JPS629949A - Abrasion-resistant material for fusion-welded to surface of structure - Google Patents

Abrasion-resistant material for fusion-welded to surface of structure

Info

Publication number
JPS629949A
JPS629949A JP14883185A JP14883185A JPS629949A JP S629949 A JPS629949 A JP S629949A JP 14883185 A JP14883185 A JP 14883185A JP 14883185 A JP14883185 A JP 14883185A JP S629949 A JPS629949 A JP S629949A
Authority
JP
Japan
Prior art keywords
wear
iron
resistant material
hard
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14883185A
Other languages
Japanese (ja)
Inventor
義信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14883185A priority Critical patent/JPS629949A/en
Publication of JPS629949A publication Critical patent/JPS629949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は構造物表面に融接する為の耐摩耗材に係わり、
更に詳しくは、重量物の搬送路面や金属粉が激しく飛び
散るショットピーニング、サンドブラスト加工工場等の
壁面、工作物の加工テーブル面等の構造物の表面に多数
適用して、この構造物表面全体に耐摩耗性を与える為の
耐摩耗材に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wear-resistant material for fusion welding to the surface of a structure,
More specifically, it is applied to many structure surfaces such as transportation roads for heavy objects, walls of shot peening and sandblasting factories where metal powder is violently scattered, and processing table surfaces of workpieces, to provide resistance to the entire structure surface. Concerning wear-resistant materials for providing abrasion resistance.

[従来の技術] 周知の通り、路面、床面、壁面、工作物テーブル面等構
造物の表面に耐摩耗性を与える必要は数多くある。
[Prior Art] As is well known, there are many needs to provide wear resistance to the surfaces of structures such as road surfaces, floors, walls, and workpiece table surfaces.

例えば、製鉄所に於いて、製品又は素材としての鋼塊、
鋼材等を生産又は出荷ラインの所定の場所へ転送するに
は、それら鋼材等を鋼製の搬送路にスライドさせて運搬
することが実施されているが、このような重量物の搬送
路面は、重量物と激しく摺擦するので、摩耗が激しく、
当然に路面の耐摩耗性が要求される。この場合、それら
搬送路面等構造物自体を耐摩耗性のある硬質合金で形成
すれば上記の要求を満たすが、コスト面等で現実には無
理であり、これが為に従来がら幾つかの工夫が成されて
いる。
For example, in a steelworks, steel ingots as products or materials,
In order to transfer steel materials, etc. to a predetermined location on a production or shipping line, the steel materials, etc. are transported by sliding them onto a steel transport path. As it rubs violently against heavy objects, it causes severe wear.
Naturally, road surface wear resistance is required. In this case, the above requirements could be met if the structures themselves, such as the transport road surface, were made of wear-resistant hard alloys, but this is not practical due to cost considerations, and for this reason, several conventional methods have been devised. has been completed.

1つは、鋼製の搬送路面や壁面等の構造物の表面に、小
板状の硬質合金板の多数を1つ1つロウ接して敷き並べ
る方法である。
One method is to lay out a large number of small hard alloy plates one by one by soldering them onto the surface of a structure such as a steel transport road or wall.

″もう1つは、片状、塊状の硬質材料の多数を予め並べ
ておいて、その上から鉄、鋼の溶湯な流し込み、その状
態で全体を固化させて、表層に多数の片状、塊状の材料
を封じ込めた耐摩耗材を製して、この多数を敷き並べる
方法である。
``Another method is to arrange a large number of pieces of hard material in the form of pieces or lumps in advance, pour molten iron or steel over them, solidify the whole thing in that state, and form a large number of pieces or pieces of hard material on the surface layer. This is a method of manufacturing abrasion-resistant materials that contain materials and laying out a large number of them.

この溶湯法し込み法に於ける耐摩耗材の例は、特開昭5
7−28664号公報に開示されている。
Examples of wear-resistant materials used in this molten metal pouring method are
It is disclosed in Japanese Patent No. 7-28664.

[発明が解決しようとする問題点] この2つの技術とも、搬送路面、壁面等に耐摩耗性を付
榮する点は満たし、現実に効果を七げているが、第1の
方法の場合には、小板状の硬質合金板を金属ロウを用い
て1つ1つロウ接しなければならず、製作の手間及びコ
ストがかかる問題がある。又、ロウ接された硬質金属と
構造物表面の膨張係数が異なるので、ロウ接後ひずみ、
割れを生じ易い。更に、硬質金属もWC系、TiC系等
種々あるが、WC系は高価なのでTiC系を使いたい所
であるが、TiC系はロウ接し難いので、TiC系を使
用することが実質]二不可能であり、使用材質に制限が
ある。
[Problems to be Solved by the Invention] Both of these two techniques meet the requirements of imparting wear resistance to the conveyance path surface, wall surface, etc., and are actually quite effective; however, in the case of the first method, In this method, small plate-shaped hard alloy plates must be soldered one by one using a metal solder, which poses a problem in that the manufacturing process is laborious and costly. In addition, since the expansion coefficients of the hard metal and the surface of the structure are different, the strain after soldering,
Easy to crack. Furthermore, there are various types of hard metals such as WC type and TiC type, but since WC type is expensive, we would like to use TiC type, but TiC type is difficult to solder, so it is practically impossible to use TiC type. Therefore, there are restrictions on the materials used.

第2の方法の場合には、その1つ1つの複合耐摩耗材料
が構造物表面に溶接可能なので、敷き並べる時に多数を
いっぺんに溶接できるので、製作の手間、コスト面の問
題を解決しているものの、その1つ1つの複合耐摩耗材
を製作する詩に使用できる硬質材料が限られる。即ち、
鉄、鋼の溶湯な、塊状、片状材料の上に流し込んだ時に
、それら硬質材料が浮いてしまってはならないので、鉄
、鋼の溶湯の比重より十分重い比重の硬質材料しか用い
ることができない。例えばW C−T t C−Co系
硬質合金の場合、TiCの組成が大きくなったもの等は
使用できない。従って安価なTiC等が使えないのでコ
ストを下げるのに限界がある。
In the case of the second method, each composite wear-resistant material can be welded to the surface of the structure, so many can be welded at once when laying them out, which solves problems in terms of manufacturing time and cost. However, the hard materials that can be used to create each composite wear-resistant material are limited. That is,
When pouring over lumpy or flaky materials such as molten iron or steel, these hard materials must not float, so only hard materials with a specific gravity that is sufficiently higher than the specific gravity of molten iron or steel can be used. . For example, in the case of W C-T t C-Co based hard alloys, those with a large TiC composition cannot be used. Therefore, since inexpensive TiC etc. cannot be used, there is a limit to reducing costs.

特に耐摩耗材として好適なサーメット例えばTiC−N
 i−Co−Feや安価で入手し易いnm!耗材料であ
るセラミックス系のA、M、、03や、その他Sin、
BC,5i02等の材料を用いることができない。
Cermets particularly suitable as wear-resistant materials, such as TiC-N
i-Co-Fe and cheap and easily available nm! Ceramic A, M, 03, which is a wear material, and other Sin,
Materials such as BC and 5i02 cannot be used.

従って本発明の目的とする所は、鉄及び鉄化合物の金属
を基材として用いる場合、その基材の表層にその比重よ
りも軽く、而も性能的にも、コスト的にも使い易い、例
えばTiC−Nf−Co−FeやAu203又はSiC
,Sin、BC,StOり等を主成分とする高硬度硬質
材料焼結体を封じ込めて耐摩耗材とすることのできる製
品を提供するにある。これにより、より安価で使い易い
複合材料耐摩耗材を提供するにある。
Therefore, when iron and iron compound metals are used as a base material, the surface layer of the base material is lighter than its specific gravity, and is easy to use in terms of performance and cost, for example. TiC-Nf-Co-Fe, Au203 or SiC
, Sin, BC, StO, etc. The present invention aims to provide a product that can be made into a wear-resistant material by enclosing a sintered body of a high-hardness hard material mainly composed of , Sin, BC, StO, or the like. This provides a composite wear-resistant material that is cheaper and easier to use.

[問題点を解決する為の手段9作用] 上記目的を達成する為の本発明は次の技術的手段を有す
る。
[Means 9 Effects for Solving the Problems] The present invention has the following technical means for achieving the above object.

即ち、実施例に対応する符号を用いてこれを説明すると
、鉄及び鉄化合物を主成分とする金属の表層部分に硬質
材ネ:1破砕片を封じ込めた耐摩耗材に於いて; この耐摩耗材は、鉄及び鉄化合物を主成分とする金属5
の粉末の表層部分にこの金属の比重より軽い比重であっ
て、その長径が0.5〜10mn+程度の範囲の塊状の
高硬度硬質材料焼結体破砕片6をのせて、その状態で加
圧すると同時にこの被成型物を高周波誘導加熱して製し
たものであり、塊状の高硬度硬質材料焼結体破砕片6が
封じ込められた一方の面が耐摩耗面7であり、他方の面
が融接面8に構成されているものである。
That is, to explain this using the symbols corresponding to the examples, in a wear-resistant material in which crushed pieces of hard material are sealed in the surface layer of a metal whose main components are iron and iron compounds; , metals whose main components are iron and iron compounds 5
On the surface layer of the powder, crushed pieces 6 of a sintered body of a highly hard and hard material having a specific gravity lower than that of the metal and having a major axis in the range of about 0.5 to 10 mm+ are placed, and in this state, it is pressed. At the same time, this molded object is manufactured by high-frequency induction heating, and one surface in which the lump-like, highly hard, hard material sintered fragments 6 are sealed is the wear-resistant surface 7, and the other surface is the fused surface. This is configured on the contact surface 8.

上記に於いて、この発明は、構造物、機械、器具装置等
の金属表面に対して融接可能とする為に、基材として、
その性能を最も端的に表わす鉄及び鉄化合物を主成分と
する金属を用いるが、この基材自体は高硬度硬質材料焼
結体を支持する役割を荷なうので、好ましくは0.2z
程度のカーボンを含ませて硬度を増すようにしてもよく
、又防錆性が要求されるような場合にはステンレスを用
いてもよい。
In the above, the present invention uses as a base material to enable fusion welding to metal surfaces of structures, machines, appliances, etc.
A metal mainly composed of iron and iron compounds is used, which most clearly represents its performance, but since this base material itself plays the role of supporting the high hardness hard material sintered body, it is preferably 0.2z.
A certain amount of carbon may be included to increase hardness, and stainless steel may be used when rust prevention is required.

而も、従来の溶湯流し込み法と異なり、粉末を用いる。However, unlike the conventional molten metal pouring method, powder is used.

且つ、溶湯法の場合には、この基材金属の比重、即ち、
鉄の場合の比重略7.869より重い比重の硬質材料の
みしか生産技術1−用いることができず、鉄の比重より
軽い比重であって、性能的にも、コスト的にも使い易い
高硬度硬質材t11を用いることができなかったか、こ
の発明は逆に1通常サーメットと称されるTiC−Ni
−Co−Feやセラミックスの一つであるAu203又
はSiC,Sin、BC,SiO,及びこれらの化合物
等のように鉄の比重より軽い高硬度硬質材ネ;l焼結体
の破砕片6を用いるものである。そして、この高硬度硬
質材料焼結体破砕)1−6の大きさは、その長径が0.
5mm−10111a+程度のものを選択し、廃材を用
いてもよい。この場合、サーメツト材破砕片のように強
度が大きいものは、比較的一つ一つの破砕片が大きくて
もよいが、シリコン破砕片などのように、比較的強度が
低いものは一つ一つの破砕片を小にして、衝撃に対する
割れにくさの増大を図る。
In addition, in the case of the molten metal method, the specific gravity of this base metal, that is,
Production technology 1 - Only hard materials with a specific gravity heavier than the specific gravity of iron, approximately 7.869, can be used. High hardness has a specific gravity lower than that of iron and is easy to use in terms of performance and cost. It was not possible to use the hard material t11, or on the contrary, this invention was made using TiC-Ni, which is usually called cermet.
-Using crushed pieces 6 of a sintered body of a high-hardness hard material that has a specific gravity lower than that of iron, such as Co-Fe, Au203, which is a type of ceramic, or SiC, Sin, BC, SiO, and their compounds. It is something. The size of this high hardness hard material sintered compact crushing) 1-6 is that its major axis is 0.
You may select one with a diameter of about 5mm-10111a+ and use waste material. In this case, if the strength is high, such as crushed cermet material pieces, each piece may be relatively large, but if the strength is relatively low, such as crushed silicon pieces, each piece may be relatively large. By making the fragments smaller, we aim to increase the resistance to cracking against impact.

更に、この発明は上記したように構造物、機械、装置等
の金属の表面9に対して融接できる所定酸の鉄及び鉄化
合物を主成分とする金属の粉末の表層部分に、塊状の高
硬度硬質材料焼結体破砕片6をのせた後、加圧しながら
高周波誘導加熱して成型するものであり、この高周波誘
導加熱は、この被成型物を交番磁界中に置いて、被成型
物内にうず電流を生ぜしめて、その抵抗損失によって発
熱せしめるものであるから、このうず電流の発生度合及
び浸透深さを、誘導コイルを通す電流の強さ、巻数、周
波数の大きさ、被成型物自体の材料の比透磁率、抵抗率
を勘案して種々最適に選ぶものである。通常周波数2k
c/s〜8kc/s、出力20〜30kw、加熱時間2
〜4分で実施される。
Further, as described above, the present invention provides a method of forming a lumpy high-density powder on the surface layer of a metal powder mainly composed of iron and iron compounds of a predetermined acid that can be fused to the metal surface 9 of structures, machines, devices, etc. After placing the crushed pieces 6 of the hard material sintered body, it is molded by high-frequency induction heating while applying pressure.This high-frequency induction heating is performed by placing the molded object in an alternating magnetic field and causing the inside of the molded object to be heated. Since eddy current is generated in the induction coil and generates heat due to its resistance loss, the degree of generation and penetration depth of this eddy current are determined by the strength of the current passing through the induction coil, the number of turns, the frequency, and the object to be molded itself. The material is selected optimally by taking into consideration the relative magnetic permeability and resistivity of the material. Normal frequency 2k
c/s~8kc/s, output 20~30kw, heating time 2
Performs in ~4 minutes.

この実施によって、金属粉末に高温高圧が加えられるの
で、粉末粒子が激しく挙動し、瞬間的に金属粒子が塊状
の高硬度硬質材料焼結体破砕片6の間に拡散し気孔を埋
め、密に結着して一体に成型される。この場合、塊状高
硬度硬質材料焼結体破砕片6が超硬合金のようなもので
あれば、その超硬合金のバインダーと、金属粉末側のバ
インダー同志が結合すると考へられる。又破砕片6がア
ルミナAfL20−.のようなものの場合には、金属粉
末がその周りを包むようにして結合すると考へられる。
In this implementation, high temperature and high pressure are applied to the metal powder, so the powder particles behave violently, and the metal particles instantaneously diffuse between the crushed pieces 6 of the sintered body of the high-hardness hard material, filling the pores and forming a dense structure. Bonded and molded into one piece. In this case, if the crushed pieces 6 of the sintered body of the massive high-hardness hard material are made of cemented carbide, it is considered that the binder of the cemented carbide and the binder on the metal powder side bond together. Moreover, the crushed pieces 6 are made of alumina AfL20-. In the case of something like this, it is thought that the metal powder wraps around it and binds.

このようにして加工した後表面を研磨して得た耐摩耗材
は、その−面7に塊状高硬度硬質材料焼結体破砕片が埋
込されているので、他面8を構造物、機械、器具等の金
属表部にスポット融接等して敷き並べるものである。
The wear-resistant material obtained by polishing the surface after processing in this way has crushed pieces of a blocky high hardness hard material sintered body embedded in its negative side 7, so the other side 8 can be used for structures, machines, etc. It is placed on the metal surface of instruments, etc. by spot fusion welding.

[実施例] 次に添付図面に従い本発明の好適な実施例を詳述する。[Example] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

実施例1et・舎弟1図〜第4図参照 lは炉を示し、その周りに高周波誘導コイル2が配され
ている。3及び4はパンチを示している。
Embodiment 1et/See Figures 1 to 4. Reference numeral 1 indicates a furnace, around which a high-frequency induction coil 2 is arranged. 3 and 4 indicate punches.

この炉l内に、鉄粉(Fe)5を充てんする。次いで、
A文、03の破砕片6を、鉄粉の表層ににのせた。破砕
片6の大きさは、各々の最大直径が1mm〜8III1
1であった。
This furnace 1 is filled with iron powder (Fe) 5. Then,
The crushed pieces 6 of pattern A, 03 were placed on the surface layer of the iron powder. The size of the crushed pieces 6 is such that each maximum diameter is 1 mm to 8III1.
It was 1.

次いで、一対のパンチ3.4により30kg / c 
rn’で加圧すると同時に、周波数3kc/s、出力2
0kWの高周波加熱装置で2分間加熱した。
Then 30kg/c by a pair of punches 3.4
At the same time as pressurizing with rn', frequency 3 kc/s, output 2
It was heated for 2 minutes using a 0kW high frequency heating device.

この結果、全体の厚さ1511I11、直径30mmの
円形であって、−面7が耐摩耗面であり、他面8が融接
面に形成された一体的な耐摩耗材を得ることができた。
As a result, it was possible to obtain an integral wear-resistant material having a circular shape with a total thickness of 1511I11 and a diameter of 30 mm, in which the negative face 7 was a wear-resistant face and the other face 8 was formed as a fusion welding face.

通常はこの表面を研磨する。This surface is usually polished.

この多数を、重量物の搬送路面の表面9に融接した。こ
の融接は、例えば表面9にこの耐摩耗材を置いて、部分
的にスポット融接して一体化する。
A large number of these were fusion-welded to the surface 9 of the conveyance path for heavy objects. In this fusion welding, for example, the wear-resistant material is placed on the surface 9 and the parts are spot fused and integrated.

この結果十分な耐摩耗性が得られた。As a result, sufficient wear resistance was obtained.

実施例?−s番・第5図参照 実施例1で示したと同様の炉l内に、鉄粉(Fe)5を
充てんした。次いでその上に銅粉(Cu)10を薄く充
てんした。そして、Tic−Ni−Co−Feの塊状焼
結超硬合金の破砕片を上記鉄粉(F e)の表層上にの
せた第5図はこの加圧、加熱前示している。破砕片の大
きさは、最小のものでも直径0.5mm、最大のもので
も直径10mmであった。
Example? - No. s/See FIG. 5 Iron powder (Fe) 5 was filled into a furnace l similar to that shown in Example 1. Next, a thin layer of copper powder (Cu) 10 was filled thereon. FIG. 5 shows crushed pieces of Tic-Ni-Co-Fe lump sintered cemented carbide placed on the surface layer of the iron powder (Fe) before this pressurization and heating. The size of the crushed pieces was 0.5 mm in diameter at the smallest, and 10 mm in diameter at the largest.

そして、一対のパンチ3.4により30 kg / c
 m’で加圧し、且つ周波数3kc/s、出力20kw
の高周波加熱装置で2分間加熱した。
and 30 kg/c by a pair of punches 3.4
Pressurized at m', frequency 3kc/s, output 20kw
It was heated for 2 minutes using a high frequency heating device.

この結果全体の厚さ11 、5 mn+、直径25mm
の円形であって、−面7が耐摩耗面であり、他面8が融
接面に形成された一体的な耐摩耗材を得た。
As a result, the total thickness is 11.5 mm+, and the diameter is 25 mm.
An integral wear-resistant material was obtained in which the negative side 7 was a wear-resistant surface and the other side 8 was formed as a fusion welding surface.

この場合、」−記銅粉(Cu)が介在していたことによ
り、Fe粉末とTiC−Ni−Co−Fe塊状焼結超硬
合金破砕片のぬれ性改善がみられ、結着性が増大した。
In this case, due to the presence of copper powder (Cu), the wettability between the Fe powder and the TiC-Ni-Co-Fe bulk sintered cemented carbide fragments was improved, and the binding property was increased. did.

このように焼結超硬合金に対してぬれ性がよくなる、低
融点金属を介在させてもよい。介在させた低融点金属粉
末と鉄粉は一体として焼結される。
In this way, a low melting point metal that improves wettability to the sintered cemented carbide may be interposed. The interposed low melting point metal powder and iron powder are sintered as one body.

[発明の効果] 以上詳述した如く、この発明の耐摩耗材は、鉄及び鉄化
合物を主成分とする基材の金属の比重よりより軽い比重
の塊状の高硬度硬質材料焼結体の破砕片を−1−記金属
粉末の表層1−に位置させて、加圧しつつ高周波誘導加
熱によって高温加熱して成型したものであるから、Ti
C−Ni−Co−Feや、Al2O2又はSiC+Ni
、Sin、BC,5i02等の性能的にもコスト的にも
有利な表面、  10.、、銅粉である。
[Effects of the Invention] As detailed above, the wear-resistant material of the present invention is made of crushed pieces of a block-like sintered body of a highly hard and hard material having a specific gravity lower than that of the base metal mainly composed of iron and iron compounds. Ti is placed on the surface layer 1- of the metal powder described in -1- and is molded by heating it at high temperature by high-frequency induction heating while applying pressure.
C-Ni-Co-Fe, Al2O2 or SiC+Ni
, Sin, BC, 5i02, etc. surfaces that are advantageous in terms of performance and cost; 10. ,, copper powder.

高硬度硬質材料焼結体の破砕片を表層に封じ込めた耐摩
耗材を提供でき、この結果種々の用途に応じ得る耐摩耗
材とすることができ、又塊状の高硬度硬質材料焼結体破
砕片を用いるので、材料費、加工費が少くてすむので、
より安価な耐摩耗材を提供出来る等実用−L種々の利点
を有するものである。
It is possible to provide a wear-resistant material in which crushed pieces of a sintered body of a high-hardness hard material are sealed in the surface layer, and as a result, it can be made into a wear-resistant material that can be used for various purposes. Since the material cost and processing cost are low,
It has various practical advantages such as being able to provide a wear-resistant material at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示し、第1図〜第4図は第
一の実施例を示し、第1図は成型している所を示す図、
第2図は成型された耐摩耗材の断面図、第3図は成型さ
れた耐摩耗材の平面図、第4図は構造物等の表面金属に
この耐摩耗材を融接した所を示す図、次いで第5図は第
二の実施例を示し、成型している所を示す図である。
The attached drawings show embodiments of the present invention, and FIGS. 1 to 4 show the first embodiment, and FIG. 1 is a diagram showing the molding process.
Figure 2 is a cross-sectional view of the molded wear-resistant material, Figure 3 is a plan view of the molded wear-resistant material, Figure 4 is a diagram showing where the wear-resistant material is fusion welded to the surface metal of a structure, etc. FIG. 5 shows the second embodiment, and is a diagram showing the molding process.

Claims (1)

【特許請求の範囲】[Claims] 鉄及び鉄化合物を主成分とする金属の表層部分に硬質材
料破砕片を封じ込めた耐摩耗材に於いてこの耐摩耗材は
、鉄及び鉄化合物を主成分とする金属の粉末の表層部分
に、この金属の比重より軽い比重であって、その長径が
0.5〜10mm程度の範囲の塊状の高硬度硬質材料焼
結体破砕片をのせて、その状態で加圧すると同時にこの
被成型物を高周波誘導加熱して製したものであり、塊状
の高硬度硬質材料焼結体破砕片が封じ込められた一方の
面が耐摩耗面であり、他方の面が融接面に構成されてい
ることを特徴とする構造物表面に融接する為の耐摩耗材
This wear-resistant material has hard material fragments sealed in the surface layer of a metal whose main components are iron and iron compounds. A piece of a block-like sintered compact of a highly hard material having a specific gravity lower than that of , and having a major axis in the range of about 0.5 to 10 mm is placed on top of the crushed pieces of a sintered compact of high hardness, and at the same time, this molded object is subjected to high frequency induction while pressurized in that state. It is made by heating, and is characterized in that one surface in which crushed fragments of a sintered compact of highly hard and hard material are sealed is a wear-resistant surface, and the other surface is a fusion welding surface. Wear-resistant material for fusion welding to the surface of structures.
JP14883185A 1985-07-05 1985-07-05 Abrasion-resistant material for fusion-welded to surface of structure Pending JPS629949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14883185A JPS629949A (en) 1985-07-05 1985-07-05 Abrasion-resistant material for fusion-welded to surface of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14883185A JPS629949A (en) 1985-07-05 1985-07-05 Abrasion-resistant material for fusion-welded to surface of structure

Publications (1)

Publication Number Publication Date
JPS629949A true JPS629949A (en) 1987-01-17

Family

ID=15461703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14883185A Pending JPS629949A (en) 1985-07-05 1985-07-05 Abrasion-resistant material for fusion-welded to surface of structure

Country Status (1)

Country Link
JP (1) JPS629949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024545A (en) * 2008-06-20 2010-02-04 Kurimoto Ltd Method for producing long-length alloy billet
JP2018015878A (en) * 2016-07-29 2018-02-01 三菱マテリアル株式会社 Composite member and cutting tool comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462107A (en) * 1977-10-28 1979-05-18 Teikoku Kaabon Kougiyou Kk Production of composite sintered friction material
JPS6017063A (en) * 1983-07-11 1985-01-28 Hitachi Ltd Ceramic coating layer having high toughness and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462107A (en) * 1977-10-28 1979-05-18 Teikoku Kaabon Kougiyou Kk Production of composite sintered friction material
JPS6017063A (en) * 1983-07-11 1985-01-28 Hitachi Ltd Ceramic coating layer having high toughness and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024545A (en) * 2008-06-20 2010-02-04 Kurimoto Ltd Method for producing long-length alloy billet
JP2018015878A (en) * 2016-07-29 2018-02-01 三菱マテリアル株式会社 Composite member and cutting tool comprising the same

Similar Documents

Publication Publication Date Title
US20140363326A1 (en) System and method for additive manufacturing
EP0418078A2 (en) Composite abrasive compacts
JP4518580B2 (en) Sintered material for magnetic rail brake
US20160256948A1 (en) Flux-less direct soldering by ultrasonic surface activation
SE535684C2 (en) Method of producing a gradient component of metal / cemented carbide
JPS629949A (en) Abrasion-resistant material for fusion-welded to surface of structure
US3963451A (en) Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate, and resulting article
JP2611934B2 (en) Cemented carbide-based wear-resistant material and method for producing the same
CA1295442C (en) Process for modifying the surface of metal or metal alloy substrates and surface modified products produced thereby
JPS627803A (en) Wear resistant material for welding onto structure surface
Kim et al. Characteristics of Nanophase WC and WC‐3 wt%(Ni, Co, and Fe) Alloys Using a Rapid Sintering Process for the Application of Friction Stir Processing Tools
JPH05255658A (en) Diamond abrasive compact composite
EP0636445A1 (en) Brazing
US5006414A (en) Process for modifying the surface of metal or metal alloy substrates and surface modified products produced thereby
Omole et al. Production and evaluation of ceramic and metal matrix composite by powder metallurgy
Kandagal et al. A review on green technology material processing through microwave energy
US3946793A (en) Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate
JP5275292B2 (en) Method for producing high-density solidified molded body
JPS61231105A (en) Wear resistant material to be melt-joined to surface of structure
JP4968636B2 (en) Method for producing high-density solidified article with controlled continuous phase and dispersed phase
US3947254A (en) High-temperature abrasion-resistant coating on a ferrous metal substrate
JP2906030B2 (en) Ceramic-carbide composite sintered body and method for producing the same
Imsato Ultrafine particle binderless cemented carbide
RU2058866C1 (en) Induction fusion-on method
JPH0499805A (en) Complex hard sintered material having excellent wear resistance and melt-welding resistance and manufacture thereof