JPS61231105A - Wear resistant material to be melt-joined to surface of structure - Google Patents

Wear resistant material to be melt-joined to surface of structure

Info

Publication number
JPS61231105A
JPS61231105A JP7303985A JP7303985A JPS61231105A JP S61231105 A JPS61231105 A JP S61231105A JP 7303985 A JP7303985 A JP 7303985A JP 7303985 A JP7303985 A JP 7303985A JP S61231105 A JPS61231105 A JP S61231105A
Authority
JP
Japan
Prior art keywords
wear
resistant material
metal
hard alloy
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7303985A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kobayashi
義信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7303985A priority Critical patent/JPS61231105A/en
Publication of JPS61231105A publication Critical patent/JPS61231105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a wear resistant material to be melt-joined to the surface of a structure by heating a metal which can be melt-joined to the surface forming metal of the structure and two or more layers of hard alloy powder to a high temp. under pressure. CONSTITUTION:A metal which can be melt-joined to the surface forming metal of a structure and two or more layers of hard alloy powder are heated to a high temp. under pressure by directly supplying a strong electric current at a low voltage for a short time so that they are melt-bonded to each other. WC-Co, WC-TiC-Co, WC-TaC-Co or the like is used as the hard alloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は構造物表面に融接する為の耐摩耗材に係わり、
更に詳しくは、重量物の搬送路面や金属粉等が激しく飛
び散るショットピーニング、サンドブラスト加エエ堝等
の壁面、工作物の加工テーブル面等の構造物の表面に多
数適用して、この構造物表面全体に耐摩耗性を与える為
の小板状の耐摩耗材に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wear-resistant material for fusion welding to the surface of a structure,
More specifically, it is applied to many structure surfaces such as conveyance roads for heavy objects, walls of shot peening and sandblasting pots where metal powder etc. are violently scattered, and processing table surfaces of workpieces. This invention relates to a platelet-shaped wear-resistant material for imparting wear resistance to.

[従来の技術] 周知の通り、路面、床面、壁面、工作物テーブル面等構
造物の表面に耐摩耗性を与える必要は数多くある。
[Prior Art] As is well known, there are many needs to provide wear resistance to the surfaces of structures such as road surfaces, floors, walls, and workpiece table surfaces.

例えば、製鉄所に於いて、製品又は素材としての鋼塊、
鋼材等を生産又は出荷ラインの所定の場所へ転送するに
は、それら鋼材等を鋼製の搬送路にスライドさせて運搬
することが実施されているが、このような重量物の搬送
路面は、重量物と激しく摺擦するので、摩耗が激しく、
当然に路面の耐摩耗性が要求される。この場合、それら
搬送路面等構造物自体を耐摩耗性のある硬質合金で形成
すれば上記の要求を満たすが、コスト面等で現実には無
理であり、これが為に従来から幾つかの工夫が成されて
いる。
For example, in a steelworks, steel ingots as products or materials,
In order to transfer steel materials, etc. to a predetermined location on a production or shipping line, the steel materials, etc. are transported by sliding them onto a steel transport path. As it rubs violently against heavy objects, it causes severe wear.
Naturally, road surface wear resistance is required. In this case, the above requirements could be met if the structures themselves, such as the transport road surface, were made of wear-resistant hard alloys, but this is not practical due to cost considerations, and for this reason, several techniques have been developed in the past. has been completed.

1つは、鋼製の搬送路面や壁面等の構造物の表面に、小
板状の硬質合金板の多数を1つ1つロウ接して敷き並べ
る方法である。
One method is to lay out a large number of small hard alloy plates one by one by soldering them onto the surface of a structure such as a steel transport road or wall.

もう1つは、小板状の硬質合金板の多数を予め並べてお
いて、その上から鋼の溶湯を流し込み、その状態で全体
を固化させて、表面に多数の小板状の硬質合金板を敷き
並べる方法である。
The other method involves arranging a large number of small hard alloy plates in advance, pouring molten steel onto them, allowing the whole to solidify, and forming a large number of small hard alloy plates on the surface. This is a method of laying them out.

[発明が解決しようとする問題点] この2つの技術とも、搬送路面、壁面等に耐摩耗性を付
与する点は満たし、現実に効果を上げているが、第1の
方法の場合には、小板状の硬質合金板を金属ロウを用い
て1つ1つロウ接しなければならず、製作の手間及びコ
ストがかかる問題がある。又、ロウ接された硬質金属と
構造物表面の膨張係数が異なるので、ロウ接後ひずみ、
割れを生じ易い、更に、硬質金属もWC系、TiC系等
種々あるが、WC系は高価なのでT i C系を使いた
い所であるが、TiC系はロウ接し難いので、TiC系
を使用することは実買上不可能であり、使用材質に制限
がある。第2の方法の場合には、製作の手間、コスト面
の問題を解決しているものの、使用できる硬質合金が限
られる。即ち、鋼の溶湯を、小板状の硬質合金板の上に
流し込んだ時に、それら硬質合金板が浮いてしまっては
ならないので、溶湯の比重より十分重い比重の硬質合金
の板しか用いることができない0例えばWC−TiC−
Co系硬質合金の場合、Ticの組成が大きくなったも
の等は使用できない。
[Problems to be Solved by the Invention] Both of these two techniques meet the requirements of imparting wear resistance to the conveyance path surface, wall surface, etc., and are actually effective, but in the case of the first method, The small plate-shaped hard alloy plates must be soldered one by one using a metal solder, which poses a problem in that the manufacturing process is laborious and costly. In addition, since the expansion coefficients of the hard metal and the surface of the structure are different, the strain after soldering,
In addition, there are various hard metals such as WC type and TiC type, but WC type is expensive, so I would like to use TiC type, but TiC type is difficult to solder, so I use TiC type. This is not possible in actual purchase, and there are restrictions on the materials that can be used. In the case of the second method, although problems in terms of manufacturing time and cost are solved, the hard alloys that can be used are limited. In other words, when molten steel is poured onto small hard alloy plates, the hard alloy plates must not float, so only hard alloy plates with a specific gravity sufficiently higher than the molten metal can be used. Cannot do 0 e.g. WC-TiC-
In the case of Co-based hard alloys, those with a large Tic composition cannot be used.

従って本発明の目的とする所は、容易に製作できると共
に、構造物表面に融接によって簡単に接合でき、且つ使
用する硬質金属の種類に制限を受けない構造物表面に融
接する為の耐摩耗材を提供するにある。
Therefore, an object of the present invention is to provide a wear-resistant material that can be easily produced, can be easily joined to the surface of a structure by fusion welding, and is not limited by the type of hard metal used. is to provide.

[問題点を解決する為の手段、作用] 上記目的を達成する為に本発明は次の技術的手段を有す
る。
[Means and effects for solving the problems] In order to achieve the above object, the present invention has the following technical means.

即ち、実施例に対応する付号を用いてこれを説明すると
、この耐摩耗材9は、構造物表面の金属に対して融接で
きる金属5と硬質合金粉末6の二層以上を加圧と同時に
高温加熱して、基体7と、それに対して一体的に溶着せ
る硬質合金粉層の表面体8に成型されて成り、上記基体
7の面10を重量物の搬送路面、壁面、工作物テーブル
面等の構造物11の表面12に融接する為の融接面とし
たものであり、重量物の搬送路面や、壁面は通常鋼製な
ので、上記基体は鉄粉層を型成型、加熱したものより成
る。
That is, to explain this using the numbers corresponding to the examples, this wear-resistant material 9 simultaneously pressurizes two or more layers of metal 5 and hard alloy powder 6 that can be fusion-welded to the metal on the surface of the structure. It is heated to a high temperature and formed into a base body 7 and a surface body 8 of a hard alloy powder layer that is integrally welded to the base body 7, and the surface 10 of the base body 7 is used as a conveyance road surface for heavy objects, a wall surface, or a workpiece table surface. This is a fusion welding surface for fusion welding to the surface 12 of a structure 11 such as the like, and since the transportation road surface for heavy objects and the wall surface are usually made of steel, the above-mentioned substrate is made from a layer of iron powder molded and heated. Become.

このような構成なので、この多数を構造物11の表面1
2に配列する時は、構造物表面12に対して、この耐摩
耗材の基体7の表面10をスポット溶接等により融接し
て施工するものである。
With such a configuration, this large number is distributed over the surface 1 of the structure 11.
2, the surface 10 of the base body 7 made of wear-resistant material is fusion-welded to the structure surface 12 by spot welding or the like.

これによれば、耐摩耗材自体は、単に加圧且つ同時に加
熱して、成型できるので、比較的容易に製造でき、又構
造物の表面に施工する時は、基体7が、構造物表面12
の金属に対して融接できる金属であるから、例えば、構
造物表面が通常鋼製の場合には、それと同じような鉄が
選ばれるから、構造物表面に融接法により難なく接合で
きるから、施工が容易であり、且つ耐摩耗材9の表面体
8の硬質合金はW C−Co系、WC−TiC−C。
According to this, the wear-resistant material itself can be molded by simply pressurizing and heating at the same time, so it can be manufactured relatively easily, and when applied to the surface of a structure, the base 7 is
For example, if the surface of a structure is normally made of steel, iron, which is similar to that, is selected because it can be easily joined to the surface of the structure by fusion welding. Construction is easy, and the hard alloy of the surface body 8 of the wear-resistant material 9 is WC-Co-based or WC-TiC-C.

系、W C−T a C−Co系、WC−Tic−Ta
C−Co系、Cr4C系、その他何れをも用いることが
でき、用途に応じた最適な使い方ができる。特に、WC
系に比して、TiC系は安価であり、これを自由に使え
るので安価に市場供給できる。
system, WC-T a C-Co system, WC-Tic-Ta
C-Co type, Cr4C type, and any other type can be used, and can be used optimally depending on the purpose. In particular, W.C.
The TiC system is cheaper than the TiC system, and can be used freely, so it can be supplied to the market at a low cost.

[実施例] 次に添付図面に従い本発明の好適な実施例を詳述する。[Example] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

1及び2はダイスを示し、3及び4はパンチを示してい
る。
1 and 2 represent dice, and 3 and 4 represent punches.

このダイス1及び2内に、鉄粉5を充てんし、その上に
硬質合金粉末6を充てんする。
The dies 1 and 2 are filled with iron powder 5, and a hard alloy powder 6 is filled thereon.

この状態で、上下のパンチ3及び4によって型成型圧を
加えると同時に、高温加熱する。いわゆるホットプレス
法である。この図の例では、被成型材にパンチによる加
圧と同時に直接的に短時間強電流を通じて鉄粉と硬質合
金粉層の間に生ずる抵抗発熱により成型する例を示しで
あるので、上下のパンチ3及び4としてカーボン電極を
兼ねたものを用いる。
In this state, molding pressure is applied by the upper and lower punches 3 and 4, and at the same time, high temperature heating is performed. This is the so-called hot press method. The example in this figure shows an example in which the material to be formed is pressurized by a punch and simultaneously formed by the resistance heat generated between the iron powder and the hard alloy powder layer through a strong current for a short period of time. 3 and 4 are used which also serve as carbon electrodes.

このように加圧と同時に短時間強電流を直接通ずると、
その抵抗発熱により鉄粉5及び硬質合金粉6が焼結する
と同時に、鉄粉5の焼結体である基体7と、硬質合金粉
6の焼結体である表面体8が互いに一体的に溶着する。
In this way, when applying pressure and applying a strong current directly for a short time,
The iron powder 5 and the hard alloy powder 6 are sintered by the resistance heat generation, and at the same time, the base body 7, which is a sintered body of the iron powder 5, and the surface body 8, which is a sintered body of the hard alloy powder 6, are integrally welded to each other. do.

第2図はこうして得られた耐摩耗材9を示したもので、
ある。
Figure 2 shows the wear-resistant material 9 obtained in this way.
be.

上記硬質合金粉としては、この方法による場合。The above hard alloy powder is obtained by this method.

WC−Co系硬質合金、WC−Tic−Co系合金、W
 C−T a C−Co系硬質合金、WC−TiC−T
aC−Co系硬質合金、Cr4Cのような硬質金属等積
々のものを用いることができ、これらは適用すべき構造
物表面に要求される耐摩耗性能に合わせて選択されるし
、他方基体7としては、通常構造物が鋼製なのでこの例
のように鉄粉を成型したものが一般的であって好ましい
が、構造物を形成する金属を融接法によって接合できる
金属粉を用いて型成型するものを選べばよいので、構造
物に合わせて、その金属に対して融接できる他の金属を
用いてもよい、且つ、この基体7は、表面体8を支持す
るものなので、鉄系の場合にはカーボン、Tic、又は
WC等を、その組成中に含ませて、その硬度を自由に調
節してもよく、ステンレス等を用いることもできる。
WC-Co based hard alloy, WC-Tic-Co based alloy, W
C-T a C-Co hard alloy, WC-TiC-T
A wide variety of hard metals such as aC-Co-based hard alloys and Cr4C can be used, and these are selected according to the wear resistance required for the surface of the structure to which they are applied. Since the structure is usually made of steel, it is common and preferable to mold iron powder as shown in this example, but molding using metal powder that can join the metals forming the structure by fusion welding Since the base body 7 supports the surface body 8, other metals that can be fusion welded to the metal may be used depending on the structure. In some cases, carbon, Tic, WC, or the like may be included in the composition to freely adjust the hardness, or stainless steel or the like may also be used.

又、表面体8の硬さは、WC−Co系硬質合金にあって
は、その気孔度、炭化物の粒度によって、又WC−Ti
C−Co系にあッテは、Ticの量等によって影響を受
けるも、この例の短時間、残電流直接通電による高温圧
縮法にあっては、加圧力や、瞬間電流の強さ、通電時間
によって影響を受けるので、適用すべき構造物に応じて
適宜定める。しかし、本発明は高温圧縮法であれば、他
の成型法を用いても可能である。上記の被成型粉末に対
して短時間強電流を直接通電する方法の場合には、短時
間に成型可能であって、特別な黒鉛型を要しない等経済
的なメリットが大であって好適であることが確認された
が、その他、ダイスl及び2を黒鉛型として、この黒鉛
型に直接強電流を通電して高温圧縮してもよいし、高周
波誘導加熱等でもよい、又、上記何れの高温圧縮法の場
合でも、大気と反応しない真空中、不活性ガス中で成型
すると、より良い。
In addition, the hardness of the surface body 8 depends on the porosity and grain size of carbides in the case of WC-Co hard alloys, and on the hardness of WC-Ti.
Attenuation in C-Co systems is affected by the amount of Tic, etc., but in this example high-temperature compression method using direct energization of residual current for a short time, it is affected by the pressure, the strength of the instantaneous current, and the energization time. Therefore, it should be determined as appropriate depending on the structure to which it is applied. However, the present invention is also possible using other molding methods as long as they are high-temperature compression methods. The above-mentioned method of directly applying a strong current to the powder to be molded for a short time is preferable because it can be molded in a short time and has great economic advantages such as not requiring a special graphite mold. However, in addition, dies 1 and 2 may be made of graphite type, high-temperature compression may be performed by directly passing a strong current through the graphite type, high-frequency induction heating, etc. Even in the case of high-temperature compression, it is better to mold in a vacuum or inert gas where it does not react with the atmosphere.

さて、このようにして得られた耐摩耗材9は、通常平面
形状、四角(方形、長方形)又は丸形であるが、この耐
摩耗材9を構成する基体7の表面10を融接面として利
用する点に特徴を有する。即ち、これを重量物の搬送路
面等の構造物11の表面12に融接するには、例えば第
3図に示す如く、その表面12を一定面積ごと予め加熱
して融かし、そこにこの耐摩耗材9の所定数を、基体7
の表面10を大にして適装置いていき、全体をプレスし
ておいて基体7の表面10と構造物の表面12を互いに
融接する。第3図のカット部分Aは、その状態をモデル
的に示したものである。又構造物の表面12に、この耐
摩耗材9を置いて、両者をプレスしておいて基体7の表
面10と構造物の表面12を部分的にスポット融接して
、一体化する。第3図のカット部Bは、この状態をモデ
ル的に示したものである。これらの場合、耐摩耗材9の
基体7の金属材質、例えば鉄と、構造物11の金属材質
、例えば鉄鋼材とは同種なので、第三のロウ棒、ロウ接
材等が全く不要であり、容易に施工できる。而して、途
上の例では構造物表面に融接できる金属5と硬質金属6
の2層を成型する例を示したが、第4図に示す如く金属
5と硬質金属6の間にCu粉末等の他の金属13の暦を
介在させて成型してもよい。
Now, the wear-resistant material 9 obtained in this way usually has a planar shape, a square (square, rectangle), or a round shape, but the surface 10 of the base 7 constituting this wear-resistant material 9 is used as a fusion welding surface. It has characteristics in points. That is, in order to fusion weld this to the surface 12 of a structure 11 such as a road surface for transporting heavy objects, the surface 12 is heated and melted in advance in a certain area, as shown in FIG. A predetermined number of consumable materials 9 are attached to the base 7.
The surface 10 of the base body 7 is enlarged and the surface 12 of the structure is fused to each other after the whole is pressed. The cut portion A in FIG. 3 shows this state as a model. Further, the wear-resistant material 9 is placed on the surface 12 of the structure, and both are pressed, and the surface 10 of the base 7 and the surface 12 of the structure are partially spot fused and integrated. Cut portion B in FIG. 3 is a model representation of this state. In these cases, the metal material of the base 7 of the wear-resistant material 9, for example iron, and the metal material of the structure 11, for example steel, are of the same type, so there is no need for a third brazing rod, soldering material, etc. It can be constructed. Therefore, in the example in progress, metal 5 and hard metal 6 that can be fusion welded to the surface of the structure
Although an example is shown in which two layers are molded, as shown in FIG. 4, another metal 13 such as Cu powder may be interposed between the metal 5 and the hard metal 6 for molding.

上記構造物表面12としては、重量物の搬送路面や、シ
ョットば一ニング、サンドブラスト工場等の壁面、工作
機械に於ける加工物を置くテーブル面等がある。又、構
造物表面に融接する時に、この小板状の耐摩耗材を30
〜40枚1ブロツクとしたものを予め一定の大きさの板
に融接し、このブロック板をボルトナツトにより、構造
物に取付けてもよい。
Examples of the structure surface 12 include a conveyance road surface for heavy objects, a wall surface in a shot blasting or sandblasting factory, a table surface on which a workpiece is placed in a machine tool, and the like. Also, when fusion welding to the surface of a structure, this plate-shaped wear-resistant material is
A block of ~40 blocks may be welded in advance to a plate of a certain size, and this block plate may be attached to a structure with bolts and nuts.

次に1つの具体例を開示する。Next, one specific example will be disclosed.

カーボン電極を兼ねたパンチ3.4の間に鉄粉(Fe)
を充てんし、次イテWc −T f C(30−7層%
)の80%とN i 20%の合金粉末を充てんし、両
パンチ3.4によって20Kg/am″で加圧すると同
時に、両パンチ3,4間に、強電流3,0OOAの電流
を、2分間通電して、基体6の厚さ5+wm、その基体
に対して一体溶着した表面体7の厚さ2.5■、全体の
厚さ7.5mm、幅20mm、長さ20tsの耐摩耗材
を得た。
Iron powder (Fe) is placed between punches 3 and 4 which also serve as carbon electrodes.
Then, the next step Wc -T f C (30-7 layer%
) and 20% Ni and pressurized with 20 Kg/am'' by both punches 3.4, and at the same time, a strong current of 3.0 OOA was applied between both punches 3 and 4. By applying electricity for a minute, a wear-resistant material with a thickness of the base 6 of 5+wm, a thickness of the surface body 7 integrally welded to the base of 2.5cm, a total thickness of 7.5mm, a width of 20mm, and a length of 20ts was obtained. Ta.

この多数を、製鉄所の鋼製の鉄鋼搬送路面の表面に、融
接した。
A large number of these were fusion welded to the surface of a steel conveyance road made of steel at a steel mill.

耐摩耗材の表面体8のロックウェル硬さくHRA)は8
8〜80であり、重量物である鋼材を、その表面に摺動
させた所、十分な耐摩耗性を発揮し、搬送路面本体の耐
久性を著しく向上することができた。
The Rockwell hardness (HRA) of the wear-resistant material surface 8 is 8.
8 to 80, and when a heavy steel material was slid on its surface, sufficient wear resistance was exhibited, and the durability of the conveyance road main body was able to be significantly improved.

[発明の効果] 以上詳述した如く、この耐摩耗材は、重量物の搬送路面
や、ショットピーニング、サンドブラスト工場等、金属
粉が激しく飛び散る壁面、天井、工作物のテーブル面等
の構造物表面の金属に対して融接できる金属と硬質合金
粉末の二層以上を、加圧と同時に高温加熱して、基体と
、それに対して一体的に溶着せる硬質合金の表面体の小
板状に成型するものであるから、容易に加工でき、特に
、この小板状成型品の基体は、構造物表面の金属に対し
て融接できる金属であるから、具体的には構造物表面は
、はとんど鉄鋼材であって、この場合基体はそれと同じ
鉄に選択されるから、これを構造物表面に接合する時は
、単に融接により一体的に接合できるものであって施工
が極めて容易であり、又この耐摩耗材の表面体の硬質金
属は、加工上制限を全く受けないから、用途に応じて種
々のものを選択でき、著しい加工自由度を有する等実用
上程々の利点を呈するものである。
[Effects of the Invention] As detailed above, this wear-resistant material can be used on surfaces of structures such as transportation roads for heavy objects, walls, ceilings, and table surfaces of workpieces where metal powder is violently scattered, such as in shot peening and sandblasting factories. Two or more layers of metal and hard alloy powder that can be fused to metal are pressed and heated at high temperature to form a small plate of a base and a hard alloy surface that is integrally welded to the base. In particular, the base of this plate-like molded product is a metal that can be fused to the metal on the surface of the structure, so specifically, the surface of the structure is In this case, the base material is the same steel as the steel material, so when joining it to the surface of the structure, it can be joined integrally simply by fusion welding, and construction is extremely easy. In addition, since the hard metal of the surface of this wear-resistant material is not subject to any limitations in processing, various materials can be selected depending on the application, and it has considerable practical advantages such as a remarkable degree of processing freedom. .

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例を示し、第1図は高温圧縮成
型をしている所を示す図、第2図は成型された耐摩耗材
の断面図、第3図は構造物表面にこの耐摩耗材を融接し
た所を示す図、第4図は他の実施例図であり1図中5は
鉄粉、6は硬質合金粉末、7は基体、8は表面体、9は
耐摩耗材、10は基体の表面、11は構造物、12は構
造物の表面である。 や金属粉等が激しく飛び散るシゴットピーニング、サン
ドブラスト加工工場等の壁面、工作物の加工テーブル面
等の構造物の表面に多数適用して、この構造物表面全体
に耐摩耗性を与える為の小板状の耐摩耗材に関する。 [従来の技術1 周知の通り、路面、床面、壁面、工作物テーブル面等構
造物の表面に耐摩耗性を与える必要は数多くある。 例えば、製鉄所に於いて、製品又は素材としての鋼塊、
鋼材等を生産又は出荷ラインの所定の場所へ転送するに
は、それら鋼材等を鋼製の搬送路にスライドさせて運搬
することが実施されているが、このような重量物の搬送
路面は、重量物と激しく摺擦するので、摩耗が激しく、
当然に路面の耐摩耗性が要求される。この場合、それら
搬送路面等構造物自体を耐摩耗性のある硬質合金で形成
すれば上記の要求を満たすが、コスト面等で現実には無
理であり、これが為に従来から幾つかの工夫が成されて
いる。 1つは、鋼製の搬送路面や壁面等の構造物の表面に、小
板状の硬質合金板の多数を1つ1つロウ接して敷き並べ
る方法である。 もう1つは、小板状の硬質合金板の多数を予め並べてお
いて、その上から鋼の溶湯を流し込み、その状態で全体
を、固化させて1表面に多数の小板状の硬質合金板を敷
き並べる方法である。 [発明が解決しようとする問題点] この2つの技術とも、搬送路面、壁面等に耐摩耗性を付
与する点は満たし、現実に効果を上げているが、第1の
方法の場合には、小板状の硬質合金板を金属ロウを用い
て1つ1つロウ接しなければならず、製作の手間及びコ
ストがかかる問題がある。又、ロウ接された硬質金属と
構造物表面の膨張係数が異なるので、ロウ接後ひずみ、
割れを生じ易い、更に硬質金属もWC系、TiC系等種
々あるが、WC系は高価なのでT i C系を使いたい
所であるが、T i C系はロウ接し難いので、T i
 C系を使用することは実質上不可能であり、使用材質
に制限がある。第2の方法の場合には、製作の手間、コ
スト面の問題を解決しているものの、使用できる硬質合
金が限られる。即ち、鋼の溶湯を、小板状の硬質合金板
の上に流し込んだ時に、それら硬質合金板が浮いてしま
ってはならないので、溶湯の比重より十分重い比重の硬
質合金の板しか用いることができない0例えばWC−T
ic−Co系硬質合金の場合、T i Cの組成が大き
くなったもの等は使用できない。 従って本発明の目的とする所は、容易に製作できる共に
、構造物表面に融接によって簡単に接合でき、且つ使用
する硬質金属の種類に制限を受けない構造物表面に融接
する為の耐摩耗材を提供するにある。 [問題点を解決する為の手段9作用] 上記目的を達成する為の本発明は次の技術的手段を有す
る。 即ち、実施例に対応する符号を用いてこれを説明すると
、この耐摩耗材9は、構造物表面の金属に対して融接で
きる金属5と硬質合金粉末6の二層以上を加圧と同時に
直接通電方式で短時間低電圧強電流を通じて高温加熱し
て、基体7と、それに対して一体的に溶着せる硬質合金
粉層の表面体8に成型されて成り、上記基体7の面10
を重量物の搬送路面、壁面、工作物テーブル面等の構造
物11の表面12に融接する為の融接面としたものであ
り、重量物の搬送路面や、壁面を通常鋼製なので、上記
基体は鉄粉層を型成型、加熱したものより成る。 このような構成なので、この多数を構造物11の表面1
2に配列する時は、構造物表面12に対して、この耐摩
耗材の基体7の表面10をスポット溶接等により融接し
て施工するものである。 これによれば、耐摩耗材自体は、単に加圧且つ同時に加
熱して、成型できるので、比較的容易に製造でき、又構
造物の表面に施工する時は、基体7が、構造物表面12
の金属に対して融接できる金属であるから、例えば、構
造物表面が通常鋼製の場合には、それと同じような鉄が
選ばれるから、構造物表面に融接法により難なく接合で
きるから、施工が容易であり、且つ耐摩耗材9の表面体
8の硬質合金はWC−Co系、WC−TiC−Co系、
W C−T a C−Co系、WC−Tic−TaC−
Co系、Cr4C系、その他何れをも用いることができ
、用途に応じた最適な使い方ができる。特に、WC系に
比して、TiC系は安価であり、これを自由に使えるの
で安価に市場供給できる。 [実施例] 次に添付図面に従い本発明の好適な実施例を詳述する。 1及び2はダイスを示し、3及び4はパンチを示してい
る。 このダイスl及びz内に、鉄粉5を充てんし、その上に
硬質合金粉末6を充てんする。 この状態で上下のパンチ3及び4によって型成型圧を加
えると同時に、高温加熱する。即ち、被成型材にパンチ
による加圧と同時に直接的に短時間強電流を通じて鉄粉
と硬質合金粉層の間に生ずる抵抗発熱により成型する。 上下のパンチ3及び4としてカーボン電極を兼ねたもの
を用いる。 このように加圧と同時に短時間強電流を直接通ずると、
鉄粉5の層及び硬質合金粉末6の層の双方に各部均一に
電流が流れるものの、硬質合金粉末の層の電気抵抗値が
高いので、該部分により高温が生じ、これにより鉄粉5
及び硬質合金粉末6が焼結すると同時に、鉄粉5の焼結
体である基体7と、硬質合金粉末6の焼結体である表面
体8が互いに一体的に溶着する。 第2図はこうして得られた耐摩耗材9を示したものであ
る。 上記硬質合金粉末としては、この方法による場合、WC
−Co系硬質合金、−WC−TiC−C。 系合金、W C−T a C−Co系硬質合金、wc−
T i C−T a C−Co系硬質合金、Cr4Cの
ような硬質金属等積々のものを用いることができ。 これらは適用すべき構造物表面に要求される耐摩耗性能
に合わせて選択されるし、他方基体7としては、通常構
造物が鋼製なのでこの例のように鉄粉を成型したものが
一般的であって好ましいが、構造物を形成する金属を融
接法によって接合できる金属粉を用いて型成型するもの
を選べばよいので、構造物に合わせて、その金属に対し
て融接できる他の金属を用いてもよい、且つ、この基体
7は、表面体8を支持するものなので、鉄系の場合には
カーボン、TiC1又はWC等を、その組成中に含ませ
て、その硬度を自由に調節してもよく、ステンレス等を
用いることもできる。 又、表面体8の硬さは、WC−Co系硬質合金にあって
は、その気孔度、炭化物の粒度によって、又WC−Ti
c−Co系にあっては、TiCの量等によって影響を受
けるも、この短時間、強電流直接通電による直接通電方
式にあっては、加圧力や、瞬間電流の強さ、通電時間に
よって影響を受けるので、適用すべき構造物に応じて適
宜定める。この被成型粉末に対して短時間強電流を直接
通電する方法の場合には、短時間に成型可能であって、
特別な黒鉛型を要しない等経済的なメリットが大であっ
て好適であることが確認されたが、その他、ダイスl及
び2を黒鉛型として、この黒鉛型に直接強電流を通電し
て高温圧縮してもよい、又、大気と反応しない真空中、
不活性ガス中で成型すると、より良い。 さて、このようにして得られた耐摩耗材9は、通常平面
形状、四角(方形、長方形)又は丸形であるが、この耐
摩耗材9を構成する基体7の表面!0を融接面として利
用する点に特徴を有する。即ち、これを重量物の搬送路
面等の構造物11の表面12に融接するには、例えば第
3図に示す如く、その表面12を一定面積ごと予め加熱
して融かし、そこにこの耐摩耗材9の所定数を、基体7
の表面10を大にして適装置いていき、全体をプレスし
ておいて基体7の表面1oと構造物の表面12を互いに
融接する。第3図のカット部分Aは、その状態をモデル
的に示したものである。又構造物の表面12に、この耐
摩耗材9を置いて1両者をプレスしておいて基体7の表
面1oと構造物の表面12を部分的にスポット融接して
、一体化する。第3図のカット部Bは、この状態をモデ
ル的に示したものである。これらの場合、耐摩耗材9の
基体7の金属材質、例えば鉄と、構造物11の金属材質
、例えば鉄鋼材とは同種なので、第三のロウ棒、ロウ接
材等が全く不要であり、容易に施工できる。 而して、追上の例では構造物表面に融接できる金属5と
硬質金属6の二層を成型する例を示したが、第4図に示
す如く金属5と硬質金属6の間にCu粉末等の他の金属
13の暦を介在させて成型してもよい。 上記構造物表面12としては、重量物の搬送路面や、シ
ョットピーニング、サンドブラスト工場等の壁面、工作
機械に於ける加工物を置くテーブル面等がある。又、構
造物表面に融接する時に、この小板状の耐摩耗材を30
−40枚1ブロツクとしたものを予め一定の大きさの板
に融接し、このブロック板をボルトナツトにより、構造
物に取付けてもよい。 次に1つの具体例を開示する。 カーボン電極を兼ねたパンチ3.4の間に鉄粉(F e
)を充てんし、次いテwc−”r i C(30−70
%)の80%とN i 20%の合金粉末を充てんし。 両パンチ3.4によって20kg/ c rn”で加圧
すると同時に1両パンチ3,4間に1強電流3.00O
Aの電流を、2分間通電して、基体6の厚さ5■層、そ
の基体に対して一体溶!した表面体7の厚さ2.5履l
、全体の厚さ7.51薦、輻2Gmm、長さ20m層の
耐摩耗材を得た。 この多数を、製鉄所の鋼製の鉄鋼搬送路面の表面に融接
した。 耐摩耗材の表面体8のロックウェル硬さく)IrA)は
88〜8oであり1重量物である鋼材を、その表面に摺
動させた所、十分な耐摩耗性を発揮し、搬送路面本体の
耐久性を著しく向上するこができた。 [発明の効果] 以上詳述した如く、この耐摩耗材は、重量物の搬送路面
や、ショットピーニング、サンドブラスト工場等、金属
粉が激しく飛び散る壁面、天井、工作物のテーブル面等
の構造物表面の金属に対して融接でふる金属と硬質合金
粉末の二層以上を、加圧と同時に直接短時間低電圧強電
流を通じて高温加熱して、基体と、それに対して一体的
に溶着せる硬質合金の表面体の小板状に成型するもので
あるから、容易に加工でき、特に、この小板状成型品の
基体は、構造物表面の金属に対して融接できる金属であ
るから、具体的には構造物表面は、はとんど鉄鋼材であ
って、この場合基体はそれと同じ鉄に選択されるから、
これを構造物表面に接合する時は、単に融接により一体
的に接合できるものであって施工が極めて容易であり、
又この耐摩耗材の表面体の硬質金属は、加工上制限を全
く受けないから、用途に応じて種々のものを選択でき、
著しい加工自由度を有する等実用上程々の利点を呈する
ものである。 4、図面の簡単な説明 添付図面は本発明の実施例を示し、第1図は高温圧縮成
型をしている所を示す図、第2図は成型された耐摩耗材
の断面図、第3図は構造物表面にこの耐摩耗材を融接し
た所を示す図、第4図は他の実施例図であり、図中5は
鉄粉、6は硬質合金粉末、7は基体、8は表面体、9は
耐摩耗材、lOは基体の表面、11は構造物、12は構
造物の表面である。
The attached drawings show embodiments of the present invention, with Fig. 1 showing high-temperature compression molding, Fig. 2 a cross-sectional view of the molded wear-resistant material, and Fig. 3 showing the wear-resistant material on the surface of the structure. FIG. 4 is a diagram showing another embodiment of the welding of wear materials. In the figure, 5 is iron powder, 6 is hard alloy powder, 7 is base body, 8 is surface body, 9 is wear-resistant material, 10 is the surface of the base, 11 is the structure, and 12 is the surface of the structure. It is often applied to the surfaces of structures such as the walls of workpiece peening and sandblasting factories, where metal powder, etc. are violently scattered, and the processing table surfaces of workpieces. Regarding plate-shaped wear-resistant materials. [Prior Art 1] As is well known, there are many needs to provide wear resistance to the surfaces of structures such as road surfaces, floors, walls, and workpiece table surfaces. For example, in a steelworks, steel ingots as products or materials,
In order to transfer steel materials, etc. to a predetermined location on a production or shipping line, the steel materials, etc. are transported by sliding them onto a steel transport path. As it rubs violently against heavy objects, it causes severe wear.
Naturally, road surface wear resistance is required. In this case, the above requirements could be met if the structures themselves, such as the transport road surface, were made of wear-resistant hard alloys, but this is not practical due to cost considerations, and for this reason, several techniques have been developed in the past. has been completed. One method is to lay out a large number of small hard alloy plates one by one by soldering them onto the surface of a structure such as a steel transport road or wall. The other method is to arrange a large number of small plate-shaped hard alloy plates in advance, pour molten steel over them, and solidify the whole in that state, so that many small plate-shaped hard alloy plates are formed on one surface. This is a method of laying out the [Problems to be Solved by the Invention] Both of these two techniques meet the requirements of imparting wear resistance to the conveyance path surface, wall surface, etc., and are actually effective, but in the case of the first method, The small plate-shaped hard alloy plates must be soldered one by one using a metal solder, which poses a problem in that the manufacturing process is laborious and costly. In addition, since the expansion coefficients of the hard metal and the surface of the structure are different, the strain after soldering,
There are various types of hard metals that are prone to cracking, such as WC type and TiC type, but WC type is expensive, so we would like to use TiC type, but TiC type is difficult to solder, so TiC type is used.
It is virtually impossible to use C-based materials, and there are restrictions on the materials that can be used. In the case of the second method, although problems in terms of manufacturing time and cost are solved, the hard alloys that can be used are limited. In other words, when molten steel is poured onto small hard alloy plates, the hard alloy plates must not float, so only hard alloy plates with a specific gravity sufficiently higher than the molten metal can be used. Not possible 0 For example, WC-T
In the case of ic-Co-based hard alloys, those with a large TiC composition cannot be used. Therefore, an object of the present invention is to provide a wear-resistant material for fusion welding to the surface of a structure that is easy to manufacture, can be easily joined to the surface of a structure by fusion welding, and is not limited by the type of hard metal used. is to provide. [Means 9 Effects for Solving the Problems] The present invention has the following technical means for achieving the above object. That is, to explain this using the reference numerals corresponding to the examples, this wear-resistant material 9 directly presses two or more layers of metal 5 and hard alloy powder 6 that can be fusion-welded to the metal on the surface of the structure. The surface 10 of the base 7 is formed by heating at high temperature through low voltage and strong current for a short period of time in an energizing method to form a base 7 and a surface body 8 of a hard alloy powder layer that is integrally welded thereto.
is used as a fusion welding surface for fusion welding to the surface 12 of a structure 11 such as a conveyance path for heavy objects, a wall surface, a workpiece table surface, etc. Since the conveyance path for heavy objects and the wall surface are usually made of steel, the above-mentioned The base consists of a layer of iron powder molded and heated. With such a configuration, this large number is distributed over the surface 1 of the structure 11.
2, the surface 10 of the base body 7 made of wear-resistant material is fusion-welded to the structure surface 12 by spot welding or the like. According to this, the wear-resistant material itself can be molded by simply pressurizing and heating at the same time, so it can be manufactured relatively easily, and when applied to the surface of a structure, the base 7 is
For example, if the surface of a structure is normally made of steel, iron, which is similar to that, is selected because it can be easily joined to the surface of the structure by fusion welding. Construction is easy, and the hard alloy of the surface body 8 of the wear-resistant material 9 is WC-Co-based, WC-TiC-Co-based,
WC-T a C-Co system, WC-Tic-TaC-
Co-based, Cr4C-based, and any other materials can be used, and can be used optimally depending on the application. In particular, compared to the WC system, the TiC system is cheaper and can be freely used, so it can be supplied to the market at a low cost. [Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 represent dice, and 3 and 4 represent punches. The dies l and z are filled with iron powder 5, and then hard alloy powder 6 is filled thereon. In this state, molding pressure is applied by the upper and lower punches 3 and 4, and at the same time, high temperature heating is performed. That is, the material to be molded is pressurized by a punch and at the same time, a strong current is passed directly for a short period of time to form the material by the resistance heat generated between the iron powder and the hard alloy powder layer. As the upper and lower punches 3 and 4, punches that also serve as carbon electrodes are used. In this way, when applying pressure and applying a strong current directly for a short time,
Although current flows uniformly in each part of both the layer of iron powder 5 and the layer of hard alloy powder 6, since the electrical resistance value of the layer of hard alloy powder is high, a high temperature is generated in that part, and as a result, the iron powder 5
At the same time as the hard alloy powder 6 is sintered, the base body 7, which is a sintered body of the iron powder 5, and the surface body 8, which is a sintered body of the hard alloy powder 6, are integrally welded to each other. FIG. 2 shows the wear-resistant material 9 thus obtained. In this method, the hard alloy powder is WC
-Co-based hard alloy, -WC-TiC-C. system alloy, W C-T a C-Co system hard alloy, wc-
A wide variety of materials can be used, such as T i C-Ta C-Co hard alloys and hard metals such as Cr4C. These are selected according to the wear resistance required for the surface of the structure to which they are applied, and on the other hand, the base 7 is generally made of iron powder, as shown in this example, since the structure is usually made of steel. However, it is preferable to choose a structure in which the metal forming the structure is molded using metal powder that can be joined by fusion welding. Metal may be used, and since this base body 7 supports the surface body 8, if it is iron-based, carbon, TiC1, WC, etc. may be included in its composition to freely adjust its hardness. It may be adjusted, and stainless steel or the like may also be used. In addition, the hardness of the surface body 8 depends on the porosity and grain size of carbides in the case of WC-Co hard alloys, and on the hardness of WC-Ti.
In the c-Co system, it is affected by the amount of TiC, etc., but in this direct energization method that uses direct energization with a strong current for a short time, it is affected by the pressure, the strength of the instantaneous current, and the energization time. Therefore, it is determined as appropriate depending on the structure to which it is applied. In the case of this method of directly applying a strong current to the powder to be molded for a short time, it is possible to mold the powder in a short time,
It has been confirmed that it is suitable because it has great economical advantages such as not requiring a special graphite mold, but it is also possible to use graphite molds for dies 1 and 2, and to apply a strong current directly to the graphite molds to heat them at high temperatures. In vacuum, which can be compressed and does not react with the atmosphere,
It is better to mold in an inert gas. Now, the wear-resistant material 9 thus obtained is usually planar, square (rectangular, rectangular), or round, but the surface of the base 7 constituting this wear-resistant material 9! The feature is that 0 is used as the fusion welding surface. That is, in order to fusion weld this to the surface 12 of a structure 11 such as a road surface for transporting heavy objects, the surface 12 is heated and melted in advance in a certain area, as shown in FIG. A predetermined number of wear materials 9 are attached to the base body 7.
The surface 10 of the base body 7 is enlarged and a suitable device is applied, the whole is pressed, and the surface 10 of the base body 7 and the surface 12 of the structure are fused together. The cut portion A in FIG. 3 shows this state as a model. Further, the wear-resistant material 9 is placed on the surface 12 of the structure and pressed together, and the surface 1o of the base 7 and the surface 12 of the structure are partially spot fused and integrated. Cut portion B in FIG. 3 is a model representation of this state. In these cases, the metal material of the base 7 of the wear-resistant material 9, for example iron, and the metal material of the structure 11, for example steel, are of the same type, so there is no need for a third brazing rod, soldering material, etc. It can be constructed. In the following example, we have shown an example in which two layers of metal 5 and hard metal 6 that can be fusion welded are formed on the surface of the structure, but as shown in FIG. Molding may also be performed with a layer of other metal 13 such as powder interposed therebetween. Examples of the structure surface 12 include a conveyance road surface for heavy objects, a wall surface in a shot peening or sandblasting factory, a table surface on which a workpiece is placed in a machine tool, and the like. Also, when fusion welding to the surface of a structure, this plate-shaped wear-resistant material is
-40 blocks may be welded in advance to a plate of a certain size, and this block plate may be attached to a structure with bolts and nuts. Next, one specific example will be disclosed. Iron powder (F e
), then TE wc-”r i C(30-70
%) and 20% Ni alloy powder. Both punches 3.4 pressurize at 20 kg/c rn" and at the same time a strong current of 3.00 O is applied between each punch 3 and 4.
By applying current A for 2 minutes, the 5cm thick layer of the base 6 is integrally melted into the base! The thickness of the surface body 7 is 2.5 l.
A wear-resistant material with a total thickness of 7.51 mm, a radius of 2 Gmm, and a length of 20 m was obtained. A large number of these were fusion welded to the surface of a steel transport road made of steel at a steel mill. The Rockwell hardness (IrA) of the surface body 8 of the wear-resistant material is 88 to 8o, and when a heavy steel material is slid on the surface, it exhibits sufficient wear resistance, and We were able to significantly improve durability. [Effects of the Invention] As detailed above, this wear-resistant material can be used on surfaces of structures such as transportation roads for heavy objects, walls, ceilings, and table surfaces of workpieces where metal powder is violently scattered, such as in shot peening and sandblasting factories. Two or more layers of metal and hard alloy powder are fused together by fusion welding, and at the same time they are pressed and simultaneously heated directly at high temperature through a short period of low voltage and strong current, the hard alloy is integrally welded to the base. Since the surface body is molded into a small plate shape, it can be easily processed, and in particular, the base of this plate-like molded product is a metal that can be fusion-welded to the metal on the surface of the structure. The surface of the structure is mostly made of steel, and in this case the base material is selected to be the same steel.
When joining this to the surface of a structure, it can be integrally joined simply by fusion welding, and construction is extremely easy.
In addition, the hard metal of the surface of this wear-resistant material is not subject to any restrictions in processing, so a variety of materials can be selected depending on the application.
It exhibits moderate practical advantages such as a remarkable degree of processing freedom. 4. Brief description of the drawings The attached drawings show embodiments of the present invention. Fig. 1 is a diagram showing high temperature compression molding, Fig. 2 is a cross-sectional view of the molded wear-resistant material, and Fig. 3 4 is a diagram showing a place where this wear-resistant material is fusion-welded to the surface of a structure, and FIG. 4 is a diagram of another embodiment. In the figure, 5 is iron powder, 6 is hard alloy powder, 7 is a base body, and 8 is a surface body. , 9 is a wear-resistant material, IO is the surface of the base, 11 is the structure, and 12 is the surface of the structure.

Claims (1)

【特許請求の範囲】[Claims] 重量物の搬送路面、金属粉が激しく飛び散る壁面、工作
物加工テーブル面等の構造物の表面に多数配列して、上
記構造物表面全体に耐摩耗性を与える為の小板状の耐摩
耗材であって、この耐摩耗材は、構造物表面の金属に対
して融接できる金属と硬質合金粉末の二層以上を加圧と
同時に高温加熱して、基体と、それに対して一体的に溶
着せる硬質合金の表面体の小板状に成型されて成り、上
記基体の表面を構造物の表面に融接する為の融接面とし
たことを特徴とする構造物表面に融接する為の耐摩耗材
A small plate-shaped wear-resistant material that is arranged in large numbers on the surface of structures such as transportation routes for heavy objects, walls where metal powder is violently scattered, and workpiece processing tables to provide wear resistance to the entire surface of the structure. This wear-resistant material is made by pressurizing and heating two or more layers of metal and hard alloy powder, which can be fused to the metal on the surface of the structure, to a base and a hard alloy that can be integrally welded to it. A wear-resistant material for fusion welding to the surface of a structure, characterized in that it is formed into a small plate shape of an alloy surface body, and the surface of the base body is used as a fusion weld surface for fusion welding to the surface of the structure.
JP7303985A 1985-04-05 1985-04-05 Wear resistant material to be melt-joined to surface of structure Pending JPS61231105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7303985A JPS61231105A (en) 1985-04-05 1985-04-05 Wear resistant material to be melt-joined to surface of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7303985A JPS61231105A (en) 1985-04-05 1985-04-05 Wear resistant material to be melt-joined to surface of structure

Publications (1)

Publication Number Publication Date
JPS61231105A true JPS61231105A (en) 1986-10-15

Family

ID=13506820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7303985A Pending JPS61231105A (en) 1985-04-05 1985-04-05 Wear resistant material to be melt-joined to surface of structure

Country Status (1)

Country Link
JP (1) JPS61231105A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825850A (en) * 1971-08-05 1973-04-04
JPS5134807A (en) * 1974-07-15 1976-03-24 Skf Ind Trading & Dev
JPS5511133A (en) * 1978-07-10 1980-01-25 Ishikawajima Harima Heavy Ind Co Ltd Abrasion resistant member made of sintered alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825850A (en) * 1971-08-05 1973-04-04
JPS5134807A (en) * 1974-07-15 1976-03-24 Skf Ind Trading & Dev
JPS5511133A (en) * 1978-07-10 1980-01-25 Ishikawajima Harima Heavy Ind Co Ltd Abrasion resistant member made of sintered alloy

Similar Documents

Publication Publication Date Title
KR100609129B1 (en) Cutting Segment, Method for Manufacturing Cutting Segment and Cutting Tool
KR100623304B1 (en) Cutting segment, method for manufacturing cutting segment and cutting tool
US20090274923A1 (en) Tools Having Compacted Powder Metal Work Surfaces, And Method
JP2013506754A (en) Strengthening roll and manufacturing method thereof
CN105798440A (en) Pure titanium or titanium alloy/carbon steel laminar composite plate welding method
CN107457475A (en) The coating unit and method of metal surface wear-resistant coating
KR20050118074A (en) Cutting segment, method for manufacturing cutting segment and cutting tool
JPS61231105A (en) Wear resistant material to be melt-joined to surface of structure
EP3630398B1 (en) Hot isostatic pressed article comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite
EP0357664A4 (en) Plymetal brazing strip
US3469301A (en) Process for the production of bonded metal structures
US4386959A (en) Method for compound sintering
CN207077090U (en) The coating unit of metal surface wear-resistant coating
US2626457A (en) Clad metal
JP3588137B2 (en) Metal material surface coating method
JPH0288778A (en) Surface modification of metal or alloy support and produced surface modified product
US2626458A (en) Process for making clad metal
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
Behrens et al. Compound forging of hybrid powder-solid-parts made of steel and aluminum
US2676393A (en) Process for making clad metal
JPS627803A (en) Wear resistant material for welding onto structure surface
JP3898803B2 (en) Method for producing metal composite member
JP2002086278A (en) Manufacturing method of annular and hollow machine parts
JPS629949A (en) Abrasion-resistant material for fusion-welded to surface of structure
US2814095A (en) Clad metal