JP6748274B2 - How to recover valuables from lithium-ion secondary batteries - Google Patents

How to recover valuables from lithium-ion secondary batteries Download PDF

Info

Publication number
JP6748274B2
JP6748274B2 JP2019186789A JP2019186789A JP6748274B2 JP 6748274 B2 JP6748274 B2 JP 6748274B2 JP 2019186789 A JP2019186789 A JP 2019186789A JP 2019186789 A JP2019186789 A JP 2019186789A JP 6748274 B2 JP6748274 B2 JP 6748274B2
Authority
JP
Japan
Prior art keywords
ion secondary
secondary battery
lithium ion
negative electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019186789A
Other languages
Japanese (ja)
Other versions
JP2020064855A (en
Inventor
千尋 西川
千尋 西川
善弘 本間
善弘 本間
教夫 中島
教夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Publication of JP2020064855A publication Critical patent/JP2020064855A/en
Application granted granted Critical
Publication of JP6748274B2 publication Critical patent/JP6748274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、製造過程で発生した不良品や使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池の正極集電体、負極集電体、正極活物質などから有価物を回収可能なリチウムイオン二次電池からの有価物の回収方法に関する。 INDUSTRIAL APPLICABILITY The present invention can recover valuable materials from the positive electrode current collector, negative electrode current collector, positive electrode active material, etc. of lithium-ion secondary batteries that are discarded due to defective products generated during the manufacturing process and the life of the equipment and batteries used. To recover valuable resources from various lithium-ion secondary batteries.

リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池などに比較して軽量、高容量、高起電力の二次電池であり、パソコン、電気自動車、携帯機器などの二次電池として使用されている。例えば、リチウムイオン二次電池の正極には、コバルトやニッケルなどの有価物が、コバルト酸リチウム(LiCoO)、三元系正極材(LiNiCoMn(x+y+z=1))などとして使用されている。 Lithium-ion rechargeable batteries are lighter weight, higher capacity, higher electromotive force rechargeable batteries than conventional lead-acid batteries and NiCd rechargeable batteries, and are used as rechargeable batteries for personal computers, electric vehicles, portable devices, etc. Has been done. For example, in the positive electrode of a lithium ion secondary battery, valuable materials such as cobalt and nickel are lithium cobalt oxide (LiCoO 2 ), a ternary positive electrode material (LiNi x Co y Mn z O 2 (x+y+z=1)), etc. Is used as.

前記リチウムイオン二次電池は、今後も使用の拡大が予想されていることから、製造過程で発生した不良品や使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池から有価物を回収することが、資源リサイクルの観点から望まれている。リチウムイオン二次電池から有価物を回収する際には、使用されている種々の金属を分離して回収することが、回収物の価値を高める点から重要である。 Since the use of the lithium ion secondary battery is expected to continue expanding in the future, valuables will be discarded from the lithium ion secondary battery that is discarded due to defective products or equipment used during the manufacturing process and the life of the battery. Collection is desired from the viewpoint of resource recycling. When recovering a valuable material from a lithium ion secondary battery, it is important to separate and recover various metals used from the viewpoint of increasing the value of the recovered material.

リチウムイオン二次電池からの有価物の回収方法として、リチウムイオン電池熱処理物の破砕物からコバルトおよびニッケルを回収する手法が提案されている。例えば、特許文献1には、熱処理時の温度調整により正極集電体のアルミ二ウムと正極活物質由来のコバルト・ニッケルの分離性を向上し、破砕・分級による銅・アルミ二ウム・鉄の分離効率を高める回収方法が開示されている。また、特許文献2には、アルミニウム材を溶融させて分離する溶融分離工程と、非溶融の材料を破砕する破砕工程と、破砕物に対して磁力選別を行う磁選工程を含む回収方法が開示されている。さらに、非特許文献1には、加熱後に粉砕し、篩下に濃縮させたコバルトを、磁選や浮選を施すことで不純物を取り除いて回収する技術が開示されている。 As a method of recovering a valuable material from a lithium ion secondary battery, a method of recovering cobalt and nickel from a crushed material of a heat treated lithium ion battery has been proposed. For example, in Patent Document 1, by separating the aluminum of the positive electrode current collector from the cobalt/nickel derived from the positive electrode active material by adjusting the temperature during the heat treatment, the crushing/classification of copper/aluminum/iron A recovery method that enhances separation efficiency is disclosed. Further, Patent Document 2 discloses a recovery method including a melting and separating step of melting and separating an aluminum material, a crushing step of crushing a non-melted material, and a magnetic separation step of magnetically sorting crushed materials. ing. Further, Non-Patent Document 1 discloses a technique in which cobalt that is crushed after heating and concentrated under a sieve is subjected to magnetic separation or flotation to remove impurities and recover the cobalt.

特開2012−79630号公報JP 2012-79630 A 特許第6268130号公報Japanese Patent No. 6268130

磁選による使用済みリチウムイオン電池からのコバルト回収に適した加熱条件の検討 化学工学論文集、第43巻、第4号、pp.213−218、2017Examination of heating conditions suitable for cobalt recovery from used lithium-ion battery by magnetic separation Chemical Engineering Papers, Vol. 43, No. 4, pp. 213-218, 2017

リチウムイオン二次電池を熱処理後、破砕・分級すると、粗粒産物に外装容器由来の鉄・アルミ二ウム及び負極集電体由来の銅などが回収される。また、細粒産物にはコバルト・ニッケルが濃縮するが、集電体由来の金属も一部細粒産物に混入する。コバルト・ニッケルリサイクルのため細粒産物からの集電体由来金属および負極活物質の分離回収が求められているが、特に銅とコバルト・ニッケルは溶液から同様のpH領域で沈殿するため、溶解後中和することにより沈殿を生じさせて銅を除去することは困難である。また、カーボンなどの負極活物質は数10nmの粒子であり、乾式の物理選別ではコバルト・ニッケル含有粒子-カーボン粒子間の水分の架橋を主とする付着力が生じ、カーボンを除去する事は困難である。さらに、乾式の物理選別により回収したコバルト-ニッケル含有粒子には上記特許文献1や2に記載された方法では、数%のフッ素が含まれ、フッ素の除去工程が必要となる。コバルト・ニッケル濃縮物中の銅などの負極集電体由来金属品位を0.2%未満、フッ素品位を1%未満、及びカーボンなどの負極活物質由来の物質の品位を5%未満まで低減することが困難であった。 When the lithium ion secondary battery is heat-treated and then crushed and classified, iron and aluminum derived from the outer container and copper derived from the negative electrode current collector are recovered as coarse-grain products. Further, although cobalt/nickel is concentrated in the fine-grained product, some metal derived from the current collector is also mixed in the fine-grained product. For recycling cobalt/nickel, it is required to separate and collect the metal derived from the current collector and the negative electrode active material from the fine-grained product. In particular, copper and cobalt/nickel precipitate from the solution in the same pH range. It is difficult to remove the copper by causing precipitation by neutralization. Further, the negative electrode active material such as carbon is a particle of several tens of nm, and dry physical selection causes an adhesive force mainly due to crosslinking of water between cobalt/nickel-containing particles and carbon particles, which makes it difficult to remove carbon. Is. Further, the cobalt-nickel-containing particles recovered by dry physical screening contain several% of fluorine in the methods described in Patent Documents 1 and 2 described above, and a fluorine removal step is required. Reduce the quality of negative electrode current collector-derived metals such as copper in the cobalt/nickel concentrate to less than 0.2%, fluorine quality to less than 1%, and the quality of substances derived from negative electrode active materials such as carbon to less than 5%. Was difficult.

本発明は上記事情に鑑みてなされたものであり、コバルト・ニッケルといった有価物を、低い負極集電体由来金属品位、フッ素品位、及び負極活物質由来の物質品位で回収できる手段を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a means capable of recovering valuable materials such as cobalt and nickel with a low negative electrode collector-derived metal grade, a fluorine grade, and a substance grade derived from a negative electrode active material. With the goal.

上記課題を解決するために、本発明によれば、リチウムイオン二次電池を熱処理する熱処理工程と、前記熱処理工程で得られた熱処理物を破砕する破砕工程と、前記破砕工程で得られた破砕物を粗粒産物と細粒産物とに0.45mm以上の分級点で分級する分級工程と、前記分級工程で得られた細粒産物を湿式磁選する湿式磁選工程を有し、前記熱処理工程は、670℃以上1100℃以下でリチウムイオン二次電池を熱処理し、前記湿式磁選工程で得られた磁着物は、フッ素品位が1%未満であり、前記湿式磁選工程で得られた非磁着物スラリーを固液分離することで分離された液中にフッ素が回収されることを特徴とする、リチウムイオン二次電池からの有価物の回収方法が提供される。なお、破砕工程と分級工程は、同時進行で行うこともできる。例えば、熱処理工程で得られた熱処理物を破砕しながら、破砕物を粗粒産物と細粒産物とに分級する破砕・分級工程として行っても良い。
In order to solve the above problems, according to the present invention, a heat treatment step of heat treating a lithium ion secondary battery, a crushing step of crushing the heat treated product obtained in the heat treatment step, and a crushing obtained in the crushing step The method includes a classification step of classifying a product into a coarse-grain product and a fine-grain product at a classification point of 0.45 mm or more, and a wet magnetic separation step of wet-magnetic separation of the fine-grain product obtained in the classification step. The heat treatment of the lithium ion secondary battery at 670° C. or more and 1100° C. or less, the magnetic substance obtained in the wet magnetic separation step has a fluorine quality of less than 1%, and the non-magnetic substance slurry obtained in the wet magnetic separation step is obtained. A method for recovering a valuable resource from a lithium ion secondary battery is provided, in which fluorine is recovered in the separated liquid by performing solid-liquid separation . The crushing step and the classification step can be performed simultaneously. For example, it may be carried out as a crushing/classifying step of classifying the crushed product into a coarse-grain product and a fine-grain product while crushing the heat-treated product obtained in the heat treatment process.

この回収方法にあっては、前記分級工程において、0.6〜2.4mmの分級点を用いても良い。また、前記熱処理工程でアルミニウムを溶融分離して回収しても良い。また、前記湿式磁選工程で得られた磁着物は、負極活物質由来の物質の含有量が5%未満であっても良い。その場合、前記負極活物質由来の物質がカーボンであっても良い。また、前記湿式磁選工程で得られた磁着物は、負極集電体由来の金属品位が0.2%未満であっても良い。その場合、負極集電体由来の金属が例えば銅である。また、前記熱処理工程を、酸素濃度が10.5質量%以下の低酸素雰囲気下で行っても良い。また、前記分級工程で篩上に得られた粗粒産物を乾式磁選する乾式磁選工程を有しても良い。また、前記湿式磁選工程で分離された非磁着物スラリーを固液分離後、液中に炭酸ガスを吹込んでも良い。
In this collecting method, a classification point of 0.6 to 2.4 mm may be used in the classification step. Further, aluminum may be melted and separated and recovered in the heat treatment step. The content of the substance derived from the negative electrode active material in the magnetic substance obtained in the wet magnetic separation step may be less than 5%. In that case, the substance derived from the negative electrode active material may be carbon. The magnetic substance obtained in the wet magnetic separation step may have a metal quality derived from the negative electrode current collector of less than 0.2%. In that case, the metal derived from the negative electrode current collector is, for example, copper. Further, the heat treatment step may be performed in a low oxygen atmosphere having an oxygen concentration of 10.5% by mass or less. Further, it may have a dry magnetic separation step in which the coarse-grained product obtained on the sieve in the classification step is subjected to dry magnetic separation. Further, carbon dioxide gas may be blown into the liquid after the solid-liquid separation of the non-magnetic substance slurry separated in the wet magnetic separation process.

分級工程で得られた細粒産物を磁選するに際し、乾式で磁選した場合、粒子間の付着水分により粒子の凝集が生じ、負極集電体由来金属粒子および細粒産物に10%以上含まれる負極活物質微粒子とコバルト・ニッケル粒子を十分に分離できない。また、乾式では磁選回収したコバルト・ニッケル濃縮物中のフッ素を除去するために追加のフッ素除去工程を必要とする。本発明において、湿式で磁選したのはこれらの問題の解決のためである。本発明では、湿式磁選工程において負極集電体由来金属および負極活物質を非磁着産物スラリーに分離し、コバルトおよびニッケルを磁着産物に回収する。フッ素およびリチウムは原料のスラリー化および湿式磁選の間に溶解し、非磁着産物スラリーに分離される。この非磁着物スラリーを固液分離することで、負極集電体由来金属を残渣に、フッ素およびリチウムを液に、それぞれ分離できる。また、液中の水酸化リチウムは炭酸ガスを吹込むことで、炭酸リチウムとして回収できる。リチウムを回収するには浸出処理が必要であるが、本発明では、湿式磁選工程において、リチウムの水浸出、フッ素の浸出除去と負極集電体由来金属−コバルト・ニッケルの分離を同時に行える点で、工程数を減らすことができる。 When magnetically selecting the fine-grained product obtained in the classification step, when the dry-type magnetically-selected, the particles are aggregated due to the moisture adhered between the particles, and the negative electrode current collector-derived metal particles and the negative electrode containing 10% or more of the fine-grained product The active material particles and cobalt/nickel particles cannot be separated sufficiently. In addition, the dry method requires an additional step of removing fluorine in order to remove the fluorine in the cobalt-nickel concentrate magnetically recovered. In the present invention, wet magnetic selection is for the purpose of solving these problems. In the present invention, in the wet magnetic separation step, the negative electrode current collector-derived metal and the negative electrode active material are separated into a non-magnetic product slurry, and cobalt and nickel are recovered as a magnetic product. Fluorine and lithium are dissolved during slurrying of raw materials and wet magnetic separation, and are separated into a non-magnetic product slurry. By solid-liquid separating this non-magnetic substance slurry, the metal derived from the negative electrode current collector can be separated into a residue, and fluorine and lithium can be separated into a liquid. Further, the lithium hydroxide in the liquid can be recovered as lithium carbonate by blowing carbon dioxide gas. Although leaching treatment is required to recover lithium, in the present invention, in the wet magnetic separation step, water leaching of lithium, leaching of fluorine and removal of the negative electrode current collector-derived metal-cobalt-nickel can be performed simultaneously. The number of steps can be reduced.

本発明によれば、リチウムイオン二次電池から有価物を回収するにあたり、コバルト・ニッケルといった有価物を低い負極集電体由来金属・フッ素品位で回収できるようになる。 According to the present invention, when recovering valuables from a lithium ion secondary battery, valuables such as cobalt and nickel can be recovered with a low metal/fluorine grade derived from the negative electrode current collector.

本発明の実施の形態にかかる回収方法を説明するためのフローチャートである。It is a flow chart for explaining the collection method concerning an embodiment of the invention.

以下、本発明を実施するための形態の一例を説明する。 Hereinafter, an example of a mode for carrying out the present invention will be described.

<リチウムイオン二次電池>
リチウムイオン二次電池は、正極と負極の間をリチウムイオンが移動することで充電や放電を行う二次電池であり、例えば、正極と、負極と、セパレーターと、電解質及び有機溶剤を含有する電解液と、正極、負極、セパレーター及び電解液を収容する電池ケースである外装容器とを備えたものが挙げられる。
<Lithium-ion secondary battery>
A lithium-ion secondary battery is a secondary battery that performs charging or discharging by moving lithium ions between a positive electrode and a negative electrode, for example, a positive electrode, a negative electrode, a separator, an electrolyte containing an electrolyte and an organic solvent. Examples thereof include a liquid and an outer container that is a battery case that contains a positive electrode, a negative electrode, a separator, and an electrolytic solution.

リチウムイオン二次電池の形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。リチウムイオン二次電池の形状として、例えば、ラミネート型、円筒型、ボタン型、コイン型、角型、平型などが挙げられる。 The shape, structure, size, material, etc. of the lithium ion secondary battery are not particularly limited and can be appropriately selected according to the purpose. Examples of the shape of the lithium ion secondary battery include a laminate type, a cylinder type, a button type, a coin type, a square type, and a flat type.

正極としては、正極集電体上に正極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。 The positive electrode is appropriately selected depending on the intended purpose without any limitation, provided that it has a positive electrode material on the positive electrode current collector. The shape of the positive electrode is not particularly limited and may be appropriately selected depending on the purpose, and examples thereof include a flat plate shape and a sheet shape.

正極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。正極集電体の形状としては、例えば、箔状などが挙げられる。正極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、アルミニウムが好ましい。 The shape, structure, size, material and the like of the positive electrode current collector are not particularly limited and can be appropriately selected according to the purpose. Examples of the shape of the positive electrode current collector include a foil shape. Examples of the material of the positive electrode current collector include stainless steel, nickel, aluminum, copper, titanium and tantalum. Of these, aluminum is preferable.

正極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、希少有価物を含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。希少有価物としては、特に制限はなく、目的に応じて適宜選択することができるが、コバルト、ニッケル、及びマンガンの少なくともいずれかであることが好ましい。 The positive electrode material is not particularly limited and may be appropriately selected depending on the purpose. For example, a positive electrode material containing at least a positive electrode active material containing a rare valuable substance, and optionally containing a conductive agent and a binder resin. And so on. The rare valuable is not particularly limited and may be appropriately selected depending on the purpose, but is preferably at least one of cobalt, nickel and manganese.

正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、LiNiCoMnおよびそれぞれの複合物などが挙げられる。 Examples of the positive electrode active material include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt nickel oxide (LiCo 1/2 Ni 1/2 O 2 ). , LiNi x Co y Mn z O 2 and their composites.

導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。 The conductive agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include carbon black, graphite, carbon fiber, and metal carbide.

結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体又は共重合体、スチレン−ブタジエンゴムなどが挙げられる。 The binder resin is not particularly limited and may be appropriately selected depending on the intended purpose.For example, vinylidene fluoride, tetrafluoroethylene, acrylonitrile, a homopolymer or copolymer of ethylene oxide, styrene-butadiene rubber. And so on.

負極としては、負極集電体上に負極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。 The negative electrode is appropriately selected depending on the intended purpose without any limitation, provided that it has a negative electrode material on the negative electrode current collector. The shape of the negative electrode is appropriately selected depending on the intended purpose without any limitation, and examples thereof include a flat plate shape and a sheet shape.

負極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。負極集電体の形状としては、例えば、箔状などが挙げられる。負極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、銅が好ましい。 The shape, structure, size, material and the like of the negative electrode current collector are not particularly limited and can be appropriately selected according to the purpose. Examples of the shape of the negative electrode current collector include a foil shape. Examples of the material of the negative electrode current collector include stainless steel, nickel, aluminum, copper, titanium and tantalum. Of these, copper is preferable.

負極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グラファイト、ハードカーボン等の炭素材、チタネイト、シリコン、およびそれぞれの複合物などが挙げられる。 The negative electrode material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include carbon materials such as graphite and hard carbon, titanate, silicon, and composites thereof.

なお、正極集電体と、負極集電体とは積層体の構造を有しており、積層体としては、特に制限はなく、目的に応じて適宜選択することができる Note that the positive electrode current collector and the negative electrode current collector have a structure of a stacked body, and the stacked body is not particularly limited and can be appropriately selected depending on the purpose.

本発明の実施の形態では、図1に示す手順によって、リチウムイオン二次電池に含まれるアルミニウム、コバルト、ニッケル、銅等の各種有価物を効率的に分離回収する。回収に用いられるリチウムイオン二次電池としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。 In the embodiment of the present invention, various valuable materials such as aluminum, cobalt, nickel, and copper contained in the lithium ion secondary battery are efficiently separated and recovered by the procedure shown in FIG. The lithium ion secondary battery used for recovery is not particularly limited and may be appropriately selected depending on the purpose, for example, a defective lithium ion secondary battery generated in the manufacturing process of the lithium ion secondary battery, Examples thereof include a lithium ion secondary battery that is discarded due to a defective used device or the life of the used device, and a used lithium ion secondary battery that is discarded due to its life.

<熱処理工程>
図1に示すように、先ず、リチウムイオン二次電池(LIB)に対して、熱処理工程(熱処理)が行われる。熱処理温度は、正極集電体及び負極集電体のうち、低い融点の集電体の融点以上、かつ高い融点の集電体の融点未満の温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、670℃以上が好ましく、670℃以上1100℃以下がより好ましく、700℃以上900℃以下が特に好ましい。熱処理温度が、670℃未満であると、低い融点の集電体の脆化が十分に生じないことがあり、1100℃を超えると、低い融点の集電体、高い融点の集電体、及び外装容器のいずれもが脆化し、破砕及び分級による集電体および外装容器の分離効率が低下する。また、前記リチウムイオン二次電池の前記外装容器が前記熱処理中に溶融する場合、前記リチウムイオン二次電池の下に前記溶融金属を回収する受け皿を配置する事で、外装容器由来の金属と電極部を容易に分離する事が出来る。
<Heat treatment process>
As shown in FIG. 1, first, a heat treatment step (heat treatment) is performed on a lithium ion secondary battery (LIB). The heat treatment temperature is not particularly limited as long as it is a temperature equal to or higher than the melting point of the low melting point current collector of the positive electrode current collector and the negative electrode current collector and lower than the melting point of the high melting point current collector, and depending on the purpose. The temperature is preferably 670°C or higher, more preferably 670°C or higher and 1100°C or lower, and particularly preferably 700°C or higher and 900°C or lower. If the heat treatment temperature is lower than 670° C., the current collector having a low melting point may not be sufficiently embrittled, and if it exceeds 1100° C., a current collector having a low melting point, a current collector having a high melting point, and Any of the outer containers becomes brittle, and the efficiency of separating the current collector and the outer container by crushing and classification is reduced. Further, when the outer container of the lithium ion secondary battery is melted during the heat treatment, by placing a tray for collecting the molten metal under the lithium ion secondary battery, a metal and an electrode derived from the outer container are placed. The parts can be easily separated.

所定の熱処理温度で熱処理を行うことにより、例えば、正極集電体がアルミニウムであり、負極集電体が銅である積層体において、アルミニウム箔からなる正極集電体が脆化し、後述する破砕工程において細粒化しやすくなる。この正極集電体の脆化は溶融もしくは酸化反応により生ずる。また、溶融して流れ落ちたアルミニウムは、受け皿に回収される。一方、銅からなる負極集電体は、銅の融点未満の温度で熱処理されるため、溶融することがなく、後述する乾式磁選工程において、高度に選別できるようになる。また、積層体及びリチウムイオン二次電池のいずれかを酸素遮蔽容器に収容して熱処理したときは、アルミニウム箔からなる正極集電体が溶融して脆化し、後述する破砕工程において細粒化しやすくなり、一方、銅からなる負極集電体は、前記酸素遮蔽容器の酸素遮蔽効果および積層体やリチウムイオン二次電池に含まれるカーボン等の負極活物質による還元効果により、酸素分圧が低い状態で熱処理されるため、酸化による脆化が生じない。このため、破砕工程における破砕により、正極集電体は細かく破砕され、負極集電体は、破砕後も粗粒として存在し、後述する分級工程において、より効果的かつ高度に選別できるようになる。 By performing heat treatment at a predetermined heat treatment temperature, for example, in a laminate in which the positive electrode current collector is aluminum and the negative electrode current collector is copper, the positive electrode current collector made of aluminum foil becomes brittle, and the crushing step described below It becomes easy to make fine particles. The embrittlement of the positive electrode current collector occurs due to melting or oxidation reaction. Further, the aluminum that has melted and flowed down is collected in a saucer. On the other hand, since the negative electrode current collector made of copper is heat-treated at a temperature lower than the melting point of copper, it does not melt and can be highly sorted in the later-described dry magnetic separation step. In addition, when either the laminate or the lithium ion secondary battery is housed in an oxygen-shielding container and subjected to heat treatment, the positive electrode current collector made of aluminum foil is melted and embrittled, and is easily atomized in a crushing step described later. On the other hand, the negative electrode current collector made of copper has a low oxygen partial pressure due to the oxygen shielding effect of the oxygen shielding container and the reduction effect of the negative electrode active material such as carbon contained in the laminate or the lithium ion secondary battery. Since it is heat treated in, no embrittlement due to oxidation does occur. Therefore, by the crushing in the crushing step, the positive electrode current collector is finely crushed, and the negative electrode current collector remains as coarse particles even after the crushing, which makes it possible to select more effectively and highly in the classification step described later. ..

熱処理時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間以上5時間以下が好ましく、1分間以上2時間以下がより好ましく、1分間以上1時間以下が特に好ましい。熱処理時間は低い融点の前記集電体が所望の温度まで到達する熱処理時間であればよく、保持時間は短くてもよい。熱処理時間が、特に好ましい範囲内であると、熱処理にかかるコストの点で有利である。 The heat treatment time is appropriately selected depending on the intended purpose without any limitation, but it is preferably 1 minute or more and 5 hours or less, more preferably 1 minute or more and 2 hours or less, and particularly preferably 1 minute or more and 1 hour or less. .. The heat treatment time may be any heat treatment time required for the current collector having a low melting point to reach a desired temperature, and the holding time may be short. When the heat treatment time is within a particularly preferable range, it is advantageous in terms of cost required for the heat treatment.

熱処理の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱処理炉を用いて行うことが挙げられる。熱処理炉としては、例えば、ロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュポラ、ストーカー炉などが挙げられる。 The heat treatment method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a heat treatment furnace. Examples of the heat treatment furnace include a rotary kiln, a fluidized bed furnace, a tunnel furnace, a batch furnace such as a muffle, a cupola, and a stalker furnace.

熱処理に用いる雰囲気としては、特に制限はなく、目的に応じて適宜選択することができるが、空気中で行うことができる。酸素濃度が低い雰囲気とすれば正極集電体由来の金属及び負極集電体由来の金属を高品位かつ高い回収率で回収できる点から好ましい。 The atmosphere used for the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but may be performed in the air. The atmosphere having a low oxygen concentration is preferable because the metal derived from the positive electrode current collector and the metal derived from the negative electrode current collector can be recovered with high quality and high recovery rate.

上記低酸素雰囲気の実現方法として、リチウムイオン二次電池または積層体を酸素遮蔽容器に収容し熱処理してもよい。酸素遮蔽容器の材質としては、上述の熱処理温度で溶融しない材料であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、鉄、ステンレス鋼などが挙げられる。リチウムイオン電池または積層体中の電解液燃焼によるガス圧を放出するために、酸素遮蔽容器には開口部を設けることが好ましい。開口部の開口面積は、開口部が設けられている外装容器の表面積に対して12.5%以下となるように設けることが好ましい。開口部の開口面積は、開口部が設けられている外装容器の表面積に対して6.3%以下であることがより好ましい。開口部の開口面積が外装容器の表面積に対して12.5%を超えると、集電体の大部分が熱処理によって酸化しやすくなってしまう。開口部は、その形状、大きさ、形成箇所などについては特に制限はなく、目的に応じて適宜選択することができる。 As a method of realizing the above low oxygen atmosphere, the lithium ion secondary battery or the laminated body may be housed in an oxygen shielding container and heat treated. The material of the oxygen shielding container is not particularly limited as long as it is a material that does not melt at the heat treatment temperature described above, and can be appropriately selected according to the purpose, and examples thereof include iron and stainless steel. An opening is preferably provided in the oxygen shielding container in order to release the gas pressure due to the combustion of the electrolytic solution in the lithium ion battery or the laminate. The opening area of the opening is preferably 12.5% or less of the surface area of the exterior container in which the opening is provided. The opening area of the opening is more preferably 6.3% or less with respect to the surface area of the exterior container in which the opening is provided. If the opening area of the opening exceeds 12.5% of the surface area of the outer container, most of the current collector is likely to be oxidized by the heat treatment. The shape, size, formation location, etc. of the opening are not particularly limited and can be appropriately selected according to the purpose.

<破砕工程>
次に、熱処理工程で得られた熱処理物(LIB熱処理物)を破砕する破砕工程が行われる。破砕工程では、熱処理物を衝撃により破砕して破砕物を得ることが好ましい。
<Crushing process>
Next, a crushing step of crushing the heat-treated product (LIB heat-treated product) obtained in the heat-treatment process is performed. In the crushing step, the heat-treated product is preferably crushed by impact to obtain a crushed product.

また破砕としては、特に制限はなく、目的に応じて適宜選択することができる。衝撃により破砕を行う方法としては、回転する打撃板により投げつけ、衝突板に叩きつけて衝撃を与える方法や、回転する打撃子(ビーター)により熱処理物を叩く方法が挙げられ、例えば、ハンマークラッシャーやチェーンクラッシャーなどにより行うことができる。また、セラミックや鉄などのボールやロッドにより熱処理物を叩く方法が挙げられ、ボールミルやロッドミルなどにより行うことができる。また、圧縮による破砕を行う刃幅、刃渡りの短い二軸粉砕機で破砕することにより行うことができる。 The crushing is not particularly limited and can be appropriately selected according to the purpose. Examples of the method of crushing by impact include a method of throwing with a rotating striking plate and striking a collision plate to give an impact, and a method of striking a heat-treated product with a rotating striking element (beater). For example, a hammer crusher or a chain. It can be done by a crusher or the like. In addition, a method of hitting the heat-treated product with balls or rods of ceramic or iron can be used, and it can be performed with a ball mill or a rod mill. Further, it can be carried out by crushing with a biaxial crusher having a short blade width and a short blade crossing for crushing by compression.

衝撃により、破砕物を得ることにより、活物質および低い融点の集電体の破砕を促進し、一方、形態が著しく変化していない高い融点の集電体が、箔状などの形態で存在する。そのため、破砕工程において、高い融点の集電体は、切断されるにとどまり、高い融点の集電体の細粒化は、低い融点の集電体と比較し進行しにくいため、後述する分級工程において低い融点の集電体と高い融点の集電体とが効率的に分離できる状態の破砕物を得ることができる。 By crushing to obtain a crushed product, the crushing of the active material and the current collector with a low melting point is promoted, while the current collector with a high melting point whose morphology is not significantly changed is present in the form of a foil. .. Therefore, in the crushing step, the high melting point current collector is only cut, and the fine melting of the high melting point current collector is less likely to proceed as compared with the low melting point current collector, so the classification step described later In (1), a crushed product can be obtained in which the current collector having a low melting point and the current collector having a high melting point can be efficiently separated.

破砕時間としては、特に制限はなく、目的に応じて適宜選択することができるが、リチウムイオン二次電池1kgあたりの処理時間は1秒間以上30分間以下が好ましく、2秒間以上10分間以下がより好ましく、3秒間以上5分間以下が特に好ましい。破砕時間が、1秒未満であると、破砕されないことがあり、30分間を超えると、過剰に破砕されることがある。 The crushing time is not particularly limited and may be appropriately selected depending on the intended purpose, but the treatment time per 1 kg of the lithium ion secondary battery is preferably 1 second or more and 30 minutes or less, and more preferably 2 seconds or more and 10 minutes or less. It is preferably 3 seconds or more and 5 minutes or less. If the crushing time is less than 1 second, it may not be crushed, and if it exceeds 30 minutes, it may be excessively crushed.

<分級工程>
次に、破砕工程で得られた破砕物を粗粒産物と細粒産物とに分級する分級工程が行われる。分級方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩、湿式振動テーブル、エアーテーブルなどを用いて行うことができる。
<Classification process>
Next, a classification step of classifying the crushed material obtained in the crushing step into a coarse grain product and a fine grain product is performed. The classification method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a vibrating screen, a multi-stage vibrating screen, a cyclone, a JIS Z8801 standard screen, a wet vibration table, an air table, etc. may be used. be able to.

分級工程で用いる分級点としては、0.45mm以上であれば目的に応じて適宜選択することができる。例えば、0.6〜2.4mmの分級点を用いることが望ましい。分級点が2.4mmを超えた場合、細粒産物中へ外装容器由来および融点の高いほうの金属の混入が増加し、活物質由来のコバルト・ニッケルとの分離成績が低下する場合がある。一方、分級点が0.6mm未満の場合、低い融点の集電体由来の金属及び活物質の粗粒産物中への混入が増加し、粗粒産物中の高い融点の集電体由来の金属の品位が低下し、かつ細粒産物への活物質由来のコバルト・ニッケルの回収率が60%未満となる場合がある。また、分級方法として篩を用いた時に、篩上に解砕促進物、例えば、ステンレス球やアルミナボールをのせて篩うことにより、大きな破砕物に付着している小さな破砕物を、大きな破砕物から分離させることで、大きな破砕物と小さな破砕物により効率的に分離することができる。これにより回収する金属の品位を更に向上させることができる。なお、破砕工程と分級工程は、同時進行で行うこともできる。例えば、熱処理工程で得られた熱処理物を破砕しながら、破砕物を粗粒産物と細粒産物とに分級する破砕・分級工程(破砕・分級)として行っても良い。 The classification point used in the classification step can be appropriately selected according to the purpose as long as it is 0.45 mm or more. For example, it is desirable to use a classification point of 0.6 to 2.4 mm. If the classification point exceeds 2.4 mm, the metal from the outer container or the one with a higher melting point may be more mixed into the fine-grain product, and the separation performance from the cobalt/nickel derived from the active material may decrease. On the other hand, when the classification point is less than 0.6 mm, the metal derived from the collector having a low melting point and the mixing of the active material into the coarse-grained product increase, and the metal derived from the collector having a high melting point in the coarse-grained product increases. In some cases, the quality of the product is deteriorated, and the recovery rate of cobalt-nickel derived from the active material in the fine grain product is less than 60%. Also, when using a sieve as a classification method, a crushing accelerator, for example, by placing stainless balls or alumina balls on the sieve and sieving, a small crushed material adhering to a large crushed material is converted into a large crushed material. By separating from the above, it is possible to efficiently separate the large crushed material and the small crushed material. As a result, the quality of the recovered metal can be further improved. The crushing step and the classification step can be performed simultaneously. For example, it may be performed as a crushing/classifying step (crushing/classifying) of classifying the crushed material into a coarse-grained product and a fine-grained product while crushing the heat-treated material obtained in the heat treatment step.

この分級により、粗粒産物として外装容器および融点の高い集電体由来の金属を回収することができ、細粒産物として活物質由来のコバルト・ニッケル・リチウムを回収することができる。なお、細粒産物を再度、分級してもよい。この再度の分級で細粒物から例えば150μm以下の細粒を除去することにより、湿式磁選の非磁着物に含まれる負極活物質分を低減することができる。 By this classification, the metal derived from the outer container and the collector having a high melting point can be recovered as a coarse particle product, and the cobalt-nickel-lithium derived from the active material can be recovered as a fine particle product. The fine-grained product may be classified again. By removing fine particles of, for example, 150 μm or less from the fine particles by this classification again, it is possible to reduce the negative electrode active material content contained in the non-magnetically adsorbed material in the wet magnetic separation.

<乾式磁選工程>
次に、分級工程で得られた粗粒産物に対しては、乾式磁選工程が行うことができる。磁着物として鉄が回収され、非磁着物として銅などの負極集電体由来金属が回収される。
<Dry magnetic separation process>
Next, a dry magnetic separation step can be performed on the coarse-grained product obtained in the classification step. Iron is recovered as a magnetic substance, and a negative electrode current collector-derived metal such as copper is recovered as a non-magnetic substance.

<湿式磁選工程>
一方、分級工程で得られた細粒産物に対しては、湿式磁選工程(湿式磁選)が行われ、磁着物としてコバルト、ニッケルが回収される。先にも説明したように、分級工程で得られた細粒産物を磁選するに際し、乾式で磁選した場合、粒子間の付着水分により粒子の凝集が生じ、負極集電体由来金属粒子および細粒産物に10%以上含まれる負極活物質微粒子とコバルト・ニッケル粒子を十分に分離できない。本発明では、湿式磁選工程において負極活物質由来の物質と負極集電体由来金属を非磁着物スラリーに分離し、コバルトおよびニッケルを磁着物に回収する。
この磁着物中には、例えば、磁着物中に含まれる負極活物質由来のカーボンを5%未満とすることができる。また、磁着物中に含まれる負極集電体由来金属(代表的には銅)を0.2%未満とすることができる。
<Wet magnetic separation process>
On the other hand, the fine granule product obtained in the classification step is subjected to a wet magnetic separation step (wet magnetic separation) to recover cobalt and nickel as magnetic substances. As described above, when magnetically sorting the fine-grained product obtained in the classification step, when dry-type magnetically-selected, agglomeration of the particles occurs due to the adhered moisture between the particles, and the negative electrode current collector-derived metal particles and fine particles It is not possible to sufficiently separate the negative electrode active material fine particles and the cobalt/nickel particles containing 10% or more in the product. In the present invention, in the wet magnetic separation step, the material derived from the negative electrode active material and the metal derived from the negative electrode current collector are separated into a non- magnetically adsorbed slurry , and cobalt and nickel are recovered in the magnetically adsorbed material.
In this magnetic substance, for example, the carbon derived from the negative electrode active material contained in the magnetic substance can be less than 5%. Further, the negative electrode current collector-derived metal (typically copper) contained in the magnetic substance can be less than 0.2%.

一方、リチウムは原料のスラリー化および湿式磁選の間に液中に溶解し、非磁着物スラリーに分離される。この非磁着物スラリーを固液分離することで、負極集電体由来金属および負極活物質を残渣に分離できる。また、固液分離によって分離された液中には炭酸ガスの吹込みが行われ、炭酸リチウムとして沈殿し、リチウムが回収される。なお、前記炭酸ガスの吹込み前には、不純物の除去工程やリチウム濃度の上昇を目的とした液の濃縮工程などの前処理工程を有していてもよい。一方、残った液中には例えばフッ素などが回収される。このため、磁着物中のフッ素品位は1%未満となり得る。リチウムを回収及びフッ素をコバルト・ニッケルから分離するには浸出処理が必要であるが、本発明では、湿式磁選工程において、リチウムの水浸出およびフッ素の浸出除去と負極集電体由来金属−コバルト・ニッケルの分離を同時に行える点で、工程数を減らすことができる。
On the other hand, lithium is dissolved in the liquid during the slurrying of the raw material and the wet magnetic separation, and is separated into a non-magnetized material slurry . By solid-liquid separating the non-magnetic substance slurry, the negative electrode current collector-derived metal and the negative electrode active material can be separated into residues. Further, carbon dioxide gas is blown into the liquid separated by the solid-liquid separation to precipitate as lithium carbonate, and lithium is recovered. Before the carbon dioxide gas is blown in, a pretreatment step such as an impurity removal step or a liquid concentration step for the purpose of increasing the lithium concentration may be included. On the other hand, for example, fluorine is recovered in the remaining liquid. Therefore, the fluorine quality in the magnetic substance can be less than 1%. In order to recover lithium and separate fluorine from cobalt/nickel, a leaching treatment is necessary. In the present invention, however, in the wet magnetic separation step, water leaching of lithium and leaching of fluorine and removal of a negative electrode current collector-derived metal-cobalt. Since nickel can be separated at the same time, the number of steps can be reduced.

以下、本発明の実施例について説明する。なお、本発明は下記実施例に限定されるものではない。 Examples of the present invention will be described below. The present invention is not limited to the examples below.

図1のフローに示すように、リチウムイオン二次電池約3.7Kgを、熱処理装置としてマッフル炉(FJ−41、ヤマト科学株式会社製)を用いて、熱処理温度850℃(1H昇温・2H保持)、AIR送気量5L/minの条件で熱処理工程を行った。次いで、破砕工程では、破砕装置として、ハンマークラッシャー(マキノ式スイングハンマークラッシャーHC−20−3.7、槇野産業株式会社製)を用い、50HZ(ハンマー周速38m/s)、出口部分のパンチングメタルの穴径10mmの条件で1回追加破砕した。 As shown in the flow chart of FIG. 1, using a muffle furnace (FJ-41, Yamato Scientific Co., Ltd.) as a heat treatment device, a lithium ion secondary battery of about 3.7 kg was subjected to a heat treatment temperature of 850° C. (Hold), and the heat treatment process was performed under the condition that the air supply rate was 5 L/min. Next, in the crushing step, a hammer crusher (Makino-type swing hammer crusher HC-20-3.7, manufactured by Makino Sangyo Co., Ltd.) was used as a crushing device, 50 HZ (hammer peripheral speed 38 m/s), and punching metal at the exit portion. Was additionally crushed once under the condition of the hole diameter of 10 mm.

また、分級工程として、篩目の目開きが1.2mmの篩(直径200mm、東京スクリーン株式会社製)を用いて、前記破砕工程で得られた破砕物を篩分けした。篩分け後の1.2mmの篩上(粗粒)と篩下(細粒)をそれぞれ採取した。 In the classification step, a crushed material obtained in the crushing step was sieved using a sieve having a mesh size of 1.2 mm (diameter 200 mm, manufactured by Tokyo Screen Co., Ltd.). After sieving, a 1.2 mm sieve (coarse particles) and a sieve (fine particles) of 1.2 mm were collected.

得られた細粒産物については、ドラム型磁選機を用いて、磁力:1500G、ドラム回転数45rpm、固液比10%、スラリー供給速度100ml/minで湿式磁選を行い、磁着物と非磁着物スラリーを回収した。この非磁着物のスラリーを固液分離し、固形分を分離後、溶液に炭酸ガスの吹込みを行い、炭酸リチウムを沈殿させた。 The fine granules obtained were subjected to wet magnetic separation using a drum type magnetic separator at a magnetic force of 1500 G, a drum rotation speed of 45 rpm, a solid-liquid ratio of 10%, and a slurry supply rate of 100 ml/min to obtain a magnetic substance and a non-magnetic substance. The slurry was collected. The slurry of this non-magnetic substance was subjected to solid-liquid separation, and after the solid content was separated, carbon dioxide gas was blown into the solution to precipitate lithium carbonate.

一方、粗粒産物については、ハンドマグネットを用いて、磁力:1500G、粗粒産物からの前記ハンドマグネットの距離が10mm、の条件で乾式磁選を行い、磁着物と非磁着物を回収した。 On the other hand, for the coarse-grained product, dry magnetic separation was performed using a hand magnet under the conditions of a magnetic force of 1500 G and a distance of the hand magnet from the coarse-grained product of 10 mm to collect a magnetic substance and a non-magnetic substance.

粗粒産物・細粒産物のそれぞれで得られた磁着物と非磁着物の質量を測定した後、王水に加熱溶解させ、高周波誘導結合プラズマ発光分光分析装置(iCaP6300、サーモフィッシャーサイエンティフィック社製)により分析を行い、コバルト及びニッケルの回収率、並びに回収された各種金属の含有割合を求めた。各産物の品位を表1に、各産物への各有価物の回収率を表2に、それぞれ示す。なお、表1中に、原料(リチウムイオン二次電池)における各元素の含有量(フィード)を示す。表1、表2において(%)はいずれも質量%である。また、篩上(粗粒)を「+」、篩下(細粒)を「−」で示した。 After measuring the mass of the magnetic and non-magnetic substances obtained for each of the coarse-grain product and the fine-grain product, the mixture was heated and dissolved in aqua regia, and the high-frequency inductively coupled plasma optical emission spectrometer (iCaP6300, Thermo Fisher Scientific Co., Ltd.) was used. Manufactured) to determine the recovery rate of cobalt and nickel and the content ratio of various metals recovered. The grade of each product is shown in Table 1, and the recovery rate of each valuable substance to each product is shown in Table 2. In addition, Table 1 shows the content (feed) of each element in the raw material (lithium ion secondary battery). In Tables 1 and 2, (%) is% by mass. In addition, the upper part (coarse particles) is shown by "+" and the lower part (fine particles) is shown by "-".

実施例1において篩分けの目開きを2.4mmとした他は実施例1と同様の手順で行った。各産物の品位を表1に、各産物への各有価物の回収率を表2に、それぞれ示す。 The same procedure as in Example 1 was carried out except that the sieve opening in Example 1 was set to 2.4 mm. The grade of each product is shown in Table 1, and the recovery rate of each valuable substance to each product is shown in Table 2.

実施例1において篩分け目開きを4.8mmとした他は実施例1と同様の手順で行った。各産物の品位を表1に、各産物への各有価物の回収率を表2に、それぞれ示す。 The same procedure as in Example 1 was performed except that the sieving aperture in Example 1 was set to 4.8 mm. The grade of each product is shown in Table 1, and the recovery rate of each valuable substance to each product is shown in Table 2.

実施例1において篩分け目開きを0.6mmとした他は実施例1と同様の手順で行った。各産物の品位を表1に、各産物への各有価物の回収率を表2に、それぞれ示す。 The same procedure as in Example 1 was carried out except that the sieve opening in Example 1 was changed to 0.6 mm. The grade of each product is shown in Table 1, and the recovery rate of each valuable substance to each product is shown in Table 2.

(比較例1)
実施例1において篩分け目開きを0.3mmとした他は実施例1と同様の手順で行った。各産物の品位(各元素がその産物中の何%の質量を占めているか)を表1に、各産物への各有価物の回収率(各元素がその産物中に何割回収されたか)を表2に、それぞれ示す。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the sieving mesh size in Example 1 was 0.3 mm. Table 1 shows the grade of each product (how many% each element occupies in the product), and the recovery rate of each valuable substance to each product (how much each element was recovered in the product). Are shown in Table 2, respectively.

(比較例2)
実施例1において細粒の磁選を乾式とした他は実施例1と同様の手順で行った。各産物の品位を表1に、各産物への各有価物の回収率を表2に、それぞれ示す。
(Comparative example 2)
The same procedure as in Example 1 was carried out except that the magnetic separation of fine particles in Example 1 was changed to the dry type. The grade of each product is shown in Table 1, and the recovery rate of each valuable substance to each product is shown in Table 2.

実施例1では、表2に示すように、コバルトおよびニッケルを磁着物として90%以上回収できた。また、表1に示すように、コバルト・ニッケルの品位に関しては、コバルト・ニッケル品位が合わせて80%以上、負極集電体由来金属である銅の品位0.2%未満、フッ素品位1%未満、負極活物質由来元素であるカーボンの品位5%未満であり、高品質のコバルト・ニッケルが回収できた。
実施例2では、実施例1と同様に、コバルト・ニッケル品位が合わせて80%以上、銅品位0.2%未満、フッ素品位1%未満、カーボン品位5%未満の高品質のコバルト・ニッケルを90%以上回収できた。
実施例3では、実施例1と同様に、カーボン品位5%未満の高品質のコバルト・ニッケルを90%以上回収できた。ただし、鉄が37%細粒産物へ混入し、細粒産物の磁選で35%が磁着物(=Co/Ni濃縮物)中に回収された。結果として表1に示すように、磁着物中の鉄品位が約13%となった。
実施例4では、コバルト・ニッケル品位が合わせて80%以上、銅品位0.2%未満、フッ素品位1%未満、カーボン品位5%未満の高品質のコバルト・ニッケルを85%以上回収できた。
In Example 1, as shown in Table 2, 90% or more of cobalt and nickel could be recovered as a magnetic substance. Further, as shown in Table 1, regarding the grade of cobalt/nickel, the grade of cobalt/nickel is 80% or more in total, the grade of copper, which is a metal derived from the negative electrode current collector, is less than 0.2%, and the grade of fluorine is less than 1%. The quality of carbon, which is an element derived from the negative electrode active material, was less than 5%, and high quality cobalt/nickel could be recovered.
In Example 2, as in Example 1, high-quality cobalt-nickel having a total cobalt/nickel grade of 80% or more, a copper grade of less than 0.2%, a fluorine grade of less than 1%, and a carbon grade of less than 5% was used. 90% or more could be recovered.
In Example 3, as in Example 1, 90% or more of high-quality cobalt nickel having a carbon quality of less than 5% could be recovered. However, iron was mixed in the 37% fine grain product, and 35% was recovered in the magnetic substance (=Co/Ni concentrate) by magnetic separation of the fine grain product. As a result, as shown in Table 1, the iron grade in the magnetic substance was about 13%.
In Example 4, 85% or more of high-quality cobalt/nickel having a total cobalt/nickel grade of 80% or more, a copper grade of less than 0.2%, a fluorine grade of less than 1%, and a carbon grade of less than 5% could be recovered.

比較例1では、表2に示すように、粗粒物中にコバルトおよびニッケルが48%および53%回収されてしまい、他構成物から分離回収できなかった。
比較例2では、表2に示すように、カーボンの41%が磁着物に回収され、結果として表1に示すように、磁着物中のカーボン品位が約15%となった。また、フッ素品位が1%以上となった。
In Comparative Example 1, as shown in Table 2, 48% and 53% of cobalt and nickel were recovered in the coarse particles, and they could not be separated and recovered from other constituents.
In Comparative Example 2, as shown in Table 2, 41% of carbon was recovered in the magnetic substance, and as a result, as shown in Table 1, the carbon quality in the magnetic substance was about 15%. Moreover, the fluorine grade was 1% or more.

Claims (9)

リチウムイオン二次電池を熱処理する熱処理工程と、
前記熱処理工程で得られた熱処理物を破砕する破砕工程と、
前記破砕工程で得られた破砕物を粗粒産物と細粒産物とに0.45mm以上の分級点で分級する分級工程と、
前記分級工程で得られた細粒産物を湿式磁選する湿式磁選工程を有し、
前記熱処理工程は、670℃以上1100℃以下でリチウムイオン二次電池を熱処理し、
前記湿式磁選工程で得られた磁着物は、フッ素品位が1%未満であり、
前記湿式磁選工程で得られた非磁着物スラリーを固液分離することで分離された液中にフッ素が回収されることを特徴とする、リチウムイオン二次電池からの有価物の回収方法。
A heat treatment step of heat treating the lithium ion secondary battery,
A crushing step of crushing the heat-treated product obtained in the heat-treating step,
A classifying step of classifying the crushed material obtained in the crushing step into a coarse-grain product and a fine-grain product at a classification point of 0.45 mm or more;
A wet magnetic separation step of wet magnetic separation of the fine grain product obtained in the classification step,
In the heat treatment step, the lithium ion secondary battery is heat treated at 670° C. or higher and 1100° C. or lower ,
The magnetic substance obtained in the wet magnetic separation step has a fluorine quality of less than 1%,
A method of recovering a valuable resource from a lithium ion secondary battery, characterized in that solid-liquid separation is performed on the non-magnetically adsorbed slurry obtained in the wet magnetic separation step to recover fluorine in the separated liquid .
前記分級工程において、0.6〜2.4mmの分級点を用いることを特徴とする、請求項1に記載のリチウムイオン二次電池からの有価物の回収方法。 The method for recovering a valuable resource from a lithium ion secondary battery according to claim 1, wherein a classification point of 0.6 to 2.4 mm is used in the classification step. 前記熱処理工程でアルミニウムを溶融分離して回収することを特徴とする、請求項1又は2に記載のリチウムイオン二次電池からの有価物の回収方法。 The method for recovering a valuable resource from a lithium ion secondary battery according to claim 1, wherein aluminum is melted and separated in the heat treatment step to be recovered. 前記湿式磁選工程で得られた磁着物は、負極活物質由来の物質の含有量が5%未満であることを特徴とする、請求項1〜3のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。 The lithium ion secondary according to any one of claims 1 to 3, wherein the magnetic substance obtained in the wet magnetic separation step has a content of a substance derived from a negative electrode active material of less than 5%. How to recover valuables from batteries. 前記負極活物質由来の物質がカーボンであることを特徴とする、請求項4に記載のリチウムイオン二次電池からの有価物の回収方法。 The method of recovering a valuable resource from a lithium ion secondary battery according to claim 4, wherein the substance derived from the negative electrode active material is carbon. 前記湿式磁選工程で得られた磁着物は、負極集電体由来の金属品位が0.2%未満であることを特徴とする、請求項1〜5のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。 The lithium ion ion according to any one of claims 1 to 5, wherein the magnetic substance obtained in the wet magnetic separation step has a metal quality derived from a negative electrode current collector of less than 0.2%. How to recover valuables from the next battery. 負極集電体由来の金属が銅であることを特徴とする請求項6に記載のリチウムイオン二次電池からの有価物の回収方法。 The method for recovering a valuable resource from a lithium-ion secondary battery according to claim 6, wherein the metal derived from the negative electrode current collector is copper. 前記熱処理工程を、酸素濃度が10.5質量%以下の低酸素雰囲気下で行うことを特徴とする、請求項1〜7のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。 Said heat treatment step, the oxygen concentration and performing in a low oxygen atmosphere at less 10.5 wt%, of the valuable materials from lithium-ion secondary battery according to any one of claims 1 to 7 Recovery method. 前記湿式磁選工程で分離された非磁着物スラリーを固液分離後、液中に炭酸ガスを吹込むことを特徴とする、請求項1〜8のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。
The wet magnetic separation after the step solid-liquid separation, non-magnetically attracted material slurry separation, and wherein the blowing carbon dioxide gas into the liquid, a lithium ion secondary battery according to any one of claims 1 to 8 To collect valuables from.
JP2019186789A 2018-10-11 2019-10-10 How to recover valuables from lithium-ion secondary batteries Active JP6748274B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018192629 2018-10-11
JP2018192629 2018-10-11

Publications (2)

Publication Number Publication Date
JP2020064855A JP2020064855A (en) 2020-04-23
JP6748274B2 true JP6748274B2 (en) 2020-08-26

Family

ID=70387527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186789A Active JP6748274B2 (en) 2018-10-11 2019-10-10 How to recover valuables from lithium-ion secondary batteries

Country Status (1)

Country Link
JP (1) JP6748274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249615A1 (en) 2021-05-28 2022-12-01 Dowaエコシステム株式会社 Sorting method for valuable materials

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268382B2 (en) * 2019-02-09 2023-05-08 三菱マテリアル株式会社 How to dispose of used lithium-ion batteries
CN114122522A (en) * 2020-08-26 2022-03-01 北京小米移动软件有限公司 Battery manufacturing apparatus
CN116075374A (en) * 2020-09-09 2023-05-05 同和环保再生事业有限公司 Valuable material recovery method
JP6994093B1 (en) 2020-09-15 2022-02-14 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries
JP6990753B1 (en) * 2020-09-16 2022-01-12 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries
JP7236524B2 (en) * 2020-09-16 2023-03-09 Dowaエコシステム株式会社 Method for collecting valuables from lithium ion secondary battery
CN112246835B (en) * 2020-10-04 2022-03-04 湖南金源新材料股份有限公司 Method for disassembling and separating waste lithium ion batteries
CN112921194B (en) * 2021-01-25 2021-11-30 佛山市辰辉金属科技有限公司 Method for preparing high-performance target-component regenerated aluminum alloy from waste aluminum
CN112961984A (en) * 2021-01-29 2021-06-15 湖南邦普循环科技有限公司 Process and application for selectively recycling current collector of waste lithium ion battery
CN114367518A (en) * 2021-12-10 2022-04-19 池州西恩新材料科技有限公司 Dry-wet mixed recovery method for waste ternary lithium batteries and pole pieces
CN115172925A (en) * 2022-08-26 2022-10-11 赣州天奇循环环保科技有限公司 Multi-component recycling method for waste lithium ion batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011010A (en) * 2002-06-11 2004-01-15 Sumitomo Metal Mining Co Ltd Method for recovering lithium and cobalt from lithium cobaltate
JP2012079630A (en) * 2010-10-05 2012-04-19 Dowa Eco-System Co Ltd Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
JP6612506B2 (en) * 2015-02-14 2019-11-27 三菱マテリアル株式会社 Disposal of used lithium ion batteries
JP6650806B2 (en) * 2015-05-15 2020-02-19 Dowaエコシステム株式会社 Method of recovering valuable resources from lithium ion secondary batteries
JP6268130B2 (en) * 2015-06-11 2018-01-24 日本リサイクルセンター株式会社 Method for recovering valuable materials from lithium-ion batteries
JP6587861B2 (en) * 2015-08-11 2019-10-09 学校法人早稲田大学 Lithium-ion battery processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249615A1 (en) 2021-05-28 2022-12-01 Dowaエコシステム株式会社 Sorting method for valuable materials
KR20240014468A (en) 2021-05-28 2024-02-01 도와 에코 시스템 가부시키가이샤 How to select valuable items

Also Published As

Publication number Publication date
JP2020064855A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6859598B2 (en) How to recover valuables from used lithium-ion batteries
JP6692196B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
WO2021157483A1 (en) Separation method for valuable resources
US20230119544A1 (en) Method for concentrating valuable metal contained in lithium ion secondary battery
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP6984055B2 (en) Method for concentrating valuable metals contained in lithium-ion secondary batteries
JP6100991B2 (en) Method for recovering valuable material from positive electrode of lithium ion secondary battery
WO2022249615A1 (en) Sorting method for valuable materials
EP3836288B1 (en) Method for recovering valuable material from lithium ion secondary battery
US20210210807A1 (en) Method for recovering valuable material from lithium ion secondary battery
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
WO2024014144A1 (en) Method for recovering valuable materials from lithium ion secondary batteries
WO2023243385A1 (en) Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery
TW202410536A (en) Method for recycling valuables derived from lithium-ion secondary batteries
JP2023183355A (en) Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery
CN116056811A (en) Method for recovering valuable substances from lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6748274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250