JP6753615B2 - 分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体 - Google Patents

分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体 Download PDF

Info

Publication number
JP6753615B2
JP6753615B2 JP2018549097A JP2018549097A JP6753615B2 JP 6753615 B2 JP6753615 B2 JP 6753615B2 JP 2018549097 A JP2018549097 A JP 2018549097A JP 2018549097 A JP2018549097 A JP 2018549097A JP 6753615 B2 JP6753615 B2 JP 6753615B2
Authority
JP
Japan
Prior art keywords
shear stress
axis
unit
contact pressure
distribution measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018549097A
Other languages
English (en)
Other versions
JPWO2018084284A1 (ja
Inventor
和彦 笹川
和彦 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Publication of JPWO2018084284A1 publication Critical patent/JPWO2018084284A1/ja
Application granted granted Critical
Publication of JP6753615B2 publication Critical patent/JP6753615B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/226Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
    • G01L5/228Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping using tactile array force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、平面の各軸(x軸、y軸)方向のせん断応力と当該平面に垂直な軸(z軸)方向の接触圧力とを同時に測定可能な分布測定センサ、当該分布測定センサを用いた分布測定センサシステム、分布測定プログラム等に関する。
固体接触面、特に生体と物体との界面に生じる接触圧力およびせん断応力の測定は、スポーツ工学または医学等の様々な分野において需要が高い。しかし、それらの測定に用いられるセンサは厚さがある上に硬いため、生体と物体との界面に生じる接触圧力およびせん断応力の直接的な測定ができないという問題点があった。
上記問題点を解決するため、近年、導電性高分子材料であるポリピロール薄膜を感圧素子に用いた薄くてしなやかな接触圧力およびせん断応力を測定するセンサ装置が開発された(特許文献1参照)。
特許第5688792号公報
しかし、上記センサ装置は単独で機能する構造であったため、触覚の分布を捉えるには多数のセンサ装置を集積化する必要があった。集積化する際には多数のセンサ装置への取り回し配線の領域が増大し、設計が煩雑となる上、製造コストが増大するという問題があった。このため、生体と物体との界面に適用可能な高空間分解能を有するセンサは未だ実現していない。
そこで、本発明の目的は上記問題を解決するためになされたものであり、生体と物体との界面に働く接触圧力およびせん断応力の測定に適用可能な薄くてしなやかなセンサ装置の特徴を備えつつ、且つ触覚の分布を捉えるために多数のセンサ装置を集積化しても取り回し配線の領域を格段に減らすことができ、設計がシンプルとなる上、製造コストの増大を抑えることができる高空間分解能を有する分布測定センサシステム等を提供することにある。
この発明の分布測定センサは、平面の各軸(x軸、y軸)方向のせん断応力と該平面に垂直な軸(z軸)方向の接触圧力とを測定するセンサユニットをマトリックス状に配置した構造を有する分布測定センサであって、前記センサユニットは、せん断応力及び接触圧力の測定に共通に用いられる上部電極と、該上部電極と感圧材料を介して配置された下部電極であってせん断応力、接触圧力の各測定に個別に用いられる電極から構成されるものと、前記上部電極と前記下部電極との間に働くx軸方向のせん断応力を測定するx軸せん断応力測定部と、前記上部電極と前記下部電極との間に働くy軸方向のせん断応力を測定するy軸せん断応力測定部と、前記上部電極のz軸方向に働く接触圧力を測定する接触圧力測定部とを有しており、前記マトリックスの同じ列に配置された各センサユニットは各上部電極が該列方向に共通に接続され、前記マトリックスの同じ行に配置された各センサユニットは前記x軸せん断応力測定部、前記y軸せん断応力測定部、前記接触圧力測定部の各下部電極側が各々該行方向に共通に接続されたことを特徴とする。
ここで、この発明の分布測定センサにおいて、前記x軸せん断応力測定部及び前記y軸せん断応力測定部は各々前記上部電極の一部と各測定部の前記下部電極側の一部とが上下に(z軸方向に)重なる領域を有し、前記x軸せん断応力測定部は、x軸方向のせん断応力が働いた場合に前記重なる領域における感圧材料のx軸方向のせん断変形による電気抵抗値の変化に基づきx軸方向のせん断応力を測定し、前記y軸せん断応力測定部は、y軸方向のせん断応力が働いた場合に前記重なる領域における感圧材料のy軸方向のせん断変形による電気抵抗値の変化に基づきy軸方向のせん断応力を測定し、前記接触圧力測定部は、前記上部電極の一部と該接触圧力測定部の前記下部電極側の全部とが上下に(z軸方向に)重なる領域を有し、z軸方向の接触圧力が働いた場合に該重なる領域における感圧材料のz軸方向の変形による電気抵抗値の変化に基づきz軸方向の接触圧力を測定することができる。
ここで、この発明の分布測定センサにおいて、前記上部電極はx軸方向に平行な辺を有するx軸平行部分とy軸方向に平行な辺を有するy軸平行部分とを有する所定の形状であり、前記x軸せん断応力測定部の下部電極側は前記上部電極より小さい矩形であって、該矩形の一部の面積が前記y軸平行部分と上下に(z軸方向に)重なり、前記y軸せん断応力測定部の下部電極側は前記上部電極より小さい矩形であって、該矩形の一部の面積が前記x軸平行部分と上下に(z軸方向に)重なり、前記接触圧力測定部の下部電極側は前記上部電極より小さい所定の形状であって、該所定の形状の全部の面積が前記上部電極に重なるものとすることができる。
ここで、この発明の分布測定センサにおいて、前記上部電極及び前記下部電極は銅張ポリイミドフィルムを用い、前記感圧素材は導電性高分子材料を用いることができる。
ここで、この発明の分布測定センサにおいて、前記平面は生体と固体との界面であるものとすることができる。
この発明の分布測定センサシステムは、本発明のいずれかの分布測定センサを用いた分布測定センサシステムであって、前記マトリックスの同じ列に配置された各センサユニットの各上部電極を該列方向に共通に接続した各列ラインを、入力した選択信号に基づき選択可能に構成されたリレー部と、前記マトリックスの同じ行に配置された各センサユニットの接触圧力測定部の下部電極、x軸せん断応力測定部の下部電極、y軸せん断応力測定部の下部電極を各々該行方向に共通に接続した各行ラインに、入力側が接続した各反転増幅回路により構成された反転増幅回路部と、前記反転増幅回路部を構成する各反転増幅回路に入力側が接続したA/D変換部と、前記A/D変換部の出力側と前記リレー部の入力側とに接続されたコンピュータとを備え、前記コンピュータから前記リレー部へ選択信号が出力され、該リレー部で該選択信号に基づき列ラインが選択され、該列ラインに接続された各センサユニットの各上部電極へ該リレー部に供給された電源電圧が印加され、該列ラインに接続された各センサユニットの接触圧力測定部、x軸せん断応力測定部、y軸せん断応力測定部に対して働いた各接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧が、各接触圧力測定部、x軸せん断応力測定部、y軸せん断応力測定部の各下部電極から各行ラインへ出力され、該各行ラインに接続された前記反転増幅回路部の各反転増幅回路からの各出力電圧が前記A/D変換部へ出力され、該A/D変換部からの出力が該コンピュータへ出力されることにより、該コンピュータは、該選択信号により選択された一列分の各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧を処理し、次の列ラインを選択する選択信号を出力することを繰返すことを特徴とする。
ここで、この発明の分布測定センサシステムにおいて、前記A/D変換部は、前記反転増幅回路部を構成する反転増幅回路に各々スイッチを介して入力側が接続され、前記コンピュータは、前記マトリックスの指定された列を選択する選択信号を前記リレー部へ出力させる選択信号制御手段と、前記選択信号制御手段により出力された選択信号により選択された列について、一列分の各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく前記反転増幅回路部の各反転増幅回路からの出力電圧を、前記A/D変換部の各スイッチを選択することにより該A/D変換部へ順次入力させるA/D変換部制御手段と、前記A/D変換部制御手段により前記A/D変換部へ入力され該A/D変換部によりA/D変換された各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧データを、各センサユニット毎の接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録する電圧データ記録手段と、前記センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力と各下部電極に接続された各反転増幅回路からの各出力電圧との間の所定の測定原理による関係に基づき、前記電圧データ記録手段により各センサユニット毎に接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録された各電圧データを、各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力へ換算する換算手段と、前記換算手段により換算された各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力を所定の表示形式で前記コンピュータの出力表示部に表示する表示手段と、前記選択信号制御手段により出力された選択信号により選択された列の次の列を指定して、前記選択信号制御手段からの処理を繰返させる繰返し手段とを備えることができる。
ここで、この発明の分布測定センサシステムにおいて、前記換算手段における前記センサユニットに働く接触圧力と下部電極に接続された反転増幅回路からの出力電圧との間の所定の測定原理は、電源電圧(E)、接触圧力に基づく前記反転増幅回路部の反転増幅回路からの出力電圧(V)、反転増幅回路の帰還抵抗(R)、圧力が無負荷時の上部電極と下部電極との間の抵抗(R)、接触圧力が負荷時の上部電極と下部電極との間の抵抗変化量(ΔR)とすると、以下の式5(特許請求の範囲では式1)のように、
Figure 0006753615
接触圧力による出力電圧(V)は接触圧力による抵抗変化量(ΔR)のみで表せるという測定原理である。
ここで、この発明の分布測定センサシステムにおいて、前記換算手段における前記センサユニットに働くx軸せん断応力、y軸せん断応力と下部電極に接続された各反転増幅回路からの各出力電圧との間の所定の測定原理は、電源電圧(E)、接触圧力に基づく前記反転増幅回路部の反転増幅回路からの出力電圧(V)、せん断応力に基づく前記反転増幅回路部の反転増幅回路からの出力電圧(Vτ:x軸分Vτxとy軸分Vτyとの総称)、反転増幅回路の帰還抵抗(R)、せん断応力が負荷時の上部電極と下部電極との間の抵抗変化量(ΔRτ:x軸分ΔRτxとy軸分ΔRτyとの総称)とすると、以下の式6(特許請求の範囲では式2)のように、
Figure 0006753615
接触圧力による出力電圧(V)とせん断応力による出力電圧(Vτ)とはせん断応力による抵抗変化量(ΔRτ)のみで表せるという測定原理である。
ここで、この発明の分布測定センサシステムにおいて、前記表示手段における所定の表示形式は、前記マトリックスに対応させて前記センサユニットの表示を配置し、該センサユニット毎に、接触圧力の大小を所定の色別で示し、x軸せん断応力及びy軸せん断応力を合成したせん断応力をベクトルで示すことができる。
この発明の分布測定プログラムは、本発明のいずれかの分布測定センサシステムにおける前記コンピュータを動作させる分布測定プログラムであって、該コンピュータに、前記マトリックスの指定された列を選択する選択信号を前記リレー部へ出力させる選択信号制御ステップ、前記選択信号制御ステップで出力された選択信号により選択された列について、一列分の各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく前記反転増幅回路部の各反転増幅回路からの出力電圧を、前記A/D変換部の各スイッチを選択することにより該A/D変換部へ順次入力させるA/D変換部制御ステップ、前記A/D変換部制御ステップで前記A/D変換部へ入力され該A/D変換部によりA/D変換された各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧データを、各センサユニット毎の接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録する電圧データ記録ステップ、前記センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力と下部電極に接続された各反転増幅回路からの各出力電圧との間の所定の測定原理による関係に基づき、前記電圧データ記録ステップで各センサユニット毎に接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録された各電圧データを、各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力へ換算する換算ステップ、前記換算ステップで換算された各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力を所定の表示形式で前記コンピュータの出力表示部に表示する表示ステップ、前記選択信号制御ステップで出力された選択信号により選択された列の次の列を指定して、前記選択信号制御ステップからの処理を繰返させる繰返しステップを実行させるための分布測定プログラムである。
この発明の記録媒体は、本発明の分布測定プログラムを記録したコンピュータ読取り可能な記録媒体である。
本発明の分布測定センサは、平面の各軸(x軸、y軸)方向のせん断応力と、当該平面に垂直な軸(z軸)方向の接触圧力とを測定するセンサユニットをマトリックスの各要素に配置した構造を有している。センサユニットは上部電極と感圧材料を介して上部電極の下側に配置された下部電極とから構成されている。マトリックスの同じ列に配置されたx軸方向の各センサユニットは各上部電極が列方向(x軸方向)に共通に接続線により接続されている。マトリックスの同じ行に配置されたy軸方向の各センサユニットは各下部電極が行方向(y軸方向)に共通に別の接続線により接続されている。各センサユニットは上部電極と下部電極とが上下方向(z軸方向)で重なる領域において、上部電極と下部電極との間に働くx軸方向のせん断応力を測定するx軸せん断応力測定部、上部電極と下部電極との間に働くy軸方向のせん断応力を測定するy軸せん断応力測定部、および上部電極のz軸方向に働く接触圧力を測定する接触圧力測定部を備えている。上部電極は、せん断応力の測定および接触圧力の測定に共通に用いられる。
以上の本発明のセンサユニットの構成によれば、接触圧力測定部はx軸方向のせん断応力、y軸方向のせん断応力に干渉されずにz軸方向の接触圧力のみを検出することができる。このため、接触圧力とx軸せん断応力およびy軸せん断応力との同時測定が可能となるという効果がある。
上述したように、本発明の分布測定センサは多数のセンサユニット(測定点)を各共通の接続線により連結することによって、多くの測定点を上下電極の交点(マトリックスの要素)に配置した。このマトリックス状の構成により、測定点毎に一つずつスキャンして接触圧力、せん断応力の情報を得るのではなく、マトリックスの1列を選択した状態で順次各行を選択することによりセンサユニット(交点)の情報を得ることができる。さらに、繰返し部により次の列を選択して前に選択した列の際と同様にセンサユニットの情報を得る行列型のスキャンを実施することができるという効果がある。
以上より、本発明の分布測定センサシステムによれば、生体(指)と物体(容器)との界面に働く接触圧力、せん断応力の測定に適用可能な薄くてしなやかな分布測定センサという特徴を備えつつ、且つ触覚の分布を捉えるために多数のセンサユニットを集積化しても取り回し配線の領域を格段に減らすことができ、設計がシンプルとなる上、製造コストの増大を抑えることができ、高分解能を有する分布測定センサシステム等を提供することができるという効果がある。
本発明の分布測定センサ10を示す図である。 センサユニットUijを拡大した斜視図である。 図2に示されるセンサユニットUijのx軸せん断応力測定部Uijτx近傍における垂直方向断面図である。 図2に示されるセンサユニットUijの接触圧力測定部Uijp近傍における垂直方向断面図である。 センサユニットUijの形状例を示す平面図である。 図2に示されるセンサユニットUijの拡大斜視図と、それに関連付けた上部電極UijHおよび下部電極UijLの電極パターンを示す図である。 図6に示される上部電極UijHおよび下部電極UijLの電極パターン示す図と、当該下部電極UijLの電極パターンの一部(センサユニットUi+1 j+1)の拡大図である。 図6に示される上部電極UijHおよび下部電極UijLの電極パターンを示す図と、当該上部電極UijHと当該下部電極UijLの各電極パターンを上下(z軸方向。紙面に垂直な方向)に重ねた状態とを示す図である。 本発明の分布測定センサ10を用いた分布測定センサシステム40を示す図である。 分布測定センサシステム40における分布測定センサ10のマトリックスMの一部の電極パターンを示す図である。 オペアンプ部42のオペアンプ42−Riと、オペアンプ42−Riの出力電圧側に接続されるスイッチ部43SWのスイッチ43SW−Riとの拡大図である。 本発明の分布測定センサシステム40におけるコンピュータPC44の機能等ブロック50Fを示す図である。 本発明の分布測定センサシステム40におけるコンピュータPC44を動作させる分布測定プログラムの処理の流れを示すフローチャートである。 較正実験を行うために作製した較正装置70の機能を示すための概要図である。 実験1の結果である接触圧力pに対する出力電圧変化(Vp/E)を示すグラフである。 実験2の結果であるせん断応力τxに対する出力電圧変化[{(1/Vτ)−(1/Vp)}×E]を示すグラフである。 実験3の結果である分布測定センサ10を円筒状の容器に接着し、人の指で持ち上げた際の接触圧力pおよびせん断応力τ(τx+τy)の分布を示す図である。 実験3の結果である分布測定センサ10を円筒状の容器(瓶等)に接着し、人の指で持ち上げた際の接触圧力pおよびせん断応力τ(τx+τy)の分布の他の例を示す図である。 センサユニットUijの他の形状例を示す平面図である。 センサユニットUijの別の形状例を示す平面図である。 各実施例において接続線Ri+1yと上部電極Ui+1j+1Hとが上下に重なる面積の諸影響を説明するための図である。 本発明の分布測定プログラムを実行するコンピュータPC44の内部回路100を示すブロック図である。 図3(A)、(B)とほぼ同様のセンサユニットUijのx軸せん断応力測定部Uijτx近傍における垂直方向断面図である。
以下、各実施例について図面を参照して詳細に説明する。
図1は、本発明の分布測定センサ10を示す。図1に示されるように、分布測定センサ10は平面の各軸(x軸、y軸)方向のせん断応力と、当該平面に垂直な軸(z軸)方向の接触圧力とを測定するセンサユニットUijをマトリックスMの各要素に配置した構造を有している。x、y、z軸の方向は図1に示す座標軸の通りであり、以下の各図においても各軸の方向を適宜座標軸で示す。図1に示されるセンサユニットUijのマトリックスMでは、Uij(行i=1〜4、列j=1〜4。)を例示しているが、マトリックスMの行数および列数は4×4に限定されるものではない。図1に示されるセンサユニットUij、例えばセンサユニットU11は上部電極U11Hと感圧材料(図1では不図示)を介して当該上部電極U11Hの下側に配置された下部電極U11Lとから構成されている。センサユニットU11と同じ列にあるセンサユニットU21、U31、U41も同様に各々上部電極U21Hと下部電極U21L、上部電極U31Hと下部電極U31L、上部電極U41Hと下部電極U41Lから構成されている。他のセンサユニットUij(i=1〜4、j=2〜4)についても同様であり、図面の都合上、上部電極および下部電極の符号は省略する。図1に示されるように、マトリックスMの同じ列jに配置されたx軸方向の各センサユニットUij(i=1〜4)は各上部電極UijH(i=1〜4)が列j方向(x軸方向)に共通に接続線Cjにより接続されている。加えて図1に示されるように、マトリックスMの同じ行iに配置されたy軸方向の各センサユニットUij(j=1〜4)は各下部電極UijL(j=1〜4)が行i方向(y軸方向)に共通に接続線Riにより接続されている。
後に詳述するように、各センサユニットUij(i=1〜4、j=1〜4)は上部電極UijH(i=1〜4、j=1〜4)と下部電極UijL(i=1〜4、j=1〜4)とが上下方向(z軸方向)で重なる領域において、上部電極UijH(i=1〜4、j=1〜4)と下部電極UijL(i=1〜4、j=1〜4)との間に働くx軸方向のせん断応力を測定するx軸せん断応力測定部、上部電極UijH(i=1〜4、j=1〜4)と下部電極UijL(i=1〜4、j=1〜4)との間に働くy軸方向のせん断応力を測定するy軸せん断応力測定部、および上部電極UijH(i=1〜4、j=1〜4)のz軸方向に働く接触圧力を測定する接触圧力測定部を備えている。図1に示されるように、マトリックスMの同じ行iに配置された各センサユニットUij(j=1〜4)は各下部電極UijL(j=1〜4)における、上記x軸せん断応力測定部、上記y軸せん断応力測定部、上記接触圧力測定部を構成する電極(後述するUijLx、UijLy、UijLp)が行i方向に共通に各々接続線Rix、Riy、Ripにより接続されている。
図2は、センサユニットUijを拡大した斜視図を示す。図2で図1と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図2で、符号Uijpは接触圧力測定部を示し(円で囲んで示す)、UijLpは接触圧力測定部Uijpを構成する下部電極であり、pは上部電極UijHに対してz軸方向に働く接触圧力を示す。続いて、符号Uijτxはx軸せん断応力測定部を示し(円で囲んで示す)、UijLxはx軸せん断応力測定部Uijτxを構成する下部電極であり、τxは上部電極UijHと下部電極UijLxとの間に働くx軸方向のせん断応力を示す。図2で、符号20、20x、20pは感圧材料であり、上部電極UijHと左右の下部電極UijLxおよびUijLpとは感圧材料20を介し対向して配置されている。上部電極UijHは、せん断応力τxの測定(x軸せん断応力測定部Uijτx)および接触圧力pの測定(接触圧力測定部Uijp)に共通に用いられる。図2に示される感圧材料20xおよび20pは、上記した上部電極UijH(i=1〜4、j=1〜4)と下部電極UijL(i=1〜4、j=1〜4)とが上下に(z軸方向に)重なる領域における感圧材料20を示している。より詳しくは、感圧材料20xはx軸せん断応力測定部Uijτxにおいて上部電極UijHの一部と下部電極UijLxの一部とがz軸方向で重なる領域における感圧材料20を示し、感圧材料20pは接触圧力測定部Uijpにおいて上部電極UijHの一部と下部電極UijLpの全部とがz軸方向で重なる領域における感圧材料20を示す。感圧材料20、20x、20pはせん断応力および接触圧力の圧力変換素子であり、導電性高分子材料のポリチオフェンを用いた。ポリチオフェンは作用圧力に応じて厚さ方向の電気抵抗が変化する特性を有している。より詳しくは、作用圧力が加わるのに応じて導電率が上がるという性質を有している。y軸方向のせん断応力およびy軸せん断応力測定部については、向きが異なるだけでx軸方向のせん断応力τxおよびx軸せん断応力測定部Uijτxと同様であるが、図面の都合上図示は省略し、説明は後述する。
図3(A)、(B)は、図2に示されるセンサユニットUijのx軸せん断応力測定部Uijτx近傍における垂直方向断面図であり、図2と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図3(A)に示されるように、x軸せん断応力測定部Uijτxの感圧材料20xにおける上部電極UijHと下部電極UijLxとの間の厚さ方向の距離はrである。ここで、x軸せん断応力測定部Uijτxに対してx軸方向にせん断応力τxが働くと、図3(B)に示されるように上部電極UijH側がx軸の正方向へずれ、下部電極UijLx側がx軸の負方向へずれる。この両電極のずれ(位置関係の変化)の結果、図3(B)に示されるように感圧材料20xの部分にx軸方向のせん断変形が生じる。この結果、感圧材料20xの部分では、上部電極UijHと下部電極UijLxとの間の厚さ方向の距離がrτとなって元の距離rより増加するため、x軸せん断応力測定部Uijτxにおける電気抵抗が増加する。
図4(A)、(B)は、図2に示されるセンサユニットUijの接触圧力測定部Uijp近傍における垂直方向断面図であり、図2と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図4(A)に示されるように、接触圧力測定部Uijpの感圧材料20pにおける上部電極UijHと下部電極UijLpとの間の厚さ方向の距離はrである。ここで、接触圧力測定部Uijpに対してz軸方向に接触圧力pが働くと、図4(B)に示されるように感圧材料20pの部分にz軸方向の変形が生じる。この結果、感圧材料20pの部分では、上部電極UijHと下部電極UijLpとの間の厚さ方向の距離がrpとなって元の距離rより減少するため、接触圧力測定部Uijpにおける電気抵抗が減少する。
図5は、センサユニットUijの形状例を平面図で示す。図5で、図2と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図5で上部電極UijHの下部にあって見えない電極(または電極の一部)は点線で示し、見えない電極等への引出線も点線で示す(以下同様)。図5ではy軸方向のせん断応力τy、y軸せん断応力測定部Uijτy(点線円で囲んで示す。当該点線円への引出線も点線で示す。以下、Uijτx、Uijpについても同様)および下部電極UijLyも示している。図5に例示されるように、上部電極UijHは正方形で左下隅が欠けた形状(所定の形状)をしている。上部電極UijHは、x軸方向に平行な辺を有するx軸平行部分(上部電極UijHの右下辺近傍部分。y軸せん断応力測定部Uijτyを構成する上部電極UijHの端辺近傍部分)と、y軸方向に平行な辺を有するy軸平行部分(上部電極UijHの左上辺近傍部分。x軸せん断応力測定部Uijτxを構成する上部電極UijHの端辺近傍部分)とを有している。
図5に示されるように、下部電極UijLxは上部電極UijHより小さい長方形(矩形)の形状であって、上部電極UijHのy軸平行部分において下部電極UijLxの一部の面積(好適には半分の面積)が上部電極UijHの一部の面積と上下に(z軸方向に)重なるように設計した。当該半分の面積がx軸方向にせん断応力τxが働いていない場合における上述した重なる領域となる。ここで、上部電極UijHと下部電極UijLxとの間にせん断応力τxが働くと、上述したように当該重なる領域における感圧材料20xのx軸方向のせん断変形により厚さ方向の距離rが変化してrτ(>r)となる(図3(A)(B)参照)。この結果、せん断応力測定部Uijτxにおける上部電極UijHと下部電極UijLxとの間の電気抵抗値が変化するため、せん断応力測定部Uijτxはx軸方向のせん断応力τxを測定することができる。
図5に示されるように、下部電極UijLy(y軸せん断応力測定Uijτy部を構成する下部電極UijL側部分)も下部電極UijLxと同様に、上部電極UijHより小さい長方形(矩形)の形状であって、上部電極UijHのx軸平行部分において下部電極UijLyの一部の面積(好適には半分の面積)が上部電極UijHの一部の面積と上下に(z軸方向に)重なるように設計した。当該半分の面積がy軸方向にせん断応力τyが働いていない場合における上述した重なる領域となる。ここで、上部電極UijHと下部電極UijLyとの間にせん断応力τyが働くと、上述したように当該重なる領域における感圧材料20y(不図示)のy軸方向のせん断変形により厚さ方向の距離rが変化してrτ(>r)となる(図3(A)(B)でx軸をy軸に読替えて参照)。この結果、せん断応力測定部Uijτyにおける上部電極UijHと下部電極UijLyとの間の電気抵抗値が変化するため、せん断応力測定部Uijτyはy軸方向のせん断応力τyを測定することができる。
x軸せん断応力測定部Uijτxにy軸方向のせん断応力τyが働いた場合、x軸せん断応力測定部Uijτxにおける上記重なる領域ではy軸方向に相互に位置ずれは起きても、x軸方向のせん断変形は生じない。つまり、x軸せん断応力測定部Uijτxにおける上部電極UijHと下部電極UijLxとの間の電気抵抗値は変化しない。従って、x軸せん断応力測定部Uijτxはy軸方向のせん断応力τyに干渉されずにx軸方向のせん断応力τxのみを検出することができる。同様に、y軸せん断応力測定部Uijτyにx軸方向のせん断応力τxが働いた場合、y軸せん断応力測定部Uijτyにおける上記重なる領域ではx軸方向に相互に位置ずれは起きても、y軸方向のせん断変形は生じない。つまり、y軸せん断応力測定部Uijτyにおける上部電極UijHと下部電極UijLyとの間の電気抵抗値は変化しない。従って、y軸せん断応力測定部Uijτyはx軸方向のせん断応力τxに干渉されずにy軸方向のせん断応力τyのみを検出することができる。従って、上部電極UijHと下部電極UijL(下部電極UijLxおよびUijLy)との間に任意のxy方向を有するせん断応力τm(不図示)が働くと、上記重なる領域における感圧材料20x、20yには各々せん断応力τmのx軸方向の成分τmx(不図示)、せん断応力τmのy軸方向の成分τmy(不図示)が働くことになる。この結果、せん断応力測定部Uijτxにおける上部電極UijHと下部電極UijLxとの間の電気抵抗値はせん断応力τmxに応じて変化するため、せん断応力測定部Uijτxはx軸方向のせん断応力τmxを測定することができる。同様に、せん断応力測定部Uijτyにおける上部電極UijHと下部電極UijLyとの間の電気抵抗値はせん断応力τmyに応じて変化するため、せん断応力測定部Uijτyはy軸方向のせん断応力τmyを測定することができる。以上より、測定されたせん断応力τmxとτmyとに基づき、せん断応力τmの大きさと作用方向とを判別することができる。
図5に示されるように、接触圧力測定部Uijpの下部電極UijLpは正方形の形状(所定の形状)であり、上部電極UijHの中程においてその全部の面積が上部電極UijHの一部の面積と上下に(z軸方向に)重なるように設計した。当該面積がz軸方向に接触圧力pが働いていない場合における上述した重なる領域となる。
ここで、上部電極UijHと下部電極UijLpとの間に接触圧力pが働くと、上述したように当該重なる領域における感圧材料20pのz軸方向の変形により厚さ方向の距離rが変化してrp(<r)となる(図4(A)(B)参照)。この結果、接触圧力測定部Uijpにおける上部電極UijHと下部電極UijLpとの間の電気抵抗値が変化するため、接触圧力測定部Uijpはz軸方向の接触圧力pを測定することができる。
接触圧力測定部Uijpにx軸方向のせん断応力τx、y軸方向のせん断応力τyが働いた場合、接触圧力測定部Uijpにおける上記重なる領域ではx、y軸方向に相互に位置ずれは起きても、z軸方向の辺系は生じない。つまり、接触圧力測定部Uijpにおける上部電極UijHと下部電極UijLpとの間の電気抵抗値は変化しない。従って、接触圧力測定部Uijpはx軸方向のせん断応力τx、y軸方向のせん断応力τyに干渉されずにz軸方向の接触圧力pのみを検出することができる。以上により、接触圧力pとx軸せん断応力τx、y軸せん断応力τyとの同時測定が可能となる。
以上のように、下部電極UijLは接触圧力p、せん断応力τx、τyの各測定に個別に用いられる下部電極UijLp、UijLx、UijLyから構成されている。これに対し、上部電極UijHは接触圧力pおよびせん断応力τx、τyの測定に共通に用いられる。
上述したように図5に例示される上部電極UijHは正方形で左下隅が欠けた形状をしている。これは下部電極UijLxの長方形の長辺の長さとy軸平行部分の長さとを合わせ、且つ下部電極UijLyの長方形の長辺の長さとx軸平行部分の長さとを合せるため(および後述する各センサユニットUijの下部電極UijLの接続のため)の設計上の一選択であって、本発明におけるセンサユニットUijの上部電極UijHの形状は左下隅が欠けた形状に限定されるものではない。
図6は、図2に示されるセンサユニットUijの拡大斜視図(図6(A))と、それに関連付けた上部電極UijHおよび下部電極UijLの電極パターンとを示す。図6(A)、(B)で図1、2、5と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図6(A)に示される上部電極UijHは、図6(B)の左側に示される電極パターン内の破線円で示されるような位置に形成されており、図5に示される上部電極UijHのように左下隅が欠けた正方形の形状をしている。図6(B)の左側に示されるように、各上部電極UijHは列j方向(x軸方向)に共通に共通の接続線Cjにより接続されている。図6(A)に示される下部電極UijLxは、図6(B)の右側の電極パターン内の矢印で示されるような位置に形成されており、図5に示されるような長方形の形状をしている。図6(B)の右側に示されるように、各下部電極UijLxは行i方向(y軸方向)に共通に接続線Rixにより接続されている。図6(A)には示されていないが、下部電極UijLyは、図6(B)の右側の電極パターン内の矢印で示されるような位置に形成されており、図5に示されるような長方形の形状をしている。図6(B)の右側に示されるように、各下部電極UijLyは行i方向(y軸方向)に共通に接続線Riyにより接続されている。図6(A)に示される下部電極UijLpは、図6(B)の右側の電極パターン内の矢印で示されるような位置に形成されており、図5に示されるような正方形の形状をしている。図6(B)の右側に示されるように、各下部電極UijLpは行i方向(y軸方向)に共通に接続線Ripにより接続されている。
図6(A)、(B)に示される上部電極UijHおよび下部電極UijLの電極材は銅張ポリイミドフィルムを用い、ウェットエッチング処理で上部電極UijH、下部電極UijLをそれぞれ形成した。上述したように、感圧材料20、20x、20y、20pは導電性高分子材料のポリチオフェンを用いており、当該ポリチオフェンをスクリーン印刷法を用いて上部電極UijHおよび下部電極UijLに塗布した後、上部電極UijHおよび下部電極UijLを保護フィルムで貼り合わせた。分布測定センサ10の厚さは300μmに作製した。各センサユニットUij(1点の測定領域)のサイズは全体として5.0×5.0mmであり、その中に接触圧力測定部Uijpの下部電極UijLpが正方形電極として0.7×0.7mm、せん断応力測定部τxの下部電極UijLxとせん断応力測定部τyの下部電極UijLyが各々長方形電極として0.5×1.96mmとした。但し、上記サイズは一例であって、本発明における分布測定センサ10の厚さ、センサユニットUijの全体としてのサイズ、下部電極UijLp、UijLxおよびUijLyのサイズは上記サイズに限定されるものではない。
図7は、図6(B)に示される上部電極UijHおよび下部電極UijLの電極パターン(図7(A))と、当該下部電極UijLの電極パターンの一部(センサユニットUi+1 j+1)の拡大図(図7(B))とを示す。図7(A)、(B)で図1、2、5、6と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図7(A)に示されるように、センサユニット間距離(センサユニットUi+1 jとセンサユニットUi+1 j+1との間に例示する。)は15mmとした。図7(B)に示されるように、1点の測定領域である各センサユニットUijのサイズ(センサユニットUi+1 j+1で例示する。)は上述したように全体として5.0×5.0mmとした。
図8は、図6(B)に示される上部電極UijHおよび下部電極UijLの電極パターン(図8(A))と、当該上部電極UijHと当該下部電極UijLの各電極パターンを上下(z軸方向。紙面に垂直な方向)に重ねた状態(図8(B))とを示す。図8(A)、(B)で図1、2、5、6と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図8(B)に示されるように、各センサユニットUijの上部電極UijHは列j方向(x軸方向)に共通に接続線Cjにより接続されている。各センサユニットUijの各下部電極UijLは行i方向(y軸方向)に共通に接続線Riにより接続されている。より詳しくは、各下部電極UijLxは行i方向(y軸方向)に共通に接続線Rixにより接続され、各下部電極UijLyは行i方向(y軸方向)に共通に接続線Riyにより接続され、各下部電極UijLpは行i方向(y軸方向)に共通に接続線Ripにより接続されている。他のセンサユニットに関しても同様であるため、説明は省略する。
図9は、上述した本発明の分布測定センサ10を用いた分布測定センサシステム40を示す。図9で、図1と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図9で、符号41はリレー(またはリレーボード)部であり、リレー部41は上述したマトリックスMの同じ列j(j=1〜4)に配置された各センサユニットUij(i=1〜4)の各上部電極UijHを当該列j方向に共通に接続した各接続線(列ライン)Cjを、入力した選択信号SELに基づき選択可能に構成されている。リレー部41内には電源電圧E側に接続された各電源側端子(またはリレー接点)L1E〜L4Eと、接地側に接続された各接地側端子L1G〜L4Gが設けられている。図9では、選択信号SELにより接続線C2を選択した状態(接続線C1が接地側端子L1Gに接続され、接続線C3が接地側端子LG3に接続され、接続線C4が接地側端子L4Gに接続されており、接続線C2が電源側端子L2Eに接続されている状態)を例示している。符号42はオペアンプ部(反転増幅回路部)であり、オペアンプ部42は上記マトリックスMの同じ行i(i=1〜4)に配置された各センサユニットUij(j=1〜4)の接触圧力測定部Uijpの下部電極UijLp、x軸せん断応力測定部Uijτxの下部電極UijLx、y軸せん断応力測定部Uijτyの下部電極UijLyを各々当該行i方向に共通に接続した接続線(行ライン)Ri(下部電極UijLpに対してはRip、下部電極UijLxに対してはRix、下部電極UijLyに対してはRiy。図1参照)に、入力側が接続した各行オペアンプ(反転増幅回路)42−Ri(i=1〜4)により構成されている。符号43はA/Dコンバータ(A/D変換部)であり、A/Dコンバータ43はオペアンプ部42を構成する各行オペアンプ部42−Riにスイッチ部43SWの各スイッチ43SW−Ri(i=1〜4)を介して入力側が接続している。オペアンプ部42およびスイッチ部43SWに関する詳細は後述する。符号44はA/Dコンバータ43の出力側とリレー部41の入力側とに接続されたコンピュータ(パーソナルコンピュータ)PCである。図9に示される分布測定センサ10のマトリックスMでは、Uij(行i=1〜4、列j=1〜4)を例示しているが、上述したようにマトリックスMの行数および列数は4×4に限定されるものではない。
次に、図9を参照して本発明の分布測定センサシステム40の動作について説明する。図9に示されるように、まずコンピュータPC44からリレー部41へ接続線Cj(列j)を選択する選択信号SELが出力され、リレー部41で選択信号SELに基づき接続線Cjが選択される(または、リレー接点L1E〜L4Eが選択される)。選択された接続線Cjに接続された各センサユニットUij(i=1〜4)の各上部電極UijHへリレー部41に供給された電源電圧Eが印加される。選択された接続線Cjに接続された各センサユニットUijの接触圧力測定部Uijp、x軸せん断応力測定部Uijτx、y軸せん断応力測定部Uijτyに対して働いた各接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく電気抵抗の変化に応じた電圧が、各接触圧力測定部Uijp、x軸せん断応力測定部Uijτx、y軸せん断応力測定部Uijτyの各下部電極UijLp、UijLx、UijLyから各接続線Rip、Rix、Riyへ出力される。各接続線Ri(Rip、Rix、Riy)に接続されたオペアンプ部42の各行オペアンプ42−Ri部からの各出力電圧がスイッチ部43SWの各スイッチ43SW−Riを介してA/Dコンバータ43へ出力される。A/Dコンバータ43からの出力がコンピュータPC44へ出力されることにより、コンピュータPC44は、選択信号SELにより選択された一列j分の各センサユニットUij(i=1〜4)からの接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく電圧を処理(後述する電圧から各圧力への変換処理および各圧力の表示処理)し、次の接続線Cj+1を選択する選択信号を出力すること(リレー制御)を順次繰返す。
図10は、図9に示される分布測定センサシステム40における分布測定センサ10のマトリックスMの一部の電極パターンを示す。図10で、図1と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図10は、図8(B)に示される上部電極UijHと下部電極UijLの各電極パターンを上下に重ねた状態を示す図を、左へ90°回転させた図に相当する。図10では一部のセンサユニットUij(i=1〜3、j=1〜3)について示している。第1列の各センサユニットU11、U21、U31の上部電極U11H、U21H、U31H(不図示)は第1列方向(x軸方向)に共通に接続線C1により接続されている。他の第2列、第3列のセンサユニットUi2、Ui3(i=1〜3)ついても同様であるため、説明は省略する。センサユニットU11、U12、U13の各下部電極U1jL(j=1〜3)は第1行方向(y軸方向)に共通に接続線R1により接続されている。より詳しくは、各下部電極U1jLx(j=1〜3)は第1行方向に共通に接続線R1xにより接続され、各下部電極U1jLy(j=1〜3)は第1行方向に共通に接続線R1yにより接続され、各下部電極U1jLp(j=1〜3)は第1行方向に共通に接続線R1pにより接続されている。他の第2行、第3行のセンサユニットU2j、U3j(j=1〜3)ついても同様であるため、説明は省略する。
図11は、図9に示されるオペアンプ部42の行オペアンプ部42−Riと、行オペアンプ部42−Riの出力電圧側に接続されるスイッチ部43SWのスイッチ43SW−Riとの拡大図を示す。図11で、図9と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図11に示されるように、行オペアンプ部42−Riは接触圧力測定部Uijpの下部電極UijLpからの接続線Ripに接続されたオペアンプOPipと、x軸せん断応力測定部Uijτxの下部電極UijLxからの接続線Rixに接続されたオペアンプOPixと、y軸せん断応力測定部Uijτyの下部電極UijLyからの接続線Riyに接続されたオペアンプOPiyとから構成されている。図11で、符号R0は接触圧力p、x軸せん断応力τx、y軸せん断応力τyが無負荷時における上部電極UijHと各下部電極UijLp、UijLx、UijLyとの間の電極間抵抗であり、無負荷時には3つの電極間抵抗が等しくなる(=R0。例えば10〜100kΩ)ように設計されており、オペアンプOPip、Opix、OPiyの入力側抵抗となっている。符号Rは帰還抵抗(例えば1〜10kΩ)、Eは上述したセンサユニットUijに印加された電源電圧(例えば5V)であり、オペアンプOPip、Opix、OPiyの入力電圧となっている。符号Vip、Viτx、Viτyは各々オペアンプOPip、OPix、OPiyの出力電圧である。符号43SW−RipはオペアンプOPipの出力側と接続されるスイッチ43SW−Riにおけるスイッチ、43SW−RixはオペアンプOPixの出力側と接続されるスイッチ43SW−Riにおけるスイッチ、43SW−RiyはオペアンプOPiyの出力側と接続されるスイッチ43SW−Riにおけるスイッチである。
ここで、センサユニットUijに接触圧力pが負荷された場合、上部電極UijHと下部電極UijLpとの間の電極間抵抗がΔRp変化し、オペアンプOPipの入力側抵抗R0はR0+ΔRpとなる。出力電圧Vip(以下の式では単に「Vp」と略す。)は以下の式1で表される。
Figure 0006753615
センサユニットUijにせん断応力τxが負荷された場合、上部電極UijHと下部電極UijLxとの間の電極間抵抗がΔRτx変化し、オペアンプOPixの入力側抵抗R0はR0+ΔRp+ΔRτxとなる。出力電圧Viτx(以下の式では単に「Vτx」と略す。)は以下の式2で表される。
Figure 0006753615
センサユニットUijにせん断応力τyが負荷された場合、上部電極UijHと各下部電極UijLyとの間の電極間抵抗がΔRτy変化し、オペアンプOPiyの入力側抵抗R0はR0+ΔRp+ΔRτyとなる。出力電圧Viτy(以下の式では単に「Vτy」と略す。)は以下の式3で表される。
Figure 0006753615
上述した各出力電圧Vip、Viτx、Viτyは、コンピュータPC44からの制御に基づき各スイッチ43SW−Rip、43SW−Rix、43SW−Riyが順次開閉することにより、A/Dコンバータ43側へ出力されていく。詳細は後述する。なお、式2と式3とを纏めて式4のように表す。式4で、ΔRτは電極間抵抗の変化量ΔRτx、ΔRτyを纏めた電極間抵抗の変化量、VτはオペアンプOPix、OPiyの各出力電圧Viτx、Viτyを纏めた上、上記のように添え字iを略した出力電圧である。
Figure 0006753615
図12は、本発明の分布測定センサシステム40におけるコンピュータPC44の機能(プログラム、ソフトウェアの機能)および記録領域(メモリ、ハードディスク等)60を示す機能等ブロック50Fを示す。図12で、符号45はコンピュータPC44の処理結果等を表示するディスプレイ(出力表示部)、46はコンピュータPC44へ指示、データ等を入力するキーボード、マウス等の入力装置である。以下、図12に示される機能等ブロック50Fと図9に示される分布測定センサシステム40とを用いて、コンピュータPC44で動作するプログラムにつき説明する。以下では図1または図9に示されるマトリックスMをm行×n列とする。
図12の機能等ブロック50Fに示される選択信号制御部(選択信号制御手段)51は、マトリックスMの指定された列j(j=1〜n)を選択する選択信号SELをリレー部41へ出力させる。
上述したように、A/Dコンバータ43はオペアンプ部42を構成する各行オペアンプ部42−Riにスイッチ部43SWの各スイッチ43SW−Ri(i=1〜m)を介して入力側が接続している(図11参照)。図12の機能等ブロック50Fに示されるA/Dコンバータ制御部(A/D変換部制御手段)52は、選択信号制御部51により出力された選択信号SELにより選択された列jについて、一列j分の各センサユニットUij(i=1〜m)から得られた接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づくオペアンプ部42の各行オペアンプ部42−Riからの出力電圧Vip、Viτx、Viτyを、A/Dコンバータ43の各スイッチ43SW−Riを順次選択することにより、A/Dコンバータ43へ順次入力させる。具体的には、まず選択された列jの第1行のセンサユニットU1jから得られた接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく行オペアンプ部42−R1からの出力電圧V1p、V1τx、V1τyを、スイッチ43SW−R1を選択することにより、A/Dコンバータ43へ入力させる。次に、列jの第2行のセンサユニットU2jから得られた接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく行オペアンプ部42−R2からの出力電圧V2p、V2τx、V2τyを、スイッチ43SW−R2を選択することにより、A/Dコンバータ43へ入力させる。以上の処理を続けて列jの第m行のセンサユニットUmjから得られた接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく行オペアンプ部42−Rmからの出力電圧Vmp、Vmτx、Vmτyを、スイッチ43SW−Rmを選択することにより、A/Dコンバータ43へ入力させる。以上により、SELにより選択された列jについて、一列j分の各センサユニットUij(i=1〜m)から得られた接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づくオペアンプ部42の各行オペアンプ部42−Riからの出力電圧Vip、Viτx、Viτyを、A/Dコンバータ43の各スイッチ43SW−Riを順次選択することにより、A/Dコンバータ43へ順次入力させる。
図12の機能等ブロック50Fに示される電圧データ記録部(電圧データ記録手段)53は、A/Dコンバータ制御部52によりA/Dコンバータ43へ入力され、A/Dコンバータ43によりA/D変換された各センサユニットUijからの接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく電圧データVpd、Vτxd、Vτydを、各センサユニットUij毎の接触圧力記録エリア(接触圧力記録域)61、x軸せん断応力記録エリア(x軸せん断応力記録域)62、y軸せん断応力記録エリア(y軸せん断応力記録域)63に記録する。具体的には、選択信号SELにより選択された列jについて、一列分の各センサユニットUij(i=1〜m)から順次得られ、各スイッチ43SW−Ri(i=1〜m)を順次選択することによりA/Dコンバータ43へ順次入力され、A/Dコンバータ43によりA/D変換された各センサユニットUij(i=1〜m)からの電圧データVpd、Vτxd、Vτydを、各センサユニットUij(i=1〜m)毎の接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63に記録する。後述する繰返し部56が次の列j+1を選択し、電圧データ記録部53が列j+1とについて上記と同様の処理を行うことにより、センサユニットUij(i=1〜m、j=1〜n)に対応するm×n個の各接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63にA/D変換された各電圧データVpd、Vτxd、Vτyd(各i=1〜m、j=1〜n分)を記録していく。
図12の機能等ブロック50Fに示される換算部(換算手段)54は、センサユニットUijに働く接触圧力p、x軸せん断応力τx、y軸せん断応力τyと、各下部電極UijLp、UijLx、UijLyに接続された各オペアンプOPip、OPix、OPiyからの各出力電圧Vip、Viτx、Viτyとの間の所定の測定原理による関係に基づき、電圧データ記録部53により各センサユニットUij毎に接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63に記録された各電圧データVpd、Vτxd、Vτydを、各センサユニットUijに働く接触圧力p、x軸せん断応力τx、y軸せん断応力τyへ換算する。
以下では、上記所定の測定原理につき説明する。まず、換算部54におけるセンサユニットUijに働く接触圧力pと下部電極UijLpに接続された各オペアンプOPipからの各出力電圧Vipとの間の所定の測定原理(1)について説明する。上述した式1は以下の式5のように表すことができる。
Figure 0006753615
式5に示されるように、接触圧力pによる出力電圧Vpは接触圧力pによる抵抗変化量(ΔRp)のみで表すことができる。従って、上記所定の測定原理(1)とは予め実験により接触圧力pとそれに対する式5左辺(Vp/E)との関係を得ておけば、その後は出力電圧Vpを測定することにより当該関係から接触圧力pを得る(換算する)ことができるという測定原理である。上述したように、接触圧力測定部Uijpにx軸方向のせん断応力τx、y軸方向のせん断応力τyが働いた場合、接触圧力測定部Uijpにおける上記重なる領域ではx、y軸方向に相互に位置ずれは起きても、z軸方向の変形は生じない。従って、出力電圧Vpを測定することにより、x軸方向のせん断応力τx、y軸方向のせん断応力τyに干渉されずにz軸方向の接触圧力pのみを検出することができる。
次に、換算部54におけるセンサユニットUijに働くx軸せん断応力τx、y軸せん断応力τyと、各下部電極UijLx、UijLyに接続された各オペアンプOPix、OPiyからの各出力電圧Viτx、Viτyとの間の所定の測定原理(2)について説明する。説明の便宜上、上述したようにx軸せん断応力τx、y軸せん断応力τyはせん断応力τに纏め、出力電圧Viτx、ViτyはVτに纏め、電極間抵抗の変化量ΔRτx、ΔRτyはΔRτに纏める。式1および式4から以下の式6を得ることができる。
Figure 0006753615
式6に示されるように、接触圧力による出力電圧Vpとせん断応力による出力電圧Vτとはせん断応力による抵抗変化量ΔRτのみで表すことができる。即ち、x軸、y軸せん断応力測定部Uijτx、Uijτyにおける接触圧力pによる抵抗変化分を排除し、せん断応力τ(τx、τy)のみを検出することができる。従って、上記所定の測定原理(2)とは予め実験によりせん断応力τ(τx、τy)とそれに対する式6左辺{(1/Vτ)−(1/Vp)}×Eとの関係を得ておけば、その後は出力電圧VτおよびVpを測定することにより当該関係からせん断応力τを得る(換算する)ことができるという測定原理である。上述したように、せん断応力測定部Uijτxはy軸方向のせん断応力τyに干渉されずにx軸方向のせん断応力τxのみを検出することができる。せん断応力測定部Uijτyはx軸方向のせん断応力τxに干渉されずにy軸方向のせん断応力τyのみを検出することができる。従って、測定されたせん断応力τxとτyとに基づき、せん断応力τの大きさおよび作用方向を判別することができる。なお、帰還抵抗Rを調整することにより、測定する接触圧力p、せん断応力τの感度を調整することができる。
図12の機能等ブロック50Fに示される表示部(表示手段)55は、換算部54により換算された各センサユニットUijに働く接触圧力p、x軸せん断応力τx、y軸せん断応力τyを所定の表示形式でコンピュータPC44のディスプレイ45に表示する。所定の表示形式については後述する。
図12の機能等ブロック50Fに示される繰返し部(繰返し手段)56は、選択信号制御部51により出力された選択信号SELによって選択された列jの次の列j+1を指定して、選択信号制御部51から表示部55までの処理を繰返させる。
以上、本発明の分布測定センサシステム40におけるコンピュータPC44の機能(プログラム、ソフトウェアの機能)について説明した。これとは別に、コンピュータPC44側はリレー部41側へマトリックスMの列j(j=1〜n)選択を開始する開始信号STARTを送り、リレー部41側ではその後の列jの選択の繰返し(C1、C2、C3、C4、C1、C2、・・・)を所定の同期信号に基づきハードウェアで実行するように構成することもできる。PC44側のA/Dコンバータ制御部52および電圧データ記録部53は、当該同期信号に基づき、送られてきた出力電圧をA/D変換し、接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63に電圧データを記録する。所望の時間経過後にコンピュータPC44側はリレー部41側へマトリックスMの列j(j=1〜n)選択を終了する終了信号STOPを送り、リレー部41側は列jの選択を終了するというように実行してもよい。図12の機能等ブロック50Fに示されるコンピュータPC44の機能(プログラム、ソフトウェアの機能)は、上述したように一部をハードウェアで実現することも可能である。
上述したように、本発明の分布測定センサ10は感圧材料20p、20x、20y、20等を挟んだ上部電極UijHおよび下部電極UijLをマトリックスM(複数の縦長(列)と複数の横長(行))状に配置する形状とし、多数のセンサユニットUij(測定点)を接続線CiおよびRiにより連結することによって、多くの測定点を上下電極の交点(マトリックスMの要素)に配置することができた。このマトリックス状の構成により、測定点毎に一つずつスキャンして接触圧力、せん断応力の情報を得るのではなく、マトリックスMの1列jを選択した状態で、上述したように各スイッチ43SW−Riを順次選択することにより順次行i(i=1〜m)を選択してセンサユニットUij(交点)の情報を得ることができる。さらに、繰返し部56(後述)により次の列j+1を選択して列jの際と同様にセンサユニットUij+1の情報を得る行列型のスキャンを実施することができる。この結果、接触圧力、せん断応力の分布を捉えるために多数のセンサユニットUijを集積化しても取り回し配線の領域を格段に減らすことができ、設計がシンプルとなる上、製造コストの増大を抑えることができ、接触圧力/およびせん断応力分布の高分解能化が画期的に進展するという顕著な効果を奏することができる。
図13は、本発明の分布測定センサシステム40におけるコンピュータPC44を動作させる分布測定プログラムの処理の流れをフローチャートで示す。図13に示されるように、まずマトリックスMの行数を変数mに設定し、列数をnに設定し(ステップS10)、列数を表す変数jに1を設定する(ステップS12)。
次に、マトリックスMの指定された列Cjを選択する選択信号SELをリレー部41へ出力させる(選択信号制御ステップ。ステップS14)。続いて、選択信号制御ステップ(ステップS14)で出力された選択信号SELにより選択された列Cjについて、一列分の各センサユニットUij(i=1〜m)からの接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく行オペアンプ部42−Riの各オペアンプOPip、OPix、OPiyからの各出力電圧Vip、Viτx、Viτyを、A/Dコンバータ43の各スイッチ43SW−Riを選択することにより、A/Dコンバータ43へ順次入力させる(A/Dコンバータ(A/D変換部)制御ステップ。ステップS16)。
A/Dコンバータ制御ステップ(ステップS16)でA/Dコンバータ43へ入力され、A/Dコンバータ43によりA/D変換された各センサユニットUijからの接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく電圧データVpd、Vτxd、Vτydを、各センサユニットUij毎の接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63に記録する(電圧データ記録ステップ。ステップS18)。
センサユニットUijに働く接触圧力p、x軸せん断応力τx、y軸せん断応力τyと、各下部電極UijLp、UijLx、UijLyに接続された各オペアンプOPip、OPix、OPiyからの各出力電圧Vip、Viτx、Viτyとの間の所定の測定原理(上記測定原理(1)および(2))による関係に基づき、電圧データ記録ステップ(ステップS18)で各センサユニットUij毎に接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63に記録された各電圧データVpd、Vτxd、Vτydを、各センサユニットUijに働く接触圧力p、x軸せん断応力τx、y軸せん断応力τyへ換算する(換算ステップ。ステップS20)。
換算ステップ(ステップS20)で換算された各センサユニットUijに働く接触圧力p、x軸せん断応力τx、y軸せん断応力τyを所定の表示形式でコンピュータPC44のディスプレイ45に表示する(表示ステップ。ステップS22)。
選択信号制御ステップ(ステップS14)で出力された選択信号SELにより選択された列jの次の列j+1を指定して(jをj+1と増加する。ステップS24)、新たなjがマトリックスMの列数n以下の場合(ステップS26で「はい」の場合)は選択信号制御ステップ(ステップ14)から、nより大きい場合(ステップS26で「いいえ」の場合)はステップ12から、表示ステップ(ステップS22)までの処理を繰返させる(繰返しステップ)。
コンピュータPC44のキーボード等の入力装置46から終了指示等が入力された場合(ステップS30)、分布測定プログラムの処理を終了する。
実験方法.
上述したように、本発明の分布測定センサシステム40によれば、センサユニットUijの接触圧力pとx軸せん断応力τx、y軸せん断応力τyとの同時測定が可能である。ここでは、その同時測定の有効性を検討するために、作製したセンサユニットUijの接触圧力p、x軸せん断応力τxおよびy軸せん断応力τyの較正実験を行った。図14は、較正実験を行うために作製した較正装置70の機能を示すための概要図である。図14に示されるように、X−Yステージ74上には分布測定センサ10が設置されており(分布測定センサシステム40の他の装置等は不図示)、較正装置70は接触圧力p用のアクチュエータ71(1台)と、せん断応力τ用のアクチュエータ72(x軸用)およ73(y軸用)(2台)とにより、X−Yステージ74上の分布測定センサ10に任意の接触圧力pおよびせん断応力τx、τyを作用させる構造となっている。アクチュエータ71、72および73の先端には圧縮型ロードセル76をそれぞれ設置している。
上述した測定原理(1)とは、予め実験により接触圧力pとそれに対する式5の左辺(Vp/E)との関係を得ておけば、その後は出力電圧Vpを測定することにより当該関係から接触圧力pを得る(換算する)ことができるという測定原理である。実験1はこの測定原理(1)を確認するための実験であり、具体的には較正装置70を用いて100kPaまでの接触圧力pをセンサユニットUijに負荷する実験(実験1)を行った。
上述した測定原理(2)とは、予め実験によりせん断応力τ(τx、τy)とそれに対する式6の左辺{(1/Vτ)−(1/Vp)}×Eとの関係を得ておけば、その後は出力電圧VτおよびVpを測定することにより当該関係からせん断応力τを得る(換算する)ことができるという測定原理である。実験2はこの測定原理(2)の確認と共に、センサユニットUijの接触圧力pとx軸せん断応力τx(y軸せん断応力τy)との同時測定が可能であることを確認するための実験である。具体的には較正装置70を用いて50kPaおよび100kPaの接触圧力pを作用させた状態で−40〜40kPaのx軸せん断応力τxをセンサユニットUijに負荷する実験(実験2)を行った。なお、y軸せん断応力τyを作用させた場合の実験は本明細書では省略する。
上述したように、本発明の目的の一つは生体と物体との界面に働く接触圧力およびせん断応力の測定に適用可能な高空間分解能を有する分布測定センサシステム等を提供することにある。そこで、分布測定センサ10を円筒状の容器(例えば瓶)に接着し、人の指で持ち上げた際の接触圧力p、x軸せん断応力τx、y軸せん断応力τyの変化を測定する実験(実験3)を行った。即ち、上述したx軸およびy軸からなる平面は生体と固体との界面とすることが好適である。実験3では生体として人の指、固体として容器を取り上げたが、これは一例であって生体は人の指、固体は容器に限定されるものではない。
実験1の結果と考察.
図15は、実験1の結果である接触圧力pに対する出力電圧変化(Vp/E)を示すグラフである。図15で、横軸は分布測定センサ10のセンサユニットUij(1測定点)に印加した(作用させた)接触圧力p(kPa)であり、縦軸は式5の左辺(Vp/E)、即ち図11に示されるオペアンプOPipからの出力電圧Vp(厳密にはVip)に基づく値である。図15に示されるように、作用させた接触圧力pに対してほぼ線形的な出力電圧変化(Vp/E)が見られることがわかる。従って、出力電圧Vpを測定することにより図15に示されるグラフに基づき、作用した接触圧力pを得ることができる。式5では接触圧力p=0の時、つまり接触圧力pによる抵抗変化量ΔRp=0の時、右辺=−R/R0となり0とはならないが、図15では0になっているように見える。しかし、無負荷時の電極間抵抗R0が帰還抵抗Rに対して十分大きい場合、当該右辺は0となる。
実験2の結果と考察.
図16は、実験2の結果であるせん断応力τxに対する出力電圧変化[{(1/Vτ)−(1/Vp)}×E]を示すグラフである。図16で、横軸は分布測定センサ10のセンサユニットUij(1測定点)に印加した(作用させた)せん断応力τx(kPa)であり、縦軸は式6の左辺[{(1/Vτ)−(1/Vp)}×E]、即ち図11に示されるオペアンプOPipからの出力電圧Vp(厳密にはVip)、オペアンプOPix、OPiyからの出力電圧Vτ(厳密にはVixおよびViyによる電圧)に基づく値である。図16では横軸がせん断応力τxとなっているが、せん断応力τyについても同様の測定結果を得ることができたため、横軸のせん断応力τxはせん断応力τxとτyとを纏めたτを代表させたものである。図16(原図)では、50kPaの接触圧力pを作用させた状態におけるせん断応力τxに対する出力電圧変化を赤丸で示し、100kPaの接触圧力pを作用させた状態におけるせん断応力τxに対する出力電圧変化を青丸で示している。図16(白黒)では赤丸が濃い丸で青丸は薄い丸のように示されている。図16に示されるように、作用させたせん断応力τxに対してほぼ線形的な出力電圧変化[{(1/Vτ)−(1/Vp)}×E]が見られることがわかる。従って、出力電圧Vp、Vτxを測定することにより図16に示されるグラフに基づき、作用したせん断応力τxを得ることができる。さらに、接触圧力pを50kPa、100kPaと変化させてもせん断応力τxと出力電圧変化[{(1/Vτ)−(1/Vp)}×E]との関係(線形)はいずれも変化しなかったことから、複合的な負荷を行っても接触圧力pとせん断応力τxとを独立して測定できることがわかる。つまり、センサユニットUijの接触圧力pとx軸せん断応力τx(およびτy)との同時測定の有効性が証明された。
実験3の結果と考察.
図17は、実験3の結果である分布測定センサ10を円筒状の容器(瓶等)に接着し、人の指で持ち上げた際の接触圧力pおよびせん断応力τ(τx+τy)の分布を示す。図17(A)は円筒状の容器に接着した分布測定センサ10(3行×3列のマトリックスM1)を人の指で持ち上げた際の写真である。分布測定センサシステム40の他の装置等の全体は撮影省略とした。図17(A)に示されるように、分布測定センサ10を人差指と薬指とで掴み(各々マトリックスM1の第1行、第3行)、中指は外している(マトリックスM1の第2行は触れていない)。
図17(B)は図17(A)の状態の際に表示部55がディスプレイ45に表示した画像を示す。以下、表示部55における所定の表示形式について説明する。分布測定センサ10のマトリックスM1における各センサユニットUij(i=1〜3、j=1〜3)は、図17(B)に示されるように対応する要素の位置に四角形として表示されている。図17(B)で、容器に作用する接触圧力pの大きさは四角形の色で表している(色は原図におけるものである。以下同様)。接触圧力pの大きさは図17(B)の右側のバーに示されるように、強い程(High)赤色側の波長の色となり、弱い程(Low)紫色側の波長の色となっている。図17(B)の左側にはマトリックスM1の各行に対応させて掴む指が示されており、マトリックスM1の第1行が人差指、第2行が中指、第3行が薬指であり、マトリックスM1の左側(第1列側)が各指の指先方向となっている。図17(A)の写真に示される掴み方と対応させて図17(B)を見ると、人差指はマトリックスM1の第1行を軽く掴んでいるため容器に作用する接触圧力pの大きさは中程度となり、センサユニットU11、U12、U13に対応する四角形は青色で表示されている。中指はマトリックスM1を掴んでいないため容器に作用する接触圧力pは0となり、センサユニットU21、U22、U23に対応する四角形は紫色で表示されている。これに対して薬指はマトリックスM1の第3行を強く掴んでいるため容器に作用する接触圧力pは大きくなり、センサユニットU31、U32、U33に対応する四角形は明るい青色または赤色で表示されている。
図17(B)で、容器に作用するせん断応力τの方向と大きさとは四角形の中心から外側へ伸びている線の向きと長さとでベクトル状に表している。図17(B)に示されるように、各センサユニットUijに作用するせん断応力τxとτyとを合成したせん断応力はτijと表している。例えば人差指の指先によるせん断応力τ11に対応する線は四角形の中心から外側へ右上45度方向で長めに表示されているため、右上45度方向に作用する強めのせん断応力であることがわかる。中指はマトリックスM1を掴んでいないため容器に作用するせん断応力τ2j(j=1〜3)は0となり、センサユニットU21、U22、U23に対応する四角形から外側へ線は表示されていない。薬指の中程によるせん断応力τ32に対応する線は四角形の中心から外側へ右上45度方向でかなり長めに表示されているため、右上45度方向に作用するかなり強めのせん断応力であることがわかる。他のせん断応力τijについての説明は省略するが、容器を持った時に容器には上向きのせん断応力がかかることが容易にわかるように表示されている。以上より、接触圧力pおよびせん断応力τijの各分布が列ごとの干渉もなく良好に測定されていることがわかる。
図18は、実験3の結果である分布測定センサ10を円筒状の容器(瓶等)に接着し、人の指で持ち上げた際の接触圧力pおよびせん断応力τ(τx+τy)の分布の他の例を示す。図18は図17に示される容器の持ち方を変えた例を示しており、図18(A)、(B)は図17(A)、(B)と対応し、図17(A)、(B)と同じ符号、名称を付した要素は同じ意味を有するため、説明は省略する。図18(A)に示されるように、分布測定センサ10を中指だけで掴み(マトリックスM1の第2行)、人差指と薬指とは外している(マトリックスM1の第1行および第3行は触れていない)。
図18(A)の写真に示される掴み方と対応させて図18(B)を見ると、人差指と薬指とはマトリックスM1を掴んでいないため容器に作用する接触圧力pは0となり、センサユニットU11〜U13とU31〜U33に対応する四角形は紫色で表示されている。中指はマトリックスM1の第2行を強く掴んでいるため容器に作用する接触圧力pは大きくなり、センサユニットU21〜U23に対応する四角形は明るい青色または赤色で表示されている。
図18(B)に示されるように、人差指と薬指とはマトリックスM1を掴んでいないため容器に作用するせん断応力τ1j、τ3j(j=1〜3)は0となり、センサユニットU11〜U13とU31〜U33に対応する四角形から外側へ線は表示されていない。一方、中指はマトリックスM1を掴んでいるため、各センサユニットU21〜U23に対応する四角形の中心から外側へ線が表示されている。図18(B)でも図17(B)と同様に、容器を持った時に容器には上向きのせん断応力がかかることが容易にわかるように表示されている。図17(B)の場合と同様に、接触圧力pおよびせん断応力τijの各分布が列ごとの干渉もなく良好に測定されていることがわかる。以上より、持ち方を変えた際に接触している箇所のみせん断応力τが作用していることがわかる。従って、センサユニットUijは独立してせん断応力τの測定が可能であることが示された。
以上のように、表示部55における所定の表示形式は、マトリックスM1に対応させてセンサユニットUijの表示(例えば四角形)を配置し、センサユニットUij毎に、接触圧力pの大小を所定の色別(例えば強〜弱を赤色側の波長〜紫色側の波長の色)で示し、x軸せん断応力τxおよびy軸せん断応力τyを合成したせん断応力τijをベクトルで示す形式である。
以上より、本発明の実施例1によれば、分布測定センサ10は平面の各軸(x軸、y軸)方向のせん断応力と、当該平面に垂直な軸(z軸)方向の接触圧力とを測定するセンサユニットUijをマトリックスMの各要素に配置した構造を有している。センサユニットUijは上部電極UijHと感圧材料20等を介して上部電極UijHの下側に配置された下部電極UijLとから構成されている。マトリックスMの同じ列jに配置されたx軸方向の各センサユニットUij(i=1〜m)は各上部電極UijH(i=1〜m)が列j方向(x軸方向)に共通に接続線Cjにより接続されている。マトリックスMの同じ行iに配置されたy軸方向の各センサユニットUij(j=1〜n)は各下部電極UijL(j=1〜n)が行i方向(y軸方向)に共通に接続線Riにより接続されている。各センサユニットUij(i=1〜m、j=1〜n。以下添え字は同様)は上部電極UijH(と下部電極UijLとが上下方向(z軸方向)で重なる領域において、上部電極UijHと下部電極UijLとの間に働くx軸方向のせん断応力を測定するx軸せん断応力測定部、上部電極UijHと下部電極UijLとの間に働くy軸方向のせん断応力を測定するy軸せん断応力測定部、および上部電極UijHのz軸方向に働く接触圧力を測定する接触圧力測定部を備えている。上部電極UijHは、せん断応力τx、τyの測定および接触圧力pの測定に共通に用いられる。
x軸せん断応力測定部Uijτxに対してx軸方向にせん断応力τxが働くと、感圧材料20xの部分にx軸方向のせん断変形が生じる。この結果、感圧材料20xの部分では、上部電極UijHと下部電極UijLxとの間の厚さ方向の距離がrτとなって元の距離rより増加するため、x軸せん断応力測定部Uijτxにおける電気抵抗が増加する。従って、せん断応力測定部Uijτxはx軸方向のせん断応力τxを測定することができる。y軸せん断応力測定部Uijτyの場合も同様である。接触圧力測定部Uijpに対してz軸方向に接触圧力pが働くと、感圧材料20pの部分にz軸方向の変形が生じる。この結果、感圧材料20pの部分では、上部電極UijHと下部電極UijLpとの間の厚さ方向の距離がrpとなって元の距離rより減少するため、接触圧力測定部Uijpにおける電気抵抗が減少する。従って、接触圧力Uijpはz軸方向の接触圧力pを測定することができる。接触圧力測定部Uijpにx軸方向のせん断応力τx、y軸方向のせん断応力τyが働いた場合、接触圧力測定部Uijpにおける上記重なる領域ではx、y軸方向に相互に位置ずれは起きても、z軸方向の変形は生じない。つまり、接触圧力測定部Uijpにおける上部電極UijHと下部電極UijLpとの間のz軸方向の電気抵抗値は変化しない。従って、接触圧力測定部Uijpはx軸方向のせん断応力τx、y軸方向のせん断応力τyに干渉されずにz軸方向の接触圧力pのみを検出することができる。以上により、接触圧力pとx軸せん断応力τx、y軸せん断応力τyとの同時測定が可能となる。
本発明の分布測定センサ10を用いた分布測定センサシステム40の構成を纏めると以下の通りである。リレー部41は上述したマトリックスMの同じ列j(j=1〜4)に配置された各センサユニットUij(i=1〜4)の各上部電極UijHを当該列j方向に共通に接続した各接続線(列ライン)Cjを、入力した選択信号SELに基づき選択可能に構成されている。オペアンプ部42は上記マトリックスMの同じ行i(i=1〜4)に配置された各センサユニットUij(j=1〜4)の接触圧力測定部Uijpの下部電極UijLp、x軸せん断応力測定部Uijτxの下部電極UijLx、y軸せん断応力測定部Uijτyの下部電極UijLyを各々当該行i方向に共通に接続した接続線(行ライン)Ri(下部電極UijLpに対してはRip、下部電極UijLxに対してはRix、下部電極UijLyに対してはRiy。)に、入力側が接続した各行オペアンプ42−Ri(i=1〜4)により構成されている。A/Dコンバータ43はオペアンプ部42を構成する各行オペアンプ部42−Riにスイッチ部43SWの各スイッチ43SW−Ri(i=1〜4)を介して入力側が接続している。コンピュータPC44はA/Dコンバータ43の出力側とリレー部41の入力側とに接続されている。
本発明の分布測定センサシステム40の動作を纏めると以下の通りである。まずコンピュータPC44からリレー部41へ接続線Cj(列j)を選択する選択信号SELが出力され、リレー部41で選択信号SELに基づき接続線Cjが選択される。選択された接続線Cjに接続された各センサユニットUij(i=1〜4)の各上部電極UijHへリレー部41に供給された電源電圧Eが印加される。選択された接続線Cjに接続された各センサユニットUijの接触圧力測定部Uijp、x軸せん断応力測定部Uijτx、y軸せん断応力測定部Uijτyに対して働いた各接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく電気抵抗の変化に応じた電圧が、各接触圧力測定部Uijp、x軸せん断応力測定部Uijτx、y軸せん断応力測定部Uijτyの各下部電極UijLp、UijLx、UijLyから各接続線Rip、Rix、Riyへ出力される。各接続線Ri(Rip、Rix、Riy)に接続されたオペアンプ部42の各行オペアンプ42−Riからの各出力電圧がスイッチ部43SWの各スイッチ43SW−Riを介してA/Dコンバータ43へ出力される。A/Dコンバータ43からの出力がコンピュータPC44へ出力されることにより、コンピュータPC44は、選択信号SELにより選択された一列j分の各センサユニットUij(i=1〜4)からの接触圧力p、x軸せん断応力τx、y軸せん断応力τyに基づく電圧を処理(後述する電圧から各圧力への変換処理および各圧力の表示処理)し、次の接続線Cj+1を選択する選択信号を出力すること(リレー制御)を順次繰返す。
換算部54におけるセンサユニットUijに働く接触圧力pと下部電極UijLpに接続された各オペアンプOPipからの各出力電圧Vipとの間の所定の測定原理(1)とは、予め実験により接触圧力pとそれに対する式5左辺(Vp/E)との関係を得ておけば、その後は出力電圧Vpを測定することにより当該関係から接触圧力pを得る(換算する)ことができるという測定原理である。即ち、出力電圧Vpを測定することにより、x軸方向のせん断応力τx、y軸方向のせん断応力τyに干渉されずにz軸方向の接触圧力pのみを検出することができる。換算部54におけるセンサユニットUijに働くx軸せん断応力τx、y軸せん断応力τyと、各下部電極UijLx、UijLyに接続された各オペアンプOPix、OPiyからの各出力電圧Viτx、Viτyとの間の所定の測定原理(2)とは、予め実験によりせん断応力τ(τx、τy)とそれに対する式6左辺{(1/Vτ)−(1/Vp)}×Eとの関係を得ておけば、その後は出力電圧VτおよびVpを測定することにより当該関係からせん断応力τを得る(換算する)ことができるという測定原理である。測定されたせん断応力τxとτyとに基づき、せん断応力τの作用方向を判別することができる。以上のように、本発明の分布測定センサシステム40によれば、センサユニットUijの接触圧力pとx軸せん断応力τx、y軸せん断応力τyとの同時測定が可能である。
表示部55における所定の表示形式は、マトリックスM1に対応させてセンサユニットUijの表示(例えば四角形)を配置し、センサユニットUij毎に、接触圧力pの大小を所定の色別(例えば強〜弱を赤色側の波長〜紫色側の波長の色)で示し、x軸せん断応力τxおよびy軸せん断応力τyを合成したせん断応力τijをベクトルで示す形式である。
上述したように、本発明の分布測定センサ10は多数のセンサユニットUij(測定点)を接続線CiおよびRiにより連結することによって、多くの測定点を上下電極の交点(マトリックスMの要素)に配置することができた。このマトリックス状の構成により、測定点毎に一つずつスキャンして接触圧力、せん断応力の情報を得るのではなく、マトリックスMの1列jを選択した状態で、上述したように各スイッチ43SW−Riを順次選択することにより順次行i(i=1〜m)を選択してセンサユニットUij(交点)の情報を得ることができる。さらに、繰返し部56により次の列j+1を選択して列jの際と同様にセンサユニットUijの情報を得る行列型のスキャンを実施することができる。この結果、本発明の分布測定センサシステム40によれば、生体(指)と物体(容器)との界面に働く接触圧力p、せん断応力τの測定に適用可能な薄くてしなやかな分布測定センサ10という特徴を備えつつ、且つ触覚の分布を捉えるために多数のセンサユニットUijを集積化しても取り回し配線の領域を格段に減らすことができ、設計がシンプルとなる上、製造コストの増大を抑えることができ、生体と物体との界面に適用可能な高分解能を有する分布測定センサシステム等を提供することができる。
図19は、センサユニットUijの他の形状例を平面図で示す。図19で、図5と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図5では上部電極UijHが有するx軸平行部分として上部電極UijHの右下辺部分を挙げ、y軸平行部分として上部電極UijHの左上辺部分とを挙げた。同様に、上部電極UijHが有する他のx軸平行部分として上部電極UijHの上辺部分を挙げ、他のy軸平行部分として上部電極UijHの右辺部分とを挙げることができる。図19のセンサユニットUijが図5のセンサユニットUijと異なる点は、図5のx軸せん断応力測定部Uijτxを上記他のy軸平行部分に設定してx軸せん断応力測定部Uijτx2とし、図5のy軸せん断応力測定部Uijτyを上記他のx軸平行部分に設定してy軸せん断応力測定部Uijτy2とした点にある。図19に示されるように、下部電極UijLx2は上部電極UijHの他のy軸平行部分において下部電極UijLx2の一部の面積(好適には半分の面積)が上部電極UijHの一部の面積と上下に(z軸方向に)重なるように設計した。下部電極UijLy2は上部電極UijHの他のx軸平行部分において下部電極UijLyの一部の面積(好適には半分の面積)が上部電極UijHの一部の面積と上下に(z軸方向に)重なるように設計した。x軸せん断応力測定部Uijτx2にx軸方向のせん断応力τxが働いた場合の測定方法、y軸せん断応力測定部Uijτy2にy軸方向のせん断応力τxが働いた場合の測定方法は、図5のセンサユニットUijの場合と同様であるため説明は省略する。接触圧力測定部Uijpの設定は図5のセンサユニットUijの場合と同様であるため説明は省略する。
以上より、本発明の実施例2によれば、実施例1のセンサユニットUijの他の形状として、x軸せん断応力測定部Uijτx2を上記他のy軸平行部分に設定し、y軸せん断応力測定部Uijτy2を上記他のx軸平行部分に設定することができる。当該設定においても実施例1と同様に、x軸せん断応力測定部Uijτx2はy軸方向のせん断応力τyに干渉されずにx軸方向のせん断応力τxのみを検出することができ、y軸せん断応力測定部Uijτy2はx軸方向のせん断応力τxに干渉されずにy軸方向のせん断応力τyのみを検出することができる。この結果、測定されたせん断応力τxとτyとに基づき、せん断応力τ(=τx+τy)の作用方向を判別することができる。接触圧力測定部Uijpはx軸方向のせん断応力τx、y軸方向のせん断応力τyに干渉されずにz軸方向の接触圧力pのみを検出することができる。以上により、実施例2のセンサユニットUijにおいても接触圧力pとx軸せん断応力τx、y軸せん断応力τyとの同時測定が可能となる。
図20は、センサユニットUijの別の形状例を平面図で示す。図20で、図5および図19と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図20に示されるセンサユニットUijは、図5のセンサユニットUijと図19のセンサユニットUijとを合成した設計となっている。図20に示されるように、x軸方向のせん断応力τxはx軸せん断応力測定部Uijτxとx軸せん断応力測定部Uijτx2とにより測定され、y軸方向のせん断応力τyはy軸せん断応力測定部Uijτyとy軸せん断応力測定部Uijτy2とにより測定される。各測定部における測定方法は実施例1および2と同様であるため説明は省略する。x軸方向のせん断応力τxは2つのx軸せん断応力測定部Uijτxで測定されたせん断応力とUijτx2で測定されたせん断応力との平均をとればよい。あるいは2つの測定値に適宜重みを掛けて取得してもよい。y軸方向のせん断応力τyに関しても同様である。接触圧力測定部Uijpの設定は図5のセンサユニットUijの場合と同様であるため説明は省略する。
以上より、本発明の実施例3によれば、実施例1のセンサユニットUijの形状と実施例2のセンサユニットUijの他の形状とを合成することができる。即ち、x軸せん断応力測定部Uijτx等およびy軸せん断応力測定部Uijτy等の数を増やすことができる。実施例3の形状においても実施例1および2と同様に、せん断応力測定部UijτxおよびUijτx2はy軸方向のせん断応力τyに干渉されずにx軸方向のせん断応力τxのみを検出することができ、せん断応力測定部Uijτy、Uijτy2はx軸方向のせん断応力τxに干渉されずにy軸方向のせん断応力τyのみを検出することができる。この結果、測定された2つのせん断応力τxの平均等と2つのせん断応力τyの平均等とに基づき、合成されたせん断応力τの作用方向を判別することができる。接触圧力測定部Uijpはx軸方向のせん断応力τx、y軸方向のせん断応力τyに干渉されずにz軸方向の接触圧力pのみを検出することができる。以上により、実施例2のセンサユニットUijにおいても接触圧力pとx軸せん断応力τx、y軸せん断応力τyとの同時測定が可能となる。
x軸せん断応力測定部Uijτx等およびy軸せん断応力測定部Uijτy等の数は2個ずつに限定されるものではなく、測定する対象に合せて各々任意個設けてもよい。上部電極UijHの形状は、上述したように左下隅が欠けた形状に限定されるものではない。上部電極UijHの形状の一部にx軸平行部分とy軸平行部分とを設けておき、そこにy軸せん断応力測定部Uijτyとx軸せん断応力測定部Uijτyとを設定すれば、上部電極UijHの全体としての形状は三角形状、円形状等の任意の形状であってもよい。
図21は、上述した各実施例において接続線Ri+1yと上部電極Ui+1j+1Hとが上下に重なる面積の諸影響を説明する。図21は図7(B)の一部を取出した図であり、図7と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図21に示されるように、y軸せん断応力測定部Ui+1j+1τyの下部電極Ui+1j+1Lyを行i+1方向に接続する接続線Ri+1y(リード線Ri+1y)と上部電極Ui+1j+1Hとが上下に重なる面積Sは、せん断応力τx、τyが作用した際における上部電極Ui+1j+1Hと下部電極Ui+1j+1Lxの一部、下部電極Ui+1j+1Lyの一部とが重なる領域の面積の変化(従って、厚さ方向の距離の変化および電気抵抗の変化)に影響を及ぼす可能性が考えられる。この影響は接続線Ri+1yの線幅が十分に細い場合にはほとんど問題にはならない。しかし、必要に応じ当該影響が及ばないように、上記重なる面積S部分では接続線Ri+1y上に絶縁層を塗布している。つまり、面積S部分ではz軸方向に接続線Ri+1y、絶縁層、感圧材料20y、上部電極Ui+1j+1Hという構造にしてある。
図22は、本発明の分布測定プログラムを実行するコンピュータPC44の内部回路100を示すブロック図である。図22に示されるように、CPU101、ROM102、RAM103、画像制御部106、コントローラ107、入力制御部109及び外部I/F部112はバス113に接続されている。図22において、上述した本発明の分布測定プログラムは、ROM102、ディスク等の記録領域60又はDVD若しくはCD−ROM109等の記録媒体(脱着可能な記録媒体を含む)に記録されている。ディスク60には、上述した接触圧力記録エリア61、x軸せん断応力記録エリア62、y軸せん断応力記録エリア63等を記録しておくことができる。分布測定プログラムは、ROM102からバス113を介し、あるいはディスク60又はDVD若しくはCD−ROM109等の記録媒体からコントローラ107を経由してバス113を介しRAM103へロードされる。画像制御部106は、ディスプレイ45により表示される種々の画像(図17(B)、図18(B))等の画像データをVRAM105へ送出する。ディスプレイ45はVRAM105から送出された上記データ等を表示する。VRAM105はディスプレイ45の一画面分のデータ容量に相当する容量を有している画像メモリである。入力装置46はコンピュータPC44に入力等を行うためのマウス、キーボード等の入力装置であり、入力制御部110は入力装置46と接続され入力制御等を行う。外部I/F部112はコンピュータPC44(CPU101)の外部(リレー部41、A/Dコンバータ43等)と接続する際のインタフェース機能を有している。
上述したようにコンピュータPC44(CPU101)が本発明の分布測定プログラムを実行することにより、本発明の目的を達成することができる。分布測定プログラムは上述のようにDVD若しくはCD−ROM109等の記録媒体の形態でコンピュータPC44(CPU101)に供給することができ、分布測定プログラムを記録したDVD若しくはCD−ROM109等の記録媒体も同様に本発明を構成することになる。分布測定プログラムを記録した記録媒体としては上述された記録媒体の他に、例えばメモリ・カード、メモリ・スティック、光ディスク等を用いることができる。
図23(A)、(B)は図3(A)、(B)とほぼ同様のセンサユニットUijのx軸せん断応力測定部Uijτx近傍における垂直方向断面図であり、図3(A)、(B)と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図23(A)に示されるように、x軸せん断応力測定部Uijτxの感圧材料20xが上部電極UijH側と重なっている面積(上述した重なる領域の面積)はOLである。感圧材料20xが下部電極UijLx側と重なっている面積は図示しないが、同様にOLである。ここで、x軸せん断応力測定部Uijτxに対してx軸の正負方向にせん断応力τxが働くと、図23(B)に示されるように上部電極UijH側がx軸の正方向へずれ、下部電極UijLx側がx軸の負方向へずれる。ここまでは実施例1(図3参照)と同様であるが、本実施例6ではこの両電極のずれ(位置関係の変化)の結果、上述した重なる領域の面積はOLからOL’へ減少するため、x軸せん断応力測定部Uijτxにおける電気抵抗値が増加する。つまり、せん断応力測定部Uijτxはx軸の正負方向のせん断応力τxが働いた場合、上述した重なる領域の面積の減少(OLからOL’)による電気抵抗値の変化(増加)に基づき、x軸方向のせん断応力τxを測定することができる。
上述した実施例1では、せん断応力測定部Uijτxはx軸の正負方向のせん断応力τxが働いた場合、図3(B)に示されるように上部電極UijH側がx軸の正方向へずれ、下部電極UijLx側がx軸の負方向へずれる。この両電極のずれ(位置関係の変化)の結果、上記重なる領域における感圧材料20xのx軸方向のせん断変形、即ち上部電極UijHと下部電極UijLxとの間の厚さ方向の距離の変化(rからrτへ増加)に基づき、x軸方向のせん断応力τxを測定することができた。本実施例6では、上記両電極のずれ(位置関係の変化)の結果、上記重なる領域における感圧材料20xのx軸方向のせん断変形が生じなくても、せん断応力測定部Uijτxは上記重なる領域における感圧材料20xのx軸方向の面積の変化(OLからOL’へ減少)による電気抵抗値の変化に基づき、x軸方向のせん断応力τxを測定することができる。以上を纏めると、x軸せん断応力測定部Uijτxは、x軸方向のせん断応力が働いた場合における上記重なる領域における感圧材料20xの電気抵抗値の変化に基づき、x軸方向のせん断応力τxを測定することができる。
y軸せん断応力測定部Uijτyに対してy軸方向にせん断応力τyが働いた場合も同様であり、図23(A)、(B)のx軸をy軸とし、符号xをyと読み替えればよい。つまり、y軸せん断応力測定部Uijτyに対してy軸の正負方向にせん断応力τyが働くと、上部電極UijH側がy軸の正方向へずれ、下部電極UijLy側がy軸の負方向へずれる。ここまでは実施例1(図3参照)と同様であるが、本実施例6ではこの両電極のずれ(位置関係の変化)の結果、重なる領域の面積(y軸せん断応力測定部Uijτyに関しては不図示)はOLからOL’へ減少するため、y軸せん断応力測定部Uijτyにおける電気抵抗値が増加する。つまり、せん断応力測定部Uijτyはy軸の正負方向のせん断応力τyが働いた場合、上述した重なる領域の面積の減少(OLからOL’)による電気抵抗値の変化(増加)に基づき、y軸方向のせん断応力τyを測定することができる。本実施例6では、上記両電極のずれ(位置関係の変化)の結果、上記重なる領域における感圧材料20yのy軸方向のせん断変形が生じなくても、せん断応力測定部Uijτyは上記重なる領域における感圧材料20y(不図示)のy軸方向の面積の変化(OLからOL’へ減少)による電気抵抗値の変化に基づき、y軸方向のせん断応力τyを測定することができる。以上を纏めると、y軸せん断応力測定部Uijτyは、y軸方向のせん断応力が働いた場合における上記重なる領域における感圧材料20yの電気抵抗値の変化に基づき、y軸方向のせん断応力τyを測定することができる。
本発明の活用例として、生体と物体との界面に働く接触圧力およびせん断応力の測定、特に触覚の分布を高空間分解可能に測定することへ適用することができる。
10 分布測定センサ、 20、20x、20p 感圧材料、 40 分布測定センサシステム、 41 リレー部、 42 オペアンプ部、 42−R1、42−R2、42R3、42−R4、42−Ri 行オペアンプ、 43SW スイッチ部、 43SW−R1、43SW−R2、43SW−R3、43SW−R4、43SW−Rip、43SW−Rix、43SW−Riy スイッチ、 43 A/Dコンバータ、 44 コンピュータPC、 45 ディスプレイ、 46 入力装置、 50F 機能等ブロック、 51 選択信号制御部、 52 A/Dコンバータ、 53 電圧データ記録部、 54 換算部、 55 表示部、 56 繰返し部、 60 記録領域、 61 接触圧力記録エリア、 62 x軸せん断応力記録エリア、 63 y軸せん断応力記録エリア、 70 較正装置、 71、72、73 アクチュエータ、 74 X−Yステージ、 76 圧縮型ロードセル、 100 内部回路、 101 CPU、 102 ROM、 103 RAM、 105 VRAM、 106 画像制御部、 107 コントローラ、 109 記録媒体、 110 入力制御部、 112 外部I/F部、 113 バス。

Claims (12)

  1. 平面の各軸(x軸、y軸)方向のせん断応力と該平面に垂直な軸(z軸)方向の接触圧力とを測定するセンサユニットをマトリックス状に配置した構造を有する分布測定センサであって、
    前記センサユニットは、
    せん断応力及び接触圧力の測定に共通に用いられる上部電極と、該上部電極と感圧材料を介して配置された下部電極であってせん断応力、接触圧力の各測定に個別に用いられる電極から構成されるものと、
    前記上部電極と前記下部電極との間に働くx軸方向のせん断応力を測定するx軸せん断応力測定部と、
    前記上部電極と前記下部電極との間に働くy軸方向のせん断応力を測定するy軸せん断応力測定部と、
    前記上部電極のz軸方向に働く接触圧力を測定する接触圧力測定部とを有しており、
    前記マトリックスの同じ列に配置された各センサユニットは各上部電極が該列方向に共通に接続され、前記マトリックスの同じ行に配置された各センサユニットは前記x軸せん断応力測定部、前記y軸せん断応力測定部、前記接触圧力測定部の各下部電極側が各々該行方向に共通に接続されたことを特徴とする分布測定センサ。
  2. 請求項1記載の分布測定センサにおいて、
    前記x軸せん断応力測定部及び前記y軸せん断応力測定部は各々前記上部電極の一部と各測定部の前記下部電極側の一部とが上下に(z軸方向に)重なる領域を有し、
    前記x軸せん断応力測定部は、x軸方向のせん断応力が働いた場合に前記重なる領域における感圧材料のx軸方向のせん断変形による電気抵抗値の変化に基づきx軸方向のせん断応力を測定し、
    前記y軸せん断応力測定部は、y軸方向のせん断応力が働いた場合に前記重なる領域における感圧材料のy軸方向のせん断変形による電気抵抗値の変化に基づきy軸方向のせん断応力を測定し、
    前記接触圧力測定部は、前記上部電極の一部と該接触圧力測定部の前記下部電極側の全部とが上下に(z軸方向に)重なる領域を有し、z軸方向の接触圧力が働いた場合に該重なる領域における感圧材料のz軸方向の変形による電気抵抗値の変化に基づきz軸方向の接触圧力を測定することを特徴とする分布測定センサ。
  3. 請求項2記載の分布測定センサにおいて、
    前記上部電極はx軸方向に平行な辺を有するx軸平行部分とy軸方向に平行な辺を有するy軸平行部分とを有する所定の形状であり、
    前記x軸せん断応力測定部の下部電極側は前記上部電極より小さい矩形であって、該矩形の一部の面積が前記y軸平行部分と上下に(z軸方向に)重なり、
    前記y軸せん断応力測定部の下部電極側は前記上部電極より小さい矩形であって、該矩形の一部の面積が前記x軸平行部分と上下に(z軸方向に)重なり、
    前記接触圧力測定部の下部電極側は前記上部電極より小さい所定の形状であって、該所定の形状の全部の面積が前記上部電極に重なることを特徴とする分布測定センサ。
  4. 請求項1乃至3のいずれかに記載の分布測定センサにおいて、前記上部電極及び前記下部電極は銅張ポリイミドフィルムを用い、前記感圧素材は導電性高分子材料を用いることを特徴とする分布測定センサ。
  5. 請求項1乃至4のいずれかに記載の分布測定センサにおいて、前記平面は生体と固体との界面であることを特徴とする分布測定センサ。
  6. 請求項1乃至5のいずれかに記載の分布測定センサを用いた分布測定センサシステムであって、
    前記マトリックスの同じ列に配置された各センサユニットの各上部電極を該列方向に共通に接続した各列ラインを、入力した選択信号に基づき選択可能に構成されたリレー部と、
    前記マトリックスの同じ行に配置された各センサユニットの接触圧力測定部の下部電極、x軸せん断応力測定部の下部電極、y軸せん断応力測定部の下部電極を各々該行方向に共通に接続した各行ラインに、入力側が接続した各反転増幅回路により構成された反転増幅回路部と、
    前記反転増幅回路部を構成する各反転増幅回路に入力側が接続したA/D変換部と、
    前記A/D変換部の出力側と前記リレー部の入力側とに接続されたコンピュータとを備え、
    前記コンピュータから前記リレー部へ選択信号が出力され、該リレー部で該選択信号に基づき列ラインが選択され、該列ラインに接続された各センサユニットの各上部電極へ該リレー部に供給された電源電圧が印加され、該列ラインに接続された各センサユニットの接触圧力測定部、x軸せん断応力測定部、y軸せん断応力測定部に対して働いた各接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧が、各接触圧力測定部、x軸せん断応力測定部、y軸せん断応力測定部の各下部電極から各行ラインへ出力され、該各行ラインに接続された前記反転増幅回路部の各反転増幅回路からの各出力電圧が前記A/D変換部へ出力され、該A/D変換部からの出力が該コンピュータへ出力されることにより、該コンピュータは、該選択信号により選択された一列分の各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧を処理し、次の列ラインを選択する選択信号を出力することを繰返すことを特徴とする分布測定センサシステム。
  7. 請求項6記載の分布測定センサシステムにおいて、
    前記A/D変換部は、前記反転増幅回路部を構成する反転増幅回路に各々スイッチを介して入力側が接続され、前記コンピュータは、
    前記マトリックスの指定された列を選択する選択信号を前記リレー部へ出力させる選択信号制御手段と、
    前記選択信号制御手段により出力された選択信号により選択された列について、一列分の各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく前記反転増幅回路部の各反転増幅回路からの出力電圧を、前記A/D変換部の各スイッチを選択することにより該A/D変換部へ順次入力させるA/D変換部制御手段と、
    前記A/D変換部制御手段により前記A/D変換部へ入力され該A/D変換部によりA/D変換された各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧データを、各センサユニット毎の接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録する電圧データ記録手段と、
    前記センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力と各下部電極に接続された各反転増幅回路からの各出力電圧との間の所定の測定原理による関係に基づき、前記電圧データ記録手段により各センサユニット毎に接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録された各電圧データを、各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力へ換算する換算手段と、
    前記換算手段により換算された各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力を所定の表示形式で前記コンピュータの出力表示部に表示する表示手段と、
    前記選択信号制御手段により出力された選択信号により選択された列の次の列を指定して、前記選択信号制御手段からの処理を繰返させる繰返し手段とを備えたことを特徴とする分布測定センサシステム。
  8. 請求項7記載の分布測定センサシステムにおいて、前記換算手段における前記センサユニットに働く接触圧力と下部電極に接続された反転増幅回路からの出力電圧との間の所定の測定原理は、
    電源電圧(E)、接触圧力に基づく前記反転増幅回路部の反転増幅回路からの出力電圧(V)、反転増幅回路の帰還抵抗(R)、圧力が無負荷時の上部電極と下部電極との間の抵抗(R)、接触圧力が負荷時の上部電極と下部電極との間の抵抗変化量(ΔR)とすると、以下の式1のように、
    Figure 0006753615
    接触圧力による出力電圧(V)は接触圧力による抵抗変化量(ΔR)のみで表せるという測定原理であることを特徴とする分布測定センサシステム。
  9. 請求項7又は8記載の分布測定センサシステムにおいて、前記換算手段における前記センサユニットに働くx軸せん断応力、y軸せん断応力と下部電極に接続された各反転増幅回路からの各出力電圧との間の所定の測定原理は、
    電源電圧(E)、接触圧力に基づく前記反転増幅回路部の反転増幅回路からの出力電圧(V)、せん断応力に基づく前記反転増幅回路部の反転増幅回路からの出力電圧(Vτ:x軸分Vτxとy軸分Vτyとの総称)、反転増幅回路の帰還抵抗(R)、せん断応力が負荷時の上部電極と下部電極との間の抵抗変化量(ΔRτ:x軸分ΔRτxとy軸分ΔRτyとの総称)とすると、以下の式2のように、
    Figure 0006753615
    接触圧力による出力電圧(V)とせん断応力による出力電圧(Vτ)とはせん断応力による抵抗変化量(ΔRτ)のみで表せるという測定原理であることを特徴とする分布測定センサシステム。
  10. 請求項7乃至9のいずれかに記載の分布測定センサシステムにおいて、前記表示手段における所定の表示形式は、前記マトリックスに対応させて前記センサユニットの表示を配置し、該センサユニット毎に、接触圧力の大小を所定の色別で示し、x軸せん断応力及びy軸せん断応力を合成したせん断応力をベクトルで示すことを特徴とする分布測定センサシステム。
  11. 請求項6乃至10のいずれかに記載の分布測定センサシステムにおける前記コンピュータを動作させる分布測定プログラムであって、該コンピュータに、
    前記マトリックスの指定された列を選択する選択信号を前記リレー部へ出力させる選択信号制御ステップ、
    前記選択信号制御ステップで出力された選択信号により選択された列について、一列分の各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく前記反転増幅回路部の各反転増幅回路からの出力電圧を、前記A/D変換部の各スイッチを選択することにより該A/D変換部へ順次入力させるA/D変換部制御ステップ、
    前記A/D変換部制御ステップで前記A/D変換部へ入力され該A/D変換部によりA/D変換された各センサユニットからの接触圧力、x軸せん断応力、y軸せん断応力に基づく電圧データを、各センサユニット毎の接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録する電圧データ記録ステップ、
    前記センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力と下部電極に接続された各反転増幅回路からの各出力電圧との間の所定の測定原理による関係に基づき、前記電圧データ記録ステップで各センサユニット毎に接触圧力記録域、x軸せん断応力記録域、y軸せん断応力記録域に記録された各電圧データを、各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力へ換算する換算ステップ、
    前記換算ステップで換算された各センサユニットに働く接触圧力、x軸せん断応力、y軸せん断応力を所定の表示形式で前記コンピュータの出力表示部に表示する表示ステップ、
    前記選択信号制御ステップで出力された選択信号により選択された列の次の列を指定して、前記選択信号制御ステップからの処理を繰返させる繰返しステップを実行させるための分布測定プログラム。
  12. 請求項11記載の分布測定プログラムを記録したコンピュータ読取り可能な記録媒体。

JP2018549097A 2016-11-04 2017-11-06 分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体 Active JP6753615B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016216304 2016-11-04
JP2016216304 2016-11-04
PCT/JP2017/039936 WO2018084284A1 (ja) 2016-11-04 2017-11-06 分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体

Publications (2)

Publication Number Publication Date
JPWO2018084284A1 JPWO2018084284A1 (ja) 2019-09-26
JP6753615B2 true JP6753615B2 (ja) 2020-09-09

Family

ID=62076896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018549097A Active JP6753615B2 (ja) 2016-11-04 2017-11-06 分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体

Country Status (3)

Country Link
US (1) US10859449B2 (ja)
JP (1) JP6753615B2 (ja)
WO (1) WO2018084284A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148561A (ja) * 2019-03-12 2020-09-17 凸版印刷株式会社 センサシート
JP7466214B2 (ja) 2019-08-28 2024-04-12 国立大学法人弘前大学 触覚センサ素子、触覚センサ、3軸触覚センサおよび触覚センサ素子の製造方法
JP7331557B2 (ja) * 2019-08-28 2023-08-23 凸版印刷株式会社 触覚センサ
US11796401B2 (en) * 2021-04-07 2023-10-24 Nano And Advanced Materials Institute Limited Textile pressure sensor array and pressure distribution mapping system
CN114323393B (zh) * 2021-12-28 2023-12-01 复旦大学 一种两体接触界面内剪切分布力的计算方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951510A (en) * 1988-07-14 1990-08-28 University Of Hawaii Multidimensional force sensor
US5571973A (en) * 1994-06-06 1996-11-05 Taylot; Geoffrey L. Multi-directional piezoresistive shear and normal force sensors for hospital mattresses and seat cushions
JP3983638B2 (ja) * 2002-09-24 2007-09-26 ニッタ株式会社 センサシート
JP2005030901A (ja) * 2003-07-11 2005-02-03 Alps Electric Co Ltd 容量センサ
US7343813B1 (en) * 2005-02-15 2008-03-18 Harrington Richard H Multicapacitor sensor array
EP2042847B1 (en) * 2006-07-14 2012-08-22 Newcom, Inc. Pressure distribution sensor utilizing electromagnetic coupling
JP5688792B2 (ja) 2010-09-10 2015-03-25 国立大学法人弘前大学 センサ装置および分布測定装置
US9459736B2 (en) * 2010-10-12 2016-10-04 Parade Technologies, Ltd. Flexible capacitive sensor array
JP2012168064A (ja) * 2011-02-15 2012-09-06 Tokai Rubber Ind Ltd 外力計測装置とそれを備えるクッション体
US9250143B2 (en) * 2012-09-19 2016-02-02 College Park Industries, Inc. Multicapacitor force/moment sensor arrays
TWI470197B (zh) * 2012-12-20 2015-01-21 Ind Tech Res Inst 電容式剪力感測器及其製造方法
JP6325289B2 (ja) 2014-03-06 2018-05-16 国立大学法人信州大学 シートセンサシステムおよびシートセンサ
US20170115171A1 (en) 2014-05-15 2017-04-27 Board Of Regents, The University Of Texas System Sensor Assembly, Method and Device for Monitoring Shear Force and Pressure on a Structure
TWI575232B (zh) * 2015-06-12 2017-03-21 財團法人工業技術研究院 感測裝置

Also Published As

Publication number Publication date
WO2018084284A1 (ja) 2018-05-11
US10859449B2 (en) 2020-12-08
JPWO2018084284A1 (ja) 2019-09-26
US20200072686A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6753615B2 (ja) 分布測定センサ、分布測定センサシステム、分布測定プログラムおよび記録媒体
EP2598973B1 (en) Touch screen rendering system and method of operation thereof
US8184106B2 (en) Position detection device
US11346729B2 (en) High resolution pressure sensing
CA2647296C (en) Control circuit for sensor array and related methods
US10540044B2 (en) Capacitive sensing with multi-pattern scan
JP2008134836A (ja) タッチパネル装置
CN105589612B9 (zh) 电子设备及其控制方法
TWI564817B (zh) 組合式感應之指紋辨識裝置及方法
JP6440187B2 (ja) 触覚センサ及び集積化センサ
KR100730786B1 (ko) 접촉감지 신호 처리 기능을 개선한 접촉 감지 장치
US20200073505A1 (en) Sensing component and pulse measuring method
CN109690560B (zh) 具有不同电容式配置的指纹感测
US20180137324A1 (en) Fingerprint sensing using measuring configurations with different principal directions of extensions
EP2879031B1 (en) Touch input device control device, and touch input device control method
CN107291299B (zh) 一种阵列基板、触控显示面板及其显示装置
KR101083596B1 (ko) 다른 크기의 전극을 가지는 터치 스크린 패널
WO2024111279A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
Weerasinghe et al. Development and characterization of a soft tactile sensor array used for parallel grippers
EP3054597B1 (en) An apparatus and methods for sensing
JPH047921B2 (ja)
Flores De Jesus A versatile method of resolution enhancement for tactile sensor array used as synthetic skin: modeling and implementation
De Jesus A Versatile Method of Resolution Enhancement for Tactile Sensor Array Used as Synthetic Skin: Modeling and Implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6753615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250