WC基超硬合金付加層の結合相は、Feを20原子%以上50原子%以下含有し、
前記WC基超硬合金付加層の表面のビッカース硬さHVは1000以上1500以下であることを特徴とする請求項1または2に記載の切削工具
In the cutting tool , the bonding phase of the WC-based cemented carbide addition layer contains Fe in an amount of 20 atomic% or more and 50 atomic% or less.
The cutting tool according to claim 1 or 2 , wherein the Vickers hardness HV of the surface of the WC-based cemented carbide addition layer is 1000 or more and 1500 or less.
請求項1乃至3のいずれか一項に記載の切削工具において、鉄鋼系材料が高速度工具鋼またはダイス鋼であることを特徴とする切削工具。The cutting tool according to any one of claims 1 to 3, wherein the steel-based material is high-speed tool steel or die steel.
JP2016150497A 2016-07-29 2016-07-29 Cutting tool made of composite material Active JP6761596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150497A JP6761596B2 (en) 2016-07-29 2016-07-29 Cutting tool made of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150497A JP6761596B2 (en) 2016-07-29 2016-07-29 Cutting tool made of composite material

Publications (2)

Publication Number Publication Date
JP2018015878A JP2018015878A (en) 2018-02-01
JP6761596B2 true JP6761596B2 (en) 2020-09-30

Family

ID=61075434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150497A Active JP6761596B2 (en) 2016-07-29 2016-07-29 Cutting tool made of composite material

Country Status (1)

Country Link
JP (1) JP6761596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251347B2 (en) * 2019-06-19 2023-04-04 住友電気工業株式会社 surface coated cutting tools
JP7251348B2 (en) * 2019-06-19 2023-04-04 住友電気工業株式会社 surface coated cutting tools

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157923A (en) * 1976-09-13 1979-06-12 Ford Motor Company Surface alloying and heat treating processes
US4243727A (en) * 1977-04-25 1981-01-06 Hughes Tool Company Surface smoothed tool joint hardfacing
US4299860A (en) * 1980-09-08 1981-11-10 The United States Of America As Represented By The Secretary Of The Navy Surface hardening by particle injection into laser melted surface
JPS5865588A (en) * 1981-10-15 1983-04-19 Sumitomo Electric Ind Ltd Production of joined sintered hard alloy
JPS61296974A (en) * 1985-06-24 1986-12-27 Toyota Motor Corp Formation of ceramic particle dispersed composite metallic layer
JPS629949A (en) * 1985-07-05 1987-01-17 小林 義信 Abrasion-resistant material for fusion-welded to surface of structure
JP2993773B2 (en) * 1991-07-08 1999-12-27 川崎製鉄株式会社 Conductor roll for electroplating line and method of manufacturing the same
JP2006218528A (en) * 2005-02-14 2006-08-24 Mitsubishi Heavy Ind Ltd Material for hard facing by welding, hard facing method by welding and product and vertical mill subjected to the hard facing by welding
JP4849212B2 (en) * 2005-12-14 2012-01-11 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent wear resistance with a hard lubricating layer in high-speed cutting
JP4901324B2 (en) * 2006-06-20 2012-03-21 株式会社小松製作所 Method of forming hardfacing layer
JP2008024993A (en) * 2006-07-21 2008-02-07 National Institute For Materials Science Method of diffusing or implanting element to metallic member by driving hard particle
US8505414B2 (en) * 2008-06-23 2013-08-13 Stanley Black & Decker, Inc. Method of manufacturing a blade
JP5896394B2 (en) * 2009-10-22 2016-03-30 国立研究開発法人産業技術総合研究所 Composite structure hard material and method for producing the same
SG11201403315YA (en) * 2012-01-31 2014-09-26 Esco Corp Wear resistant material and system and method of creating a wear resistant material
JP5850404B2 (en) * 2012-03-14 2016-02-03 三菱マテリアル株式会社 WC-based cemented carbide cutting tool insert
JP5995093B2 (en) * 2013-03-01 2016-09-21 三菱マテリアル株式会社 Composite material of WC-based cemented carbide member and steel member, and rotating shaft object cutting tool made of this composite material
JP6230156B2 (en) * 2014-09-22 2017-11-15 株式会社日本製鋼所 Lining material and cylinder for molding machine having the same

Also Published As

Publication number Publication date
JP2018015878A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
Imran et al. Comparison of tool wear mechanisms and surface integrity for dry and wet micro-drilling of nickel-base superalloys
JP5035479B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance
JP6139058B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN104044308A (en) Coated cutting tool
CN108883469A (en) The Surface hardened layer of cemented carbide body
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2010173025A (en) Surface coated cutting tool
JP6761596B2 (en) Cutting tool made of composite material
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP6451982B2 (en) Surface coated cutting tool
JP4888659B2 (en) Replaceable cutting edge
JP4607954B2 (en) TiCN-based cermet, cutting tool, and method of manufacturing workpiece using the same
JP7099800B2 (en) Cutting tools consisting of composite members and future
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023895B2 (en) Surface coated cutting tool
JP2009056561A (en) Surface-coated cutting tool
JP2018030206A (en) Surface coated cutting tool and method for manufacturing the same
JP4761136B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
WO2017179657A1 (en) Cutting insert and cutting tool
WO2018037647A1 (en) Cutting tool and manufacturing method thereof
JP2018158396A (en) Surface-coated cutting tool
JP2006231423A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6761596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150