JP6751498B2 - モータ装置 - Google Patents

モータ装置 Download PDF

Info

Publication number
JP6751498B2
JP6751498B2 JP2016222160A JP2016222160A JP6751498B2 JP 6751498 B2 JP6751498 B2 JP 6751498B2 JP 2016222160 A JP2016222160 A JP 2016222160A JP 2016222160 A JP2016222160 A JP 2016222160A JP 6751498 B2 JP6751498 B2 JP 6751498B2
Authority
JP
Japan
Prior art keywords
motor
reactor
power line
capacitor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016222160A
Other languages
English (en)
Other versions
JP2018082531A (ja
Inventor
聡二郎 横山
聡二郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016222160A priority Critical patent/JP6751498B2/ja
Publication of JP2018082531A publication Critical patent/JP2018082531A/ja
Application granted granted Critical
Publication of JP6751498B2 publication Critical patent/JP6751498B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

本発明は、モータ装置に関し、詳しくは、モータと、インバータと、蓄電装置と、昇圧コンバータと、コンデンサと、を備えるモータ装置に関する。
従来、この種のモータ装置としては、モータと、インバータと、バッテリと、昇圧コンバータと、コンデンサと、を備えるものが提案されている(例えば、特許文献1参照)。インバータは、モータを駆動する。昇圧コンバータは、リアクトルとコンデンサとを備えており、インバータが接続された第1電力ラインとバッテリが接続された第2電力ラインとに接続されている。このモータ装置では、モータの目標動作点が昇圧コンバータで共振が発生する動作点であるときには、第1電力ラインの電圧が第2電力ラインの電圧より高くなるように昇圧コンバータを制御した上で制御精度に優れたPWM制御方式を用いてインバータを制御する。こうした制御により、変調率が比較的少ないPWM制御方を用いても電動機の出力良好に確保しつつ、昇圧コンバータに過大な電圧が作用したり過大な電流が流れることを抑制している。
特開2009−225633号公報
上述のモータ装置では、インバータの製造ばらつきなどにより、制御精度に優れたPWM制御方式を用いてインバータを制御してもモータのパワーに変動が生じる場合がある。こうしたパワー変動の周波数が、昇圧コンバータのリアクトルとコンデンサとを含む回路に共振が生じる共振周波数帯内の周波数になると、回路に共振が生じてしまう。
本発明のモータ装置は、昇圧コンバータのリアクトルとコンデンサとを含む回路に共振が生じることを抑制することを主目的とする。
本発明のモータ装置は、上述の主目的を達成するために以下の手段を採った。
本発明のモータ装置は、
モータと、
前記モータを駆動するインバータと、
蓄電装置と、
リアクトルとコンデンサとを有し、前記インバータが接続された第1電力ラインと前記蓄電装置が接続された第2電力ラインとに接続された昇圧コンバータと、
前記第1電力ラインの正極ラインと負極ラインとの間に接続された第1電力側コンデンサと、
前記第1電力ラインの電圧が目標電圧となるように前記リアクトルの目標電流を設定し、前記リアクトルの電流が前記目標電流となるようにゲインを用いて前記昇圧コンバータを制御する制御装置と、
を備えるモータ装置であって、
前記制御装置は、前記リアクトルの電流の変動周波数が、前記昇圧コンバータのリアクトルとコンデンサとを含む回路の共振周波数帯外の周波数となるように、前記ゲインを切り替える、
ことを要旨とする。
この本発明のモータ装置では、第1電力ラインの電圧が目標電圧となるようにリアクトルの目標電流を設定し、リアクトルの電流が目標電流となるようにゲインを用いて昇圧コンバータを制御する。そして、リアクトルの電流の変動周波数が、昇圧コンバータのリアクトルとコンデンサとを含む回路の共振周波数帯外の周波数となるように、ゲインを切り替える。これにより、リアクトルの電流が共振周波数帯内となることが抑制され、昇圧コンバータのリアクトルとコンデンサとを含む回路に共振が生じることを抑制することができる。
こうした本発明のモータ装置において、前記制御装置は、前記リアクトルの電流が前記目標電流となるように比例項ゲインと積分項ゲインとを用いて前記昇圧コンバータを制御し、更に、前記制御装置は、前記変動周波数が切替閾値より高いときには、前記切替閾値以下であるときより前記比例項ゲインを大きくすると共に前記積分項ゲインを小さくしてもよい。この場合において、前記変動周波数が前記切替閾値を超えているときには、前記比例項ゲインを第1の値に設定すると共に前記積分項ゲインを第2の値に設定し、前記変動周波数が前記切替閾値以下であるときには、前記比例項ゲインを前記第1の値より小さい第3の値に設定すると共に前記積分項ゲインを前記第2の値より大きい第4の値として、前記切替閾値を、前記比例項ゲインを前記第1の値に設定すると共に前記積分項ゲインを前記第2の値としたときの前記共振周波数帯と、前記比例項ゲインを前記第3の値に設定すると共に前記積分項ゲインを前記第4の値としたときの前記共振周波数帯と、の間の値としてもよい。
また、本発明のモータ装置において、前記モータとしての第1モータと、第2モータと、前記インバータとしての第1インバータと、前記第1電力ラインに接続され前記第2モータを駆動する第2インバータと、を備えていてもよい。こうすれば、第1モータのパワー変動と第2モータのパワー変動とが平滑コンデンサで重畳されたときでも、昇圧コンバータのリアクトルとコンデンサとを含む回路に共振が生じることを抑制することができる。
本発明の実施例としてのモータ装置を搭載したハイブリッド自動車20の構成の概略を示す構成図である。 モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。 昇圧コンバータ55の制御の一例を示すブロック線図である。 モータECU40により実行されるゲイン設定ルーチンの一例を示すフローチャートである。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の実施例としてのモータ装置を搭載したハイブリッド自動車20の構成の概略を示す構成図である。図2は、モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図1に示すように、エンジン22と、プラネタリギヤ30と、モータMG1,MG2と、インバータ41,42と、バッテリ50と、昇圧コンバータ55と、システムメインリレー56と、ハイブリッド用電子制御ユニット(以下、「HVECU」という)70と、を備える。
エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されている。このエンジン22は、エンジン用電子制御ユニット(以下、「エンジンECU」という)24によって運転制御されている。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。
エンジンECU24には、エンジン22を運転制御するのに必要な各種センサからの信号、例えば、エンジン22のクランクシャフト26の回転位置を検出するクランクポジションセンサ23からのクランク角θcrなどが入力ポートから入力されている。
エンジンECU24からは、エンジン22を運転制御するための各種制御信号が出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信ポートを介して接続されている。エンジンECU24は、クランクポジションセンサ23からのクランク角θcrに基づいてエンジン22の回転数Neを演算している。
プラネタリギヤ30は、シングルピニオン式の遊星歯車機構として構成されている。プラネタリギヤ30のサンギヤには、モータMG1の回転子が接続されている。プラネタリギヤ30のリングギヤには、駆動輪38a,38bにデファレンシャルギヤ37を介して連結された駆動軸36が接続されている。プラネタリギヤ30のキャリヤには、図示しないダンパを介してエンジン22のクランクシャフト26が接続されている。
モータMG1は、例えば同期発電電動機として構成されており、上述したように、回転子がプラネタリギヤ30のサンギヤに接続されている。モータMG2は、例えば同期発電電動機として構成されており、回転子が駆動軸36に接続されている。インバータ41,42は、モータMG1,MG2と接続されると共に高圧側電力ライン54aに接続されている。モータMG1,MG2は、モータ用電子制御ユニット(以下、「モータECU」という)40によって、インバータ41,42の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。
図1や図2に示すように、インバータ41は、高圧側電力ライン54aに接続されている。このインバータ41は、6つのトランジスタ(スイッチング素子)T11〜T16と、6つのダイオードD11〜D16と、を有する。トランジスタT11〜T16は、それぞれ、高圧側電力ライン54aの正極母線と負極母線とに対してソース側とシンク側になるように、2個ずつペアで配置されている。6つのダイオードD11〜D16は、それぞれ、トランジスタT11〜T16に逆方向に並列接続されている。トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータMG1の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ41に電圧が作用しているときに、モータ用電子制御ユニット(以下、モータECUという)40によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG1が回転駆動される。
インバータ42は、インバータ41と同様に、高圧側電力ライン54aに接続されている。また、インバータ42は、インバータ41と同様に、6つのトランジスタ(スイッチング素子)T21〜T26と、6つのダイオードD21〜D26と、を有する。そして、インバータ42に電圧が作用しているときに、モータECU40によって、対となるトランジスタT21〜T26のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG2が回転駆動される。
昇圧コンバータ55は、高圧側電力ライン54aと、バッテリ50が接続された低圧側電力ライン54bと、に接続されている。この昇圧コンバータ55は、2つのトランジスタ(スイッチング素子)T31,T32と、2つのダイオードD31,D32と、リアクトルLと、を有する。トランジスタT31は、高圧側電力ライン54aの正極母線に接続されている。トランジスタT32は、トランジスタT31と、高圧側電力ライン54aおよび低圧側電力ライン54bの負極母線と、に接続されている。2つのダイオードD31,D32は、それぞれ、トランジスタT31,T32に逆方向に並列接続されている。リアクトルLは、トランジスタT31,T32同士の接続点Cnと、低圧側電力ライン54bの正極母線と、に接続されている。昇圧コンバータ55は、モータECU40によって、トランジスタT31,T32のオン時間の割合が調節されることにより、低圧側電力ライン54bの電力を昇圧して高圧側電力ライン54aに供給したり、高圧側電力ライン54aの電力を降圧して低圧側電力ライン54bに供給したりする。
高圧側電力ライン54aの正極母線と負極母線とには、高圧側コンデンサ57が接続されている。低圧側電力ライン54bの正極母線と負極母線とには、低圧側コンデンサ58が接続されている。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2や昇圧コンバータ55を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。各種センサからの信号としては、モータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2やモータMG1,MG2の各相に流れる電流を検出する電流センサからの相電流などを挙げることができる。また、高圧側コンデンサ57の端子間に取り付けられた電圧センサ57aからの高圧側コンデンサ57(高圧側電力ライン54a)の電圧VHや低圧側コンデンサ58の端子間に取り付けられた電圧センサ58aからの低圧側コンデンサ58(低圧側電力ライン54b)の電圧VL,昇圧コンバータ55の接続点CnとリアクトルLとの間に取り付けられた電流センサ55aからのリアクトルLの電流IL(リアクトルL側から接続点側に流れるときが正の値)なども挙げることができる。
モータECU40からは、モータMG1,MG2や昇圧コンバータ55を駆動制御するための種々の制御信号が出力ポートを介して出力されている。種々の制御信号としては、インバータ41,42のトランジスタT11〜T16,T21〜T26へのスイッチング制御信号や昇圧コンバータ55のトランジスタT31,T32へのスイッチング制御信号などを挙げることができる。
モータECU40は、HVECU70と通信ポートを介して接続されている。このモータECU40は、HVECU70からの制御信号によってモータMG1,MG2や昇圧コンバータ55を駆動制御する。また、モータECU40は、必要に応じてモータMG1,MG2や昇圧コンバータ55の駆動状態に関するデータをHVECU70に出力する。なお、モータECU40は、モータMG1,MG2の回転子の回転位置θm1,θm2に基づいて、モータMG1,MG2の回転数Nm1,Nm2を演算している。さらに、モータECU40は、現在から所定時間前までに電流センサ55aにより検出されたリアクトルLの電流ILの検出値を図示しないRAMに記憶している。
バッテリ50は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低圧側電力ライン54bに接続されている。このバッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52によって管理されている。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な各種センサからの信号が入力ポートを介して入力されている。バッテリECU52に入力される信号としては、例えば、バッテリ50の端子間に設置された電圧センサ51aからの電池電圧Vbやバッテリ50の出力端子に取り付けられた電流センサ51bからの電池電流Ib,バッテリ50に取り付けられた温度センサ51cからの電池温度Tbを挙げることができる。バッテリECU52は、HVECU70と通信ポートを介して接続されている。バッテリECU52は、電流センサからの電池電流Ibの積算値に基づいて蓄電割合SOCを演算している。蓄電割合SOCは、バッテリ50の全容量に対するバッテリ50から放電可能な電力の容量の割合である。
システムメインリレー56は、低圧側電力ライン54bにおける低圧側コンデンサ58よりもバッテリ50側に設けられている。このシステムメインリレー56は、HVECU70によってオンオフ制御されることにより、バッテリ50と昇圧コンバータ55側との接続および接続の解除を行なう。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,データを一時的に記憶するRAM,入出力ポート,通信ポートを備える。
HVECU70には、各種センサからの信号が入力ポートを介して入力されている。HVECU70に入力される信号としては、例えば、イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPを挙げることができる。また、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vも挙げることができる。
HVECU70は、上述したように、エンジンECU24,モータECU40,バッテリECU52と通信ポートを介して接続されている。
こうして構成された第1実施例のハイブリッド自動車20では、ハイブリッド走行モード(HV走行モード),電動走行モード(EV走行モード)などの走行モードで走行する。HV走行モードは、エンジン22の運転とモータMG1,MG2の駆動とを伴って走行する走行モードである。EV走行モードは、エンジン22を運転停止すると共にモータMG2を駆動して走行する走行モードである。
HV走行モードでは、HVECU70は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accと車速センサ88からの車速Vとに基づいて、走行に要求される(駆動軸36に出力すべき)要求トルクTr*を設定する。続いて、要求トルクTr*に駆動軸36の回転数Npを乗じて、走行に要求される走行用パワーPdrv*を計算する。ここで、駆動軸36の回転数Npとしては、モータMG2の回転数Nm2,車速Vに換算係数を乗じて得られる回転数などを用いることができる。そして、走行用パワーPdrv*からバッテリ50の充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じて、車両に要求される要求パワーPe*を計算する。次に、要求パワーPe*がエンジン22から出力されると共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸36に出力されるように、エンジン22の目標回転数Ne*および目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定する。そして、エンジン22の目標回転数Ne*および目標トルクTe*をエンジンECU24に送信すると共に、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。エンジンECU24は、エンジン22の目標回転数Ne*および目標トルクTe*を受信すると、受信した目標回転数Ne*および目標トルクTe*に基づいてエンジン22が運転されるように、エンジン22の吸入空気量制御や燃料噴射制御,点火制御,開閉タイミング制御などを行なう。モータECU40は、モータMG1,MG2のトルク指令Tm1*,Tm2*を受信すると、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにインバータ41,42のスイッチング素子のスイッチング制御を行なう。このHV走行モードでは、要求パワーPe*が停止用閾値Pstop以下に至ったときなどに、エンジン22の停止条件が成立したと判断し、エンジン22の運転を停止して、EV走行モードに移行する。
EV走行モードでは、HVECU70は、まず、HV走行モードと同様に、要求トルクTr*を設定する。続いて、モータMG1のトルク指令Tm1*に値0を設定する。そして、バッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸36に出力されるように、モータMG2のトルク指令Tm2*を設定する。そして、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。モータECU40は、モータMG1,MG2のトルク指令Tm1*,Tm2*を受信すると、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにインバータ41,42のスイッチング素子のスイッチング制御を行なう。このEV走行モードでは、HV走行モードと同様に計算した要求パワーPe*が停止用閾値Pstopよりも大きい始動用閾値Pstart以上に至ったときなどに、エンジン22の始動条件が成立したと判断し、エンジン22を始動して、HV走行モードに移行する。
図3は、昇圧コンバータ55の制御の一例を示すブロック線図である。モータECU40は、モータMG1,MG2のトルク指令Tm1*,Tm2*とモータMG1,MG2の回転数Nm1,Nm2とに基づいてモータMG1,MG2を駆動するのに必要な目標電圧VH*を設定する。そして、高圧側電力ライン54aの電圧VHが目標電圧VH*となるのに必要なリアクトルLの目標電流IL*を設定する。目標電流IL*を設定すると、リアクトルLに流れる電流ILが目標電流IL*となるように次式(1)により昇圧コンバータ55の2つのトランジスタT31,T32の目標デューティ比Dtag*を設定し、設定した目標デューティ比Dtag*とキャリア周波数fcとを用いてトランジスタT31,T32をスイッチング制御する。式(1)は、リアクトルLの電流ILを目標電流ILtagに一致させるためのフィードバック制御における関係式である。式(1)中、右辺第2項の「Gp」は比例項のゲインGpであり、右辺第3項の「Gi」は積分項のゲインGiである。式(2)は、リアクトルLに流れる電流ILを目標電流IL*に変化させる際の変化量(IL*−IL)をデューティ比に換算するための関係式である。式(2)中、「L」はリアクトルLの容量値であり、「Tc」は昇圧コンバータ55をPWM制御する際のキャリア周期である。
Dtag*=前回Dtag*+K・Gp・(IL*-IL)+K・Gi・∫(IL*--IL) ・・・(1)
K=- L/ (Tc・VH*) ・・・(2)
次に、こうして構成され実施例のハイブリッド自動車20の動作、特に、昇圧コンバータ55の制御に用いられる比例項,積分項のゲインGp,Giを設定する際の動作について説明する。図4は、モータECU40により実行されるゲイン設定ルーチンの一例を示すフローチャートである。本ルーチンは、所定時間毎(例えば、数msec毎)に繰り返して実行される。なお、説明を簡単にするため、ハイブリッド自動車20は、EV走行モードで走行していものとする。
本ルーチンが設定されると、モータECU40は、リアクトルLの電流ILを入力する処理を実行する(ステップS100)。電流ILは、電流センサ55aにより検出されたものを入力している。
続いて、リアクトルLの電流ILの変動周波数filを導出する(ステップS110)。変動周波数filの導出は、図示しないRAMに記憶されている電流ILの検出値の時間変化を用いて導出している。
そして、変動周波数filが切替閾値frefより大きいか否かを判定し(ステップS120)、変動周波数filが切替閾値frefより大きいときには、比例項,積分項のゲインGp,Giをそれぞれ値Gp1,Gi1に設定し(ステップS130)、変動周波数filが切替閾値fref以下であるときには、比例項,積分項のゲインGp,Giをそれぞれ値Gp2,Gi2に設定して(ステップS140)、本ルーチンを終了する。ここで、値Gp2は値Gp1より大きい値であり、値Gi2は値Gi1より小さい値である。このように比例項,積分項のゲインGp,Giを設定することにより、変動周波数filが切替閾値frefより大きいときの昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路に共振が生じる共振周波数を含む所定範囲の共振周波数帯faを、変動周波数filが切替閾値fref以下であるときに昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路に共振が生じる共振周波数を含む所定範囲の共振周波数帯fbよりも低い周波数帯とすることができる。そして、切替閾値frefを、共振周波数帯faと共振周波数帯fbとの間の周波数とすることにより、リアクトルLの電流ILの変動周波数filが昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路の共振周波数帯fa,fb内に入ることを抑制することができる。このように、変動周波数filが、昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路の共振周波数帯外の周波数となるように、比例項,積分項のゲインGp,Giを設定することにより、昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路に共振が生じることを抑制することができる。
以上説明した実施例のハイブリッド自動車20によれば、変動周波数filが、昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路の共振周波数帯外の周波数となるように、比例項,積分項のゲインGp,Giを設定することにより、昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路に共振が生じることを抑制することができる。
実施例のハイブリッド自動車20では、値Gp2を値Gp1より大きい値とし、値Gi2を値Gi1より小さい値としているが、変動周波数filが、昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路の共振周波数帯外の周波数となるように、比例項,積分項のゲインGp,Giを設定すればよいから、値Gp2を値Gp1より小さい値としたり、値Gi2を値Gi1より大きい値としてもよい。また、昇圧コンバータ55のフィードバック制御において比例項,積分項のゲインに加えて、微分項のゲインも用いてもよい。この場合には、変動周波数filが、昇圧コンバータ55のリアクトルLとコンデンサCとを含む回路の共振周波数帯外の周波数となるように、比例項,積分項,微分項のゲインを設定すればよい。
実施例のハイブリッド自動車20では、バッテリ50を用いるものとしたが、蓄電可能な蓄電装置であれば如何なるものを用いてもよく、例えば、キャパシタを用いるものとしてもよい。
実施例のハイブリッド自動車20では、エンジンECU24とモータECU40とバッテリECU52とHVECU70とを備えるものとしたが、これらのうちの少なくとも一部を単一の電子制御ユニットとして構成するものとしてもよい。
実施例では、エンジン22と、モータMG1,MG2と、プラネタリギヤ30と、昇圧コンバータ55と、高圧側コンデンサ57と、から構成されるハイブリッド自動車に適用する場合を例示したが、走行用のモータと、モータを駆動するインバータと、バッテリと、リアクトルとコンデンサとを有しインバータが接続された第1電力ラインと蓄電装置が接続された第2電力ラインとに接続された昇圧コンバータと、第1電力ラインの正極ラインと負極ラインとの間に接続され第1電力側コンデンサと、を備える電気自動車に適用してもよい。また、こうした自動車に適用するものに限定するものではなく、モータと、インバータと、バッテリと、リアクトルとコンデンサとを有しインバータが接続された第1電力ラインと蓄電装置が接続された第2電力ラインとに接続された昇圧コンバータと、第1電力ラインの正極ラインと負極ラインとの間に接続された第1電力側コンデンサと、を備えるモータ装置であれば如何なるものに適用してもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータMG2が「モータ」に相当し、インバータ42が「インバータ」に相当し、バッテリ50が「蓄電装置」に相当し、昇圧コンバータ55が「昇圧コンバータ」に相当し、高圧側コンデンサ57が「第1電力側コンデンサ」に相当し、モータECU40が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、モータ装置の製造産業などに利用可能である。
20 ハイブリッド自動車、22 エンジン、23 クランクポジションセンサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、30 プラネタリギヤ、36 駆動軸、37 デファレンシャルギヤ、38a,38b 駆動輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51a 電圧センサ、51b 電流センサ、51c 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54a 高圧側電力ライン、54b 低圧側電力ライン、55 昇圧コンバータ、55a 電流センサ、56 システムメインリレー、57 高圧側コンデンサ、57a 電圧センサ、58 低圧側コンデンサ、58a 電圧センサ、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、Cn 接続点、D11〜D16,D21〜D26,D31,D32 ダイオード、L リアクトル、MG1,MG2 モータ、T11〜T16,T21〜T26,T31,T32 トランジスタ。

Claims (1)

  1. モータと、
    前記モータを駆動するインバータと、
    蓄電装置と、
    リアクトルとコンデンサとを有し、前記インバータが接続された第1電力ラインと前記蓄電装置が接続された第2電力ラインとに接続された昇圧コンバータと、
    前記第1電力ラインの正極ラインと負極ラインとの間に接続された第1電力側コンデンサと、
    前記第1電力ラインの電圧が目標電圧となるように前記リアクトルの目標電流を設定し、前記リアクトルの電流が前記目標電流となるようにゲインを用いて前記昇圧コンバータを制御する制御装置と、
    を備えるモータ装置であって、
    前記制御装置は、前記リアクトルの電流の変動周波数が、前記昇圧コンバータのリアクトルとコンデンサとを含む回路の共振周波数帯外の周波数となるように、前記ゲインを切り替える、
    モータ装置。
JP2016222160A 2016-11-15 2016-11-15 モータ装置 Active JP6751498B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222160A JP6751498B2 (ja) 2016-11-15 2016-11-15 モータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222160A JP6751498B2 (ja) 2016-11-15 2016-11-15 モータ装置

Publications (2)

Publication Number Publication Date
JP2018082531A JP2018082531A (ja) 2018-05-24
JP6751498B2 true JP6751498B2 (ja) 2020-09-09

Family

ID=62198257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222160A Active JP6751498B2 (ja) 2016-11-15 2016-11-15 モータ装置

Country Status (1)

Country Link
JP (1) JP6751498B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807524B2 (ja) * 2011-11-24 2015-11-10 トヨタ自動車株式会社 電圧変換装置の制御装置
JP2016187272A (ja) * 2015-03-27 2016-10-27 株式会社豊田自動織機 車両用電源装置、車両用駆動装置及び車両

Also Published As

Publication number Publication date
JP2018082531A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6392653B2 (ja) ハイブリッド自動車
CN108933518B (zh) 汽车
US9682693B2 (en) Hybrid vehicle
US9932032B2 (en) Hybrid vehicle
JP2021084537A (ja) ハイブリッド車両
JP6575544B2 (ja) ハイブリッド自動車
JP5221444B2 (ja) 昇降圧コンバータの制御装置およびこれを搭載するハイブリッド車並びに昇降圧コンバータの制御方法
JP2018127021A (ja) ハイブリッド自動車
JP6451726B2 (ja) ハイブリッド自動車
US10181808B2 (en) Vehicle
JP2018184133A (ja) ハイブリッド自動車
JP2010213404A (ja) 昇降圧コンバータの制御装置およびこれを搭載するハイブリッド車並びに昇降圧コンバータの制御方法。
JP6740944B2 (ja) ハイブリッド車両の制御装置
JP2011162130A (ja) ハイブリッド車およびその制御方法
JP6751498B2 (ja) モータ装置
JP5780117B2 (ja) 自動車
JP2013212774A (ja) ハイブリッド車両
CN108725426B (zh) 混合动力车辆及其控制方法
JP5852476B2 (ja) ハイブリッド自動車
JP6607217B2 (ja) ハイブリッド自動車
JP6741903B2 (ja) ハイブリッド車両の制御装置
JP2013017299A (ja) 電動機駆動装置
JP2016124496A (ja) ハイブリッド自動車の制御装置
JP2013013201A (ja) 電動車両
JP2012170300A (ja) 電動車両およびその電圧制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6751498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250