JP6749479B2 - 三次元物体の改良された付加製造 - Google Patents

三次元物体の改良された付加製造 Download PDF

Info

Publication number
JP6749479B2
JP6749479B2 JP2019511916A JP2019511916A JP6749479B2 JP 6749479 B2 JP6749479 B2 JP 6749479B2 JP 2019511916 A JP2019511916 A JP 2019511916A JP 2019511916 A JP2019511916 A JP 2019511916A JP 6749479 B2 JP6749479 B2 JP 6749479B2
Authority
JP
Japan
Prior art keywords
dimensional object
zones
toolpath
layer
additive manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019511916A
Other languages
English (en)
Other versions
JP2019529164A (ja
Inventor
ステレンサル,ロイ
ヴォルチェク,キリル
Original Assignee
スリーディー システムズ インコーポレーテッド
スリーディー システムズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スリーディー システムズ インコーポレーテッド, スリーディー システムズ インコーポレーテッド filed Critical スリーディー システムズ インコーポレーテッド
Publication of JP2019529164A publication Critical patent/JP2019529164A/ja
Application granted granted Critical
Publication of JP6749479B2 publication Critical patent/JP6749479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)

Description

関連技術の相互参照
この非仮特許出願は、U.S.C.119(e)の下でここに参照することによって援用される、2016年9月1日出願のRoy Sterenthal等による「IMPROVED ADDITIVE MANUFACTURING OF A THREE−DIMENSIONAL OBJECT」と題された米国仮特許出願第62/382,543号に対する優先権を主張する。この非仮特許出願はまた、U.S.C.119(e)の下でここに参照することによって援用される、2016年12月14日出願のRoy Sterenthalによる「IMPROVED ADDITIVE MANUFACTURING OF A THREE−DIMENSIONAL OBJECT」と題された米国仮特許出願第62/434,136号に対する優先権を主張する。
本開示は、概して、付加製造に関し、特に、支持構造の作製、デザイン意識(design−aware)またはそうでなければそれぞれの付加製造パラメータの複数領域の作製、複数暴露、および/または複数の押出機、レーザまたはプリントヘッドの使用などの特徴を含む、三次元物体の改良された付加製造に関する。
近年、三次元(3D)物体の高速製造のための多くの異なる付加製造技術が開発されている。付加製造およびその関連するバリエーションは、3Dプリンティング、立体造形(solid imaging)、立体自由成形(solid freeform fabrication)、ラピッドプロトタイピングおよびラピッドマニュファクチャリングなどとも呼ばれる。付加製造は、物体の断面を表す層データまたはスライスされたデータを用いて、構築材料から、層ごとに三次元物体を形成するための多くの異なる技術を含む。これらの技術としては、例えば、押出堆積または選択堆積モデリング(SDM)技術、例えば、溶融堆積モデリング(FDM)および溶融フィラメント製造(FFF)など、ステレオリソグラフィ(SLA)、ポリジェットプリンティング(PJP)、マルチジェットプリンティング(MJP)、選択的レーザ焼結(SLS)、三次元プリンティング(3DP)技術、例えば、カラージェットプリンティング(CJP)などが挙げられる。
いくつかの付加製造技術は、対応するデジタルソリッドモデルから三次元物体を形成するが、多くの場合、これはコンピュータ支援設計システムによって提供される(このソリッドモデルは、時にCADモデルと称される)。当該ソリッドモデルは、幾何学形状の集合によって、当該物体およびその構造要素を表し得る。このソリッドモデルは、当該物体の閉じた形態の表面幾何形状を表す別の形態へとエクスポートされてもよく、当該別の形態は、時にシェルと称され得る。いくつかの例において、物体のシェルは、例えば、STL(標準テッセレーション言語(standard tessellation language))モデルまたはファイルにおいて、ポリゴン(例えば、三角形)のメッシュの形態を取り得る。次いで、当該物体のシェルは、シェルの層を画定する層データへとスライスされ得る。この層データは、当該物体を形成するためのツールパスを記述する適切な言語へとフォーマットされてもよく、このデータは、付加製造システムによって受け取られ、構築材料を操ることにより層ごとに当該物体が形成され得る。
既存の付加製造技術は妥当であるが、既存の技術に改良を加えることが概して所望でもある。
本開示の例示的実践形態は、概して、支持構造の作製、デザイン意識またはそうでなければそれぞれの付加製造パラメータの複数領域の作製、複数暴露、および/または複数の押出機、レーザまたはプリントヘッドの使用などの特徴を含む、三次元物体の付加製造のための改良されたコンピューティング装置、方法およびコンピュータ可読記憶媒体に関する。
したがって、本開示は、限定することなく、以下の例示的実践形態を含む。いくつかの例示的実践形態は、付加製造により形成される三次元物体のための支持構造のタイプを特定する方法を提供し、この方法は、以下の工程を含む:三次元物体のソリッドモデルを受け取る工程;支持構造を必要とする三次元物体の領域を同定するためにソリッドモデルの幾何学的分析を行う工程;当該同定された領域においてソリッドモデルの応力およびワーピング(warping)分析を行う工程であって、応力およびワーピング分析が、ソリッドモデルに適用される1つ以上の発見的(heuristic)アルゴリズムを含み、三次元物体の対応する有限要素モデルの有限要素分析を除外する、工程;当該同定された領域に配置される支持構造のタイプを選択する工程であって、当該支持構造のタイプが、当該実施される応力およびワーピング分析に基づいて複数のタイプの支持構造から選択される、工程;および、当該同定される領域におけるかつ当該選択されるタイプの支持構造を含む、ソリッドモデルに基づいて、三次元物体のシェルを生成する工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、ソリッドモデルは、ポリゴンのメッシュで構成され、幾何学的分析を行う工程は、隣接するポリゴンを、支持構造を必要とする三次元物体の領域に集める工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、応力およびワーピング分析を行う工程は、以下を含む全応力分析を含む:各隣接ポリゴンについてを含む、隣接ポリゴンのそれぞれ1つについてベクトルを生成する工程;隣接ポリゴンから、隣接ポリゴンを中心とする球の上向き半球の外周まで、複数の均一に分散された光線をトレースする工程;および、ソリッドモデルを介して隣接ポリゴンから伸長する複数の光線のものと一致する複数のベクトルを加える工程であって、当該複数のベクトルが隣接ポリゴンからソリッドモデルの外表面まで伸長し、当該複数のベクトルが加えられて隣接ポリゴンのためのベクトルが生成される、工程;および、隣接ポリゴンのそれぞれ1つについてのベクトルから当該領域についての全応力値を特定する工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、隣接ポリゴンのサブセットは領域の境界上にあり、応力およびワーピング分析を行う工程は、以下を含むコーナー応力分析を含む:サブセットの各隣接ポリゴンについてを含む、隣接ポリゴンのサブセットのそれぞれ1つについてベクトルを生成する工程;隣接ポリゴンから、隣接ポリゴンを中心とする球の上向き半球の外周まで、複数の均一に分散された光線をトレースする工程;および、ソリッドモデルを介して隣接ポリゴンから伸長する複数の光線のものと一致する複数のベクトルを加える工程であって、当該複数のベクトルが隣接ポリゴンからソリッドモデルの外表面または上向き半球の外周の第1まで伸長し、当該複数のベクトルが加えられて隣接ポリゴンのためのベクトルが生成される、工程;および、隣接ポリゴンのサブセットのそれぞれ1つについてのベクトルから当該領域についてのコーナー応力値を特定する工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、応力およびワーピング分析を行う工程は、以下を含むワーピング分析を含む:各隣接ポリゴンについてを含む、隣接ポリゴンのそれぞれ1つについてベクトルを生成する工程;隣接ポリゴンからの法線に基づきソリッドモデル内の近接領域を同定する工程;近接領域から、近接領域を中心とする球の隣接半球の外周まで、複数の均一に分散された光線をトレースする工程;近接領域からソリッドモデルの外表面まで伸長する第1の複数のベクトルを加える工程であって、当該第1の複数のベクトルが加えられて第1のベクトルが生成される工程;近接領域から、ソリッドモデルの外表面または近接領域を中心とするより小さい第2の球の隣接半球の外周まで、伸長する第2の複数のベクトルを加える工程であって、当該第2の複数のベクトルが加えられて第2のベクトルが生成される工程;および、第1のベクトルおよび第2のベクトルを加えて隣接ポリゴンについてのベクトルを生成する工程;および、隣接ポリゴンのそれぞれ1つについてのベクトルからの領域についてワーピング値を特定する工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、応力およびワーピング分析を行う工程が、全応力、コーナー応力およびワーピングの数値を特定する工程を含み、支持構造のタイプを選択する工程が、当該全応力、コーナー応力およびワーピングの数値に基づいて支持構造のタイプを選択する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、三次元物体のソリッドモデルは、xおよびy軸を含む直交軸およびz軸を有する座標系にあり、高さは、z軸の方向でソリッドモデルの最下層領域からの距離により定められ、全応力、コーナー応力およびワーピングの数値は、平均全応力値を含み、支持構造のタイプを選択する工程は、領域の高さが閾高さ以下であり、かつ平均全応力値が閾全応力値を超える場合に、スカート−タイプ支持構造を選択する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、支持構造のタイプを選択する工程は、領域の高さが閾高さを超えるが第2の閾高さ以下であり、かつ平均全応力値が閾全応力値を超える場合に、ソリッド−タイプ支持構造を選択する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、支持構造を含むシェルを生成する工程が、領域の高さおよび平均全応力値に基づいて、内部に定められるギャップを有するソリッド−タイプ支持構造を含むシェルを生成する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、全応力、コーナー応力およびワーピングの数値は、最大コーナー応力値を含み、支持構造のタイプを選択する工程は、最大コーナー応力値が閾コーナー応力値を超える場合に、コーン−タイプ支持構造またはソリッド−ウォール−タイプ支持構造を選択する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、全応力、コーナー応力およびワーピングの数値は、平均ワーピング値を含み、支持構造のタイプを選択する工程は、平均ワーピング値が閾ワーピング値より低い場合に、ウォール−タイプ支持構造を選択する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、支持構造を含むシェルを生成する工程が、平均ワーピング値に従ってパラメータ化される間隔、パターンおよびティース(teeth)パラメータを有するウォール−タイプ支持構造を含むシェルを生成する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、本発明の方法は、さらに以下の工程を含む:三次元物体および支持構造の形成において使用するための複数層のシェルを画定する層データを形成する工程;および、構築材料を操ることにより層ごとに三次元物体および支持構造を形成するよう構成される付加製造システムによって受け取られるための層データからツールパス(時にスキャンパスと称される)を生成する工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、本発明の方法はさらに、シェルをゾーンに分割し、それによって三次元物体のゾーンを形成する工程、および、三次元物体の各ゾーンを形成するために付加製造システムのためのパラメータ群を画定または選択する工程を含み、当該パラメータ群はゾーン間で異なり、ツールパスを作成する工程が、ツールパス中のゾーンについての層データを融合する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、構築材料上にビームを照射し層ごとに三次元物体を形成するよう構成されるレーザを有し、パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータまたはレーザフォーカスの1つ以上についての数値を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、三次元物体のシェルは、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、ツールパスを作成する工程は、以下の1つ以上を含む:(a)ゾーン間でパラメータ群において異なる任意のビームオフセットについてツールパス中に連続性を加える工程;(b)三次元物体のゾーンが連結される、z軸の方向におけるツールパス中にフィンガージョイント(finger joint)を含む工程;(c)xおよびy軸の方向において、ツールパスおよび/またはハッチラインを層ごとに再設定する工程;または(d)各ゾーンについてツールパスの輪郭端点をオフセットする工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、フィンガージョイントを含む工程(b)が、ゾーンが連結されるxおよびy軸の方向におけるゾーンにオフセットを交互に与える工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、ツールパスを再設定する工程(c)が、ツールパスを再設定し、それによって、付加製造システムにより形成される三次元物体中のハッチラインを再設定する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、輪郭をオフセットする工程(d)が、三次元物体のゾーンが連結される、ツールパスの輪郭端点におけるツールパス中でアプローチおよびリトラクト動作を加える工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、シェルをゾーンに分割する工程が、ユーザ入力を受け取って三次元ボリュームをシェル上にオーバーレイする工程を含み、当該三次元ボリュームが三次元物体のゾーンを囲みそれによって画定する。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、構築材料上にビームを照射し層ごとに三次元物体を形成するよう構成されるレーザを有し、シェルをゾーンに分割する工程が、シェルの別の領域を含む複数暴露ゾーンを画定し、それによって支持構造なしで三次元物体を形成する工程を含み、当該複数暴露ゾーンが、付加製造システムのためのパラメータ群と関連付けられ、当該パラメータ群は、複数暴露ゾーンと当該複数暴露ゾーンの外側の三次元物体との間で異なり、ツールパスを作成する工程は、複数暴露ゾーン内でツールパスを反復する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、複数暴露ゾーンのためのパラメータ群は、当該複数暴露ゾーンの外側に比較してエネルギー暴露を低減するビームパワーおよびレーザ速度を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、それぞれの構築材料を分配して層ごとに三次元物体の第1および第2のゾーンをそれぞれ形成するように構成される第1および第2の押出機を含み、ツールパスを作成する工程は、第1および第2の押出機のそれぞれについて第1および第2のツールパスを作成する工程を含み、第1および第2のツールパス中の第1および第2のゾーンのための層データを融合する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、それぞれのビームを構築材料上に照射して層ごとに三次元物体の第1および第2のゾーンをそれぞれ形成するように構成される第1および第2のレーザを含み、ツールパスを作成する工程が、第1および第2のレーザのそれぞれについて第1および第2のツールパスを作成する工程を含み、第1および第2のツールパス中の第1および第2のゾーンのための層データを融合する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、各バインダーを構築材料上に供給して層ごとに三次元物体の第1および第2のゾーンをそれぞれ形成するように構成される第1および第2のプリントヘッドを含み、ツールパスを作成する工程が、第1および第2のプリントヘッドのそれぞれについて第1および第2のツールパスを作成する工程を含み、第1および第2のツールパス中の第1および第2のゾーンのための層データを融合する工程を含む。
いくつかの例示的実践形態により、付加製造によって形成される三次元物体のためにパラメータの複数ゾーンを生成する方法が提供され、この方法は、以下の工程を含む:三次元物体のソリッドモデルを受け取る工程;当該ソリッドモデルに基づいて三次元物体のシェルを生成する工程;当該シェルをゾーンに分割し、それによって三次元物体のゾーンを形成する工程;付加製造システムのためのパラメータ群を画定または選択して三次元物体の各ゾーンを形成する工程であって、当該パラメータ群がゾーン間で異なる工程;当該ゾーンの形成において使用するためのシェルの複数の層を画定する層データを形成し、それによって三次元物体を形成する工程;および、構築材料を操ることにより層ごとに三次元物体を形成するよう構成される付加製造システムによる受取りのために、ゾーンのための層データを融合する工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、構築材料上にビームを照射し層ごとに三次元物体を形成するよう構成されるレーザを有し、パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータまたはレーザフォーカスの1つ以上についての数値を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、三次元物体のシェルは、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、ツールパスを生成する工程は、以下の1つ以上を含む:(a)ゾーン間でパラメータ群において異なる任意のビームオフセットについてツールパス中に連続性を加える工程;(b)三次元物体のゾーンが連結される、z軸の方向におけるツールパス中にフィンガージョイントを含む工程;(c)xおよび/またはy軸の方向において、ツールパスを層ごとに再設定する工程;または(d)各ゾーンについてツールパスの輪郭端点をオフセットする工程。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、フィンガージョイントを含む工程(b)が、ゾーンが連結されるxおよび/またはy軸の方向におけるゾーンにオフセットを交互に与える工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、ツールパスを再設定する工程(c)が、ツールパスを再設定し、それによって、付加製造システムにより形成される三次元物体中のハッチラインを再設定する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、輪郭をオフセットする工程(d)が、三次元物体のゾーンが連結される、ツールパスの輪郭端点におけるツールパス中でアプローチおよびリトラクト動作を加える工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、パラメータ群を画定する工程が、ユーザ入力を受け取って三次元ボリュームをシェル上にオーバーレイする工程を含み、当該三次元ボリュームが三次元物体のゾーンを囲みそれによって画定する。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、構築材料上にビームを照射し層ごとに三次元物体を形成するよう構成されるレーザを有し、シェルをゾーンに分割する工程が、シェルの別の領域を含む複数暴露ゾーンを画定し、それによって支持構造なしで三次元物体を形成する工程を含み、当該複数暴露ゾーンが、付加製造システムのためのパラメータ群と関連付けられ、当該パラメータ群は、複数暴露ゾーンと当該複数暴露ゾーンの外側の三次元物体との間で異なり、ツールパスを作成する工程は、複数暴露ゾーン内でツールパスを反復する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、複数暴露ゾーンのためのパラメータ群は、当該複数暴露ゾーンの外側に比較してエネルギー暴露を低減するビームパワーおよびレーザ速度を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、それぞれの構築材料を分配して層ごとに三次元物体の第1および第2のゾーンをそれぞれ形成するように構成される第1および第2の押出機を含み、ツールパスを作成する工程が、第1および第2の押出機のそれぞれについて第1および第2のツールパスを作成する工程を含み、第1および第2のツールパス中の第1および第2のゾーンのための層データを融合する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、各ビームを構築材料上に照射して層ごとに三次元物体の第1および第2のゾーンをそれぞれ形成するように構成される第1および第2のレーザを含み、ツールパスを作成する工程が、第1および第2のレーザのそれぞれについて第1および第2のツールパスを作成する工程を含み、第1および第2のツールパス中の第1および第2のゾーンのための層データを融合する工程を含む。
任意の前記のまたは任意の以下の例示的実践形態の方法のいくつかの例示的実践形態、またはそれらの組合せにおいて、付加製造システムは、各バインダーを構築材料上に供給して層ごとに三次元物体の第1および第2のゾーンをそれぞれ形成するように構成される第1および第2のプリントヘッドを含み、ツールパスを作成する工程が、第1および第2のプリントヘッドのそれぞれについて第1および第2のツールパスを作成する工程を含み、第1および第2のツールパス中の第1および第2のゾーンのための層データを融合する工程を含む。
いくつかの例示的実践形態によって、付加製造により形成される三次元物体のための支持構造のタイプを特定するためのコンピューティング装置が提供され、当該コンピューティング装置は、プロセッサと、当該プロセッサによる実行に応じて当該コンピューティング装置に任意の前記例示的実践形態の方法またはそれらの任意の組合せを少なくとも実行させる実行可能な命令を保存するメモリとを含む。
いくつかの例示的実践形態によって、付加製造により形成される三次元物体のためのパラメータの複数ゾーンを作成するためのコンピューティング装置が提供され、当該コンピューティング装置は、プロセッサと、当該プロセッサによる実行に応じて当該コンピューティング装置に任意の前記例示的実践形態の方法またはそれらの任意の組合せを少なくとも実行させる実行可能な命令を保存するメモリとを含む。
いくつかの例示的実践形態によって、付加製造により形成される三次元物体のための支持構造のタイプを特定するためのコンピュータ可読記憶媒体が提供される。当該コンピュータ可読記憶媒体は、非一過性であり、処理回路による実行に応じて、コンピューティング装置に任意の前記の例示的実践形態の方法またはそれらの任意の組合せを少なくとも実行させる、内部に保存されたコンピュータ可読プログラムコード部分を有する。
いくつかの例示的実践形態によって、付加製造により形成される三次元物体のためのパラメータの複数ゾーンを作成するためのコンピュータ可読記憶媒体が提供される。当該コンピュータ可読記憶媒体は、非一過性であり、処理回路による実行に応じて、コンピューティング装置に任意の前記の例示的実践形態の方法またはそれらの任意の組合せを少なくとも実行させる、内部に保存されたコンピュータ可読プログラムコード部分を有する。
本開示のこれらのおよび他の特徴、態様、および利点が、以下に簡単に説明される添付の図面と共に、以下の詳細な説明を読むことにより明らかとなろう。本開示は、そのような特徴または要素が本明細書に記載される特定の例示的実践形態において明白に組み合わされるかまたは説明されるかにかかわらず、本開示に示される2、3、4またはそれ以上の特徴または要素の任意の組合せを含む。本開示は、本開示の任意の分離可能な特徴または要素が、その態様および例示的実践形態のいずれにおいても、本開示の文脈がそうでないことを明らかに指示する場合を除き、意図されたもの、すなわち組合せ可能であると考えられるべきである。
したがって、本発明の概要は、本開示のいくつかの態様の基本的な理解を提供するようにいくつかの例示的実践形態を要約するためにのみ提供されることが理解されるであろう。したがって、上記の例示的実践形態は、単に実施例であり、本開示の範囲または原理を決して狭めるように解釈されるべきでないことが理解されるであろう。他の例示的実践形態、態様および利点が、例として、いくつかの記載される例示的実践形態の原理を説明する添付の図面と併せて、以下の詳細な説明から明らかとなろう。
したがって、本開示の例示的実践形態を一般的な用語で説明して、ここで、必ずしも一定の縮尺で描かれているわけではない添付の図面を参照する。
本開示の例示的実践形態における、コンピューティング装置および付加製造システムを含むシステムの説明図 図1の付加製造システムに対応し得る付加製造システムの第1の実施形態を示す図 図1の付加製造システムに対応し得る付加製造システムの第2の実施形態を示す図 図1の付加製造システムに対応し得る付加製造システムの第3の実施形態を示す図 いくつかの例示的実践形態に従った、三次元物体のソリッドモデルのシェルを示す図 ソリッドモデルについての全応力分析およびワーピング分析の態様を示す図 ソリッドモデルについての全応力分析およびワーピング分析の態様を示す図 図5のソリッドモデルと類似し、例示的実践形態に従って選択され得る様々のタイプの支持構造を含む、ソリッドモデルについてのシェルを示す図 例示的実践形態に従った、図8のシェルおよび内部に画定されたギャップを有するソリッド−タイプの支持構造のハイライトを示す図 例示的実践形態に従ってユーザに提示され得、そこから様々の態様が実施され得る、グラフィカルユーザインターフェース(GUI)を示す図 第1の例示的実践形態に従った、三次元物体を付加製造するための異なるパラメータを有する融合ゾーンのための技術を示す図 第2の例示的実践形態に従った、三次元物体を付加製造するための異なるパラメータを有するゾーンを融合するための技術を示す図 第3の例示的実践形態に従った、三次元物体を付加製造するための異なるパラメータを有するゾーンを融合するための技術を示す図 第4の例示的実践形態に従った、三次元物体を付加製造するための異なるパラメータを有するゾーンを融合するための技術を示す図 第5の例示的実践形態に従った、三次元物体を付加製造するための異なるパラメータを有するゾーンを融合するための技術を示す図 第6の例示的実践形態に従った、三次元物体を付加製造するための異なるパラメータを有するゾーンを融合するための技術を示す図 例示的実践形態に従った、補正なしの複数ゾーンから生じ得る輪郭の相違を示す図 例示的実践形態に従った、補正を与えるようゾーンを融合するための例示的技術を示す図 例示的実践形態に従った、複数暴露を実施して内部の支持構造を回避するための、特定のパラメータを有するゾーンを作成するための内部領域を含むシェルを示す図 例示的実践形態に従った、熱または残留応力分析を用いたツールパスの最適化を示す図 例示的な三次元物体内の異なるゾーンを示す図 例示的実践形態に従った、付加製造システムの複数の押出機、レーザまたはプリントヘッドの間における、ソリッドモデル、シェルまたは溶融プールの第1の例示的な分割を示す図 例示的実践形態に従った、付加製造システムの複数の押出機、レーザまたはプリントヘッドの間における、ソリッドモデル、シェルまたは溶融プールの第2の例示的な分割を示す図 例示的実践形態に従った、付加製造により形成される三次元物体のための支持構造のタイプを特定する方法における様々のオペレーションを示すフローチャート 例示的実践形態に従った、付加製造により形成される三次元物体のためのパラメータの複数ゾーンを作成する方法における様々のオペレーションを示すフローチャート 図1に示されるシステムのコンピューティング装置に対応し得るいくつかの実施例における装置を示す図
以下において、本開示のいくつかの実践形態について、本開示の実践形態の全てではないがいくつかが示されている添付の図面を参照しながら、より詳しく説明する。実際に、本開示の様々な実践形態は、多くの異なる形態において具体化することができ、本明細書において説明される実践形態に限定されると解釈すべきではなく、むしろ、これらの例示的実践形態は、本開示が、十分で完全であり、かつ本開示の範囲が当業者に十分に伝わるように、提供される。例えば、そうでないことが明記されない限り、第1、第2などの何らかの言及は、特定の順序を意味すると解釈すべきではない。例えば、本明細書において、定量的な尺度、値、関係性など(例えば、平面の、同一平面上の、垂直な)についても言及され得る。そうでないことが明記されない限り、それらの全てでなくてもいずれか1つまたは複数は、生じ得る許容される変動、例えば、公差などに起因するものなどを説明するために、絶対的または近似的であり得る。同様の参照番号は、全体を通じて同様の要素を意味する。
本開示の例示的実践形態は概して、付加製造に関する。ここで図1を参照すると、本開示の例示的実践形態に従って、システム100が示されている。当該システムは、1つまたは複数の機能またはオペレーションを実施するための、多くの異なる装置、サブシステムなどのいずれかを含み得る。示されているように、例えば、当該システムは、コンピューティング装置102および付加製造システム104を含み得る。当該コンピューティング装置は、概して、当該付加製造システムによる受け取りのために、データを受け取って準備するように構成され、かつ当該付加製造システムは、構築材料を操ることによって物理的で有形な三次元物体106を形成するように構成され得る。
付加製造システム104は、多くの付加製造技術のいずれかに従って物体106を形成するように構成され得る。適切な付加製造技術の例としては、押出堆積モデリングまたは選択堆積モデリング(SDM)技術、例えば、溶融堆積モデリング(FDM)および溶融フィラメント製造(FFF)など、ステレオリソグラフィ(SLA)、ポリジェット印刷(PJP)、マルチジェット印刷(MJP)、選択的レーザ焼結(SLS)、三次元印刷(3DP)技術、例えば、カラージェット印刷(CJP)など、が挙げられる。図2、3および4は、それぞれの付加製造システム200、300および400を示しており、これらは、いくつかの実施例において、図1の付加製造システムに対応している。
図2は、多くの異なる押出ベースの堆積モデリング技術または選択堆積モデリング(SDM)技術、例えば、溶融堆積モデリング(FDM)、溶融フィラメント製造(FFF)など、のいずれかに従って動作するように構成され得る付加製造システム200を図示する。示されているように、付加製造システム200は、それぞれの構築材料206、208を分配することにより層ごとに三次元物体210(例えば、物体106)を形成するように構成される、1つ以上の押出機202、204を有してもよい。適切な構築材料の例としては、熱可塑性プラスチック、高密度ポリエチレン(HDPE)、共晶金属、食品材料、ゴム、モデリング用粘土、プラスティシン、RTVシリコーン、陶材、金属粘土など、が挙げられる。
図3は、付加製造技術、例えば、ステレオリソグラフィ(SLA)、選択的レーザ焼結(SLS)などにより動作するように構成され得る付加製造システム300を図示する。示されているように、付加製造システム300は、構築材料306上にビーム304を照射することにより層ごとに三次元物体308(例えば、物体306)を形成するように構成されたレーザ302を有してもよい。ここで、適切な構築材料の例としては、フォトポリマー、熱可塑性プラスチック、金属粉末、セラミック粉末などが挙げられる。代替的な実施形態において、要素302は電子ビーム304ジェネレータでもよい。
図4は、三次元印刷(3DP)技術、例えば、カラージェット印刷(CJP)などにより動作するように構成され得る付加製造システム400を図示する。示されているように、付加製造システムは、それぞれのバインダー406、408を構築材料410上に提供することにより層ごとに三次元物体412(例えば、物体106)を形成するように構成される、1つ以上のプリントヘッド402、404を有してもよい。適切な構築材料の例としては、デンプン、石こうプラスター、砂、アクリル粉末、砂糖などが挙げられ、適切なバインダーの例としては、水または水ベースの液体、炭酸カルシウム、シアノアクリレート、他のタイプの液体などが挙げられる。
図1に戻ると、いくつかの例示的実践形態において、コンピューティング装置102は、付加製造システム104により形成される三次元物体106のための支持構造のタイプを特定するために使用されてもよい。これらの例示的実践形態に従って、コンピューティング装置は、三次元物体のソリッドモデルを受け取り得る。ソリッドモデルは、b−rep(境界表現)幾何学的定義を用いてまたは任意のポリゴン表現によって画定しうる。図5は、x軸およびy軸を含む直交軸、およびz軸を有する座標系502にある三次元物体のソリッドモデルのシェル500表現を図示し、高さhは、z軸の方向でシェルおよび対応するソリッドモデルの最下層領域504からの距離によって定められ得る。
A.支持構造の作成
例示的実践形態に従って、コンピューティング装置102は、ソリッドモデルの幾何学的分析を行い、支持構造を必要とする三次元物体の領域を同定し得る。いくつかの実施例において、ソリッドモデルは、ポリゴン(例えば、三角形)のメッシュから構成される。これらの実施例において、幾何学的分析は、隣接するポリゴンを、支持構造を必要とする三次元物体の領域中に収集する工程を含み得る。これは、いくつかの実施例において、下向きのポリゴンの同定、および、下向きのポリゴンの隣接するものを、支持構造を必要とする三次元物体の領域中に収集する工程によって達成され得る。下向きのポリゴンは、多くの異なる態様、例えば所定の閾角度を超える法線を有する態様で同定され得る。
いくつかの実施例において、コンピューティング装置102はさらに、1つ以上の発見的アルゴリズムを適用して領域を完成させ得る。これらのアルゴリズムのいくつかは、三角形のメッシュからなるソリッドモデルについて特に有用であるが、他のタイプのポリゴンのメッシュにも適用し得る。適切な発見的アルゴリズムの1つの例は、正三角形(ポリゴン)を含み長三角形または不均等に広がった三角形分割を避けるように、メッシュを再フォーマットする。適切な発見的アルゴリズムの別の例は、隣接三角形に基づいて下向きの三角形の同定を最適化し、当該隣接三角形に基づいて、より多くの三角形が当該領域に加えられる、または、三角形の群が合併または分離され得る。
適切な発見的アルゴリズムの別の例は、領域を平滑化し、そうでなければ閾角度近くに低下し得る三角形を含む領域によって作成され得る、ジグザグの輪郭を有する領域を回避する。この発見的アルゴリズムによって、隣接三角形または他の幾何学的数値に基づいて領域が平滑化され得る。
適切な発見的アルゴリズムのさらに別の例において、1つ以上のフィルタを適用して、支持構造を必要とする可能性が高い局所的最下構造と考えられない小さいまたは薄い区域のような、関連性が低いまたは全くない区域を除外してもよい。隣接三角形を分析して、支持構造作成のために関連性がないかもしれない任意の区域を、領域から排除してもよい。領域を最適化するために隣接データを分析し、隣接する頂点データにおいて前方を見ることによって、領域の境界あるいは領域中に含まれるまたは含まれない境界における、三角形の関連性が示され得る。領域の区分は、幾何学的方向およびどこに支持が必要かの理解の結果としてフィルタリングされてもよい。別のフィルタによって、最下層領域が同定されてもよく、必要に応じて、最下層領域においておよびそれを超えて隣接三角形が含まれるようにその収集を広げ、支持構造の配置のために十分な領域を作成してもよい。
例示的実践形態に従って、異なるタイプの支持構造を用いて、三次元物体106中の残留応力の効果を低減し得る。残留応力は、三次元物体における構築の失敗、幾何学歪みおよび亀裂の主な理由である。異なるタイプの支持構造を用いて、熱除去および固着を介してこれらの効果を低減してもよい。しかしながら、有限要素分析(FEA)のような技術により達成され得る構築プロセスのリアルな物理的シミュレーションは、著しくコンピュータを駆使するものであり、したがって数十時間を使うことが知られている。例示的実践形態のコンピューティング装置102は、適当な期間内に十分な近似結果を提供するための経験的知識に基づいて、FEAアプローチの代替案を用い得、これによってユーザは、製造のための三次元物体を準備しながらトライアンドエラーサイクルを最小限にすることができる。
より詳細には、コンピューティング装置102は、特定のタイプの支持構造を選択して、当該同定された領域に配置してもよく、当該領域においてソリッドモデルの応力およびワーピング分析に従ってそのようにしてもよい。応力およびワーピング分析は、全応力、コーナー応力および/またはワーピング分析を含み得る。応力およびワーピング分析は、ソリッドモデルに適用される1つ以上の発見的アルゴリズムを含んでもよく、三次元物体の対応する有限要素モデルの有限要素分析を除外し得る。次いで、コンピューティング装置は、三次元物体106および支持構造の形成に用いるための複数層のシェルを定める層データを形成してもよく、付加製造システム104により受け取られる層データからツールパスを作成してもよい。理解されるように、ソリッドモデルは通常、三次元物体の幾何形状を記述する。ソリッドモデルにより記述される三次元物体の表現は、シェルを介してである。
応力およびワーピング分析は、いくつかの発見的アルゴリズムにおける体積配分分析(volume distribution analyses)を含んでもよい。例えば、熱分布、熱伝達および熱吸収が、支持構造を必要とする領域を囲む体積(または表面積)の関数であると想定され得る。別の想定として、応力が体積の境界の周りに集中されてもよく、これによって、より選択的な分析によって分析のパフォーマンスを改良することが可能となる(計算の必要条件を低減する)。いくつかの実施例において、三次元データが分析されるが、結果は可視化されてもよく、分析は主に三次元物体の境界上で行われ、これによってもまた、計算の必要条件が低減され得る。
体積配分分析は、レイトレーシングとして行ってもよく、ここで、光線は半球に亘って均一に分布され、分析に方向寸法(direction dimension)を加える。光線の量および分析が行われる領域の密度は、様々な精度レベルを有する「解像度」パラメータにより定められ得る。次いで、後で使用するために、結果を三次元物体のソリッドモデルの境界上に(それと並べて)保存し得る。
図6は、いくつかの例示的実践形態に従った、ソリッドモデル602についての全応力分析600の態様を示す。いくつかの実施例において、全応力分析は、隣接ポリゴンのそれぞれについてベクトル604を生成することを含む。これによって、今度は、各隣接ポリゴンについて、複数の均一分布光線604を、隣接ポリゴンから、隣接ポリゴンを中心とする球608の上向き半球606の外周にトレースする工程、および、ソリッドモデルを介して隣接ポリゴンから伸長する複数の光線のものと一致する複数のベクトル610を加える工程が含まれ得る。当該複数のベクトルのベクトルは、隣接ポリゴンからソリッドモデルの外表面まで伸長し、加算されて隣接ポリゴンについてのベクトル612を生じる。次いで、当該領域についての全応力値は、隣接ポリゴンの各々についてのベクトルから特定され得る。
コーナー応力分析を、全応力と同様の態様で行ってもよいが、領域の境界における隣接ポリゴンに焦点を合わせてもよく、ベクトルの長さを制限してもよい。適切なコーナー応力分析に従えば、隣接ポリゴンのサブセットは、領域の境界上に存在する。コーナー応力分析は、隣接ポリゴンのサブセットの各々についてのベクトルの生成を含み得る。これによって、サブセットの各隣接ポリゴンについて、複数の均一分布光線を、隣接ポリゴンから、隣接ポリゴンを中心とする球の上向き半球の外周にトレースする工程、および、ソリッドモデルを介して隣接ポリゴンから伸長する複数の光線のものと一致する複数のベクトルを加える工程が含まれ得る。当該複数のベクトルのベクトルは、隣接ポリゴンから、ソリッドモデルの第1の外表面までまたは上向き半球の外周まで、伸長し、加算されて隣接ポリゴンについてのベクトルを生じる。次いで、当該領域についてのコーナー応力値は、隣接ポリゴンのサブセットの各々についてのベクトルから特定され得る。
図7は、いくつかの例示的実践形態に従った、ソリッドモデル702についてのワーピング分析700の態様を示す。他の分析と同様に、ワーピング分析は、隣接ポリゴンの各々についてのベクトルの生成を含み得る。これによって、各隣接ポリゴンについて、隣接ポリゴンからの法線に基づいてソリッドモデル内で近接領域704を同定する工程が含まれ、おそらく、より垂直な領域への適用を改良する多少の補正も含まれ得る。この分析は複数の均一分布光線706を、近接領域から、近接領域を中心とする球710の隣接半球708の外周まで、トレースする工程を含み得る。
図7にまた示されるように、近接領域からソリッドモデルの外表面まで伸長する第1の複数ベクトル712を加算して、第1ベクトル714を生成し得る。同様に、近接領域から、ソリッドモデルの第1の外表面まで、または、同じく近接領域を中心とするより小さい第2の球720の隣接半球718の外周まで、伸長する第2の複数ベクトル716を加算して、第2ベクトル722を生成し得る。第1ベクトルおよび第2ベクトルを加えて、隣接ポリゴンについてのベクトルを生成してもよく、当該領域についてのワーピング値を、隣接ポリゴンの各々についてのベクトルから特定し得る。
実行された正確な応力およびワーピング分析に関わらず、コンピューティング装置102は、当該同定された領域において配置される支持構造のタイプを選択してもよく、支持構造のタイプは、応力およびワーピング分析に基づいて支持構造の複数のタイプから選択される。これには、全応力、コーナー応力およびワーピングの数値に基づく支持構造のタイプの選択が含まれ得る。次いで、コンピューティング装置は、ソリッドモデルに基づいて三次元物体のシェルを生成してもよく、当該同定された領域においておよび当該選択されたタイプの支持構造を含む。
適切な支持構造の例示的なタイプには、スカート−タイプ支持構造、ソリッド−タイプ支持構造、コーン−タイプ支持構造、ソリッド−ウォール−タイプ支持構造、ウォール−タイプ支持構造、スカート−タイプ支持構造、格子−タイプ支持構造などが含まれる。図8は、図5のソリッドモデル500に類似したソリッドモデルについてのシェル800を示し、ソリッド−タイプ支持構造802、コーン−タイプ支持構造804、ソリッド−ウォール−タイプ支持構造806、ウォール−タイプ支持構造808および格子−タイプ支持構造810が含まれる。
概して、異なるタイプの支持構造を異なる目的に用いてもよい。例えば、コーンまたはソリッド−ウォール支持構造は、特定の点において三次元物体106の歪みまたはワーピングを防止するために固定の目的で用いてもよい。ソリッドまたは同様の支持構造を用いて、三次元物体の幾何形状を下方に伸長し、それによって、三次元物体の蓄積された応力が歪みを生じないことを確実にするように全応力に対処してもよい。他の実施例において、特定の層における薄い幾何形状または複数層間の同じ領域における大量の焼結の結果として熱を蓄積する領域において、熱を除去するためにウォール支持構造を用いてもよい。
次いで、例示的実践形態に従って、コンピューティング装置102は、領域の高さが閾高さ以下であり、かつ平均全応力値が閾全応力値を超える例において、スカート−タイプ支持構造を選択してもよい。これは、三次元物体106が形成されるプレートに物理的に近い領域に対応し得る。
コンピューティング装置102は、領域の高さが閾高さを超えるが第2の閾高さ以下であり、かつ平均全応力値が閾全応力値を超える例において、ソリッド−タイプ支持構造を選択してもよい。これにはさらに、領域の高さおよび平均全応力値に基づいてソリッド−タイプ支持構造において定められるギャップの付加が含まれ得る。図9は、図8のシェル800を示し、内部に定められたギャップ902を有するソリッド−タイプ支持構造802を強調する。
全応力、コーナー応力およびワーピングの数値には、最大値、平均値などが含まれ、支持構造のタイプは、これらの数値に基づいて選択され得る。例えば、コンピューティング装置102は、最大コーナー応力値が閾コーナー応力値を超える例において、コーン−タイプ支持構造またはソリッド−ウォール−タイプ支持構造を選択し得る。あるいは、コンピューティング装置は、平均ワーピング値が閾ワーピング値より小さい例において、ウォール−タイプ支持構造を選択し得る。ソリッド−タイプ支持構造と同様に、ウォール−タイプ支持構造は、平均ワーピング値に従ってパラメータ化される間隔、パターンおよびティース(teeth)パラメータを含んでもよい。
間隔、パターンおよびティースパラメータを用いて、生じた三次元物体106から支持構造を容易に除去する能力を維持しながら、支持構造が熱を除去する能力を増大し得る。これに関して、平均ワーピング値が高い場合、より最適な熱除去および歪み防止を達成するために、三次元物体とウォール−タイプ支持構造との間の接触面積を増加することが所望であり得る。しかしながら、接触面積を増加することによって処理後の支持構造を除去する工程における難しさが増大し得るので、コンピューティング装置102は、平均ワーピング値に基づいて上記のパラメータを介して接触面積を最適化してもよい。
B.各パラメータの複数ゾーン
例示的実践形態の別の態様に従って、コンピューティング装置102は、シェルを(複数)ゾーンに分割し、それによって、付加製造システム104によって形成される三次元物体106のゾーンを形成し得る。この態様によれば、パラメータ群は、付加製造システムについて画定または選択されて三次元物体の各ゾーンを形成してもよく、かつ、パラメータ群はゾーン間で異なってもよい。付加製造システムがレーザを含む実施例(例えば、レーザ302を有する付加製造システム300)において、パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータまたはレーザフォーカスの1つ以上についての数値を含んでもよく、これは、三次元物体が形成される際に構築材料が形成し得る溶融プールに影響を与え得る。
適切なパラメータの他の実施例には、層厚さ、ハッチングパターン(例えば、六角形、平行、チェックメートまたはそれらの組合せ)、境界(輪郭)の数の特性、内部(コア)幾何形状の容積サイズなどのような追加のパラメータが含まれてもよい。層厚さは、三次元物体106が形成される速度に影響を与えるかもしれず、より大きい厚さはより素早く形成される。ハッチングパターンは、例えば、螺旋状の連続的な、ジグザグのコアを有する六角形などの、異なる容積および幾何形状のタイプについて変化してもよい。外側の境界特性の数は、表面の質に影響を与えるかもしれず、形状の境界に沿って複数の輪郭を形成する(内部にオフセットする)ことにより、質の増加が達成し得る。また、内部(コア)幾何形状の容積サイズによって、より大きいコア容積を有する幾何形状について拡張パラメータの選択が可能となり得る。
いくつかの実施例において、パラメータ群は、三次元の容積をシェル上にオーバーレイするように、ユーザ入力により少なくとも部分的に選択されてもよい。これらの実施例において、三次元の容積は、三次元物体のゾーンを囲みそれによって画定し得る。次いで、三次元の容積は、ゾーンを形成するための付加製造システム104についてのパラメータ群の各々と関連付けられてもよい。図10は、例示的実践形態に従ってユーザに提示され得るグラフィカルユーザインターフェース(GUI)1000を示し、ここでは図8のシェル800が提示され得る。図示されるように、三次元の容積1002(時にバーチャルまたは非プリント物体と称される)は、シェルにオーバーレイしてもよく、三次元物体のゾーンを囲みそれによって画定し得る(別のゾーンは、当該ゾーンまたは任意の他のゾーンの外側として定められ得る)。ゾーンは互いにオーバーレイしてもよく、そのような場合にはそれらの間で優先度が定められてもよい。
いくつかの実施例において、ゾーンおよびそのパラメータは、完全にまたは適切な初期値のカスタマイズを介して、ユーザにより画定または選択され得る。ゾーンを画定する容積は、層データおよびツールパスが作成される間に設計環境内で画定され考慮され得る。いくつかの実施例において、ゾーンは、所定のまたはユーザ定義でもよいが、形成されるゾーン内で、構造の特定のタイプまたは製品について所定のパラメータにより達成し得る。以下により詳細に説明されるある実施例において、ゾーンは、支持構造が回避される複数暴露について自動的に画定されてもよい。別の実施例において、ゾーンは、後に三次元物体106から削られる過剰な構築材料について定められてもよく、このゾーンについて、パラメータは、後に除去されるゾーン内の構造のラフ/高速製造を記述し得る。別の同様の実施例において、ゾーンは、後に三次元物体から除去される支持構造を含むように定められてもよく、これらのゾーンについて、パラメータは、後に除去されるゾーン内の支持構造の高速製造を記述し得る。さらに別の実施例において、ゾーンは、極小−構造の格子を含むように最適化された構造について定められてもよく、パラメータは、格子の形成を最適化するように自動的に割り当てられてもよい。さらに別の実施例において、以下により詳細に説明されるように、ゾーンは、受け取った熱または残留応力分析三次元データ(例えば、有限要素に基づく分析ソリューションから)に基づいて自動的に定められてもよく、1つ以上のツールパスパラメータは、三次元物体のより良好な結果のために変えられてもよい。
ゾーンが定められた後、コンピューティング装置102は、付加製造システム104のために作成されるパスツール中のゾーンについて層データを融合し得る。例えば、図11に示されるように、コンピューティング装置は、例えば50マイクロメートル〜100マイクロメートルのオフセットから移動する際に、ゾーン間のパラメータ群において異なる任意のビームオフセットについてツールパス中に連続性を加え得る。
さらにあるいは代替的に、図12に示されるように、コンピューティング装置は、z軸の方向においてツールパス中にフィンガージョイントを含んでもよく、ここで三次元物体のゾーンが連結される。これには、xおよび/またはy軸の方向におけるゾーンへの水平オフセットの代替適用が含まれてもよく、ここでゾーンが連結される。いくつかの実施例において、垂直オフセットは、層厚さが1つのゾーンと別のゾーンとで異なる場合に、層厚さの間における最小公倍数に基づくオフセットの代替適用によって、ゾーン間の層厚さの相違の原因となり得る。図13Aは、ギャップまたはルーズな構築材料を生じ得るより理想的でない修正(altering)を示し、これは、図13Bに示されるように層厚さの間で一致するような修正を正しくかつ必要に応じて適用することによって回避されなければならない。
図14Aおよび14Bに示されるように、コンピューティング装置102は、xおよびy軸の方向で層ごとにツールパスを再設定してもよく、これには、ツールパスを再設定し、それによって、付加製造システム104により形成される三次元物体中にハッチラインを再設定する工程が含まれてもよい。再設定は、三次元物体106区分ラインに沿った脆弱性、および、そうでなければ三次元物体内に所望でないパターンを作成し得る特定のゾーンについてのパラメータ群の開始点を回避するための解決策である。このことは、異なるパラメータ群を有する異なる作成ゾーンの一部として多くのそのような区分ラインを作成する際に、最高ではないがより有効であり得る。ツールパスの位置付けを変え、それによってハッチラインを変えることにより、そうでなければ同じハッチラインの繰返しから生じ得る物体中の脆弱性を回避し得る。
図15は、補正せずに複数ゾーンから生じ得る輪郭の相違を示す。次いで、いくつかの実施例において、コンピューティング装置102は、各ゾーンについてツールパスの輪郭端点をオフセットしてもよく、これには、三次元物体のゾーンが連結される、ツールパスの輪郭端点においてツールパス中にアプローチおよびリトラクト(approach and retract)運動を加えることが含まれ得る。これによって、外側境界表面上の可視ライン、および内部の特徴の小さいズレが回避され得る。
図16に示されるように、ツールパス中の連続性が、異なる溶融プールサイズの段階的融合によってどのように加えられるかが示され、これは、輪郭またはハッチラインに同様に適用され得る。付加製造システム104がツールパスを段階的に変えられない場合、コンピューティング装置102は、ツールパス中でアプローチおよびリトラクト運動を自動的に含んでもよく、これによって、異なるビームオフセット間でスムーズな移行が生じ得る。
C.複数暴露
本開示の例示的実践形態のいくつかの態様において、ソリッドモデルの領域および対応する三次元物体106は、支持構造の除去がおそらく問題となるまたは不可能である場合に同定されてもよく、これは、いくつかの内部領域についての場合であり得る。支持構造を最小限ではなくとも低減するまたはそうでなければ回避するために、コンピューティング装置102は、徐々に凝固するまたは領域中の応力を低減するような特定のパラメータを有する複数暴露ゾーンを作成し得る。このパラメータは、構築材料が、レーザ速度およびビームパワーが減少または増加した複数暴露ゾーンで三次元物体を形成し、複数暴露ゾーンにおいて所望の結果に達し先へ進むまで複数回(例えば3または4回)同じ経路上でエネルギー暴露の低減を達成する状態を生じ得る。これらの態様において、三次元物体が他のゾーンを含む例において、この複数暴露ゾーンについての層データは、例えば上述のものと同様の態様で、それらの他のゾーンと融合されてもよい。
次に、いくつかの実施例において、シェルのゾーンへの分割には、シェルの別の領域を含み、したがって支持構造なしで形成される三次元物体を含む、複数暴露ゾーンの画定が含まれ得る。これらの実施例において、複数暴露ゾーンは、三次元物体の複数暴露ゾーンを形成するために、付加製造システムのためのパラメータ群と関連付けられてもよい。ここでパラメータ群は、ゾーンと複数暴露ゾーンの外側の三次元物体との間で異なってもよい。付加製造システム104がレーザを含むいくつかの実施例において(例えば、レーザ302を有する付加製造システム300)、複数暴露ゾーンについてのパラメータ群は、ゾーンの外側に関してエネルギー暴露を低減するビームパワーおよびレーザ速度を含む。コンピューティング装置により作成されるツールパスはまた、複数暴露ゾーン内でツールパスを反復し得る。図17A、17Bおよび17Cは、内部領域を含むシェル1700を図示し、コンピューティング装置102は、システム100が内部の支持構造を回避できるように特定のパラメータを有する複数暴露ゾーンを作成し得る。
D.温度/応力についてのツールパス最適化
本開示の例示的実践形態のいくつかの態様において、ゾーンは、熱または残留応力分析のいずれかまたは両方に基づいて自動的に画定されてもよく、かつ、三次元物体106のより良好な結果のために1つ以上のツールパスパラメータおよびその結果ツールパスを最適化またはそうでなければ変化(初期値から)あるいは設定(通常「設定」)するために使用されてもよい。適切な分析には、FEAのような技術による構築プロセスのリアルな物理的シミュレーションが含まれ、起こりうる位置ずれ、塑性変形および熱を低減するように任意の支持構造が加えられても加えられなくてもよい。これらの支持構造、並びに、三次元物体が形成されるプレート、および任意の他の機械加工情報は、分析に影響を与えるかもしれず明らかにされ得る。
いくつかの実施例において、熱および残留応力分析はそれぞれ、三次元物体106の層ごとまたは全ての層に亘って、熱データおよび応力データを出力する。このデータは、温度マップおよび応力マップのようないくつかの異なる形態のいずれかで出力されてもよく、シミュレーションされた付加製造プロセスに亘って蓄積される際の温度および応力のタイムラインが含まれ得る。いくつかの実施例において、応力データは、方向および強さの両方を含むベクトルデータでもよい。
本開示の例示的実践形態のこれらの態様に従って、ソリッドモデルおよび対応する三次元物体106のより所望でないが問題のない領域(1つ以上)が、温度データまたは応力データのいずれかまたは両方から同定され得る。いくつかの実施例において、この領域は、温度データが閾温度を超える温度を示す、あるいは、応力データが閾応力を超える強さまたは所望でない方向を有する応力を示す、領域である。当該領域は、温度データまたは応力データのいずれかまたは両方から自動的に、あるいは、それぞれ温度マップまたは応力マップのような温度データまたは応力データの表示からのユーザ入力を介して、コンピューティング装置102により同定される。
当該同定される領域中で応力によって生じる所望でない温度または位置ずれを最小限にするのでなくとも低減するまたはそうでなければ回避するために、コンピューティング装置102は、1つ以上のツールパスパラメータがこの目的のために設定されるゾーン(1つ以上)を作成し得る。いくつかの実施例において、ゾーンは、コンピューティング装置により自動的に、あるいはユーザ入力を介して、同定される領域と同時にかつそれに対応して作成される。これらの態様において、三次元物体が他のゾーンを含む例において、このゾーンについての層データは、例えば上述のものと同様の態様で、それらの他のゾーン(複数暴露ゾーンを含む)と融合され得る。
ツールパスパラメータおよび従ってゾーンについてのツールパスは、いくつかの異なる態様のいずれにおいて設定されてもよい。いくつかの実施例において、応力によって生じる所望でない温度および/または位置ずれに対処するために、ハッチングパターンまたはハッチラインを定めるツールパスパラメータを設定し、パターンを定める、あるいは、ハッチラインの長さ、位置付けまたは順序を設定し(初期値に関連する場合、変化、再設定または並べ換え)、ゾーン中で、温度を低下する、あるいは、位置ずれを低減(大きさ)または再設定(方向)する。より具体的な実施例において、ハッチラインは、ゾーン中で層上により均一に分布するように(およびそれにより温度を低下するように)設定される。別のより具体的な実施例において、ゾーン中の応力の方向におけるより長いラインに対し、ハッチラインの長さ、位置付けまたは順序は、ゾーン中の応力の方向とは異なる方向においてより短いラインを画定するように設定される。これらのおよび他の実施例のいずれにおいても、ツールパスパラメータは、所望の効果を達成するように、上述の他のパラメータに加えてまたはそれに代えて、設定されてもよい。
次に、いくつかの実施例において、シェルのゾーンへの分割には、シェルの別の領域を含み、したがって当該領域中で所望でない温度および/または応力に対処するためにツールパスパラメータを内部で設定する三次元物体を含む、ゾーンの画定が含まれ得る。これらの実施例において、ツールパスパラメータは、例えばFEA−ベース分析/複数分析から、三次元物体106の層ごとまたは全ての層に亘る温度データおよび/または応力データに基づいて特定され得る。ここでツールパスパラメータは、ゾーンとゾーンの外側の三次元物体との間で異なってもよい。図18は、三次元物体中で応力の方向に略垂直なハッチラインを方向付けるように、特定のツールパスパラメータを有するゾーンをコンピューティング装置102が作成し得る領域を含むシェル1800の平面図を図示する。図19は、上述のような位置ずれおよび応力に対処するように特定のツールパスパラメータを有するそれぞれのゾーンをコンピューティング装置102が作成し得る高い位置ずれおよび高い塑性変形の領域を含むシェル1900を図示する。
E.複数の押出機、レーザ、プリントヘッド
いくつかの実施例において、付加製造システム104は、三次元物体106を形成するために複数の押出機、レーザまたはプリントヘッドを含みかつ利用し得る。すなわち、付加製造システム104が複数の押出機を含む実施例において(例えば、押出機202、204を有する付加製造システム200)、付加製造システムは、それぞれの構築材料を分配するよう構成される第1および第2の押出機を含んでもよい。同様に、付加製造システムがレーザを含むいくつかの実施例において(例えば、レーザ302を有する付加製造システム300)、付加製造システムは、それぞれのビームを構築材料上に照射する第1および第2のレーザを含んでもよい。同様に、付加製造システムが複数のプリントヘッドを含むいくつかの実施例において(例えば、プリントヘッド402、404を有する付加製造システム400)、付加製造システムは、それぞれのバインダを構築材料上へ供給するよう構成される第1および第2のプリントヘッドを含んでもよい。
これらの実施例において、コンピューティング装置102は、それぞれ第1および第2の押出機、レーザまたはプリントヘッドのための第1および第2のツールパスを作成してもよく、第1および第2のツールパス中で第1および第2のゾーンについての層データを融合してもよい。このことは、上述のものと同様の態様で行われてもよいが、押出機、レーザまたはプリントヘッド間の同期化および校正、並びに異なるレーザ間のレーザ安定性の問題における課題にさらに対処し得る。コンピューティング装置は、自動的にまたはユーザ入力により、例えば、図20Aおよび20Bに示されるように内部の特徴と交差する分割を最小限にする、および/または、上述と同じまたは同様の融合技術を適用するなどの、使用を最適化する態様で、押出機、レーザまたはプリントヘッド間でソリッドモデルまたはシェルを分割し得る。図20Aおよび20Bに示されるように、内部で押出機、レーザまたはプリントヘッドの各々が動作し得る、ちょっとした非武装地帯(demilitarized zone)として作用するようにギャップが含まれもよい。いくつかの実施例において、ギャップは、層の間で押出機、レーザまたはプリントヘッドにより交互に被覆されてもよく(1つの層について図20A、および別の層について図20B)、押出機、レーザまたはプリントヘッドの各々はそれぞれのハッチパターンを適用する。システム100は、構造を最適化し得る。より大きい(システムをより自由にする)または非常に狭い(特定の公差値)ものでもよく、いくつかの実施例においてユーザ制御されてもよい。
図21には、本開示のいくつかの例示的実践形態に従って、付加製造によって形成される三次元物体のための支持構造のタイプを特定する方法2100における様々の動作が図示される。ブロック2102、2104に示されるように、本発明の方法は、三次元物体のソリッドモデルを受け取る工程、および、支持構造を必要とする三次元物体の領域を同定するためにソリッドモデルの幾何学的分析を行う工程を含む。ブロック2106に示されるように、本発明の方法は、当該同定される領域においてソリッドモデルの応力およびワーピング分析を行う工程を含み、応力およびワーピング分析は、ソリッドモデルに適用される1つ以上の発見的アルゴリズムを含み、三次元物体の対応する有限要素モデルの有限要素分析を除外する。ブロック2108に示されるように、本発明の方法は、当該同定された領域に配置される支持構造のタイプを選択する工程を含み、支持構造のタイプは、実施される応力およびワーピング分析に基づいて複数のタイプの支持構造から選択される。ブロック2110に示されるように、本発明の方法は、当該同定される領域におけるかつ当該選択されるタイプの支持構造を含む、ソリッドモデルに基づいて、三次元物体のシェルを生成する工程を含む。
図22には、本開示のいくつかの例示的実践形態に従って、付加製造によって形成される三次元物体についてのパラメータの複数ゾーンを作成する方法2200における様々の動作が図示される。ブロック2202、2204、2206に示されるように、本発明の方法は、三次元物体のソリッドモデルを受け取る工程、ソリッドモデルに基づいて三次元物体のシェルを生成する工程、および、シェルをゾーンに分割しそれによって三次元物体のゾーンを形成する工程を含む。ブロック2208に示されるように、本発明の方法は、三次元物体のゾーンの各々を形成するための付加製造システムについてのパラメータ群を画定または選択する工程を含み、パラメータ群はゾーン間で異なる。ブロック2210に示されるように、本発明の方法は、ゾーンおよびそれによって三次元物体の形成において用いるためのシェルの複数の層を画定する層データを形成する工程を含む。ブロック2212に示されるように、本発明の方法は、層データからツールパス(例えば単一のツールパス)を作成する工程を含み、構築材料を操作して層ごとに三次元物体を形成するよう構成される付加製造システムによって受け取られるための、ゾーンについて層データを融合する工程を含む。
図23は、いくつかの実施例において、図1のコンピューティング装置102に対応し得る装置2300を示している。いくつかの実施例において、当該装置は、互いに接続されているかまたはそうでなければ、いくつかの異なる方式において、例えば、ワイヤによってまたは有線もしくは無線ネットワークなどによって直接的または間接的に互いに通信している、2つ以上の装置によって提供されてもよい。
概して、当該装置2300は、1つ以上の定置式または携帯式の電子デバイスを含み得るか、それらを具備し得るか、またはそれらにおいて具現化され得る。適切な電子デバイスの例としては、スマートフォン、タブレットコンピュータ、ラップトップコンピュータ、デスクトップコンピュータ、ワークステーションコンピュータ、サーバコンピュータなどが含まれる。当該装置は、多くの構成要素、例えば、メモリ2304に接続されたプロセッサ2302など、の各々のうちの1つ以上を具備し得る。これに関して、当該装置は、例示的実践形態に従って、単独で、あるいはコンピュータ可読記憶媒体からの1つ以上のコンピュータプログラムコード命令、プログラム命令、または実行可能なコンピュータ可読プログラムコード命令(場合により、一般的に「コンピュータプログラム」、例えば、ソフトウェア、ファームウェアなど、と呼ばれる)の指示において、オペレーションとして機能するように、またはそうでなければオペレーションを実施するように構成されたハードウェアを含みうる。
当該プロセッサ2302は、概して、例えば、データ、コンピュータプログラム、および/または他の適切な電子情報などの情報を処理することが可能なコンピュータハードウェアの任意の一部である。当該プロセッサは、電子回路の集合から構成され、当該電子回路のいくつかは、1つの集積回路または相互接続された複数の集積回路としてパッケージ化されうる(集積回路は、場合により、より一般的には、「チップ」と呼ばれる)。当該プロセッサは、コンピュータプログラムを実行するように構成されてもよく、当該コンピュータプログラムは、基板上のプロセッサに保存されうるか、さもなければ(同じまたは別の装置の)メモリに保存されうる。
メモリ2304は、一般的に、情報、例えば、データ、コンピュータプログラム、および/または他の適切な情報など、を一時的および/または永続的に保存することができる、コンピュータハードウェアの任意の一部である。当該メモリは、揮発性および/または不揮発性メモリを含み得、かつ、固定されているかまたは取り外し可能でもよい。様々な例において、当該メモリは、コンピュータ可読記憶媒体とも呼ばれ得、これは、コンピュータ可読伝送媒体、例えば、ある場所から別の場所へと情報を運ぶことができる一時的電子信号などとは、情報を保存することができる非一過性のデバイスとして区別可能であり得る。本明細書において説明されるコンピュータ可読媒体は、概して、コンピュータ可読記憶媒体またはコンピュータ可読伝送媒体を意味し得る。
メモリ2304に加えて、プロセッサ2302もまた、情報を表示、送信、および/または受信するための1つ以上のインタフェースに接続されてもよい。当該インタフェースは、通信インタフェース2306および/または1つ以上のユーザインタフェースを含み得る。当該通信インタフェースは、例えば、当該装置2300および他の装置またはネットワークなどへおよび/またはそれらから、情報を送信および/または受信するように構成され得る。当該通信インタフェースは、物理的(有線)および/または無線通信リンクによって情報を送信および/または受信するように構成され得る。
当該ユーザインタフェースは、ディスプレイ2308および/または1つ以上のユーザ入力インタフェース2310を含み得る。当該ディスプレイは、ユーザに対して情報を提示するように、さもなければ情報を表示するように構成され得る。当該ユーザ入力インタフェースは、例えば、処理、保存、および/または表示などのために、装置2300へユーザから情報を受け取るように構成され得る。ユーザ入力インタフェースの適切な例としては、マイクロフォン、イメージもしくはビデオキャプチャデバイス、キーボードもしくはキーパッド、ジョイスティック、タッチセンサー式表面(タッチスクリーンから分離されているか、またはタッチスクリーンに統合された)、バイオメトリックセンサーなどが挙げられる。ユーザインタフェースはさらに、周辺機器、例えば、プリンタ、スキャナ、付加製造システムなどと通信するための1つ以上のインタフェースを含み得る。
上記において示されるように、本明細書において説明されるコンピューティング装置102の機能を実施するために、プログラムコード命令は、メモリ(例えば、メモリ2304)に保存され、プロセッサ(例えば、プロセッサ2302)によって実行され得る。理解されるように、任意の適切なプログラムコード命令が、特定のマシンを製造するためにコンピュータ可読記憶媒体からプログラム可能な装置(例えば、装置2300)へロードされ得、それにより、当該特定のマシンは、本明細書において指定される機能を実践するための手段となる。これらのプログラムコード命令は、特定の態様で機能するようにコンピュータ、プロセッサ、または他のプログラム可能な装置に命令し、それによって特定のマシンまたは特定の製造物を生成できる、コンピュータ可読記憶媒体に保存されてもよい。コンピュータ可読記憶媒体に保存される命令は、製造物を製造し得、この場合、当該製造物は、本明細書において説明される機能を実践するための手段となる。当該プログラムコード命令は、コンピュータ可読記憶媒体から取得され、かつ、コンピュータ、プロセッサ、または他のプログラム可能な装置にロードされて、当該コンピュータ、プロセッサ、または他のプログラム可能な装置において、またはそれらによって実施されるべきオペレーションを実行するように当該コンピュータ、プロセッサ、または他のプログラム可能な装置を構成し得る。
1つの命令が、一度に取得、ロード、および実行されるように、プログラムコード命令の取得、ロード、および実行が連続して実施されてもよい。いくつかの例示的実践形態において、複数の命令が一緒に、取得、ロード、および/または実行されるように、取得、ロード、および/または実行が並行して実施されてもよい。コンピュータ、プロセッサ、または他のプログラム可能な装置によって実行される命令が、本明細書において説明される機能を実践するためのオペレーションを提供するように、プログラムコード命令の実行によって、コンピュータによって実践されるプロセスが作成されてもよい。
プロセッサによる命令の実施、またはコンピュータ可読記憶媒体での命令の保存は、指定された機能を実践するためのオペレーションの組み合わせをサポートする。1つ以上の機能、および機能の組み合わせは、専用ハードウェアベースのコンピュータシステムおよび/または指定された機能を実行するプロセッサ、あるいは専用ハードウェアとプログラムコード命令との組み合わせによって実践され得ることもまた理解されるであろう。
本開示の例示的実践形態の態様に関するさらなる情報は、本明細書の添付に見られる。
前述の説明および関連する図面において提示される教示を参考にして、当業者は、本明細書において説明される本開示の多くの変更および他の実践形態を想到するであろう。したがって、本開示が、開示される特定の実践形態に限定されるものではないこと、ならびに変更および他の実践形態も添付の請求項の範囲内に含まれることが意図されることが理解されるべきである。さらに、前述の説明および関連する図面は、要素および/または機能のある特定の例示的組合せとの関連において例示的実践形態について説明しているが、要素および/または機能の別の組合せも、添付の請求項の範囲から逸脱することなく、代替の実践形態によって提供され得ることは理解されるべきである。これに関して、例えば、上記において明確に説明したものとは異なる、要素および/または機能の組合せも、添付の請求項のうちのいくつかにおいて説明され得るように想到される。本明細書において特定の用語が用いられているが、それらは、一般的かつ記述的な意味のみにおいて使用されるのであって、限定を目的とするものではない。
他の実施形態
1. 付加製造によって形成される三次元物体のためのパラメータの複数ゾーンを作成する装置であって、該装置が、プロセッサと、該プロセッサによる実行に応じて前記装置に少なくとも以下の工程を実行させる実行可能な命令を保存するメモリとを含む:
前記三次元物体のソリッドモデルを受け取る工程;
前記ソリッドモデルに基づいて前記三次元物体のシェルを生成する工程;
前記シェルをゾーンに分割し、それによって前記三次元物体のゾーンを形成する工程;
前記付加製造システムのための、前記ゾーン間で異なるパラメータ群を画定または選択して、前記三次元物体の前記ゾーンの各々を形成する工程;
前記ゾーンおよびそれによって前記三次元物体の形成において用いるための前記シェルの複数の層を画定する層データを形成する工程;および
構築材料を操作して層ごとに前記三次元物体を形成するよう構成される付加製造システムによって受け取られるために、前記ゾーンについての前記層データの融合を前記装置に実行させる工程を含む、前記層データからツールパスを作成する工程。
2. 前記付加製造システムが、構築材料上にビームを照射し層ごとに前記三次元物体を形成するよう構成されるレーザを有し、前記パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータ、レーザフォーカス、層厚さ、ハッチングパターン、境界の数または輪郭特性の1つ以上についての数値を含むことを特徴とする、実施形態1に記載の装置。
3. 前記三次元物体の前記シェルが、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、
前記ツールパスの作成を実行される前記装置が、以下の工程の1つ以上を実行される工程:(a)前記ゾーン間でパラメータ群において異なる任意のビームオフセットについて前記ツールパス中に連続性を加える工程;(b)前記三次元物体のゾーンが連結される、z軸の方向における前記ツールパス中にフィンガージョイントを含む工程;(c)xおよびy軸の方向において、前記ツールパスを層ごとに再設定する工程;または(d)各ゾーンについて前記ツールパスの輪郭端点をオフセットする工程、
を含むことを特徴とする、実施形態2に記載の装置。
4. 前記フィンガージョイントを含む工程(b)を実行される前記装置が、前記ゾーンが連結されるxおよび/またはy軸の方向において前記ゾーンにオフセットを交互に与えるように実行される工程を含むことを特徴とする、実施形態3に記載の装置。
5. 前記ツールパスを再設定する工程(c)を実行される前記装置が、前記ツールパスを再設定し、それによって、前記付加製造システムにより形成される前記三次元物体中のハッチラインを再設定するよう実行される工程を含むことを特徴とする、実施形態3に記載の装置。
6. 前記輪郭をオフセットする工程(d)を実行される前記装置が、前記三次元物体の前記ゾーンが連結される、前記ツールパスの輪郭端点における前記ツールパス中でアプローチおよびリトラクト動作を加えるよう実行される工程を含むことを特徴とする、実施形態3に記載の装置。
7. 前記シェルのゾーンへの分割を実行される前記装置が、ユーザ入力を受け取って三次元ボリュームを前記シェル上にオーバーレイするよう実行される工程を含み、前記三次元ボリュームが前記三次元物体の前記ゾーンを囲みそれによって画定することを特徴とする、実施形態1に記載の装置。
8. 前記ゾーンが、熱分析および応力分析の1つ以上に基づいて自動的に確定されることを特徴とする、実施形態1に記載の装置。
9. 付加製造によって形成される三次元物体のためのパラメータの複数ゾーンを作成する方法であって、
前記三次元物体のソリッドモデルを受け取る工程;
前記ソリッドモデルに基づいて前記三次元物体のシェルを生成する工程;
前記シェルをゾーンに分割し、それによって前記三次元物体のゾーンを形成する工程;
前記付加製造システムのための、前記ゾーン間で異なるパラメータ群を画定または選択して、前記三次元物体の前記ゾーンの各々を形成する工程;
前記ゾーンおよびそれによって前記三次元物体の形成において用いるための前記シェルの複数の層を画定する層データを形成する工程;および
構築材料を操作して層ごとに前記三次元物体を形成するよう構成される付加製造システムによって受け取られるために、前記ゾーンについての前記層データの融合を前記装置に実行させる工程を含む、前記層データからツールパスを作成する工程、
を含む方法。
10. 前記付加製造システムが、構築材料上にビームを照射し層ごとに前記三次元物体を形成するよう構成されるレーザを有し、前記パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータ、レーザフォーカス、層厚さ、ハッチングパターン、境界の数または輪郭特性の1つ以上についての数値を含むことを特徴とする、実施形態9に記載の方法。
11. 前記三次元物体の前記シェルが、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、
前記ツールパスを作成する工程が、以下の工程の1つ以上:(a)前記ゾーン間でパラメータ群において異なる任意のビームオフセットについて前記ツールパス中に連続性を加える工程;(b)前記三次元物体のゾーンが連結される、z軸の方向における前記ツールパス中にフィンガージョイントを含む工程;(c)xおよびy軸の方向において、前記ツールパスを層ごとに再設定する工程;または(d)各ゾーンについて前記ツールパスの輪郭端点をオフセットする工程、
を含むことを特徴とする、実施形態10に記載の方法。
12. 前記フィンガージョイントを含む工程(b)が、前記ゾーンが連結されるxおよび/またはy軸の方向において前記ゾーンにオフセットを交互に与える工程を含むことを特徴とする、実施形態11に記載の方法。
13. 前記ツールパスを再設定する工程(c)が、前記ツールパスを再設定し、それによって、前記付加製造システムにより形成される前記三次元物体中のハッチラインを再設定する工程を含むことを特徴とする、実施形態11に記載の方法。
14. 前記輪郭をオフセットする工程(d)が、前記三次元物体の前記ゾーンが連結される、前記ツールパスの輪郭端点における前記ツールパス中でアプローチおよびリトラクト動作を加える工程を含むことを特徴とする、実施形態11に記載の方法。
15. 前記シェルをゾーンに分割する工程が、ユーザ入力を受け取って三次元ボリュームを前記シェル上にオーバーレイする工程を含み、前記三次元ボリュームが前記三次元物体の前記ゾーンを囲みそれによって画定することを特徴とする、実施形態9に記載の方法。
16. 前記ゾーンが、熱分析および応力分析の1つ以上に基づいて自動的に確定されることを特徴とする、実施形態9に記載の方法。
17. 付加製造によって形成される三次元物体のためのパラメータの複数ゾーンを作成するコンピュータ可読記憶媒体であって、該コンピュータ可読記憶媒体が、非一過性であり、プロセッサによる実行に応じて装置に少なくとも以下の工程を実行させる内部に保存されたコンピュータ可読プログラムコード部分を有する:
前記三次元物体のソリッドモデルを受け取る工程;
前記ソリッドモデルに基づいて前記三次元物体のシェルを生成する工程;
前記シェルをゾーンに分割し、それによって前記三次元物体のゾーンを形成する工程;
前記付加製造システムのための、前記ゾーン間で異なるパラメータ群を画定または選択して、前記三次元物体の前記ゾーンの各々を形成する工程;
前記ゾーンおよびそれによって前記三次元物体の形成において用いるための前記シェルの複数の層を画定する層データを形成する工程;および
構築材料を操作して層ごとに前記三次元物体を形成するよう構成される付加製造システムによって受け取られるために、前記ゾーンについての前記層データの融合を前記装置に実行させる工程を含む、前記層データからツールパスを作成する工程。
18. 前記付加製造システムが、構築材料上にビームを照射し層ごとに前記三次元物体を形成するよう構成されるレーザを有し、前記パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータ、レーザフォーカス、層厚さ、ハッチングパターン、境界の数または輪郭特性の1つ以上についての数値を含むことを特徴とする、実施形態17に記載のコンピュータ可読記憶媒体。
19. 前記三次元物体の前記シェルが、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、
前記ツールパスの作成を実行される前記装置が、以下の工程の1つ以上を実行される工程:(a)前記ゾーン間でパラメータ群において異なる任意のビームオフセットについて前記ツールパス中に連続性を加える工程;(b)前記三次元物体のゾーンが連結される、z軸の方向における前記ツールパス中にフィンガージョイントを含む工程;(c)xおよびy軸の方向において、前記ツールパスを層ごとに再設定する工程;または(d)各ゾーンについて前記ツールパスの輪郭端点をオフセットする工程、
を含むことを特徴とする、実施形態18に記載のコンピュータ可読記憶媒体。
20. 前記フィンガージョイントを含む工程(b)を実行される前記装置が、前記ゾーンが連結されるxおよび/またはy軸の方向において前記ゾーンにオフセットを交互に与えるように実行される工程を含むことを特徴とする、実施形態19に記載のコンピュータ可読記憶媒体。
21. 前記ツールパスを再設定する工程(c)を実行される前記装置が、前記ツールパスを再設定し、それによって、前記付加製造システムにより形成される前記三次元物体中のハッチラインを再設定するよう実行される工程を含むことを特徴とする、実施形態19に記載のコンピュータ可読記憶媒体。
22. 前記輪郭をオフセットする工程(d)を実行される前記装置が、前記三次元物体の前記ゾーンが連結される、前記ツールパスの輪郭端点における前記ツールパス中でアプローチおよびリトラクト動作を加えるよう実行される工程を含むことを特徴とする、実施形態19に記載のコンピュータ可読記憶媒体。
23. 前記シェルのゾーンへの分割を実行される前記装置が、ユーザ入力を受け取って三次元ボリュームを前記シェル上にオーバーレイするよう実行される工程を含み、前記三次元ボリュームが前記三次元物体の前記ゾーンを囲みそれによって画定することを特徴とする、実施形態17に記載のコンピュータ可読記憶媒体。
24. 前記ゾーンが、熱分析および応力分析の1つ以上に基づいて自動的に確定されることを特徴とする、実施形態17に記載のコンピュータ可読記憶媒体。
100 システム
102 コンピューティング装置102
104 付加製造システム
106 三次元物体
200 付加製造システム
300 付加製造システム
400 付加製造システム
500 シェル
600 全応力分析
700 ワーピング分析
800 シェル
1700 シェル
1800 シェル
1900 シェル

Claims (15)

  1. 付加製造システムを用いる付加製造によって形成される三次元物体のための複数ゾーンを形成するパラメータ作成する装置であって、該装置が、プロセッサと、該プロセッサによる実行に応じて前記装置に少なくとも以下の工程を実行させる実行可能な命令を保存するメモリとを含み:
    前記三次元物体のソリッドモデルを受け取る工程;
    前記ソリッドモデルに基づいて前記三次元物体のシェルを生成する工程;
    前記シェルをゾーンに分割し、それによって前記三次元物体のゾーンを形成する工程;
    前記付加製造システムのための、前記三次元物体の前記ゾーン間で異なるパラメータ群を画定または選択して、前記三次元物体の前記ゾーンの各々を形成する工程;
    前記ゾーンおよびそれによって前記三次元物体の形成において用いるための前記シェルの複数の層を画定する層データを形成する工程;および
    構築材料を操作して層ごとに前記三次元物体を形成するよう構成される付加製造システムによって受け取られるために、前記ゾーンについての前記層データの融合を前記装置に実行させる工程を含む、前記層データからツールパスを作成する工程、
    前記付加製造システムが、構築材料上にビームを照射し層ごとに前記三次元物体を形成するよう構成されるレーザを有し、前記パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータ、レーザフォーカス、層厚さ、ハッチングパターン、境界の数または輪郭特性の1つ以上についての数値を含み、
    前記三次元物体の前記シェルが、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、
    前記ツールパスの作成を実行される前記装置が、以下の工程の1つ以上を実行される工程:(a)前記ゾーン間でパラメータ群において異なる任意のビームオフセットについて前記ツールパス中に連続性を加える工程;(b)前記三次元物体のゾーンが連結される、z軸の方向における前記ツールパス中にフィンガージョイントを含む工程;(c)xおよびy軸の方向において、前記ツールパスを層ごとに再設定する工程;または(d)各ゾーンについて前記ツールパスの輪郭端点をオフセットする工程を含む、
    装置。
  2. 前記フィンガージョイントを含む工程(b)を実行される前記装置が、前記ゾーンが連結されるxおよび/またはy軸の方向において前記ゾーンにオフセットを交互に与えるように実行される工程を含むことを特徴とする、請求項1に記載の装置。
  3. 前記ツールパスを再設定する工程(c)を実行される前記装置が、前記ツールパスを再設定し、それによって、前記付加製造システムにより形成される前記三次元物体中のハッチラインを再設定するよう実行される工程を含むことを特徴とする、請求項1または2に記載の装置。
  4. 前記輪郭をオフセットする工程(d)を実行される前記装置が、前記三次元物体の前記ゾーンが連結される、前記ツールパスの輪郭端点における前記ツールパス中でアプローチおよびリトラクト動作を加えるよう実行される工程を含むことを特徴とする、請求項1〜3のいずれか1項に記載の装置。
  5. 前記シェルのゾーンへの分割を実行される前記装置が、ユーザ入力を受け取って三次元ボリュームを前記シェル上にオーバーレイするよう実行される工程を含み、前記三次元ボリュームが前記三次元物体の前記ゾーンを囲みそれによって画定することを特徴とする、請求項1〜4のいずれか1項に記載の装置。
  6. 付加製造システムを用いる付加製造によって形成される三次元物体のための複数ゾーンを形成するパラメータ作成する方法であって、
    前記三次元物体のソリッドモデルを受け取る工程;
    前記ソリッドモデルに基づいて前記三次元物体のシェルを生成する工程;
    前記シェルをゾーンに分割し、それによって前記三次元物体のゾーンを形成する工程;
    前記付加製造システムのための、前記三次元物体の前記ゾーン間で異なるパラメータ群を画定または選択して、前記三次元物体の前記ゾーンの各々を形成する工程;
    前記ゾーンおよびそれによって前記三次元物体の形成において用いるための前記シェルの複数の層を画定する層データを形成する工程;および
    構築材料を操作して層ごとに前記三次元物体を形成するよう構成される付加製造システムによって受け取られるために、前記ゾーンについての前記層データの融合を前記装置に実行させる工程を含む、前記層データからツールパスを作成する工程、
    を含み、
    前記付加製造システムが、構築材料上にビームを照射し層ごとに前記三次元物体を形成するよう構成されるレーザを有し、前記パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータ、レーザフォーカス、層厚さ、ハッチングパターン、境界の数または輪郭特性の1つ以上についての数値を含み、
    前記三次元物体の前記シェルが、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、
    前記ツールパスを作成する工程が、以下の工程の1つ以上:(a)前記ゾーン間でパラメータ群において異なる任意のビームオフセットについて前記ツールパス中に連続性を加える工程;(b)前記三次元物体のゾーンが連結される、z軸の方向における前記ツールパス中にフィンガージョイントを含む工程;(c)xおよびy軸の方向において、前記ツールパスを層ごとに再設定する工程;または(d)各ゾーンについて前記ツールパスの輪郭端点をオフセットする工程、を含む、
    方法。
  7. 前記フィンガージョイントを含む工程(b)が、前記ゾーンが連結されるxおよび/またはy軸の方向において前記ゾーンにオフセットを交互に与える工程を含むことを特徴とする、請求項6に記載の方法。
  8. 前記ツールパスを再設定する工程(c)が、前記ツールパスを再設定し、それによって、前記付加製造システムにより形成される前記三次元物体中のハッチラインを再設定する工程を含むことを特徴とする、請求項6または7に記載の方法。
  9. 前記輪郭をオフセットする工程(d)が、前記三次元物体の前記ゾーンが連結される、前記ツールパスの輪郭端点における前記ツールパス中でアプローチおよびリトラクト動作を加える工程を含むことを特徴とする、請求項6〜8のいずれか1項に記載の方法。
  10. 前記シェルをゾーンに分割する工程が、ユーザ入力を受け取って三次元ボリュームを前記シェル上にオーバーレイする工程を含み、前記三次元ボリュームが前記三次元物体の前記ゾーンを囲みそれによって画定することを特徴とする、請求項6〜9のいずれか1項に記載の方法。
  11. 付加製造システムを用いる付加製造によって形成される三次元物体のための複数ゾーンを形成するパラメータ作成するコンピュータ可読記憶媒体であって、該コンピュータ可読記憶媒体が、非一過性であり、プロセッサによる実行に応じて装置に少なくとも以下の工程を実行させる内部に保存されたコンピュータ可読プログラムコード部分を有し:
    前記三次元物体のソリッドモデルを受け取る工程;
    前記ソリッドモデルに基づいて前記三次元物体のシェルを生成する工程;
    前記シェルをゾーンに分割し、それによって前記三次元物体のゾーンを形成する工程;
    前記付加製造システムのための、前記三次元物体の前記ゾーン間で異なるパラメータ群を画定または選択して、前記三次元物体の前記ゾーンの各々を形成する工程;
    前記ゾーンおよびそれによって前記三次元物体の形成において用いるための前記シェルの複数の層を画定する層データを形成する工程;および
    構築材料を操作して層ごとに前記三次元物体を形成するよう構成される付加製造システムによって受け取られるために、前記ゾーンについての前記層データの融合を前記装置に実行させる工程を含む、前記層データからツールパスを作成する工程、
    前記付加製造システムが、構築材料上にビームを照射し層ごとに前記三次元物体を形成するよう構成されるレーザを有し、前記パラメータ群は、ビームパワー、ビームオフセット、レーザ速度、レーザ時間遅延、レーザ加速パラメータ、レーザフォーカス、層厚さ、ハッチングパターン、境界の数または輪郭特性の1つ以上についての数値を含み、
    前記三次元物体の前記シェルが、xおよびy軸を含む直交軸、およびz軸を有する座標系にあり、
    前記ツールパスの作成を実行される前記装置が、以下の工程の1つ以上を実行される工程:(a)前記ゾーン間でパラメータ群において異なる任意のビームオフセットについて前記ツールパス中に連続性を加える工程;(b)前記三次元物体のゾーンが連結される、z軸の方向における前記ツールパス中にフィンガージョイントを含む工程;(c)xおよびy軸の方向において、前記ツールパスを層ごとに再設定する工程;または(d)各ゾーンについて前記ツールパスの輪郭端点をオフセットする工程、を含む、
    コンピュータ可読記憶媒体。
  12. 前記フィンガージョイントを含む工程(b)を実行される前記装置が、前記ゾーンが連結されるxおよび/またはy軸の方向において前記ゾーンにオフセットを交互に与えるように実行される工程を含むことを特徴とする、請求項11に記載のコンピュータ可読記憶媒体。
  13. 前記ツールパスを再設定する工程(c)を実行される前記装置が、前記ツールパスを再設定し、それによって、前記付加製造システムにより形成される前記三次元物体中のハッチラインを再設定するよう実行される工程を含むことを特徴とする、請求項11または12に記載のコンピュータ可読記憶媒体。
  14. 前記輪郭をオフセットする工程(d)を実行される前記装置が、前記三次元物体の前記ゾーンが連結される、前記ツールパスの輪郭端点における前記ツールパス中でアプローチおよびリトラクト動作を加えるよう実行される工程を含むことを特徴とする、請求項11〜13のいずれか1項に記載のコンピュータ可読記憶媒体。
  15. 前記シェルのゾーンへの分割を実行される前記装置が、ユーザ入力を受け取って三次元ボリュームを前記シェル上にオーバーレイするよう実行される工程を含み、前記三次元ボリュームが前記三次元物体の前記ゾーンを囲みそれによって画定することを特徴とする、請求項11〜14のいずれか1項に記載のコンピュータ可読記憶媒体。
JP2019511916A 2016-09-01 2017-08-31 三次元物体の改良された付加製造 Active JP6749479B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662382543P 2016-09-01 2016-09-01
US62/382,543 2016-09-01
US201662434136P 2016-12-14 2016-12-14
US62/434,136 2016-12-14
PCT/US2017/049519 WO2018045120A1 (en) 2016-09-01 2017-08-31 Improved additive manufacturing of a three-dimensional object

Publications (2)

Publication Number Publication Date
JP2019529164A JP2019529164A (ja) 2019-10-17
JP6749479B2 true JP6749479B2 (ja) 2020-09-02

Family

ID=59846701

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019511916A Active JP6749479B2 (ja) 2016-09-01 2017-08-31 三次元物体の改良された付加製造
JP2019511842A Active JP6749478B2 (ja) 2016-09-01 2017-08-31 三次元物体の改良された付加製造

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019511842A Active JP6749478B2 (ja) 2016-09-01 2017-08-31 三次元物体の改良された付加製造

Country Status (5)

Country Link
US (2) US11298881B2 (ja)
EP (2) EP3507079B1 (ja)
JP (2) JP6749479B2 (ja)
CN (2) CN109922943B (ja)
WO (2) WO2018045123A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207840B2 (en) * 2018-11-26 2021-12-28 The Boeing Company Pre-fabricated supports, a system for additive manufacturing a three-dimensional object, and a related method
US11931767B2 (en) 2017-04-21 2024-03-19 Desktop Metal, Inc. Metering build material in three-dimensional (3D) printing using a tool
US11772329B2 (en) * 2017-09-28 2023-10-03 Hitachi, Ltd. Input data creation device for powder additive manufacturing
WO2019089005A1 (en) * 2017-10-31 2019-05-09 Hewlett-Packard Development Company, L.P. 3d object parts and cage fabrication
WO2019099547A2 (en) * 2017-11-14 2019-05-23 Digital Alloys Incorporated Interactive slicing methods and systems for generating toolpaths for printing three-dimensional objects
US10940533B2 (en) 2017-12-26 2021-03-09 Desktop Metal, Inc. System and method for controlling powder bed density for 3D printing
US10906249B2 (en) * 2018-01-05 2021-02-02 Desktop Metal, Inc. Method for reducing layer shifting and smearing during 3D printing
EP3549746A1 (en) * 2018-04-06 2019-10-09 Bond high performance 3D technology B.V. Generating adapted control instructions for a 3d printing process
CN108984827B (zh) * 2018-06-05 2020-08-14 同济大学 一种基于力流引导的高性能增材制造方法
WO2019245529A1 (en) * 2018-06-19 2019-12-26 Hewlett-Packard Development Company, L.P. Determining object model types
US11847388B2 (en) * 2018-07-10 2023-12-19 Materialise N.V. Systems and methods for reducing rigid body motion in simulated models
JP2020041168A (ja) * 2018-09-06 2020-03-19 トヨタ自動車株式会社 金属積層造形方法
DE102018220365A1 (de) * 2018-11-27 2020-05-28 Adidas Ag Verfahren zur Herstellung mindestens eines Teils eines Sportartikels
EP3898751A1 (en) 2018-12-21 2021-10-27 Huntsman International LLC Cross-linkable thermoplastic powder for powder based additive manufacturing
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
CN110103474B (zh) * 2019-04-04 2021-03-26 同济大学 一种基于应力调控的零件仿生结构增材制造方法
US11413806B2 (en) * 2019-04-10 2022-08-16 Northrop Grumman Systems Corporation Method for fabricating a 3D composite structure including smoothing of support structures
FR3097463B1 (fr) * 2019-06-20 2022-09-23 Commissariat Energie Atomique Systeme et procede de fabrication controlee
EP3756858A1 (en) 2019-06-28 2020-12-30 LayerWise NV Three dimensional printing system with improved surface properties
EP3782802B1 (en) * 2019-08-19 2022-01-05 DENTSPLY SIRONA Inc. Imposing quality requirements on 3d models with support structures
US11155039B2 (en) 2019-10-08 2021-10-26 Thermwood Corporation Warp compensation for additive manufacturing
CN111318703B (zh) * 2020-04-10 2022-04-15 哈尔滨福沃德多维智能装备有限公司 Slm制造金属零件减轻应力形变的支撑结构
CN111523269A (zh) * 2020-04-24 2020-08-11 合肥工业大学 熔融沉积制造过程中打印件的温度与翘曲变形的预测方法
CN112329138A (zh) * 2020-10-29 2021-02-05 深圳意动航空科技有限公司 一种球壳结构生成方法、装置、存储介质及电子设备
US11787120B2 (en) 2020-11-09 2023-10-17 General Electric Company Systems and method for predicting distortion of green body parts during sintering
US11620421B2 (en) * 2021-01-29 2023-04-04 General Electric Company System and method for identifying distortion-compensation threshold for sintering parts with complex features
CN113414979B (zh) * 2021-06-16 2023-10-13 共享智能装备有限公司 一种3d打印方法
CN114043728B (zh) * 2021-11-16 2024-03-22 深圳拓竹科技有限公司 3d打印机及用于其的方法和装置、3d打印系统和存储介质
WO2023133534A1 (en) * 2022-01-06 2023-07-13 Augmenta Inc. Techniques for generating composite structures that combine metal and polymer compositions
CN115415547B (zh) * 2022-11-07 2023-03-24 北京清研智束科技有限公司 电子束扫描方法、装置、设备及介质
WO2024108229A1 (en) * 2022-11-19 2024-05-23 MCANANY, Yuliya Hybrid system for thermal additive manufacturing

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184307A (en) 1988-04-18 1993-02-02 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
US5772947A (en) * 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
US7244323B2 (en) * 2002-08-21 2007-07-17 Solidica, Inc. Method and materials to inhibit object consolidation in localized areas
DE10344902B4 (de) * 2002-09-30 2009-02-26 Matsushita Electric Works, Ltd., Kadoma Verfahren zum Herstellen eines dreidimensionalen Objekts
EP2481555B1 (en) * 2007-09-17 2021-08-25 3D Systems, Inc. Region-based supports for parts produced by solid freeform fabrication
GB0719747D0 (en) * 2007-10-10 2007-11-21 Materialise Nv Method and apparatus for automatic support generation for an object made by means of a rapid prototype production method
US8696954B2 (en) * 2010-06-09 2014-04-15 Tanaka Dental Products Method, system, and composition for coloring ceramics
DE102010040261A1 (de) 2010-09-03 2012-03-08 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts mit einer internen Struktur
ES2744532T3 (es) * 2013-02-14 2020-02-25 Renishaw Plc Método de solidificación selectiva por láser
US20140303942A1 (en) * 2013-04-05 2014-10-09 Formlabs, Inc. Additive fabrication support structures
GB2515266B (en) 2013-05-09 2018-02-28 Disney Entpr Inc Manufacturing Process for 3D Printed Objects
WO2015009830A1 (en) * 2013-07-16 2015-01-22 Children's National Medical Center Three dimensional printed replicas of patient's anatomy for medical applications
JP2015030211A (ja) * 2013-08-04 2015-02-16 泰 金田 自然な方向にそって印刷する3次元印刷方法および3dプリンタ
US9747394B2 (en) 2014-03-18 2017-08-29 Palo Alto Research Center Incorporated Automated design and manufacturing feedback for three dimensional (3D) printability
CN105082531A (zh) * 2014-05-24 2015-11-25 张亮 一种并行式多种材料的三维成形方法
CN103978690B (zh) * 2014-05-28 2016-05-11 山东大学 一种面向3d打印的物体内部结构优化方法
US10386797B2 (en) * 2014-09-16 2019-08-20 3D Systems, Inc. Fracturing a shell of a three-dimensional object
US10409932B2 (en) * 2014-09-19 2019-09-10 Siemens Product Lifecyle Management Software Inc. Computer-aided simulation of multi-layer selective laser sintering and melting additive manufacturing processes
WO2016077830A1 (en) * 2014-11-14 2016-05-19 3D Systems, Incorporated Method for counteracting stresses during 3d printing
US10730241B2 (en) 2014-11-17 2020-08-04 Autodesk, Inc. Techniques for automatically placing escape holes during three-dimensional printing
US10442138B2 (en) * 2014-12-01 2019-10-15 Canon Kabushiki Kaisha Three-dimensional object manufacturing method and three-dimensional shaping apparatus
CN104626585B (zh) * 2015-01-27 2017-11-17 清华大学 一种用于sla3d打印机的平面分割方法及装置
CN104772905B (zh) * 2015-03-25 2017-04-05 北京工业大学 一种距离引导下的自适应混合支撑结构生成方法
GB201507984D0 (en) 2015-05-11 2015-06-24 Rolls Royce Plc Improvements in additive layer manufacturing methods
GB201509033D0 (en) 2015-05-27 2015-07-08 Rolls Royce Plc Additive layer manufacturing method
CN104959598B (zh) * 2015-06-08 2017-06-16 中国人民解放军国防科学技术大学 一种基于受力特征分解填充的激光烧结快速制造方法
JP6877993B2 (ja) * 2016-05-18 2021-05-26 三菱重工業株式会社 データ作成装置、3次元積層システム、制御方法及びプログラム

Also Published As

Publication number Publication date
CN109922943B (zh) 2021-07-20
EP3507077A1 (en) 2019-07-10
EP3507077B1 (en) 2021-04-14
US11298881B2 (en) 2022-04-12
WO2018045120A1 (en) 2018-03-08
WO2018045123A1 (en) 2018-03-08
EP3507079B1 (en) 2020-10-07
EP3507079A1 (en) 2019-07-10
CN109863014A (zh) 2019-06-07
US10611091B2 (en) 2020-04-07
US20180056594A1 (en) 2018-03-01
US20180056595A1 (en) 2018-03-01
JP2019532837A (ja) 2019-11-14
JP6749478B2 (ja) 2020-09-02
CN109922943A (zh) 2019-06-21
CN109863014B (zh) 2021-07-27
JP2019529164A (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6749479B2 (ja) 三次元物体の改良された付加製造
US10395372B2 (en) Systems, media, and methods for pre-processing and post-processing in additive manufacturing
Jin et al. Optimization of process planning for reducing material consumption in additive manufacturing
US10802467B2 (en) Methods of defining internal structures for additive manufacturing
JP6406776B2 (ja) 三次元オブジェクトのシェルの分割
US10274935B2 (en) System, method, and computer program for creating geometry-compliant lattice structures
US11207840B2 (en) Pre-fabricated supports, a system for additive manufacturing a three-dimensional object, and a related method
JP2018531815A (ja) 工作物の製造における、付加製造機械を含む機械のチェーンの制御の改善、またはそれに関する改善
JP2021501071A (ja) 構造体積取得方法及び装置、非一時的なコンピュータ可読記憶媒体並びにプリンタ
US20190325098A1 (en) System, method, and computer program for part model generation and analysis and part production and validation
CN115130253A (zh) 产生用于生成对象的平滑曲面的细化控制网格
EP3122540B1 (en) Method and equipment for generating a numerical representation of a three-dimensional object, said numerical representation being suited to be used for making said three-dimensional object through stereolithography
US20230030783A1 (en) Watertight Spline Modeling for Additive Manufacturing
TWI585558B (zh) 立體列印方法
CN112004654B (zh) 打包三维构建床
JP6868180B2 (ja) 造形装置、造形物受注管理制御装置、造形物受注管理制御プログラム
CN114222659A (zh) 生成结构网格的方法、结构网格的使用方法、计算机程序和计算机可读介质
US20230391013A1 (en) Determining whether using build data will result in generating an object with a generation defect
US20110163470A1 (en) System for creating a data record describing a dental prosthesis part, system for the production of a dental prosthesis part, method and data record
JP2023074490A (ja) 製造を促進するためのジオメトリフィルタリングによるコンピュータ支援設計
WO2019099377A1 (en) System and method for automatic support design and placement in an additive manufacturing environment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250