JP6750610B2 - 光伝送システム、光受信装置、および光信号情報検出方法 - Google Patents

光伝送システム、光受信装置、および光信号情報検出方法 Download PDF

Info

Publication number
JP6750610B2
JP6750610B2 JP2017507484A JP2017507484A JP6750610B2 JP 6750610 B2 JP6750610 B2 JP 6750610B2 JP 2017507484 A JP2017507484 A JP 2017507484A JP 2017507484 A JP2017507484 A JP 2017507484A JP 6750610 B2 JP6750610 B2 JP 6750610B2
Authority
JP
Japan
Prior art keywords
data signal
optical
paths
training
chromatic dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017507484A
Other languages
English (en)
Other versions
JPWO2016152110A1 (ja
Inventor
学 有川
学 有川
タヤンディエ ドゥ ガボリ エマニュエル ル
タヤンディエ ドゥ ガボリ エマニュエル ル
俊治 伊東
俊治 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2016152110A1 publication Critical patent/JPWO2016152110A1/ja
Application granted granted Critical
Publication of JP6750610B2 publication Critical patent/JP6750610B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光伝送システム、光受信装置、および光信号情報検出方法に関し、特に、複数の経路を用いて光信号を伝送する光伝送システム、光受信装置、および光信号情報検出方法に関する。
通信データトラフィックは、近年増加の一途を辿っている。このような通信データトラフィックを効率的に収容するために、長距離の光伝送に対しても大容量化が求められている。近年、シングルモードファイバの1個のコアに入力できる光強度がファイバ中の非線形効果等によって制限されることから、シングルモードファイバ1本当たりの伝送容量に限界があることが報告されている。そのため、さらなる大容量化のために、空間の自由度を利用して信号を多重する空間多重伝送技術の検討が行われている。
空間多重伝送を実現する伝送路として例えば、1本のファイバのクラッド中に複数のコアを有するマルチコアファイバが提案、開発されている。N個のコアを有するマルチコアファイバを用いた空間多重伝送では、それぞれのコアで異なる光信号を伝送させることによって、通常の1コアのシングルモードファイバと比較してN倍の伝送容量を達成することができる。
また、このような複数の非常に近接した経路を利用して、伝送特性の向上を図る検討も行われている。非特許文献1には、複数の経路で同一の信号、もしくは経路ごとに異なる既知のスクランブリングを施した同一の信号を伝送し、受信した信号の合成を行うことによって、ダイバーシティ効果により信号特性を向上させる方法が記載されている。非特許文献1に記載された方法によれば、1コアのシングルモードファイバを用いた場合と比較して、伝送容量の向上は図れないが、同じ信号をN個のコアを使用して伝送することによって、伝送可能な距離は約N倍となるので長距離伝送が可能となる。
非特許文献1に記載された方法は以下の原理に基づいている。すなわち、N個に分割した同一信号をタイミングと位相を合わせて合成すると、その強度はN倍となるのに対して、N個の無相関な雑音を合成してもその強度はN倍にしかならないため、信号対雑音比の改善効果が得られる、という原理に基づいている。しかし、信号の合成を行う際に、信号間にシンボル時間程度であってもタイミングのずれが生じていると、信号強度の増大が得られず、むしろ劣化要因となる場合がある。したがって、このような複数の経路で伝送し受信した信号を連携させる伝送システムにおいては、信号間の遅延差の推定とその補償が重要となる。
N個のコアを有するマルチコアファイバを用いた長距離空間多重伝送の場合、コア間の伝播遅延差は、各コアの製造上のばらつきや、光増幅器、ファンアウト部品や各送受信機内部の経路長の違いなどによって生じる。ここで、ファンアウトとは、マルチコアファイバに入出力する光信号をシングルモードファイバベースの送受信機器に結合させる機能を有する光部品である。この伝播遅延差は、N本のシングルモードファイバを使用する場合と比べると著しく小さいと考えられるが、シンボル時間よりは大きい。以下の説明では、このような、複数の経路を伝播した信号が、経路長のわずかな相違などによって受信側でタイミングがずれた場合におけるタイミングのずれの量を、複数の信号間の遅延差と呼ぶ。
複数の信号間の遅延差を推定し、補償する方法の一例として、信号をフレーム化し特定のオーバーヘッド信号を設ける方法がある。この方法においては、受信した複数の信号から特定のパターンを検出して比較することによりタイミングのずれを求める。そして、その情報に基づいて複数の信号を整列させることができる。ただし、この方法では、複数の信号それぞれの復号が完了した後にタイミングの整列を行うことになるため、復号処理自体はタイミングのずれの情報を用いることなく行う必要がある。そのため、非特許文献1に記載された複数の信号を復号前に合成して連携させる方法に、この方法を採用することは困難である。また、ある調整値でタイミングの調整を行った信号に対して復号を行う処理を、良好な復号信号が得られるまで調整値を変えながら繰り返す方法もある。しかし、この方法では、最適値に関する情報が全くない場合には多大な繰り返し回数が必要となる。
一方、各信号の復号を行うことなく、複数の波長間の遅延差を推定する方法として、波長分散推定技術がある。波長分散推定技術は、ファイバを伝播する、波長がわずかに異なる複数の光信号間の伝播遅延差を検出することによって波長分散を検出する技術である。このような波長分散推定技術の一例が特許文献1に記載されている。
特許文献1に記載された関連する波長分散量算出方法においては、図12に模式的に示すように、送信する信号に周期的に特定の2個の周波数成分に強度が集中したトレーニング信号を挿入する。ここでは、この特定の2個の周波数成分に強度が集中したトレーニング信号を周波数信号と言う。図12に示した例では、データ信号がRシンボル個続いた後に、Lシンボル分の長さの周波数信号が挿入される。周波数信号は±fの周波数成分のみを有する。
図13に、特許文献1に記載された関連する光信号受信装置が備える波長分散算出部100の構成を示す。波長分散算出部における処理は全てデジタル信号処理によって行われる。受信した信号は2個に分岐され、一方は通過周波数が+fであるバンドパスフィルタ(Band−Pass Filter:BPF)111を通過し、強度算出回路121によりその強度が算出される。他方は通過周波数が−fであるバンドパスフィルタ112を通過し、強度算出回路122によりその強度が算出される。遅延時間算出回路130は、算出された2個の周波数成分の強度について、例えばそのピークとなるタイミングを比較することによって2個の周波数成分の伝播遅延差を算出する。この伝播遅延差は、2個の周波数成分の周波数差と、伝送路で蓄積した波長分散量によって決まる。そこで、波長分散量算出回路140は、算出した伝播遅延差と既知である周波数差とから波長分散量を算出する。
また、関連技術としては、特許文献2、3に記載された技術がある。
特許第5159953号明細書 国際公開第2014/112516号 特開2013−229783号公報
上述した関連する波長分散量算出方法を複数の経路に適用することにより、それらにおける遅延差を求めることとした場合、以下に述べる課題が生じる。
第1の課題は、複数経路間におけるクロストークによる問題である。空間多重伝送においては高い空間利用効率が望まれるが、空間利用効率が高い伝送路では一般に、複数の経路を伝送する信号間のクロストークが避けられない。この伝送路で生じるクロストークにより、遅延差を求めるために複数の経路を伝播するそれぞれの信号に挿入した周波数信号も混合される。そのため、周波数成分の挿入を複数の信号に行った場合、クロストークにより遅延差を推定する精度が大きく低下してしまう。
第2の課題は、伝送路中における波長分散自体が複数の経路間の遅延差の検出に影響を及ぼすという問題である。このため、波長分散の影響の方が経路間の差による影響よりも大きくなる可能性がある。具体的には、通常用いられるシングルモードファイバの波長分散量は17ps/nm/km程度である。したがって、波長1550nmで50GHzの帯域をもつ信号がシングルモードファイバ中を1000km伝送する間に蓄積される波長分散による時間広がりは、約6.8nsと大きな値になる。さらに、複数の経路間で蓄積される波長分散量が異なる場合もあり、この場合、1ps/nm/kmのわずかな波長分散量の相違であっても、上述した条件では約400psの時間広がりの差となる。
経路間の遅延差を、波長分散の高精度な推定と独立に検出できる場合は、波長分散の影響を推定結果によって補正することが可能である。しかしながら、複数の経路間でクロストークが発生する場合には、波長分散による影響と複数の経路間の遅延差による影響が交じり合うので、複数の経路間の遅延差を精確に検出することは困難である。また、波長分散量を高精度に推定することができないと、最適な波長分散補償量を定めることも困難になる。
このように、複数の近接した経路を用いて光信号を伝送する光伝送システムにおいては、クロストークの影響により、複数の経路間の遅延差および波長分散を高精度で検出することが困難である、という問題があった。
本発明の目的は、上述した課題である、複数の近接した経路を用いて光信号を伝送する光伝送システムにおいては、クロストークの影響により、複数の経路間の遅延差および波長分散を高精度で検出することが困難である、という課題を解決する光伝送システム、光受信装置、および光信号情報検出方法を提供することにある。
本発明の光信号情報検出方法は、データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であって、空間多重された複数の経路に対応した複数のデータ信号列を生成し、複数のデータ信号列は、少なくとも隣接する経路を伝播するデータ信号列にそれぞれ含まれるトレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有し、一のデータ信号列に含まれる複数のトレーニング信号が、挿入される位置により、周波数の差が異なる複数の周波数成分を有し、光信号によって複数の経路を伝播した後のトレーニング信号に含まれる複数の周波数成分から、複数の経路間の伝播遅延差、および複数の経路における波長分散量をそれぞれ算出する。
本発明の光伝送システムは、空間多重された複数の経路を含む空間多重伝送路と、複数の経路に光信号をそれぞれ送出する光送信装置と、複数の経路をそれぞれ伝播した光信号を受信する光受信装置、とを有し、光送信装置は、データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であって、複数の経路に対応した複数のデータ信号列を生成するデータ信号列生成手段と、複数のデータ信号列によって光搬送波をそれぞれ変調することによって複数の光信号を生成する光変調手段、とを備え、複数のデータ信号列は、少なくとも隣接する経路を伝播するデータ信号列にそれぞれ含まれるトレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有し、一のデータ信号列に含まれる複数のトレーニング信号が、挿入される位置により、周波数の差が異なる複数の周波数成分を有し、光受信装置は、複数の経路をそれぞれ伝播した複数の光信号を受け付けて検波し、複数のデータ信号列を出力する光検波手段と、光検波手段が出力するデータ信号列を構成するトレーニング信号に含まれる複数の周波数成分から、複数の経路間の伝播遅延差、および複数の経路における波長分散量をそれぞれ算出する光信号情報検出手段、とを備える。
本発明の光受信装置は、空間多重された複数の経路をそれぞれ伝播した複数の光信号を受け付けて検波し、複数のデータ信号列を出力する光検波手段と、複数の経路間の伝播遅延差、および複数の経路における波長分散量をそれぞれ算出する光信号情報検出手段、とを有し、データ信号列は、データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であり、複数の経路に対応した複数のデータ信号列は、少なくとも隣接する経路を伝播するデータ信号列にそれぞれ含まれるトレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有し、一のデータ信号列に含まれる複数のトレーニング信号が、挿入される位置により、周波数の差が異なる複数の周波数成分を有し、光信号情報検出手段は、光検波手段が出力するデータ信号列を構成するトレーニング信号に含まれる複数の周波数成分から、伝播遅延差、および波長分散量を算出する。
本発明の光伝送システム、光受信装置、および光信号情報検出方法によれば、複数の近接した経路を用いて光信号を伝送する光伝送システムにおいて、クロストークが発生する場合であっても、複数の経路間の遅延差および波長分散を高精度で検出することができる。
本発明の第1の実施形態に係る光伝送システムの構成を示すブロック図である。 本発明の第1の実施形態に係る光伝送システムが備えるマルチコアファイバ伝送路の断面図である。 本発明の第1の実施形態に係る光伝送システムが備える光送信装置の構成を示すブロック図である。 本発明の第1の実施形態に係る光伝送システムが備える光送信装置によって挿入されるトレーニング信号を説明するための図である。 本発明の第1の実施形態に係る光受信装置の構成を示すブロック図である。 本発明の第1の実施形態に係る光受信装置が備える遅延差検出部の構成を示すブロック図である。 本発明の第1の実施形態に係る光受信装置が備える波長分散推定部の構成を示すブロック図である。 本発明の第1の実施形態に係る光受信装置が備える遅延差検出部の動作をシミュレーションした結果を示す図である。 本発明の第2の実施形態に係る光受信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る光受信装置が備える波長分散・遅延差検出部の構成を示すブロック図である。 本発明の第3の実施形態に係る光伝送システムが備えるマルチコアファイバ伝送路の断面図である。 本発明の第3の実施形態に係る光伝送システムが備える光送信装置によって挿入されるトレーニング信号を説明するための図である。 関連する波長分散量算出方法で用いられる送信信号フレームフォーマットを示す図である。 関連する光信号受信装置が備える波長分散算出部の構成を示すブロック図である。
以下に、図面を参照しながら、本発明の実施形態について説明する。なお、図面中の矢印の向きは、一例を示すものであり、ブロック間の信号の向きを限定するものではない。
〔第1の実施形態〕
図1Aは、本発明の第1の実施形態に係る光伝送システム1000の構成を示すブロック図である。光伝送システム1000は、光送信装置1100、光受信装置1200、および空間多重された複数の経路を含む空間多重伝送路としてのマルチコアファイバ伝送路1300を有する。光送信装置1100はマルチコアファイバ伝送路1300の複数の経路に光信号をそれぞれ送出し、光受信装置1200は複数の経路をそれぞれ伝播した光信号を受信する。
図1Bに本実施形態のマルチコアファイバ伝送路1300の断面図を示す。本実施形態では、図1Bに示すような、第1のコア1301と第2のコア1302の2個のコアを有するマルチコアファイバ伝送路を用いた場合を例として説明する。また、波長分割多重(Wavelength Division Multiplexing:WDM)を行わない場合を例として説明する。また、図1Aでは、ファンアウト部1401、1402を備えた構成を示した。
光送信装置1100は、第1のコア1301および第2のコア1302に送出する2個の光信号を生成する。光送信装置には、一般的なシングルモードファイバをベースとした光学部品が使用されている。
光送信装置1100が生成した2個の光信号は、ファンアウト部1401によってマルチコアファイバ伝送路1300に結合される。ファンアウト部1401、1402は、複数本のシングルモードファイバを1本のマルチコアファイバに結合する、または、その逆の過程を実現するデバイスであり、具体的には細径ファイババンドルなどによって構成される。マルチコアファイバ伝送路1300は、2コアのマルチコアファイバと、その伝送損失を補償する光増幅器などによって構成される。マルチコアファイバ伝送路1300を伝播した光信号は、ファンアウト部1402によって2本のシングルモードファイバに結合され、各光信号は光受信装置1200に入力し受信される。
図2に、本実施形態による光送信装置1100の構成を示す。
光送信装置1100は、データ信号入力部1110、符号化部1120、第1のトレーニング信号挿入部1131、第2のトレーニング信号挿入部1132、光変調器1141、1142、および光源1150を備える。データ信号入力部1110、符号化部1120、第1のトレーニング信号挿入部1131、および第2のトレーニング信号挿入部1132がデータ信号列生成手段を構成する。データ信号列生成手段は、データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であって、複数の経路(コア)に対応した複数のデータ信号列を生成する。また、光変調器1141、1142と光源1150が光変調手段を構成し、複数のデータ信号列によって光搬送波をそれぞれ変調することによって複数の光信号を生成する。
送信するデータ信号は符号化部1120によって符号化され、それぞれのコアに送出する光信号を生成するための2個のデータ信号となる。本実施形態では、非特許文献1に記載された2個のデータ信号が全く同一であり、複数の経路によるダイバーシティ効果が得られる場合を例として説明する。
第1のコア1301に送出する光信号を生成するためのデータ信号には、第1のトレーニング信号挿入部1131によって第1のトレーニング信号が挿入される。また、第2のコア1302に送出する光信号を生成するためのデータ信号には、第2のトレーニング信号挿入部1132によって第2のトレーニング信号が挿入される。このようにトレーニング信号がそれぞれ挿入された複数のデータ信号列は、少なくとも隣接する経路(コア)を伝播するデータ信号列にそれぞれ含まれるトレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有する。また、一のデータ信号列に含まれる複数のトレーニング信号は、挿入される位置により、周波数の差が異なる複数の周波数成分を有している。
このようなデータ信号列によって2個の光変調器1141、1142がそれぞれ駆動され、第1のコア1301および第2のコア1302にそれぞれ送出する2個の光信号、すなわち第1のコア光送信信号S11と第2のコア光送信信号S12が生成される。2個の光変調器1141、1142には、光源1150としての一個のレーザー光源からの出力を2個に分岐したレーザー光がそれぞれ入力される。
本実施形態の光送信装置1100によって挿入される上述したトレーニング信号について、図3を用いてさらに詳細に説明する。
第1のコア1301および第2のコア1302に送出するそれぞれの光送信信号S11、S12に、RシンボルおきにLシンボル続くトレーニング信号が同じタイミングで挿入されている。すなわち、トレーニング信号はR+Lシンボルごとに周期的に始まる。第1のコア1301に送出する光送信信号S11には、周波数±fを有する周波数信号と周波数±fを有する周波数信号が交互に挿入される。すなわち、光送信信号の光搬送波の周波数をfとしたとき、周波数f±f、f±fを有する周波数信号が交互に挿入される。このような特定の周波数成分を有する周波数信号は、デジタル−アナログ変換器(Digital−to−Analog Converter:DAC)を用いて生成することができる。または、上述した特許文献1に記載されているように、〔+1,−1〕や〔+1,+1,−1,−1〕のような特定のシンボルの繰り返しによって生成することができる。
第2のコア1302に送出する光送信信号S12にも同様に、周波数±fを有する周波数信号と周波数±fを有する周波数信号が交互に挿入される。しかし、この場合は、第1のコアに送出する光送信信号S11に周波数±fの周波数信号が挿入されるタイミングで、周波数±fの周波数信号が挿入される。また逆に、第1のコアに送出する光送信信号S11に周波数±fの周波数信号が挿入されるタイミングで、周波数±fの周波数信号が挿入される。ここで、光送信信号のシンボルレートをfとしたとき、f=f/2、f=f/4とした。
これにより、異なる経路に送出する光信号間に挿入されるトレーニング信号が、各タイミングにおいて識別可能な異なる周波数成分を有する構成とすることができる。同時に、各光信号に周期的に挿入されるトレーニング信号には一定周期ごとに最大の周波数差となる組を有する周波数成分を持つトレーニング信号(周波数±fの周波数信号)が出現する構成とすることができる。この場合、周波数±fの周波数信号は、トレーニング信号が挿入される周期の2倍である2(R+L)シンボルごとに現れる。
N個のコアを有するマルチコアファイバ伝送路を用いる場合も同様に、例えば周波数±f,±f,・・・,±f(f=f/(n+1))であるN種類の周波数信号を、第1のコアでは周波数fから始めて±f,±f,・・・,±fの順に繰り返し挿入する。そして、k番目のコアでは、周波数fから始めて±f,±fk+1,・・・,±fk+Nの順に繰り返し挿入する。なお、下付きの添え字はNを法とした整数である。これにより、各タイミングにおいて識別可能な異なる周波数成分を有し、各光信号に周期的に挿入されるトレーニング信号には一定周期ごとに最大の周波数差となる組を有する周波数成分を持つトレーニング信号が出現する構成とすることができる。また、挿入されるトレーニング信号のパターンは、タイミングは異なるが全てのコアに送出する光信号において同じである。
図4に、本実施形態による光伝送システム1000が備える光受信装置1200の構成を示す。
光受信装置1200は、局所光源1210、光フロントエンド部1221、1222、およびアナログ−デジタル変換器(Analog−to−Digital Converter:ADC)1231、1232を備える。これらが光検波手段を構成し、複数の経路をそれぞれ伝播した複数の光信号である第1のコア光受信信号S21および第2のコア光受信信号S22を受け付けて検波し、複数のデータ信号列を出力する。
光受信装置1200はさらに、遅延差検出部1240、波長分散推定部1250、波形歪補償部1261、1262、タイミング調整部1271、1272、および復号部1280を備える。ここで、遅延差検出部1240(伝播遅延差算出手段)および波長分散推定部1250(波長分散量算出手段)が光信号情報検出手段を構成する。光信号情報検出手段は、光検波手段が出力するデータ信号列を構成するトレーニング信号に含まれる複数の周波数成分から、複数の経路間の伝播遅延差、および複数の経路における波長分散量をそれぞれ算出する。
ここで、伝播遅延差算出手段は、光検波手段が出力する複数のデータ信号列における、同一タイミングにおけるトレーニング信号に含まれる異なる周波数成分の検出時間から複数の経路間の伝播遅延差を算出する構成とすることができる。また、波長分散量算出手段は、光検波手段が出力するデータ信号列に含まれる複数の周波数成分の周波数の差が最大であるトレーニング信号を用いて、複数の周波数成分の検出時間の差から遅延時間を求める。そして、これにより複数の経路における波長分散量をそれぞれ算出する構成とすることができる。
次に、光受信装置1200の動作について、さらに詳細に説明する。
第1のコアおよび第2のコアから受信した光受信信号S21、S22は、それぞれ光フロントエンド部1221、1222に入力しコヒーレント検波される。光フロントエンド部1221、1222にはそれぞれ、局所光源1210の出力を2つに分岐したレーザー光が局所発振光として入力される。光フロントエンド部1221、1222は、偏波多重型90度光ハイブリッド、バランス型光検出器、およびトランスインピーダンスアンプなどによって構成される。偏波多重型90度光ハイブリッドを使用した光フロントエンド部は、X偏波、Y偏波のそれぞれの同相(I)成分および直交(Q)成分の合計4種の信号を出力するが、図4では簡便のため一本の線で表わしている。
光フロントエンド部1221、1222の各出力は、アナログ−デジタル変換器(ADC)1231、1232によってサンプリングされ、デジタル信号処理による波形歪み補償とコア間の遅延差を補償するためのタイミング調整が行われ、その後に復号される。波形歪補償部1261、1262は、波長分散補償や偏波モード分散補償、および偏波分離を行う。図4では、各コアからの受信信号に対して、それぞれ独立に波形歪み補償処理を行う構成を示した。しかし、これに限らず、複数経路間のクロストークが問題となる場合には、MIMO(Multiple−Input Multiple−Output)処理のように、複数の受信信号に一括して波形歪み補償処理を行うことが可能である。この場合、タイミング調整機能の全てまたは一部をMIMO処理内で行うことができる。
復号部1280は、複数の受信信号を用いてデータの判別を行う。このとき、上述した非特許文献1に記載されているように、タイミングを合わせた2個の受信信号を、位相を含めて足し合わせた後に判別する構成とすることができる。
遅延差検出部1240は伝播遅延差算出手段として、複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第1の平均検出時間を算出する。同様に、複数のデータ信号列のうちの第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第2の平均検出時間を算出する。そして、第1の平均検出時間と第2の平均検出時間との差分を求めることにより伝播遅延差を算出する。
図5に、遅延差検出部1240の構成を示す。遅延差検出部1240は、バンドパスフィルタ(BPF)1241、強度算出部1242、ピーク検出部1243、平均化処理部1244、およびコア間遅延時間算出部1245を備える。
アナログ−デジタル変換器(ADC)1231、1232の出力である第1のコア受信信号S31および第2のコア受信信号S32はそれぞれ2分岐される。2分岐されたうちの一方は、中心周波数が+fであるバンドパスフィルタ1241を透過した後に、強度算出部1242によってその強度が算出される。ピーク検出部1243は、強度算出部1242によって算出された強度がピークとなるタイミングを検出する。分岐されたもう一方の受信信号は、中心周波数が−fであるバンドパスフィルタ1241を透過した後に、同様にして、強度算出部1242によって強度が算出され、ピーク検出部1243によってピークとなるタイミングが検出される。
この一連の処理は、周波数領域で行うこともできる。その場合には、まず、サンプル時間tからt+Lまでの信号を高速フーリエ変換(Fast Fourier Transform:FFT)することにより周波数領域に変換する。ここで、Tはシンボル時間、LはFFTの1フレームに含まれるシンボル数である。そして、周波数+fの成分の強度を取り出す処理を、サンプル時間tを変化させながら行うことにより、ピークとなるタイミングを検出することができる。
平均化処理部1244は、検出された2個のピークのタイミング値に対して平均化処理を行う。波長分散による周波数成分の遅延量は周波数差にほぼ比例し、周波数0を中心として反対称的である。したがって、平均化処理が行われた後のタイミング値は、周波数信号が有する周波数成分に関わらず、周波数0の成分に対する第1のコアにおける伝播遅延を表わす。同様に、アナログ−デジタル変換器(ADC)1232の出力である第2のコア受信信号S32から、周波数0の成分に対する第2のコアにおける伝播遅延を表わす量が算出される。
ここで、第2のコアを伝播した受信信号S32に対しては、中心周波数が+fまたは−fであるバンドパスフィルタが使用される。そのため、同じタイミングで第1のコアに挿入された周波数±fの周波数信号が伝播中のクロストークによって混入しても、第2のコアにおける伝播遅延を表わす量の算出には影響しない。このことは、第1のコアにおける伝播遅延の算出時にも同様に成り立つ。ここで算出された伝播遅延量は、伝播遅延の絶対量を表わすものではないが、このようにして算出された第1のコアにおける伝播遅延量と第2のコアにおける伝播遅延量の差分を求めることによって、相対的な伝播遅延差を得ることができる。
上述したように、複数の経路間の伝播遅延差を、クロストーク耐力を有しつつ波長分散の影響を受けることなく得ることができる。このとき検出可能な伝播遅延差は、トレーニング信号が挿入される周期によって決まる。クロストークによる周波数成分の混入を考慮すると、検出可能な伝播遅延差は約±Rシンボル分程度である。
図6に、本実施形態による光受信装置1200が備える波長分散推定部1250の構成を示す。波長分散推定部1250は、バンドパスフィルタ(BPF)1251、強度算出部1252、ピーク検出部1253、遅延時間算出部1254、および波長分散算出部1255を備える。
波長分散推定部1250における波長分散推定処理は、それぞれのコアで受信した受信信号に対して独立に行われる。波長分散推定部1250には、アナログ−デジタル変換器(ADC)1231、1232の出力である第1のコア受信信号S31および第2のコア受信信号S32がそれぞれ分岐して入力される。そして、波長分散推定部1250の出力は波形歪補償部1261、1262に送られ、それぞれのコアで受信した受信信号S31、S32における波長分散の補償量が決定される。
2分岐された受信信号の一方は、中心周波数が+fであるバンドパスフィルタ1251を通過し、他方は中心周波数が−fであるバンドパスフィルタを通った後に、強度算出部1252によってその強度が算出される。ピーク検出部1253は、強度算出部1252によって算出された強度がピークとなるタイミングをそれぞれ検出する。遅延時間算出部1254は、ピーク検出部1253で検出されたそれぞれのタイミングの差から、2種の周波数成分間における遅延時間を算出する。波長分散算出部1255は、遅延時間から求まる波長分散量を所望の形式に変換して波形歪補償部1261、1262に出力する。波長分散推定部1250では、第1のコア受信信号S31および第2のコア受信信号S32のいずれに対しても、最大の周波数差となる周波数±fを有する周波数信号をトレーニング信号として用いる。
このように、各コアを伝播した各受信信号の全てに対して、最大の周波数差となる周波数成分のペア(組)を有し、一定周期ごとに挿入されたトレーニング信号を使用することができる。そのため、従来と同様に高精度な波長分散補償が可能である。以上より、複数の経路を伝播した複数の受信信号間の遅延差を、それぞれの信号の復号を行う前に、複数経路間のクロストークおよび各経路における波長分散による大きな影響を受けることなく検出することが可能となる。
図7に、本実施形態による遅延差検出部1240が検出する伝播遅延差の数値計算によるシミュレーション結果を示す。ここでは、2個のコアを有するマルチコアファイバを用いて伝送する構成とした。横軸は模擬したコア間の伝播遅延差であり、縦軸は推定された伝播遅延差を示す。伝送中に蓄積されるコア間のクロストークが存在し無い場合と、総量が−10dBのクロストークが存在する場合についてシミュレーションを行った。
シミュレーションの条件は以下の通りである。2個のコアを有するマルチコアファイバの、それぞれのコアに送出する光信号の変調方式は偏波多重QPSK方式とし、シンボルレートfは32GHzとした。第1のコアには、214シンボルおきに256シンボル分のトレーニング信号を挿入した。両偏波について、同じトレーニング信号を使用した。
第1のコアに挿入したトレーニング信号は、128シンボル分の周波数±f/2の周波数信号と、その両端にガードインターバルとして64シンボル分の周波数±f/8の周波数信号をそれぞれ設けた構成とした。上述した特許文献1に記載されているように、このような構成とすることにより、周波数成分の強度がピークとなるタイミングの検出精度を高めることができる。
第2のコアに挿入するトレーニング信号は、128シンボル分の周波数±f/4の周波数信号と、その両端にガードインターバルとして64シンボル分の周波数±f/8の周波数信号をそれぞれ設けた構成とした。マルチコアファイバ伝送路の特性は、それぞれのコアで独立な波長分散蓄積および偏波状態変化と、コア間のクロストークを一単位として、これを100回縦列につなげて模擬した。それぞれのコアにおける波長分散蓄積の総量は17000ps/nmとした。
図7に示した結果から、コア間クロストークが無い場合と、−10dBのクロストークが存在する場合のいずれにおいても、模擬したコア間の伝播遅延差とほぼ同じ値が推定の結果得られていることがわかる。このシミュレーションでは、ガードインターバルとして周波数の異なる低速の周波数信号を使用した。これに限らず、予め定めたPRBS(Pseudo Random Binary Sequence)などの相互相関関数の大きさが遅延差によって急激に変化するパターンを追加することによっても、遅延差検出の精度を高めることができる。
上述したように、本実施形態による光伝送システム1000においては、異なる経路に送出する送信信号間に識別可能な異なる周波数成分を持つトレーニング信号を挿入する。これにより、一の経路を通して受信した受信信号に他の経路からのクロストークによってトレーニング信号が混入している場合であっても、混入した信号成分の周波数が異なるため、それを分離し除去することが可能である。そのため、高いクロストーク耐力が得られる。
また、複数の経路に異なる周波数を持つトレーニング信号を使用する構成としているが、トレーニング信号の周波数は予め分かっているので、波長分散の影響を推定しそれを補正することが可能である。これにより、波長分散および波長分散のばらつきに対する高い耐力を備えることができる。
ここで一般に、波長分散推定の精度は、トレーニング信号に使用する2個の特定の周波数成分の周波数差が小さいほど低下する。したがって、複数の経路に異なる周波数を持つトレーニング信号を一律に使用すると、ある経路では周波数差が小さいトレーニング信号を使用せざるを得ないこととなり、波長分散推定の精度が低下してしまう。その結果、経路間の遅延差の推定精度も低下する可能性がある。しかし、本実施形態による光伝送システム1000においては、一定周期ごとに最大の周波数差となる組からなる周波数成分を有するトレーニング信号を用いる構成としている。そして、このようなトレーニング信号を波長分散推定に使用することにより、波長分散量を高精度に推定し、その影響を取り除くことが可能になる。
このように、本実施形態による光伝送システムおよび光受信装置によれば、複数の経路を伝播した複数の信号間の遅延差を、各信号を復号する前に、複数経路間のクロストークと各経路における波長分散の大きな影響を受けることなく検出することが可能である。これにより、複数の信号間の遅延差を補償することができるので、複数の経路を伝播した複数の信号の連携が可能となる。その結果、伝送容量および伝送距離について柔軟な選択が可能な複数の経路を使った光伝送システムを構築することができる。
次に、本実施形態による光信号情報検出方法について説明する。
本実施形態の光信号情報検出方法においては、まず、データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であって、空間多重された複数の経路に対応した複数のデータ信号列を生成する。ここで、複数のデータ信号列は、少なくとも隣接する経路を伝播するデータ信号列にそれぞれ含まれるトレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有する。さらに、一のデータ信号列に含まれる複数のトレーニング信号が、挿入される位置により、周波数の差が異なる複数の周波数成分を有する。そして、光信号によって複数の経路を伝播した後のトレーニング信号に含まれる複数の周波数成分から、複数の経路間の伝播遅延差、および複数の経路における波長分散量をそれぞれ算出する。
ここで、複数の経路間の伝播遅延差の算出は、光信号によって複数の経路を伝播した後の複数のデータ信号列における、同一タイミングにおけるトレーニング信号に含まれる異なる周波数成分の検出時間を用いて行うことができる。また、複数の経路における波長分散量の算出は、複数の周波数成分の周波数の差が最大であるトレーニング信号を用いて、複数の周波数成分の検出時間の差から遅延時間を求めることにより行うことができる。
また、伝播遅延差の算出は、以下のように行うこととしてもよい。まず、複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第1の平均検出時間を算出する。同様に、複数のデータ信号列のうちの第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第2の平均検出時間を算出する。そして、第1の平均検出時間と第2の平均検出時間との差分を求めることにより、伝播遅延差の算出を行う構成とすることができる。
上述したように、本実施形態による光伝送システム、光受信装置、および光信号情報検出方法によれば、複数の近接した経路を用いて光信号を伝送する光伝送システムにおいて、クロストークが発生する場合であっても、複数の経路間の遅延差および波長分散を高精度で検出することができる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。図8は、本発明の第2の実施形態に係る光受信装置2200の構成を示すブロック図である。本実施形態による光受信装置2200と、第1の実施形態による光送信装置1100およびマルチコアファイバ伝送路1300とから光伝送システムが構成される。
光受信装置2200は、局所光源1210、光フロントエンド部1221、1222、およびアナログ−デジタル変換器(ADC)1231、1232を備える。ここまでの構成は、第1の実施形態による光受信装置1200と同様であり、光検波手段を構成する。
光受信装置2200はさらに、波長分散・遅延差検出部2240、波形歪補償部2251、2252、タイミング調整部2261、2262、および復号部2270を備える。
ここで、波長分散・遅延差検出部2240が伝播遅延差算出手段と波長分散量算出手段を備えた光信号情報検出手段を構成する。波長分散量算出手段は、第1の実施形態によるものと同様に、光検波手段が出力するデータ信号列に含まれる複数の周波数成分の周波数の差が最大であるトレーニング信号を用いて、複数の周波数成分の検出時間の差から遅延時間を求める。そして、これにより複数の経路における波長分散量をそれぞれ算出する構成とすることができる。
また、伝播遅延差算出手段は、以下の動作により伝播遅延差を算出する構成とすることができる。すなわち、複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる周波数成分の検出時間を、第1のデータ信号列が伝播する経路における波長分散量を用いて補正した第1の補正検出時間を算出する。同様に、複数のデータ信号列のうちの第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる周波数成分の検出時間を、第2のデータ信号列が伝播する経路における波長分散量を用いて補正した第2の補正検出時間を算出する。そして、第1の補正検出時間と第2の補正検出時間の差分を求めることにより、伝播遅延差の算出を行う構成とすることができる。
上述した第1の実施形態による光受信装置1200は、図4に示したように、複数の経路間の伝播遅延差の検出と、波長分散の推定を独立に行う構成とした。ここで、特定の周波数成分の強度を抽出し、強度がピークとなるタイミングを検出する機能の一部は、伝播遅延差検出処理と波長分散推定処理の両方で行われるため共通化が可能である。本実施形態による光受信装置2200は、波長分散・遅延差検出部2240において、これらの処理を行う構成としたものであり、これにより必要となる回路リソースを低減することができる。
図9に、波長分散・遅延差検出部2240の構成を示す。波長分散・遅延差検出部2240は、バンドパスフィルタ(BPF)2241、電力算出部2242、ピーク検出部2243、遅延時間算出部2244、波長分散算出部2245、時間補正部2246、およびコア間遅延時間算出部2247を備える。
アナログ−デジタル変換器(ADC)1231、1232の出力である第1のコア受信信号S31および第2のコア受信信号S32が波長分散・遅延差検出部2240に入力される。第1のコア受信信号S31および第2のコア受信信号S32のそれぞれに対し、周波数±fを有する周波数信号を用いて波長分散推定処理が行われる。
第2のコア受信信号S32に対しては、さらに、電力算出部2242およびピーク検出部2243によって、バンドパスフィルタ(BPF)2241が出力する周波数+fの周波数成分がピークとなるタイミングが検出される。これと対をなす、第1のコア受信信号S31に対して周波数+fの周波数成分がピークとなるタイミングを検出する処理は、第1のコアにおける波長分散を推定する処理に含まれている。したがって、このような構成により、第1のコア受信信号S31に含まれる周波数+fの周波数成分がピークとなるタイミングと、第2のコア受信信号S32に含まれる周波数+fの周波数成分がピークとなるタイミングが得られる。
ここで、これらのタイミング値は、周波数が相違していることから波長分散による影響を受けている。しかし、本実施形態による波長分散・遅延差検出部2240は、時間補正部2246を備えた構成としているので、このような波長分散による影響を回避することができる。すなわち、時間補正部2246は、波長分散算出部2245が推定した波長分散量と周波数+fとから算出される時間遅延量を用いて、第1のコア受信信号S31に含まれる周波数+fの周波数成分がピークとなるタイミングを補正する構成とした。また、第2のコア受信信号S32に含まれる周波数+fの周波数成分がピークとなるタイミングも同様に補正する構成とした。そして、コア間遅延時間算出部2247は、時間補正部2246によってそれぞれ補正されたタイミングの差分を求めることにより、第1のコア受信信号S31と第2のコア受信信号S32との間の遅延時間を算出する。
このような構成とすることにより、複数の経路を伝播した複数の受信信号間の遅延差と、それぞれの経路における波長分散のいずれも精度よく推定することが可能となる。
上述したように、本実施形態の光受信装置および光伝送システムによれば、複数の近接した経路を用いて光信号を伝送する光伝送システムにおいて、クロストークが発生する場合であっても、複数の経路間の遅延差および波長分散を高精度で検出することができる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。本実施形態による光伝送システムは、マルチコアファイバ伝送路の構成および光送信装置によって挿入されるトレーニング信号の構成が、第1の実施形態による光伝送システム1000と異なる。その他の構成は、光伝送システム1000と同様であるので、その説明は省略する。
図10に、本実施形態のマルチコアファイバ伝送路1310の断面図を示す。マルチコアファイバ伝送路1310は、7個のコア1311〜1317が六角形状に配置された構成を有している。
マルチコアファイバ伝送路1310においては、例えば、隣接するコア1311とコア1312との間に生じるクロストークと比較すると、隣接していないコア1312とコア1315との間に生じるクロストークは小さい。同様に、隣接するコア1312とコア1313との間に生じるクロストークと比較すると、隣接していないコア1312とコア1316の間に生じるクロストークは小さい。このように、隣接していないコア間のクロストークによる信号の混合の影響は小さいと見なすことができる。したがって、隣接していないコア間では同じ周波数を持つ周波数信号をトレーニング信号として使用することも可能である。このような構成とすることにより、それぞれのコアを伝播する信号に挿入する周波数信号の種類を減らすことができるので、回路リソースを削減することができる。
本実施形態の光送信装置によって挿入されるトレーニング信号について、図11を用いて説明する。
マルチコアファイバ伝送路1310において、第1のコアは他の第2〜第7のコアの全てと隣接し、偶数番目のコアは少なくとも他の偶数番目のコアとは隣接しない。同様に、第1のコアを除く奇数番目のコアは、少なくとも第1のコアを除く他の奇数番目のコアとは隣接しない。このようなマルチコアファイバ伝送路1310の構成上の特徴を考慮して、挿入するトレーニング信号のパターンを決定することができる。
図11に示すように、コアに送出する各送信信号の全てに、RシンボルおきにLシンボル続くトレーニング信号が同じタイミングで挿入されている。そして、第1のコアに送出する送信信号には、周波数±f、±f、±fの周波数信号がこの順番に挿入される。また、第2、4、6のコアに送出する送信信号には、周波数±f、±f、±fの周波数信号がこの順番に挿入される。そして、第3、5、7のコアに送出する送信信号には、周波数±f、±f、±fの周波数信号がこの順番に挿入される。
このようにトレーニング信号を挿入することによって、3種類の周波数信号のみを使用して、隣接するコア間では同じタイミングにおいて異なる周波数成分を有する構成とすることができる。同時に、各送信信号に周期的に挿入されるトレーニング信号には一定周期ごとに最大の周波数差となる組を有する周波数成分を持つトレーニング信号(例えば、周波数±fの周波数信号)が出現する構成とすることができる。
上述したように、本実施形態の光伝送システムによれば、複数の近接した経路を用いて光信号を伝送する光伝送システムにおいて、クロストークが発生する場合であっても、複数の経路間の遅延差および波長分散を高精度で検出することができる。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
この出願は、2015年3月25日に出願された日本出願特願2015−062670を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1000 光伝送システム
1100 光送信装置
1110 データ信号入力部
1120 符号化部
1131 第1のトレーニング信号挿入部
1132 第2のトレーニング信号挿入部
1141、1142 光変調器
1150 光源
1200、2200 光受信装置
1210 局所光源
1221、1222 光フロントエンド部
1231、1232 アナログ−デジタル変換器
1240 遅延差検出部
1241、1251、2241 バンドパスフィルタ(BPF)
1242、1252 強度算出部
1243、1253、2243 ピーク検出部
1244 平均化処理部
1245、2247 コア間遅延時間算出部
1254、2244 遅延時間算出部
1250 波長分散推定部
1255、2245 波長分散算出部
1261、1262、2251、2252 波形歪補償部
1271、1272、2261、2262 タイミング調整部
1280、2270 復号部
1300、1310 マルチコアファイバ伝送路
1301 第1のコア
1302 第2のコア
1311〜1317 コア
1401、1402 ファンアウト部
2240 波長分散・遅延差検出部
2242 電力算出部
2246 時間補正部
100 関連する波長分散算出部
111、112 バンドパスフィルタ
121、122 強度算出回路
130 遅延時間算出回路
140 波長分散量算出回路

Claims (10)

  1. データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であって、空間多重された複数の経路に対応した複数の前記データ信号列を生成し、
    前記複数のデータ信号列は、
    少なくとも隣接する前記経路を伝播する前記データ信号列にそれぞれ含まれる前記トレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有し、
    一の前記データ信号列に含まれる複数の前記トレーニング信号が、挿入される位置により、周波数の差が異なる前記複数の周波数成分を有し、
    光信号によって前記複数の経路を伝播した後の前記トレーニング信号に含まれる前記複数の周波数成分から、前記複数の経路間の伝播遅延差、および前記複数の経路における波長分散量をそれぞれ算出する
    光信号情報検出方法。
  2. 請求項1に記載した光信号情報検出方法において、
    前記複数の経路間の伝播遅延差の算出は、前記光信号によって前記複数の経路を伝播した後の前記複数のデータ信号列における、同一タイミングにおける前記トレーニング信号に含まれる異なる周波数成分の検出時間を用いて行い、
    前記複数の経路における波長分散量の算出は、前記複数の周波数成分の周波数の差が最大である前記トレーニング信号を用いて、前記複数の周波数成分の検出時間の差から遅延時間を求めることにより行う
    光信号情報検出方法。
  3. 請求項1または2に記載した光信号情報検出方法において、
    前記伝播遅延差の算出は、
    前記複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第1の平均検出時間と、
    前記複数のデータ信号列のうちの前記第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第2の平均検出時間、との差分を求めることにより行う
    光信号情報検出方法。
  4. 請求項1または2に記載した光信号情報検出方法において、
    前記伝播遅延差の算出は、
    前記複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる周波数成分の検出時間を、前記第1のデータ信号列が伝播する前記経路における前記波長分散量を用いて補正した第1の補正検出時間と、
    前記複数のデータ信号列のうちの前記第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる周波数成分の検出時間を、前記第2のデータ信号列が伝播する前記経路における前記波長分散量を用いて補正した第2の補正検出時間、との差分を求めることにより行う
    光信号情報検出方法。
  5. 空間多重された複数の経路を含む空間多重伝送路と、
    前記複数の経路に光信号をそれぞれ送出する光送信装置と、
    前記複数の経路をそれぞれ伝播した前記光信号を受信する光受信装置、とを有し、
    前記光送信装置は、
    データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であって、前記複数の経路に対応した複数の前記データ信号列を生成するデータ信号列生成手段と、
    前記複数のデータ信号列によって光搬送波をそれぞれ変調することによって複数の前記光信号を生成する光変調手段、とを備え、
    前記複数のデータ信号列は、
    少なくとも隣接する前記経路を伝播する前記データ信号列にそれぞれ含まれる前記トレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有し、
    一の前記データ信号列に含まれる前記複数のトレーニング信号が、挿入される位置により、周波数の差が異なる前記複数の周波数成分を有し、
    前記光受信装置は、
    前記複数の経路をそれぞれ伝播した前記複数の光信号を受け付けて検波し、前記複数のデータ信号列を出力する光検波手段と、
    前記光検波手段が出力する前記データ信号列を構成する前記トレーニング信号に含まれる前記複数の周波数成分から、前記複数の経路間の伝播遅延差、および前記複数の経路における波長分散量をそれぞれ算出する光信号情報検出手段、とを備える
    光伝送システム。
  6. 請求項5に記載した光伝送システムにおいて、
    前記光信号情報検出手段は、伝播遅延差算出手段と波長分散量算出手段を備え、
    前記伝播遅延差算出手段は、前記光検波手段が出力する前記複数のデータ信号列における、同一タイミングにおける前記トレーニング信号に含まれる異なる周波数成分の検出時間から前記複数の経路間の伝播遅延差を算出し、
    前記波長分散量算出手段は、前記光検波手段が出力する前記データ信号列に含まれる前記複数の周波数成分の周波数の差が最大である前記トレーニング信号を用いて、前記複数の周波数成分の検出時間の差から遅延時間を求めることにより前記複数の経路における波長分散量をそれぞれ算出する
    光伝送システム。
  7. 請求項6に記載した光伝送システムにおいて、
    前記伝播遅延差算出手段は、前記複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第1の平均検出時間と、
    前記複数のデータ信号列のうちの前記第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる異なる周波数成分であって、絶対値が等しく符号が反対である周波数成分のそれぞれの検出時間の平均値である第2の平均検出時間、との差分を求めることにより前記伝播遅延差を算出する
    光伝送システム。
  8. 請求項6に記載した光伝送システムにおいて、
    前記伝播遅延差算出手段は、前記複数のデータ信号列のうちの第1のデータ信号列を構成する第1のトレーニング信号に含まれる周波数成分の検出時間を、前記第1のデータ信号列が伝播する前記経路における前記波長分散量を用いて補正した第1の補正検出時間と、
    前記複数のデータ信号列のうちの前記第1のデータ信号列と異なる第2のデータ信号列を構成する第2のトレーニング信号に含まれる周波数成分の検出時間を、前記第2のデータ信号列が伝播する前記経路における前記波長分散量を用いて補正した第2の補正検出時間、との差分を求めることにより前記伝播遅延差を算出する
    光伝送システム。
  9. 空間多重された複数の経路をそれぞれ伝播した複数の光信号を受け付けて検波し、複数のデータ信号列を出力する光検波手段と、
    前記複数の経路間の伝播遅延差、および前記複数の経路における波長分散量をそれぞれ算出する光信号情報検出手段、とを有し、
    前記データ信号列は、データ信号に、複数の周波数成分を有するトレーニング信号を周期的に挿入したデータ信号列であり、
    前記複数の経路に対応した複数の前記データ信号列は、
    少なくとも隣接する前記経路を伝播する前記データ信号列にそれぞれ含まれる前記トレーニング信号が、同一タイミングにおいて互いに異なる周波数成分を有し、
    一の前記データ信号列に含まれる前記複数のトレーニング信号が、挿入される位置により、周波数の差が異なる前記複数の周波数成分を有し、
    前記光信号情報検出手段は、前記光検波手段が出力する前記データ信号列を構成する前記トレーニング信号に含まれる前記複数の周波数成分から、前記伝播遅延差、および前記波長分散量を算出する
    光受信装置。
  10. 請求項9に記載した光受信装置において、
    前記光信号情報検出手段は、伝播遅延差算出手段と波長分散量算出手段を備え、
    前記伝播遅延差算出手段は、前記光検波手段が出力する前記複数のデータ信号列における、同一タイミングにおける前記トレーニング信号に含まれる異なる周波数成分の検出時間から前記複数の経路間の伝播遅延差を算出し、
    前記波長分散量算出手段は、前記光検波手段が出力する前記データ信号列に含まれる前記複数の周波数成分の周波数の差が最大である前記トレーニング信号を用いて、前記複数の周波数成分の検出時間の差から遅延時間を求めることにより前記複数の経路における波長分散量をそれぞれ算出する
    光受信装置。
JP2017507484A 2015-03-25 2016-03-17 光伝送システム、光受信装置、および光信号情報検出方法 Active JP6750610B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015062670 2015-03-25
JP2015062670 2015-03-25
PCT/JP2016/001543 WO2016152110A1 (ja) 2015-03-25 2016-03-17 光伝送システム、光受信装置、および光信号情報検出方法

Publications (2)

Publication Number Publication Date
JPWO2016152110A1 JPWO2016152110A1 (ja) 2018-01-11
JP6750610B2 true JP6750610B2 (ja) 2020-09-02

Family

ID=56978146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017507484A Active JP6750610B2 (ja) 2015-03-25 2016-03-17 光伝送システム、光受信装置、および光信号情報検出方法

Country Status (3)

Country Link
US (1) US10361779B2 (ja)
JP (1) JP6750610B2 (ja)
WO (1) WO2016152110A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205528B2 (en) * 2015-03-20 2019-02-12 Nec Corporation Optical transmitter and optical communication method
US10567078B2 (en) * 2016-01-18 2020-02-18 Nec Corporation Optical transmitter and method for controlling optical carrier frequency
CN109450542B (zh) * 2018-11-22 2020-05-12 烽火通信科技股份有限公司 一种色散估计方法、装置及光接收机
JP7121286B2 (ja) * 2019-01-09 2022-08-18 日本電信電話株式会社 光受信装置及び波形歪み補償方法
US11742950B2 (en) * 2019-11-28 2023-08-29 Nippon Telegraph And Telephone Corporation Wavelength dispersion amount calculation apparatus and wavelength dispersion amount calculation method
CN114157360B (zh) * 2020-09-08 2023-07-25 佳必琪国际股份有限公司 光模块的信号处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159953B2 (ja) 2009-07-17 2013-03-13 日本電信電話株式会社 波長分散量算出装置、光信号受信装置、光信号送信装置及び波長分散量算出方法
JP5911369B2 (ja) 2012-04-26 2016-04-27 三菱電機株式会社 光送受信機および光送受信方法
WO2014112516A1 (ja) 2013-01-15 2014-07-24 日本電信電話株式会社 コヒーレント通信システム、通信方法、および送信方法
JP5931759B2 (ja) * 2013-01-17 2016-06-08 日本電信電話株式会社 光伝送システムおよび光伝送方法

Also Published As

Publication number Publication date
US10361779B2 (en) 2019-07-23
JPWO2016152110A1 (ja) 2018-01-11
US20180069625A1 (en) 2018-03-08
WO2016152110A1 (ja) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6750610B2 (ja) 光伝送システム、光受信装置、および光信号情報検出方法
Koebele et al. 40km transmission of five mode division multiplexed data streams at 100Gb/s with low MIMO-DSP complexity
JP5694605B2 (ja) マルチモード通信用光受信機
Randel et al. Mode-Multiplexed 6⨉ 20-GBd QPSK Transmission over 1200-km DGD-Compensated Few-Mode Fiber
Li et al. Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber
Li et al. Implementation efficient nonlinear equalizer based on correlated digital backpropagation
JP5415614B2 (ja) マルチモード光導体を介して送信局と受信局との間において光学的な情報を伝送するための方法と装置
JP5147582B2 (ja) 受信装置、補償演算回路、および受信方法
US9729229B2 (en) Optical spatial-division multiplexed transmission system and transmission method
JP6458733B2 (ja) 光受信装置、光伝送システムおよび光受信方法
EP1041783A2 (en) Encoding, modulation and multiplexing for optical transmission
Cai et al. 112× 112 Gb/s transmission over 9,360 km with channel spacing set to the baud rate (360% spectral efficiency)
Randel et al. First real-time coherent MIMO-DSP for six coupled mode transmission
US11223421B1 (en) Full dimension skew estimation and compensation in coherent optical systems
JP2008078962A (ja) Wdm光伝送システムおよびwdm光伝送方法
Beppu et al. Long-haul coupled 4-core fiber transmission over 7,200 km with real-time MIMO DSP
Asif et al. Logarithmic step-size based digital backward propagation in N-channel 112Gbit/s/ch DP-QPSK transmission
Chen et al. Mode-multiplexed full-field reconstruction using direct and phase retrieval detection
Vacondio et al. Coherent receiver enabling data rate adaptive optical packet networks
JPWO2009013795A1 (ja) 光伝送装置,波長多重光通信システムおよび光伝送方法
Koebele et al. Two-mode transmission with digital inter-modal cross-talk mitigation
JP6319309B2 (ja) 光受信装置、光伝送システム、光受信方法および光伝送方法
WO2014119270A1 (ja) 光受信装置、光通信システム、光受信方法及び光受信装置の制御プログラムの記録媒体
Lobato et al. The impact of differential mode delay on mode-division multiplexed coherent optical OFDM transmission
JP2005094287A (ja) 光伝送方法及びシステム並びに光送信方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6750610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150