JP2023183355A - Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery - Google Patents

Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery Download PDF

Info

Publication number
JP2023183355A
JP2023183355A JP2022165994A JP2022165994A JP2023183355A JP 2023183355 A JP2023183355 A JP 2023183355A JP 2022165994 A JP2022165994 A JP 2022165994A JP 2022165994 A JP2022165994 A JP 2022165994A JP 2023183355 A JP2023183355 A JP 2023183355A
Authority
JP
Japan
Prior art keywords
mass
recycled
positive electrode
cathode material
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022165994A
Other languages
Japanese (ja)
Inventor
達也 淀瀬
Tatsuya Yodose
亮栄 渡邊
Akishige Watanabe
宜典 森田
Yoshinori Morita
誠治 熊谷
Seiji Kumagai
勇輔 安部
Yusuke Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Dowa Eco Systems Co Ltd
Original Assignee
Akita University NUC
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC, Dowa Eco Systems Co Ltd filed Critical Akita University NUC
Priority to PCT/JP2023/019970 priority Critical patent/WO2023243385A1/en
Priority to TW112120902A priority patent/TW202410535A/en
Publication of JP2023183355A publication Critical patent/JP2023183355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a recycled cathode material that can be manufactured from an end-of-life lithium-ion secondary battery with less environmental impact and low recycling costs, and has excellent performance comparable to that of normal lithium-ion secondary battery cathode, a manufacturing method thereof, a method of using a recycled cathode material, a recycled cathode, and a lithium ion secondary battery.SOLUTION: A recycled positive electrode material containing lithium, nickel, cobalt, and manganese, 0.3 mass % or more and 3 mass% or less of aluminum, and less than 1 mass% of at least one of copper and iron.SELECTED DRAWING: None

Description

本発明は、再生正極材および再生正極材の製造方法、ならびに再生正極材の使用方法、再生正極、およびリチウムイオン二次電池に関する。 The present invention relates to a recycled cathode material, a method for manufacturing the recycled cathode material, a method for using the recycled cathode material, a recycled cathode, and a lithium ion secondary battery.

リチウムイオン二次電池は、エレクトロニクス分野から自動車分野まで急速に用途が広がっている。特に、自動車分野においては、ハイブリッド自動車用途や電気自動車用途として、ユニットの高容量化による大型電池の需要が急増することが予想される。このようなリチウムイオン二次電池の需要拡大に伴い、製品寿命を終えたリチウムイオン二次電池の量も増大する。 The applications of lithium ion secondary batteries are rapidly expanding from the electronics field to the automobile field. In particular, in the automotive field, demand for large batteries is expected to rapidly increase due to higher capacity units for use in hybrid vehicles and electric vehicles. As demand for such lithium ion secondary batteries increases, the amount of lithium ion secondary batteries that have reached the end of their product life also increases.

一方、リチウムイオン二次電池は、その正極材として高価な金属材料を使用していることから、製品寿命を終えたリチウムイオン二次電池から金属材料をリサイクルすることは、工業的に重要な課題である。 On the other hand, since lithium-ion secondary batteries use expensive metal materials as their positive electrode materials, recycling metal materials from lithium-ion secondary batteries that have reached the end of their product life is an important industrial issue. It is.

例えば、Co、NiおよびMnから選択される少なくとも2種からなる金属群と不純物とを含有する廃電池、廃正極材又はこれらの混合物から不純物を除去し、金属群を、当該金属塩の混合物として回収する方法が提案されている(例えば、特許文献1参照)。この提案では、回収された金属塩の混合物を用いて正極材を製造している。 For example, impurities are removed from a waste battery, waste cathode material, or a mixture thereof containing impurities and a metal group consisting of at least two selected from Co, Ni, and Mn, and the metal group is converted into a mixture of the metal salts. A collection method has been proposed (for example, see Patent Document 1). In this proposal, a mixture of recovered metal salts is used to manufacture a cathode material.

特許第5847742号公報Patent No. 5847742

しかしながら、製品寿命を終えたリチウムイオン二次電池から金属材料をリサイクルするためには、リサイクルに伴う環境負荷が少ないこと、リサイクルのコストが低廉であることが求められる。また、製品寿命を終えたリチウムイオン二次電池から回収したニッケル、コバルト、マンガンを用いて正極材を製造する場合には、その正極材を用いて製造した再生リチウムイオン二次電池が通常のリチウムイオン二次電池(正極材にリチウムイオン二次電池からリサイクルした金属材料を使用していないリチウムイオン二次電池を、以下「通常のリチウムイオン二次電池」と称する。)と比べて遜色のない優れた性能を有することが求められる。ところが、例えば、特許文献1に記載の方法は、複雑な分離工程と高コストな抽出剤を多用するものであり、リサイクルに伴う環境負荷が大きいこと、およびコストが嵩むことが懸念された。 However, in order to recycle metal materials from lithium ion secondary batteries that have reached the end of their product life, it is required that the environmental burden associated with recycling be small and that the cost of recycling be low. In addition, when manufacturing cathode materials using nickel, cobalt, and manganese recovered from lithium-ion secondary batteries that have reached the end of their product life, recycled lithium-ion secondary batteries manufactured using the cathode materials can be used as normal lithium-ion secondary batteries. Comparable to ion secondary batteries (lithium ion secondary batteries that do not use metal materials recycled from lithium ion secondary batteries for the positive electrode material are hereinafter referred to as "normal lithium ion secondary batteries"). It is required to have excellent performance. However, for example, the method described in Patent Document 1 uses a complicated separation process and a large amount of expensive extractants, and there were concerns that the environmental burden associated with recycling would be large and the cost would increase.

本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、製品寿命を終えたリチウムイオン二次電池から少ない環境負荷と低廉なリサイクルコストで製造でき、通常のリチウムイオン二次電池の正極材と比べて遜色のない優れた性能を有する再生正極材および再生正極材の製造方法、並びに再生正極材の使用方法、再生正極、およびリチウムイオン二次電池を提供することを目的とする。 An object of the present invention is to solve various problems in the prior art and achieve the following objects. That is, the present invention can be manufactured from a lithium ion secondary battery that has reached the end of its product life with less environmental impact and low recycling costs, and has excellent performance comparable to that of the positive electrode material of ordinary lithium ion secondary batteries. The present invention aims to provide a recycled cathode material, a method for producing the recycled cathode material, a method for using the recycled cathode material, a recycled cathode, and a lithium ion secondary battery.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> リチウム、ニッケル、コバルト、およびマンガンと、
アルミニウムを0.3質量%以上3質量%以下と、
銅および鉄の少なくともいずれかを1質量%未満と、
を含有することを特徴とする再生正極材である。
<2> カルシウムおよびマグネシウムの少なくともいずれかを含み、前記カルシウムおよび前記マグネシウムの少なくともいずれかの含有量が0.02質量%以上0.1質量%以下である、前記<1>に記載の再生正極材である。
<3> 前記アルミニウムの含有量が0.5質量%以上2.5質量%以下である、前記<1>から<2>のいずれかに記載の再生正極材である。
<4> 前記リチウムの含有量が5質量%以上9質量%以下である、前記<1>から<2>のいずれかに記載の再生正極材である。
<5> 前記銅の含有量が0.01質量%以下であり、
前記鉄の含有量が0.6質量%以下である、前記<1>から<2>のいずれかに記載の再生正極材である。
<6> 前記銅の含有量が0.0005質量%以上0.005質量%以下であり、
前記鉄の含有量が0.002質量%以上0.6質量%以下である、前記<5>に記載の再生正極材である。
<7> 前記アルミニウム(Al)の含有量(質量%)と、前記銅(Cu)の含有量(質量%)と、鉄(Fe)の含有量(質量%)とが、次式、Al/(Al+Cu+Fe)≧0.4、を充たす、前記<1>から<2>のいずれかに記載の再生正極材である。
<8> 前記ニッケル、前記コバルト、および前記マンガンを合計50質量%以上含有する、前記<1>から<2>のいずれかに記載の再生正極材である。
<9> 前記<1>から<2>のいずれかに記載の再生正極材を製造する方法であって、
リチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程と、
前記熱処理物を破砕した破砕物を得る破砕工程と、
前記破砕物に対して物理的選別を行って物理的処理物を得る物理的選別工程と、
前記物理的処理物に酸性溶液を添加し、酸処理溶液を得る酸処理工程と、
前記酸処理溶液に酸化剤を添加した後、アルカリ溶液を添加し、水酸化鉄の沈殿を濾別する鉄除去工程と、
前記鉄除去工程後の濾液とアルカリ溶液とを混合するアルカリ処理工程と、
を含むことを特徴とする再生正極材の製造方法である。
<10> リチウム源を添加するリチウム源添加工程を含む、前記<9>に記載の再生正極材の製造方法である。
<11> 前記<1>から<2>のいずれかに記載の再生正極材を有するリチウムイオン二次電池を組み立てる組立工程と、
前記組立工程で組み立てたリチウムイオン二次電池を、セル電圧0V付近から4.3V~4.6Vまで充電し、その後、セル電圧0V~3.5Vから4.3V~4.6Vの範囲で充放電を行う活性化工程と、
を含むことを特徴とする再生正極材の使用方法である。
<12> 前記<1>から<2>のいずれかに記載の再生正極材を含むことを特徴とする再生正極である。
<13> 前記<12>に記載の再生正極を有することを特徴とするリチウムイオン二次電池である。
Means for solving the above problem are as follows. That is,
<1> Lithium, nickel, cobalt, and manganese,
0.3% by mass or more and 3% by mass or less of aluminum,
less than 1% by mass of at least one of copper and iron;
This is a recycled cathode material characterized by containing.
<2> The regenerated positive electrode according to <1>, which contains at least one of calcium and magnesium, and has a content of at least one of calcium and magnesium of 0.02% by mass or more and 0.1% by mass or less. It is a material.
<3> The recycled positive electrode material according to any one of <1> to <2>, wherein the aluminum content is 0.5% by mass or more and 2.5% by mass or less.
<4> The recycled positive electrode material according to any one of <1> to <2>, wherein the lithium content is 5% by mass or more and 9% by mass or less.
<5> The copper content is 0.01% by mass or less,
The recycled positive electrode material according to any one of <1> to <2>, wherein the iron content is 0.6% by mass or less.
<6> The copper content is 0.0005% by mass or more and 0.005% by mass or less,
The recycled positive electrode material according to <5> above, wherein the iron content is 0.002% by mass or more and 0.6% by mass or less.
<7> The aluminum (Al) content (mass%), the copper (Cu) content (mass%), and the iron (Fe) content (mass%) are expressed by the following formula, Al/ The recycled positive electrode material according to any one of <1> to <2> above, satisfying (Al+Cu+Fe)≧0.4.
<8> The recycled positive electrode material according to any one of <1> to <2>, containing the nickel, the cobalt, and the manganese in a total amount of 50% by mass or more.
<9> A method for manufacturing the recycled cathode material according to any one of <1> to <2>, comprising:
a heat treatment step of obtaining a heat-treated product by heat-treating a lithium ion secondary battery;
A crushing step of crushing the heat-treated product to obtain a crushed product;
a physical sorting step of physically sorting the crushed material to obtain a physically processed material;
an acid treatment step of adding an acidic solution to the physically treated product to obtain an acid treatment solution;
an iron removal step of adding an oxidizing agent to the acid treatment solution, then adding an alkaline solution, and filtering out the iron hydroxide precipitate;
an alkali treatment step of mixing the filtrate after the iron removal step with an alkaline solution;
A method for producing a recycled cathode material, comprising:
<10> The method for producing a recycled positive electrode material according to <9> above, including a lithium source addition step of adding a lithium source.
<11> An assembly step of assembling a lithium ion secondary battery having the recycled cathode material according to any one of <1> to <2>;
The lithium ion secondary battery assembled in the above assembly process is charged from a cell voltage of around 0V to 4.3V to 4.6V, and then charged from a cell voltage of 0V to 3.5V to a range of 4.3V to 4.6V. an activation step of discharging;
1 is a method of using recycled cathode material characterized by comprising:
<12> A recycled positive electrode comprising the recycled positive electrode material according to any one of <1> to <2>.
<13> A lithium ion secondary battery comprising the regenerated positive electrode according to <12>.

本発明によると、従来における諸問題を解決することができ、製品寿命を終えたリチウムイオン二次電池から少ない環境負荷と低廉なリサイクルコストで製造でき、通常のリチウムイオン二次電池の正極材と比べて遜色のない優れた性能を有する再生正極材および再生正極材の製造方法、ならびに再生正極材の使用方法、再生正極、およびリチウムイオン二次電池を提供することができる。 According to the present invention, various conventional problems can be solved, and lithium ion secondary batteries that have reached the end of their product life can be manufactured with less environmental impact and low recycling costs, and can be used as cathode materials for ordinary lithium ion secondary batteries. It is possible to provide a recycled cathode material, a method for manufacturing the recycled cathode material, a method for using the recycled cathode material, a recycled cathode, and a lithium ion secondary battery that have comparable excellent performance.

図1は、本発明の再生正極材の製造方法の一例を示すフロー図である。FIG. 1 is a flow diagram showing an example of the method for producing recycled cathode material of the present invention. 図2は、実施例で用いたコインセル型のリチウムイオン二次電池の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a coin cell type lithium ion secondary battery used in Examples. 図3は、実施例1のフルセルのサイクル試験におけるサイクル数と正極材の比容量との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the number of cycles and the specific capacity of the positive electrode material in the full cell cycle test of Example 1. 図4は、比較例1のフルセルのサイクル試験におけるサイクル数と正極材の比容量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the number of cycles and the specific capacity of the positive electrode material in the full cell cycle test of Comparative Example 1. 図5は、比較例2のフルセルのサイクル試験におけるサイクル数と正極材の比容量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the number of cycles and the specific capacity of the positive electrode material in the full cell cycle test of Comparative Example 2. 図6は、実施例1のフルセルのサイクル試験における正極材の比容量とセル電圧との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the specific capacity of the positive electrode material and the cell voltage in the full cell cycle test of Example 1. 図7は、比較例1のフルセルのサイクル試験における正極材の比容量とセル電圧との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the specific capacity of the positive electrode material and the cell voltage in the full cell cycle test of Comparative Example 1. 図8は、比較例2のフルセルのサイクル試験における正極材の比容量とセル電圧との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the specific capacity of the positive electrode material and the cell voltage in the full cell cycle test of Comparative Example 2.

(再生正極材)
本発明の再生正極材は、リチウム、ニッケル、コバルト、およびマンガンと、アルミニウムを0.3質量%以上3質量%以下と、銅および鉄の少なくともいずれかを1質量%未満と、を含有し、さらに必要に応じてその他の成分を含有する。
(Recycled cathode material)
The recycled positive electrode material of the present invention contains lithium, nickel, cobalt, and manganese, 0.3% by mass or more and 3% by mass or less of aluminum, and less than 1% by mass of at least one of copper and iron, Furthermore, other components may be contained as necessary.

本発明の再生正極材、および前記再生正極材を用いたリチウムイオン二次電池は、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧で充放電を行うことにより、再生正極からLiが脱離しやすくなり、一度脱離したLiはそれ以降繰り返し脱離・挿入でき、通常の正極材(リチウムイオン二次電池からリサイクルした金属材料を使用していない正極材を、以下「通常の正極材」と称する。)を用いたリチウムイオン二次電池と同レベルの比容量を発現できると共に、通常の正極材を用いたリチウムイオン二次電池よりも優れたサイクル特性を実現できる。 The recycled cathode material of the present invention and the lithium ion secondary battery using the recycled cathode material can be charged and discharged at an upper limit cell voltage of 0.1V to 0.4V higher than the upper limit cell voltage of 4.2V in normal charging and discharging. By doing this, Li is easily desorbed from the recycled cathode, and once Li is desorbed, it can be repeatedly desorbed and inserted. The cathode material (hereinafter referred to as "ordinary cathode material") can exhibit the same level of specific capacity as a lithium-ion secondary battery using a lithium-ion secondary battery using a cathode material (hereinafter referred to as "ordinary cathode material"), and is superior to a lithium-ion secondary battery using a normal cathode material. Cycle characteristics can be achieved.

本発明において、前記リチウム、前記ニッケル、前記コバルト、前記マンガン、前記アルミニウム、前記銅、および前記鉄は、リチウム、ニッケル、コバルト、マンガン、アルミニウム、銅、および鉄の各々の金属元素を含み、各金属元素の酸化物又は水酸化物(即ち他元素と結合した化合物)に含有される各金属元素も含む。また、「酸化物」又は「水酸化物」は、各々の金属酸化物又は金属水酸化物、および各金属元素を含有する複合酸化物又は各金属元素を含有する複合水酸化物の少なくともいずれかを含む。 In the present invention, the lithium, the nickel, the cobalt, the manganese, the aluminum, the copper, and the iron include each of the following metal elements: lithium, nickel, cobalt, manganese, aluminum, copper, and iron; It also includes each metal element contained in the oxide or hydroxide of the metal element (ie, a compound combined with another element). In addition, "oxide" or "hydroxide" refers to each metal oxide or metal hydroxide, and at least one of a composite oxide containing each metal element or a composite hydroxide containing each metal element. including.

前記アルミニウムの含有量は、0.3質量%以上3質量%以下であり、0.5質量%以上2.5質量%以下が好ましく、0.7質量%以上1.5質量%以下がより好ましい。アルミニウムの含有量が0.3質量%以上3質量%以下であると、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧の範囲において、通常の正極材を用いたリチウムイオン二次電池よりも優れたサイクル特性を示し、通常のリチウムイオン二次電池の正極材との差異が明確になる。 The content of aluminum is 0.3% by mass or more and 3% by mass or less, preferably 0.5% by mass or more and 2.5% by mass or less, and more preferably 0.7% by mass or more and 1.5% by mass or less. . If the aluminum content is 0.3% by mass or more and 3% by mass or less, the normal charge/discharge limit cell voltage range of 0.1V to 0.4V higher than 4.2V, which is the upper limit cell voltage in normal charging and discharging. It exhibits better cycle characteristics than lithium ion secondary batteries using positive electrode materials, and the difference from normal lithium ion secondary battery positive electrode materials becomes clear.

前記リチウムの含有量は4質量%以上10質量%以下が好ましく、5質量%以上9質量%以下がより好ましく、7質量%以上8.5質量%以下がさらに好ましい。 The lithium content is preferably 4% by mass or more and 10% by mass or less, more preferably 5% by mass or more and 9% by mass or less, and even more preferably 7% by mass or more and 8.5% by mass or less.

ニッケル、コバルト、およびマンガンの合計含有量は、50質量%以上が好ましく、55質量%以上がより好ましい。ニッケル、コバルト、およびマンガンのそれぞれの含有量は目的とする電池の特性に応じて調整することができる。例えば、NCM811用の正極材であれば、ニッケルは15質量%以上52質量%以下、コバルト6質量%以上25質量%以下、およびマンガン6質量%以上25質量%以下で含有することができる。また、NCM111用の正極材であれば、ニッケル、コバルトおよびマンガンをそれぞれ10質量%以上30質量%以下で含有することができる。 The total content of nickel, cobalt, and manganese is preferably 50% by mass or more, more preferably 55% by mass or more. The respective contents of nickel, cobalt, and manganese can be adjusted depending on the desired characteristics of the battery. For example, a positive electrode material for NCM811 may contain nickel in an amount of 15% by mass or more and 52% by mass or less, cobalt in an amount of 6% by mass or more and 25% by mass or less, and manganese in an amount of 6% by mass or more and 25% by mass or less. Further, a positive electrode material for NCM111 can contain nickel, cobalt, and manganese in an amount of 10% by mass or more and 30% by mass or less, respectively.

本発明の再生正極材は、銅および鉄の少なくともいずれかを1質量%未満含有する。
銅の含有量は1質量%未満であり、0.01質量%以下が好ましく、0.0005質量%以上0.005質量%以下がより好ましい。
鉄の含有量は1質量%未満であり、0.6質量%以下が好ましく、0.002質量%以上0.6質量%以下がより好ましい。
銅および鉄の少なくともいずれかを1質量%未満含有すると、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧の範囲において、通常の正極材を用いたリチウムイオン二次電池よりも優れたサイクル特性を示し、通常のリチウムイオン二次電池の正極材との差異が明確になる。
The recycled positive electrode material of the present invention contains less than 1% by mass of at least one of copper and iron.
The content of copper is less than 1% by mass, preferably 0.01% by mass or less, and more preferably 0.0005% by mass or more and 0.005% by mass or less.
The iron content is less than 1% by mass, preferably 0.6% by mass or less, and more preferably 0.002% by mass or more and 0.6% by mass or less.
If less than 1% by mass of at least one of copper and iron is contained, normal positive electrode materials cannot be used in the range of upper limit cell voltage 0.1V to 0.4V higher than 4.2V, which is the upper limit cell voltage in normal charging and discharging. It shows better cycle characteristics than conventional lithium-ion secondary batteries, and clearly differentiates it from the positive electrode materials of regular lithium-ion secondary batteries.

カルシウムおよびマグネシウムの少なくともいずれかを含むことが好ましい。カルシウムおよびマグネシウムの少なくともいずれかの含有量は0.02質量%以上0.1質量%以下が好ましく、0.04質量%以上0.09質量%以下がより好ましい。
リチウムイオン二次電池からリサイクルした金属を使用するとカルシウムおよびマグネシウムを含有することが多いが、この程度の含有量であれば再生正極材を用いた電池特性に大きな影響がないことを確認した。
It is preferable that at least one of calcium and magnesium is included. The content of at least one of calcium and magnesium is preferably 0.02% by mass or more and 0.1% by mass or less, more preferably 0.04% by mass or more and 0.09% by mass or less.
When metals recycled from lithium ion secondary batteries are used, they often contain calcium and magnesium, but it was confirmed that this level of content would not have a major effect on the characteristics of batteries using recycled cathode materials.

アルミニウム(Al)の含有量(質量%)と、銅(Cu)の含有量(質量%)と、鉄(Fe)の含有量(質量%)とが、次式、Al/(Al+Cu+Fe)≧0.4、を充たすことが好ましく、次式、Al/(Al+Cu+Fe)≧0.5、を充たすことがより好ましく、次式、Al/(Al+Cu+Fe)≧0.6、を充たすことがさらに好ましく、次式、Al/(Al+Cu+Fe)≧0.7、を充たすことが特に好ましく、次式、Al/(Al+Cu+Fe)≧0.8、を充たすことがより特に好ましく、次式、Al/(Al+Cu+Fe)≧0.9、を充たすことがさらに特に好ましい。
次式、Al/(Al+Cu+Fe)≧0.4、を充たすことにより、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧の範囲において、通常のリチウムイオン二次電池よりも優れたサイクル特性を示す。
The content of aluminum (Al) (mass%), the content of copper (Cu) (mass%), and the content of iron (Fe) (mass%) are determined by the following formula, Al/(Al+Cu+Fe)≧0 It is preferable to satisfy the following formula, Al/(Al+Cu+Fe)≧0.5, and it is even more preferable to satisfy the following formula, Al/(Al+Cu+Fe)≧0.6, It is particularly preferable to satisfy the formula, Al/(Al+Cu+Fe)≧0.7, and it is particularly preferable to satisfy the following formula, Al/(Al+Cu+Fe)≧0.8, and the following formula, Al/(Al+Cu+Fe)≧0 It is even more particularly preferable to satisfy .9.
By satisfying the following formula, Al/(Al+Cu+Fe)≧0.4, normal lithium Shows better cycle characteristics than ion secondary batteries.

前記各金属元素の含有量は、例えば、ICP分析、又は蛍光X線分析などを用いて測定することができる。 The content of each metal element can be measured using, for example, ICP analysis or fluorescent X-ray analysis.

<その他の成分>
その他の成分としては、特に制限はなく、本発明の効果を奏する範囲で含んでもよく、例えば、Na、O、フッ素(F)などが挙げられる。
<Other ingredients>
Other components are not particularly limited and may be included as long as the effects of the present invention are achieved, such as Na, O, fluorine (F), and the like.

リチウム、ニッケル、コバルト、およびマンガンと、アルミニウムを0.3質量%以上3質量%以下と、銅および鉄の少なくともいずれかを1質量%未満とを含有する本発明の再生正極材は、以下に説明する本発明の再生正極材の製造方法により好適に製造することができる。 The recycled positive electrode material of the present invention, which contains lithium, nickel, cobalt, and manganese, 0.3% by mass or more and 3% by mass or less of aluminum, and less than 1% by mass of at least one of copper and iron, includes the following: It can be suitably manufactured by the method for manufacturing a recycled cathode material of the present invention as described.

(再生正極材の製造方法)
本発明の再生正極材の製造方法は、本発明の再生正極材を製造する方法であって、熱処理工程と、破砕工程と、物理的選別工程と、酸処理工程と、鉄除去工程と、アルカリ処理工程と、を含み、リチウム源添加工程を含むことが好ましく、さらに必要に応じてその他の工程を含む。
ここで、図1は、本発明の再生正極材の製造方法の一例を示すフロー図である。以下、図1を参照して、本発明の再生正極材の製造方法について説明する。
(Method for manufacturing recycled cathode material)
The method for producing recycled cathode material of the present invention is a method for producing recycled cathode material of the present invention, which includes a heat treatment step, a crushing step, a physical sorting step, an acid treatment step, an iron removal step, and an alkali removal step. It preferably includes a lithium source addition step, and further includes other steps as necessary.
Here, FIG. 1 is a flow diagram showing an example of a method for manufacturing a recycled cathode material of the present invention. Hereinafter, with reference to FIG. 1, a method for manufacturing a recycled cathode material of the present invention will be described.

<処理対象物であるリチウムイオン二次電池>
処理対象物であるリチウムイオン二次電池としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。
<Lithium ion secondary battery to be treated>
The lithium ion secondary battery to be treated is not particularly limited and can be selected as appropriate depending on the purpose. For example, a defective lithium ion secondary battery generated during the manufacturing process of lithium ion secondary batteries , lithium ion secondary batteries that are discarded due to defects in the equipment being used or the end of the lifespan of the equipment used, and used lithium ion secondary batteries that are discarded due to the end of their lifespan.

リチウムイオン二次電池は、正極と負極の間をリチウムイオンが移動することで充電および放電を行う二次電池であり、例えば、正極と、負極と、セパレータと、電解質(有機溶媒を含有する電解液又は固体電解質)と、電池ケースである外装容器とを備えたものが挙げられる。 A lithium ion secondary battery is a secondary battery that charges and discharges by moving lithium ions between a positive electrode and a negative electrode. Examples include those that include a liquid or solid electrolyte) and an outer container that is a battery case.

処理対象物のリチウムイオン二次電池の形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。リチウムイオン二次電池の形状としては、例えば、ラミネート型、円筒型、ボタン型、コイン型、角型、平型などが挙げられる。 The shape, structure, size, material, etc. of the lithium ion secondary battery to be treated are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape of the lithium ion secondary battery include a laminate type, a cylindrical shape, a button shape, a coin shape, a square shape, and a flat shape.

-正極-
正極としては、正極集電体上に正極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。
-Positive electrode-
The positive electrode is not particularly limited as long as it has a positive electrode material on the positive electrode current collector, and can be appropriately selected depending on the purpose. The shape of the positive electrode is not particularly limited and can be appropriately selected depending on the purpose, such as a flat plate or a sheet.

正極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。正極集電体の形状としては、例えば、箔状などが挙げられる。正極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、アルミニウムが多用されている。 The shape, structure, size, material, etc. of the positive electrode current collector are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape of the positive electrode current collector include a foil shape. Examples of the material of the positive electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, aluminum is widely used.

正極材の構成部材は目的に応じて適宜選択することができ、例えば、希少有価物を含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。希少有価物としては、特に制限はなく、目的に応じて適宜選択することができるが、コバルト、ニッケル、およびマンガンが多用されている。 The constituent members of the positive electrode material can be selected as appropriate depending on the purpose, such as a positive electrode material that includes at least a positive electrode active material containing rare valuables, and optionally a conductive agent and a binder resin. . There are no particular restrictions on rare valuables, and they can be selected as appropriate depending on the purpose, but cobalt, nickel, and manganese are often used.

正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、コバルト・ニッケル酸リチウム(LiCo1/2Ni1/2)、三元系材料(「NMC」即ちLiNiCoMn、x+y+z=1であり、且つx、y、zは各々0を超え且つ1未満)、ニッケル系材料(「NCA」即ちLiNiCoAl、x+y+z=1であり且つx、y、zは各々0を超え且つ1未満)、又はこれらの任意の組み合わせの複合物x+y+z=1であり且つx、y、zは各々0を超え且つ1未満などが挙げられる。 Examples of positive electrode active materials include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium cobalt nickel oxide (LiCo 1/2 Ni 1/2 O 2 ), ternary materials (“NMC”, i.e., LiNix Co y Mn z O 2 , x+y+z=1, and x, y, and z are each greater than 0 and less than 1), nickel-based materials (“NCA”, i.e. LiNix Co y Al z O 2 , x+y+z=1 and x, y, z are each greater than 0 and less than 1), or a composite of any combination thereof x+y+z=1 and x, y, z are greater than 0 and less than 1, respectively.

導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。 The conductive agent is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include carbon black, graphite, carbon fiber, metal carbide, and the like.

結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体又は共重合体、スチレン-ブタジエンゴムなどが挙げられる。 The binder resin is not particularly limited and can be selected as appropriate depending on the purpose. Examples include homopolymers or copolymers of vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, and styrene-butadiene rubber. Examples include.

-負極-
負極としては、負極集電体上に負極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。
-Negative electrode-
The negative electrode is not particularly limited as long as it has a negative electrode material on the negative electrode current collector, and can be appropriately selected depending on the purpose. The shape of the negative electrode is not particularly limited and can be appropriately selected depending on the purpose, such as a flat plate or a sheet.

負極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。負極集電体の形状としては、例えば、箔状などが挙げられる。負極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、銅が好ましい。 The shape, structure, size, material, etc. of the negative electrode current collector are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape of the negative electrode current collector include a foil shape. Examples of the material of the negative electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, copper is preferred.

負極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グラファイト、ハードカーボン等の炭素材、チタネイト、シリコン、又はこれらの複合物などが挙げられる。 The negative electrode material is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include graphite, carbon materials such as hard carbon, titanate, silicon, and composites thereof.

なお、正極集電体と負極集電体とは積層体の構造を有しており、積層体としては、特に制限はなく、目的に応じて適宜選択することができる。 Note that the positive electrode current collector and the negative electrode current collector have a laminate structure, and the laminate is not particularly limited and can be appropriately selected depending on the purpose.

<熱処理工程>
熱処理工程は、リチウムイオン二次電池を熱処理することにより、熱処理物を得る工程である。
図1に示すように、まず、処理対象であるリチウムイオン二次電池に対して、熱処理工程が行われる。熱処理温度は、正極集電体および負極集電体のうち、低い融点の集電体の融点以上、且つ高い融点の集電体の融点未満の温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、670℃以上が好ましく、670℃以上1,100℃以下がより好ましく、700℃以上1,000℃以下がさらに好ましく、700℃以上900℃以下が特に好ましい。熱処理温度が、670℃以上であると、低い融点の集電体の脆化が十分に生じ、1,100℃以下であると、低い融点の集電体、高い融点の集電体、および外装容器のいずれも脆化を抑制でき、破砕および分級による集電体および外装容器の分離効率を維持できる。また、前記リチウムイオン二次電池の前記外装容器が前記熱処理中に溶融する場合、前記リチウムイオン二次電池の下部に前記溶融金属を回収する受け皿を配置することで、外装容器由来の金属と電極部を容易に分離することができる。
<Heat treatment process>
The heat treatment step is a step of heat-treating a lithium ion secondary battery to obtain a heat-treated product.
As shown in FIG. 1, first, a heat treatment step is performed on a lithium ion secondary battery to be treated. The heat treatment temperature is not particularly limited as long as it is higher than the melting point of the current collector with a lower melting point and lower than the melting point of the current collector with a higher melting point among the positive electrode current collector and negative electrode current collector. Although the temperature can be selected as appropriate, the temperature is preferably 670°C or higher, more preferably 670°C or higher and 1,100°C or lower, even more preferably 700°C or higher and 1,000°C or lower, particularly preferably 700°C or higher and 900°C or lower. When the heat treatment temperature is 670°C or higher, the current collector with a low melting point is sufficiently embrittled, and when the heat treatment temperature is 1,100°C or lower, the current collector with a low melting point, the current collector with a high melting point, and the exterior are damaged. Embrittlement of both containers can be suppressed, and separation efficiency between the current collector and the outer container by crushing and classification can be maintained. In addition, when the outer container of the lithium ion secondary battery melts during the heat treatment, a tray for collecting the molten metal is disposed at the bottom of the lithium ion secondary battery, so that the metal from the outer container and the electrode parts can be easily separated.

所定の熱処理温度で熱処理を行うことにより、例えば、正極集電体がアルミニウム箔であり、負極集電体が銅である積層体において、アルミニウム箔からなる正極集電体が脆化し、後述する破砕工程において細粒化しやすくなる。この正極集電体の脆化は溶融もしくは酸化反応により生ずる。また、溶融して流れ落ちたアルミニウムは、受け皿に回収される。一方、銅からなる負極集電体は、銅の融点未満の温度で熱処理されるため、溶融することがなく、後述する磁気選別工程において、高度に選別できるようになる。また、積層体およびリチウムイオン二次電池のいずれかを酸素遮蔽容器に収容して熱処理したときは、アルミニウム箔からなる正極集電体が溶融して脆化し、後述する破砕工程において細粒化しやすくなる。一方、銅からなる負極集電体は、前記酸素遮蔽容器の酸素遮蔽効果および積層体やリチウムイオン二次電池に含まれるカーボン等の負極活物質による還元効果により、酸素分圧が低い状態で熱処理されるため、酸化による脆化が生じない。このため、破砕工程における破砕により、正極集電体は細かく破砕され、負極集電体は、破砕後も粗粒として存在し、後述する分級選別工程において、より効果的且つ高度に選別できるようになる。 By performing heat treatment at a predetermined heat treatment temperature, for example, in a laminate in which the positive electrode current collector is aluminum foil and the negative electrode current collector is copper, the positive electrode current collector made of aluminum foil becomes brittle, resulting in fracture as described below. It becomes easier to make the particles finer in the process. This embrittlement of the positive electrode current collector occurs due to melting or oxidation reaction. Further, the aluminum that has melted and flowed down is collected in a tray. On the other hand, since the negative electrode current collector made of copper is heat-treated at a temperature below the melting point of copper, it does not melt and can be highly sorted in the magnetic sorting process described below. In addition, when either the laminate or the lithium ion secondary battery is housed in an oxygen-shielded container and heat-treated, the positive electrode current collector made of aluminum foil melts and becomes brittle, making it more likely to become fine particles in the crushing process described later. Become. On the other hand, the negative electrode current collector made of copper is heat-treated at a low oxygen partial pressure due to the oxygen shielding effect of the oxygen shielding container and the reduction effect of the negative electrode active material such as carbon contained in the laminate or lithium ion secondary battery. Therefore, embrittlement due to oxidation does not occur. Therefore, by crushing in the crushing process, the positive electrode current collector is finely crushed, and the negative electrode current collector remains as coarse particles even after crushing, so that it can be sorted more effectively and highly in the classification and sorting process described later. Become.

熱処理時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間以上5時間以下が好ましく、1分間以上2時間以下がより好ましく、1分間以上1時間以下が特に好ましい。熱処理時間は低い融点の前記集電体が所望の温度まで到達する熱処理時間であればよく、保持時間は短くてもよい。熱処理時間が、特に好ましい範囲内であると、熱処理にかかるコストの点で有利である。 The heat treatment time is not particularly limited and can be selected as appropriate depending on the purpose, but is preferably 1 minute or more and 5 hours or less, more preferably 1 minute or more and 2 hours or less, and particularly preferably 1 minute or more and 1 hour or less. . The heat treatment time may be a heat treatment time that allows the current collector having a low melting point to reach a desired temperature, and the holding time may be short. When the heat treatment time is within a particularly preferable range, it is advantageous in terms of the cost required for heat treatment.

熱処理の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱処理炉を用いて行うことが挙げられる。熱処理炉としては、例えば、ロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュポラ、ストーカー炉などが挙げられる。 The method of heat treatment is not particularly limited and can be appropriately selected depending on the purpose. For example, it may be carried out using a heat treatment furnace. Examples of the heat treatment furnace include rotary kilns, fluidized bed furnaces, tunnel furnaces, batch furnaces such as muffles, cupolas, and stoker furnaces.

熱処理に用いる雰囲気としては、特に制限はなく、目的に応じて適宜選択することができるが、空気中で行うことができる。酸素濃度が低い雰囲気とすれば正極集電体由来の金属および負極集電体由来の金属を高品位且つ高い回収率で回収できる点から好ましい。 The atmosphere used for the heat treatment is not particularly limited and can be appropriately selected depending on the purpose, but the heat treatment can be carried out in air. An atmosphere with a low oxygen concentration is preferable because the metal derived from the positive electrode current collector and the metal derived from the negative electrode current collector can be recovered with high quality and high recovery rate.

上記低酸素雰囲気の実現方法として、リチウムイオン二次電池又は積層体を酸素遮蔽容器に収容し熱処理してもよい。酸素遮蔽容器の材質としては、上述の熱処理温度で溶融しない材料であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、鉄、ステンレス鋼などが挙げられる。リチウムイオン二次電池又は積層体中の電解液燃焼によるガス圧を放出するために、酸素遮蔽容器には開口部を設けることが好ましい。開口部の開口面積は、開口部が設けられている外装容器の表面積に対して12.5%以下となるように設けることが好ましい。開口部の開口面積は、開口部が設けられている外装容器の表面積に対して6.3%以下であることがより好ましい。開口部の開口面積が外装容器の表面積に対して12.5%を超えると、集電体の大部分が熱処理によって酸化しやすくなってしまう。開口部は、その形状、大きさ、形成箇所などについては特に制限はなく、目的に応じて適宜選択することができる。 As a method for realizing the above-mentioned low-oxygen atmosphere, the lithium ion secondary battery or the laminate may be housed in an oxygen-shielding container and heat-treated. The material of the oxygen-shielding container is not particularly limited as long as it does not melt at the above-mentioned heat treatment temperature, and can be appropriately selected depending on the purpose. Examples include iron, stainless steel, and the like. In order to release the gas pressure caused by combustion of the electrolyte in the lithium ion secondary battery or the laminate, the oxygen shielding container is preferably provided with an opening. The opening area of the opening is preferably 12.5% or less of the surface area of the outer container in which the opening is provided. More preferably, the opening area of the opening is 6.3% or less of the surface area of the outer container in which the opening is provided. If the opening area of the opening exceeds 12.5% of the surface area of the outer container, most of the current collector will be easily oxidized by heat treatment. There are no particular restrictions on the shape, size, location, etc. of the opening, and these can be selected as appropriate depending on the purpose.

ここで、所望により蛍光X線分析等を用いて、熱処理工程にて得られた熱処理物に含有される金属元素の定性定量分析を行うことも好ましい。これは、処理対象のリチウムイオン二次電池によって熱処理物に含有されている金属成分に差異が生じる場合があることによる。 Here, it is also preferable to perform qualitative and quantitative analysis of the metal elements contained in the heat-treated product obtained in the heat treatment step using fluorescent X-ray analysis or the like, if desired. This is because the metal components contained in the heat-treated product may differ depending on the lithium ion secondary battery to be treated.

この定性定量分析結果より、同様の金属成分の組成を有する熱処理物をグループ化し、グループ毎に分けた熱処理物を後述する破砕工程へ送ることは、再生正極材の金属成分の組成を安定なものとする観点から好ましい構成である。 Based on the results of this qualitative and quantitative analysis, it is possible to group heat-treated products with similar metal component compositions and send the heat-treated products divided into groups to the crushing process described below to stabilize the metal component composition of the recycled cathode material. This is a preferable configuration from the viewpoint of

<破砕工程>
破砕工程は、前記熱処理物を破砕した破砕物を得る工程である。
破砕としては、例えば、衝撃により破砕を行う方法としては、回転する打撃板により投げつけ、衝突板に叩きつけて衝撃を与える方法や、回転する打撃子(ビーター)により熱処理物を叩く方法が挙げられ、例えば、ハンマークラッシャー、チェーンクラッシャーなどにより行うことができる。また、セラミックス、鉄などのボールやロッドにより熱処理物を叩く方法が挙げられ、ボールミル、ロッドミルなどにより行うことができる。また、圧縮による破砕を行う刃幅又は刃渡りの短い二軸粉砕機で破砕することにより行うことができる。
<Crushing process>
The crushing step is a step of crushing the heat-treated product to obtain a crushed product.
As for crushing, for example, methods of crushing by impact include a method of throwing it with a rotating impact plate and hitting it against a collision plate to apply an impact, a method of hitting the heat-treated product with a rotating batter (beater), For example, it can be carried out using a hammer crusher, a chain crusher, or the like. Another method is to hit the heat-treated product with balls or rods made of ceramics, iron, etc., and can be carried out using a ball mill, a rod mill, or the like. Alternatively, crushing can be carried out by crushing with a twin-shaft crusher having a short blade width or blade length that crushes by compression.

衝撃により、破砕物を得ることにより、活物質および低い融点の集電体の破砕を促進し、一方、形態が著しく変化していない高い融点の集電体が、箔状などの形態で存在する。そのため、破砕工程において、高い融点の集電体は、切断されるにとどまり、高い融点の集電体の細粒化は、低い融点の集電体と比較し進行しにくいため、後述する分級選別工程において低い融点の集電体と高い融点の集電体とが効率的に分離できる状態の破砕物を得ることができる。 The impact promotes the crushing of the active material and the low melting point current collector by obtaining a crushed material, while the high melting point current collector whose morphology has not changed significantly exists in the form of a foil or the like. . Therefore, in the crushing process, the current collector with a high melting point is only cut, and the fineness of the current collector with a high melting point progresses more slowly than with the current collector with a low melting point. In the process, it is possible to obtain a crushed material in which a current collector with a low melting point and a current collector with a high melting point can be efficiently separated.

破砕時間としては、特に制限はなく、目的に応じて適宜選択することができるが、リチウムイオン二次電池1kgあたりの処理時間は1秒間以上30分間以下が好ましく、2秒間以上10分間以下がより好ましく、3秒間以上5分間以下が特に好ましい。破砕時間が、1秒間未満であると、破砕されないことがあり、30分間を超えると、過剰に破砕されることがある。そして、破砕物の最大粒径を10mm以下とすることが好ましい。 The crushing time is not particularly limited and can be selected as appropriate depending on the purpose, but the processing time per 1 kg of lithium ion secondary battery is preferably 1 second or more and 30 minutes or less, more preferably 2 seconds or more and 10 minutes or less. Preferably, 3 seconds or more and 5 minutes or less is particularly preferable. If the crushing time is less than 1 second, it may not be crushed, and if it exceeds 30 minutes, it may be crushed excessively. Further, it is preferable that the maximum particle size of the crushed material is 10 mm or less.

<物理的選別工程>
物理的選別工程は、前記破砕物に対して物理的選別を行って物理的処理物を得る工程である。
-分級選別工程-
物理的選別工程として、破砕工程で得られた破砕物を粗粒産物と細粒産物とに分級する分級選別工程を行うことができる。分級方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩、湿式振動テーブル、エアーテーブルなどが挙げられる。
<Physical sorting process>
The physical sorting step is a step of physically sorting the crushed material to obtain a physically processed material.
-Classification and sorting process-
As the physical sorting step, a classification and sorting step can be performed in which the crushed material obtained in the crushing step is classified into coarse grain products and fine grain products. The classification method is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a vibrating sieve, a multistage vibrating sieve, a cyclone, a standard sieve according to JIS Z8801, a wet vibrating table, an air table, and the like.

分級選別工程で用いる分級点としては、特に制限はなく、目的に応じて適宜選択することができるが、0.45mm以上が好ましく、0.6mm以上2.4mm以下がより好ましい。分級点が2.4mmを超えると、細粒産物中へ外装容器由来および融点の高いほうの金属の混入が増加し、活物質由来のコバルトおよびニッケルとの分離成績が低下する場合がある。一方、分級点が0.45mm未満であると、低い融点の集電体由来の金属および活物質の粗粒産物中への混入が増加し、粗粒産物中の高い融点の集電体由来の金属の品位が低下し、且つ細粒産物への活物質由来のコバルトおよびニッケルの回収率が60%未満となる場合がある。また、分級方法として篩を用いた時に、篩上に解砕促進物、例えば、ステンレス球又はアルミナボールを載せて篩うことにより、大きな破砕物に付着している小さな破砕物を大きな破砕物から分離させることにより、大きな破砕物と小さな破砕物により効率的に分離することができる。これにより回収する金属の品位をさらに向上させることができる。なお、破砕工程と分級選別工程は、同時進行で行うこともできる。例えば、熱処理工程で得られた熱処理物を破砕しながら、破砕物を粗粒産物と細粒産物とに分級する工程(破砕・分級)として行ってもよい。 The classification point used in the classification and selection step is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.45 mm or more, and more preferably 0.6 mm or more and 2.4 mm or less. If the classification point exceeds 2.4 mm, metals originating from the outer container and having a higher melting point may be mixed into the fine grain product, and the separation performance from cobalt and nickel originating from the active material may deteriorate. On the other hand, if the classification point is less than 0.45 mm, the metal and active material derived from the current collector with a low melting point will be mixed into the coarse grain product, and the amount of metal and active material derived from the current collector with a high melting point in the coarse grain product will increase. The metal quality is reduced and the recovery of cobalt and nickel from the active material to the fine grain product may be less than 60%. In addition, when a sieve is used as a classification method, by placing a disintegration accelerator, such as stainless steel balls or alumina balls, on the sieve, small crushed items adhering to large crushed items can be separated from large crushed items. By separating, large crushed materials and small crushed materials can be efficiently separated. Thereby, the quality of the metal to be recovered can be further improved. Note that the crushing step and the classification and sorting step can also be performed simultaneously. For example, the heat-treated product obtained in the heat treatment step may be crushed while the crushed product is classified into coarse grain products and fine grain products (crushing/classification).

上述した分級により、粗粒産物として外装容器および融点の高い集電体由来の金属を回収することができ、細粒産物(ブラックマス)として活物質由来のコバルト、ニッケル、リチウムの濃縮物を回収することができる。なお、細粒産物を再度、分級してもよい。この再度の分級での細粒産物から例えば150μm以下の細粒を除去することにより、湿式磁気選別(以下、磁気選別のことを省略して「磁選」と称することもある。)の非磁着物に含まれる負極活物質分を低減することができる。 Through the above-mentioned classification, metals derived from the outer container and the current collector with a high melting point can be recovered as coarse particles, and concentrates of cobalt, nickel, and lithium derived from active materials can be recovered as fine particles (black mass). can do. Note that the fine grain product may be classified again. By removing fine grains of, for example, 150 μm or less from the fine grain products in this re-classification, non-magnetic particles can be obtained by wet magnetic sorting (hereinafter sometimes referred to as "magnetic sorting", abbreviated as "magnetic sorting"). The amount of negative electrode active material contained in the negative electrode active material can be reduced.

-磁選工程-
物理的選別工程として、破砕工程で得られた破砕物、又は分級選別工程で得られた粗粒産物に対して、乾式磁選工程を行うことができる。磁着物として鉄が回収され、非磁着物として銅などの負極集電体由来金属が回収される。
物理的選別工程として、破砕工程で得られた破砕物、又は、分級選別工程で得られた細粒産物(ブラックマス)に対して、より好ましくは湿式磁選工程(湿式磁選)を行うことができる。磁着物としてコバルトおよびニッケルの濃縮物が回収される。
分級選別工程で得られた細粒産物を磁選するに際し、乾式で磁選した場合、粒子間の付着水分により粒子の凝集が生じ、負極集電体由来金属粒子および細粒産物に10質量%以上含まれる負極活物質微粒子とコバルトおよびニッケル粒子とを十分に分離できない。本発明では、湿式磁選工程において負極活物質由来の物質と負極集電体由来金属を非磁着物スラリーに分離し、コバルトおよびニッケルを磁着物に回収し、物理的処理物を得る。なお、マンガンは、室温では強磁性ではないが、リチウムイオン二次電池においてコバルトおよびニッケルとともに複合酸化物を構成する場合、コバルトおよびニッケルが磁選される際に付随する。そのため、マンガンも磁選にて相当量回収される。磁選の際の磁力は1,500G~8,000Gが好ましい。
-Magnetic selection process-
As the physical sorting step, a dry magnetic separation step can be performed on the crushed material obtained in the crushing step or the coarse grain product obtained in the classification and sorting step. Iron is recovered as a magnetized substance, and metal derived from the negative electrode current collector, such as copper, is recovered as a non-magnetized substance.
As the physical sorting step, a wet magnetic separation step (wet magnetic separation) can be more preferably performed on the crushed material obtained in the crushing step or the fine grain product (black mass) obtained in the classification and sorting step. . Cobalt and nickel concentrates are recovered as magnetic materials.
When performing magnetic separation on the fine grain products obtained in the classification and sorting process, when magnetic separation is carried out in a dry manner, particle aggregation occurs due to moisture adhering between the particles, and the metal particles derived from the negative electrode current collector and the fine grain products contain 10% by mass or more. It is not possible to sufficiently separate the negative electrode active material particles from the cobalt and nickel particles. In the present invention, in a wet magnetic separation process, a material derived from the negative electrode active material and a metal derived from the negative electrode current collector are separated into a non-magnetic material slurry, and cobalt and nickel are recovered into the magnetic material to obtain a physically treated product. Although manganese is not ferromagnetic at room temperature, when it forms a composite oxide together with cobalt and nickel in a lithium ion secondary battery, it accompanies cobalt and nickel when they are magnetically separated. Therefore, a considerable amount of manganese can also be recovered through magnetic separation. The magnetic force during magnetic separation is preferably 1,500G to 8,000G.

一方、リチウムは原料のスラリー化および湿式磁選の間に液中に溶解し、非磁着物スラリーに分離される。この非磁着物スラリーを固液分離することで、負極集電体由来金属および負極活物質を残渣に分離できる。また、固液分離によって分離された液中には炭酸ガスの吹込みが行われ、炭酸リチウムとして沈殿し、リチウムが回収される。なお、前記炭酸ガスの吹込み前には、不純物の除去およびリチウム濃度の上昇を目的とした液の濃縮工程などの前処理工程を有していてもよい。残った液中には例えばフッ素などが回収される。このため、物理的処理物中のフッ素品位は1%未満となり得る。リチウムを回収およびフッ素をコバルトおよびニッケルから分離するには浸出処理が必要であるが、本発明では、湿式磁選工程において、リチウムの水浸出およびフッ素の浸出除去と負極集電体由来金属のコバルトおよびニッケルの分離とを同時に行える点から、工程数を減らすことができる。 On the other hand, lithium is dissolved in the liquid during slurrying of raw materials and wet magnetic separation, and is separated into a non-magnetic material slurry. By subjecting this non-magnetic substance slurry to solid-liquid separation, the metal derived from the negative electrode current collector and the negative electrode active material can be separated into residues. Furthermore, carbon dioxide gas is blown into the liquid separated by solid-liquid separation to precipitate as lithium carbonate, and lithium is recovered. Note that, before blowing in the carbon dioxide gas, a pretreatment process such as a liquid concentration process for the purpose of removing impurities and increasing the lithium concentration may be performed. For example, fluorine is recovered in the remaining liquid. Therefore, the fluorine content in the physically treated product can be less than 1%. A leaching process is necessary to recover lithium and separate fluorine from cobalt and nickel, but in the present invention, in the wet magnetic separation process, lithium is leached with water and fluorine is leached away, and cobalt and nickel of the metal derived from the negative electrode current collector are removed. Since nickel separation can be performed at the same time, the number of steps can be reduced.

<酸処理工程>
酸処理工程は、前記物理的処理物に酸性溶液を添加し、酸処理溶液を得る工程である。
物理的処理物へ、HCl、HNO、HSO等の酸を添加し、金属元素を酸性溶液に溶解させる工程である。
例えば、酸添加後の物理的処理物を、20℃~180℃で0.1時間~3時間加熱し、物理的処理物中の金属元素を加熱分解して、酸性溶液に溶解させる。加熱分解が終わったら酸性溶液を放冷し、当該酸性溶液を濾過して当該酸性溶液中の不溶解残渣を取り除き、濾液を回収すればよい。なお、酸としては、単独での使用の他、例えば、物理的処理物へHClを加えて加熱し、その後、HNOを加えて加熱する構成でもよい。
濾過の方法としては、例えば、メンブレンフィルター、濾紙等の多様なものが使用可能である。また、クロスフロー濾過を用いることも好ましい。
<Acid treatment process>
The acid treatment step is a step of adding an acidic solution to the physically treated material to obtain an acid treatment solution.
This is a process in which an acid such as HCl, HNO 3 or H 2 SO 4 is added to the physically treated material to dissolve the metal element in the acidic solution.
For example, the physically treated product after acid addition is heated at 20° C. to 180° C. for 0.1 to 3 hours to thermally decompose the metal elements in the physically treated product and dissolve them in the acidic solution. After the thermal decomposition is completed, the acidic solution may be allowed to cool, the acidic solution may be filtered to remove undissolved residues in the acidic solution, and the filtrate may be recovered. In addition to using the acid alone, for example, HCl may be added to the physically treated material and heated, and then HNO 3 may be added and heated.
Various filtration methods can be used, such as membrane filters and filter paper. It is also preferable to use cross-flow filtration.

<鉄除去工程>
鉄除去工程は、前記酸処理溶液に酸化剤を添加した後、アルカリ溶液を添加し、水酸化鉄の沈殿を濾別する工程である。
酸処理工程後の酸処理溶液に酸化剤(過酸化水素)を添加し、酸化還元電位を500mVEh/Vよりプラス側に調整する。その後、酸化還元電位を調整した酸処理溶液にアルカリ溶液を添加し、pHを3~5.5に調整し、水酸化鉄の沈殿を生成する。濾液と水酸化鉄沈殿を濾別する。
濾過の方法としては、例えば、メンブレンフィルター、濾紙等の多様なものが使用可能である。また、クロスフロー濾過を用いることも好ましい。
<Iron removal process>
The iron removal step is a step of adding an oxidizing agent to the acid treatment solution, then adding an alkaline solution, and filtering out the iron hydroxide precipitate.
An oxidizing agent (hydrogen peroxide) is added to the acid treatment solution after the acid treatment step, and the redox potential is adjusted to a positive side of 500 mVEh/V. Thereafter, an alkaline solution is added to the acid treatment solution whose redox potential has been adjusted, and the pH is adjusted to 3 to 5.5 to form a precipitate of iron hydroxide. The filtrate and the iron hydroxide precipitate are separated by filtration.
Various filtration methods can be used, such as membrane filters and filter paper. It is also preferable to use cross-flow filtration.

<アルカリ処理工程>
アルカリ処理工程は、前記鉄除去工程後の濾液とアルカリ溶液とを混合する工程である。
前記鉄除去工程後の濾液とアルカリ溶液とを混合してpHを9~14に調整し、濾液中の金属元素を水酸化物沈殿として生成させる工程である。
<Alkali treatment process>
The alkali treatment step is a step of mixing the filtrate after the iron removal step with an alkaline solution.
This is a step in which the filtrate after the iron removal step is mixed with an alkaline solution to adjust the pH to 9 to 14, and the metal elements in the filtrate are produced as hydroxide precipitates.

例えば、回収された濾液へ、アルカリ溶液として0.5モル/L~10モル/LのNaOH水溶液を添加し、濾液のpHを9~14に調整し、水酸化物沈殿を生成させる。アルカリ添加が終わったら、濾液を濾過し、水酸化物沈殿を回収する。
濾過の方法としては、例えば、メンブレンフィルター、濾紙等の多様なものが使用可能である。また、クロスフロー濾過を用いることも好ましい。
For example, an aqueous NaOH solution of 0.5 mol/L to 10 mol/L is added as an alkaline solution to the collected filtrate, and the pH of the filtrate is adjusted to 9 to 14 to form a hydroxide precipitate. Once the alkali addition is complete, the filtrate is filtered to collect the hydroxide precipitate.
Various filtration methods can be used, such as membrane filters and filter paper. It is also preferable to use cross-flow filtration.

回収された水酸化物沈殿を洗浄し、再生正極材前駆体を得る工程である。
例えば、回収された水酸化物沈殿を、0.1時間~48時間、20℃~200℃に加熱して、強熱乾燥し乾燥物とする。乾燥物を粉砕し、粉砕物とする。当該粉砕物に同量~10倍量(重量)の水を添加し、スラリーを得る。得られたスラリーを濾過し、水酸化物沈殿を回収する。
濾過の方法としては、例えば、メンブレンフィルター、濾紙等の多様なものが使用可能である。また、クロスフロー濾過を用いることも好ましい。
This is a step of washing the recovered hydroxide precipitate to obtain a recycled positive electrode material precursor.
For example, the recovered hydroxide precipitate is heated to 20° C. to 200° C. for 0.1 to 48 hours, and then ignited and dried to obtain a dry product. Crush the dry product to obtain a pulverized product. The same amount to 10 times the amount (weight) of water is added to the pulverized material to obtain a slurry. The resulting slurry is filtered to collect the hydroxide precipitate.
Various filtration methods can be used, such as membrane filters and filter paper. It is also preferable to use cross-flow filtration.

回収された水酸化物沈殿を、20℃~200℃で0.1時間~48時間加熱して、乾燥し、再生正極材前駆体を得ることができる。
得られた再生正極材前駆体は固形物(固体)である。以降の工程では、再生正極材前駆体を固形物のまま扱ってもよいし、スラリー化してもよい。スラリー化する場合であってもスラリー内に含有される再生正極材前駆体が固形物であることに変わりはない。
なお、水酸化物沈殿に残留した塩は、後段の再生正極材前駆体にリチウム源を添加した後に洗浄して除去してもよい。
The recovered hydroxide precipitate is dried by heating at 20° C. to 200° C. for 0.1 hour to 48 hours, and a recycled positive electrode material precursor can be obtained.
The obtained recycled positive electrode material precursor is a solid substance. In the subsequent steps, the recycled positive electrode material precursor may be handled as a solid or may be made into a slurry. Even when it is made into a slurry, the recycled positive electrode material precursor contained in the slurry remains solid.
Note that the salt remaining in the hydroxide precipitate may be removed by washing after adding a lithium source to the recycled positive electrode material precursor in the latter stage.

<リチウム源添加工程>
リチウム源添加工程は、再生正極材前駆体と所定量のリチウム源とを添加する工程である。
リチウム源としては、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウムなどが挙げられる。
リチウム源の添加量は、特に制限はなく、目的に応じて適宜選択することができるが、再生正極材前駆体に含まれる正極材として機能する金属元素の水酸化物の合計に対して、0.8当量以上2.0当量以下であることが好ましい。
<Lithium source addition process>
The lithium source addition step is a step of adding a recycled positive electrode material precursor and a predetermined amount of lithium source.
Examples of the lithium source include lithium carbonate, lithium hydroxide, lithium nitrate, and lithium chloride.
The amount of the lithium source to be added is not particularly limited and can be selected as appropriate depending on the purpose, but the amount of lithium source added is 0. The amount is preferably .8 equivalent or more and 2.0 equivalent or less.

<粉砕混合工程>
粉砕混合工程は、所定量のリチウム源を添加した混合物を粉砕する工程である。
所定量のリチウム源を添加した混合物を、粉砕し、粉砕混合物を得る。前記粉砕は、例えば、ディスクミル、ミキサーミル、ビーズミル、振動ミル、ボールミル、遊星ボールミル、アトライターなどを用いて行うことができる。
<Crushing and mixing process>
The pulverization and mixing step is a step of pulverizing a mixture to which a predetermined amount of a lithium source has been added.
The mixture to which a predetermined amount of lithium source has been added is ground to obtain a ground mixture. The pulverization can be performed using, for example, a disc mill, mixer mill, bead mill, vibration mill, ball mill, planetary ball mill, attritor, or the like.

<焼成工程>
得られた粉砕混合物を、アルミナ製るつぼを用い、大気雰囲気下、600℃で1時間、次に、900℃で4時間の保持条件で焼成し、焼成物を得る。焼成の保持温度は650℃~900℃が好ましい。焼成の保持時間は0.1時間~20時間が好ましく、0.5時間~8時間がより好ましい。再生正極材前駆体を焼成した後の再生正極材では鉄、銅およびアルミニウムは酸化物化している。具体的に言うと、再生正極材前駆体では多くが水酸化物であった鉄、銅およびアルミニウムは酸化物になっている。
<Baking process>
The obtained pulverized mixture is fired in an alumina crucible under atmospheric conditions at 600°C for 1 hour and then held at 900°C for 4 hours to obtain a fired product. The holding temperature for firing is preferably 650°C to 900°C. The holding time for firing is preferably 0.1 to 20 hours, more preferably 0.5 to 8 hours. In the recycled positive electrode material after firing the recycled positive electrode material precursor, iron, copper, and aluminum are converted into oxides. Specifically, iron, copper, and aluminum, which were mostly hydroxides in the recycled positive electrode material precursor, have become oxides.

<粉砕工程>
得られた焼成物を、ディスクミル等を用いて粉砕することにより、本発明の再生正極材が得られる。
なお、前述のように、焼成後の粉砕物に対して洗浄処理を行うこともでき、このときは洗浄処理後に再度焼成工程を行い、再生正極材を得ることができる。
<Crushing process>
The recycled cathode material of the present invention can be obtained by pulverizing the obtained fired product using a disk mill or the like.
Note that, as described above, the pulverized material after firing can be subjected to cleaning treatment, and in this case, after the cleaning treatment, the firing step can be performed again to obtain a recycled positive electrode material.

得られた本発明の再生正極材は、リチウム、ニッケル、コバルト、およびマンガンと、アルミニウムを0.3質量%以上3.0質量%以下と、銅および鉄の少なくともいずれかを1質量%未満とを含有しており、通常の正極材を用いたリチウムイオン二次電池と同レベルの比容量を発現できると共に、通常の正極材を用いたリチウムイオン二次電池よりも優れたサイクル特性を実現できる。 The obtained recycled positive electrode material of the present invention contains lithium, nickel, cobalt, and manganese, 0.3% by mass to 3.0% by mass of aluminum, and less than 1% by mass of at least one of copper and iron. It is possible to achieve the same level of specific capacity as a lithium-ion secondary battery using a normal cathode material, and to achieve better cycle characteristics than a lithium-ion secondary battery using a normal cathode material. .

本発明の再生正極材の製造方法においては、本発明の再生正極材を原料として用いることができる。
再生正極材において狙いとする正極材として機能する金属元素の組成と、得られた本発明の再生正極材の金属元素の組成とに差異がある場合は、再生正極材の金属元素の組成の調整を実施することができる。即ち、本発明の再生正極材を原料として用い、再生正極材を製造することができる。
前記金属元素の組成の調整方法としては、例えば、異なる金属元素の組成を有する物理的処理物を適宜調合する方法、不足している金属元素を添加する方法などが考えられる。具体的な添加量は、ICP分析又は蛍光X線分析による、物理的処理物に含有される金属元素の定性定量分析結果に基づいて行ってもよい。
In the method for manufacturing a recycled positive electrode material of the present invention, the recycled positive electrode material of the present invention can be used as a raw material.
If there is a difference between the composition of the metal elements that function as the target cathode material in the recycled cathode material and the composition of the metal elements in the obtained recycled cathode material of the present invention, adjust the composition of the metal elements in the recycled cathode material. can be carried out. That is, a recycled positive electrode material can be manufactured using the recycled positive electrode material of the present invention as a raw material.
Possible methods for adjusting the composition of the metal elements include, for example, a method of appropriately preparing physically treated products having different metal element compositions, a method of adding a missing metal element, and the like. The specific amount to be added may be determined based on the results of qualitative and quantitative analysis of the metal elements contained in the physically processed material by ICP analysis or fluorescent X-ray analysis.

(再生正極材の使用方法)
本発明の再生正極材の使用方法は、本発明の再生正極材を有するリチウムイオン二次電池を組み立てる組立工程と、
前記組立工程で組み立てたリチウムイオン二次電池を、セル電圧0V付近から4.3V~4.6Vまで充電し、その後、セル電圧0V~3.5Vから4.3V~4.6Vの範囲で充放電を行う活性化工程と、を含み、さらに必要に応じてその他の工程を含む。
前記活性化工程としては、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧で充放電を行うことが好ましく、0.2V~0.3V高いことがさらに好ましい。具体的には、通常のセル電圧範囲である2.5V~4.2Vよりも高い上限セル電圧である0V~3.5Vから4.3V~4.6Vでの充放電サイクルを1回~5回(好ましくは3回)行うことができる。下限セル電圧は充放電サイクル時間の観点から1.5V~3.5Vがより好ましく、2.0V~3.0Vがさらに好ましい。
本発明の再生正極材の使用方法によると、前記活性化工程を行うことにより、通常のリチウムイオン二次電池の正極材よりも優れたサイクル特性を実現できる。
(How to use recycled cathode material)
A method for using the recycled cathode material of the present invention includes an assembly process for assembling a lithium ion secondary battery having the recycled cathode material of the present invention;
The lithium ion secondary battery assembled in the above assembly process is charged from a cell voltage of around 0V to 4.3V to 4.6V, and then charged from a cell voltage of 0V to 3.5V to a range of 4.3V to 4.6V. The method includes an activation step of performing discharge, and further includes other steps as necessary.
In the activation step, charging and discharging is preferably performed at an upper limit cell voltage that is 0.1 V to 0.4 V higher than 4.2 V, which is the upper limit cell voltage in normal charging and discharging, and is 0.2 V to 0.3 V higher. is even more preferable. Specifically, from 0V to 3.5V, which is the upper limit cell voltage higher than the normal cell voltage range of 2.5V to 4.2V, one to five charge/discharge cycles were performed at 4.3V to 4.6V. It can be carried out twice (preferably three times). The lower limit cell voltage is more preferably 1.5V to 3.5V, and even more preferably 2.0V to 3.0V, from the viewpoint of charge/discharge cycle time.
According to the method of using a recycled cathode material of the present invention, by performing the activation step, cycle characteristics superior to those of a cathode material of a normal lithium ion secondary battery can be achieved.

(再生正極)
本発明の再生正極は、本発明の再生正極材を含み、さらに必要に応じてその他の成分を含む。
本発明の再生正極材を正極活物質として含み、その他の成分として導電剤、結着樹脂などを含む。
本発明の再生正極は、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧の範囲での充放電サイクルを数回行うことにより、通常のリチウムイオン二次電池の正極材よりも優れたサイクル特性を備えている。
(Regenerated positive electrode)
The recycled positive electrode of the present invention includes the recycled positive electrode material of the present invention, and further contains other components as necessary.
It contains the recycled cathode material of the present invention as a cathode active material, and contains a conductive agent, a binder resin, etc. as other components.
The regenerated positive electrode of the present invention can be produced by performing charge/discharge cycles several times at an upper limit cell voltage range of 0.1V to 0.4V higher than the upper limit cell voltage of 4.2V in normal charge/discharge. It has better cycle characteristics than positive electrode materials for secondary batteries.

(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、正極と、負極と、セパレータとを備えるリチウムイオン二次電池であって、正極は、本発明の再生正極材を含む。
本発明に係る再生正極材を用いて、公知のリチウムイオン二次電池の方法により、本発明に係るリチウムイオン二次電池を製造することができる。
本発明の再生正極材を有する本発明のリチウムイオン二次電池は、通常の充放電における上限セル電圧である4.2Vより0.1V~0.4V高い上限セル電圧の範囲である0V~4.6Vにおいて、通常の正極材を用いたリチウムイオン二次電池よりも優れたサイクル特性を有している。
また、本発明の再生正極材を有する本発明のリチウムイオン二次電池は、通常のセル電圧範囲である2.5V~4.2Vよりもセル電圧範囲を0V~3.5Vから4.3V~4.6Vに拡大することにより、再生正極からLiが脱離しやすくなり、一度脱離したLiはそれ以降繰り返し脱離・挿入でき、通常の正極材を用いたリチウムイオン二次電池と同レベルの比容量を発現できると共に、通常の正極材を用いたリチウムイオン二次電池よりも優れたサイクル特性を実現できる。
(Lithium ion secondary battery)
The lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a separator, and the positive electrode includes the recycled positive electrode material of the present invention.
The lithium ion secondary battery according to the present invention can be manufactured using the recycled positive electrode material according to the present invention by a known lithium ion secondary battery method.
The lithium ion secondary battery of the present invention having the recycled positive electrode material of the present invention has an upper limit cell voltage of 0V to 4V, which is 0.1V to 0.4V higher than the upper limit cell voltage of 4.2V in normal charging and discharging. At .6V, it has better cycle characteristics than lithium ion secondary batteries using normal positive electrode materials.
In addition, the lithium ion secondary battery of the present invention having the recycled cathode material of the present invention has a cell voltage range of 0V to 3.5V to 4.3V to 4.3V, which is higher than the normal cell voltage range of 2.5V to 4.2V. By increasing the voltage to 4.6V, Li is easily desorbed from the regenerated positive electrode, and once desorbed Li can be repeatedly desorbed and inserted, which is equivalent to a lithium ion secondary battery using a normal cathode material. In addition to being able to express specific capacity, it is also possible to achieve cycle characteristics that are superior to lithium ion secondary batteries using ordinary positive electrode materials.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these Examples in any way.

(比較例1)
<再生正極材の製造>
-熱処理工程-
処理対象であるリチウムイオン二次電池のバッテリーパック(約75kg)へ、熱処理装置としてエコシステム秋田株式会社のバッチ式バーナー炉を用い、熱処理温度800℃(1時間かけて昇温した後、2時間保持)で、熱処理を行うことにより熱処理物を得た。
(Comparative example 1)
<Manufacture of recycled cathode material>
-Heat treatment process-
The battery pack (approximately 75 kg) of the lithium-ion secondary battery to be treated was heat-treated at a temperature of 800°C (after being heated for 1 hour, then for 2 hours) using a batch burner furnace manufactured by Ecosystem Akita Co., Ltd. as the heat treatment equipment. A heat-treated product was obtained by performing heat treatment.

-破砕工程-
次いで、破砕装置として、ハンマークラッシャー(マキノ式スイングハンマークラッシャーHC-20-3.7、槇野産業株式会社製)を用い、50Hz(ハンマー周速38m/秒間)、出口部分のスクリーンはロストル型開口穴30mm×200mmの条件で、前記熱処理工程で得られた熱処理物(熱処理を行ったリチウムイオン二次電池)を破砕し、リチウムイオン二次電池の破砕物を得た。
-Crushing process-
Next, a hammer crusher (Makino type swing hammer crusher HC-20-3.7, manufactured by Makino Sangyo Co., Ltd.) was used as a crushing device, and the frequency was 50 Hz (hammer peripheral speed 38 m/sec), and the screen at the exit part was a rostr type opening hole. The heat-treated product (heat-treated lithium ion secondary battery) obtained in the heat treatment step was crushed under the conditions of 30 mm x 200 mm to obtain a crushed product of a lithium ion secondary battery.

-分級工程-
続いて、篩目の目開きが1.2mmの篩(直径200mm、東京スクリーン株式会社製)を用いて、リチウムイオン二次電池の破砕物を篩分けして、篩上産物(粗粒産物)と篩下産物(中粒産物)とに選別処理し、篩下産物(中粒産物)として、破砕物を得た。
-Classification process-
Next, the crushed lithium ion secondary battery was sieved using a sieve with a sieve opening of 1.2 mm (diameter 200 mm, manufactured by Tokyo Screen Co., Ltd.) to obtain a sieved product (coarse particle product). A crushed product was obtained as an undersieve product (medium grain product).

-磁気選別工程-
得られた破砕物を、ドラム型磁選機を用いて、磁力:1500G、ドラム回転数45rpm、固液比10%、スラリー供給速度100mL/minで湿式磁選を行い、物理的処理物を回収した。
-Magnetic sorting process-
The obtained crushed material was subjected to wet magnetic separation using a drum-type magnetic separator at a magnetic force of 1500 G, a drum rotation speed of 45 rpm, a solid-liquid ratio of 10%, and a slurry supply rate of 100 mL/min, and the physically treated material was recovered.

-酸処理工程-
得られた物理的処理物5gを500mLコニカルビーカーへ入れ、塩酸(12N)を100mL添加し、70℃~100℃のホットプレートを用いて1時間、加熱分解した。反応がおさまったところで、イオン交換水100mLを加え、その後、HNO(14N)を100mL添加して酸性溶液とした。そして、160℃のホットプレートを用いて1時間、反応がおさまるまで加熱分解した。酸性溶液を放冷した後、No.5C濾紙を用いて、酸性溶液中の不溶解残渣を取り除き、濾液を回収した。
-Acid treatment process-
5 g of the obtained physically treated product was placed in a 500 mL conical beaker, 100 mL of hydrochloric acid (12N) was added, and the mixture was thermally decomposed using a hot plate at 70° C. to 100° C. for 1 hour. When the reaction subsided, 100 mL of ion-exchanged water was added, and then 100 mL of HNO 3 (14N) was added to make an acidic solution. Then, the mixture was thermally decomposed using a 160° C. hot plate for 1 hour until the reaction subsided. After cooling the acidic solution, No. Undissolved residue in the acidic solution was removed using 5C filter paper, and the filtrate was collected.

-アルカリ処理工程-
回収された濾液へ、濃度約7.5質量の%NaOH水溶液を添加してpH値を12に調整し、水酸化物を沈殿させた。そして、No.5C濾紙を用いて、当該水酸化物を回収した。回収した水酸化物を105℃の恒温槽で乾燥し、乳鉢で粉砕した後、十分な量のイオン交換水に投入し、水溶性の塩類を水洗除去した。水洗された水酸化物をNo.5C濾紙を用いて回収し、105℃の恒温槽で乾燥させて、再生正極材前駆体を得た。
-Alkali treatment process-
A % NaOH aqueous solution having a concentration of about 7.5% by weight was added to the collected filtrate to adjust the pH value to 12 and precipitate the hydroxide. And No. The hydroxide was collected using 5C filter paper. The recovered hydroxide was dried in a constant temperature bath at 105° C., crushed in a mortar, and then poured into a sufficient amount of ion-exchanged water to wash away water-soluble salts. The water-washed hydroxide is No. It was collected using 5C filter paper and dried in a constant temperature bath at 105°C to obtain a recycled positive electrode material precursor.

-リチウム源添加工程-
得られた再生正極材前駆体に、含有されているコバルト、ニッケル、マンガンの水酸化物の合計に対して1.0当量に相当する炭酸リチウムを加え、ディスクミルを用いて粉砕混合し粉砕混合物を得た。当該粉砕混合物をアルミナ製るつぼへ入れ、大気雰囲気下、600℃、1時間、次に800℃、4時間の条件で焼成し、焼成物を得た。
ディスクミルを用いて当該焼成物を粉砕し、比較例1の再生正極材を得た。
-Lithium source addition process-
To the obtained recycled cathode material precursor, lithium carbonate equivalent to 1.0 equivalent to the total of cobalt, nickel, and manganese hydroxides contained was added, and pulverized and mixed using a disk mill to obtain a pulverized mixture. I got it. The pulverized mixture was placed in an alumina crucible and fired under atmospheric conditions at 600°C for 1 hour and then at 800°C for 4 hours to obtain a fired product.
The fired product was pulverized using a disk mill to obtain a recycled positive electrode material of Comparative Example 1.

(実施例1)
比較例1における酸処理工程に代えて以下の酸処理工程を行い、前記酸処理工程と前記アルカリ処理工程の間に、以下の鉄除去工程を行い、得られた再生正極材前駆体に、含有されているコバルト、ニッケル、マンガンの水酸化物の合計に対して1.25当量に相当する炭酸リチウムを加えた以外は、比較例1と同様にして、実施例1の再生正極材を得た。
(Example 1)
The following acid treatment step was performed in place of the acid treatment step in Comparative Example 1, and the following iron removal step was performed between the acid treatment step and the alkali treatment step, and the resulting recycled positive electrode material precursor contained A recycled positive electrode material of Example 1 was obtained in the same manner as Comparative Example 1, except that lithium carbonate was added in an amount equivalent to 1.25 equivalents to the total of cobalt, nickel, and manganese hydroxides. .

-酸処理工程-
得られた物理的処理物30gを1,000mL直立ビーカーへ入れ、硫酸20質量%を1,000mL添加して酸性溶液とした。そして、150℃のホットプレートを用いて4時間、加熱分解した。酸性溶液を放冷した後、No.5C濾紙を用いて、酸性溶液中の不溶解残渣を取り除き、濾液を回収した。
-Acid treatment process-
30 g of the resulting physically treated product was placed in a 1,000 mL upright beaker, and 1,000 mL of 20% by weight sulfuric acid was added to form an acidic solution. Then, it was thermally decomposed using a 150° C. hot plate for 4 hours. After cooling the acidic solution, No. Undissolved residue in the acidic solution was removed using 5C filter paper, and the filtrate was collected.

-鉄除去工程-
酸処理工程後の酸処理溶液に酸化剤(過酸化水素)を添加し、酸化還元電位を650mV(Ag/AgCl)に調整した。その後、酸化還元電位を調整した酸処理溶液にアルカリ溶液を添加し、pHを4.7に調整し、水酸化鉄の沈殿を生成した。濾液と水酸化鉄沈殿を濾別した
-Iron removal process-
An oxidizing agent (hydrogen peroxide) was added to the acid treatment solution after the acid treatment step, and the redox potential was adjusted to 650 mV (Ag/AgCl). Thereafter, an alkaline solution was added to the acid treatment solution in which the redox potential had been adjusted, and the pH was adjusted to 4.7 to produce a precipitate of iron hydroxide. The filtrate and iron hydroxide precipitate were separated by filtration.

(比較例2)
市販されている通常のコバルト-ニッケル-マンガン系正極材(LiNi1/3Co1/3Mn1/3、PLB-H1、Gelon LIB Group Ltd.製)を準備した。
(Comparative example 2)
A commercially available common cobalt-nickel-manganese positive electrode material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 , PLB-H1, manufactured by Gelon LIB Group Ltd.) was prepared.

次に、得られた各再生正極材について、HClとHNOの混酸で酸分解した後、ICP-AES(SPECTRO GREEN、株式会社日立ハイテクサイエンス製)を用いて分析した。結果を表1-1および表1-2に示した。なお、表1-1および表1-2中の各元素の含有量の単位は質量%である。 Next, each of the obtained recycled cathode materials was acid-decomposed with a mixed acid of HCl and HNO 3 and then analyzed using ICP-AES (SPECTRO GREEN, manufactured by Hitachi High-Tech Science Co., Ltd.). The results are shown in Tables 1-1 and 1-2. Note that the unit of content of each element in Tables 1-1 and 1-2 is mass %.

<電池の製造>
(1)正極の製造
活物質として実施例1および比較例1~2に係る再生正極材と、導電助剤としてアセチレンブラック(デンカブラック、デンカ株式会社製)と、バインダとしてポリフッ化ビニリデン(KFポリマー F #9130、株式会社クレハ製)、溶媒としてN-メチルピロリドンを準備した。
そして、再生正極材:アセチレンブラック:ポリフッ化ビニリデン=80:10:10(質量%)の割合で混合して混合物とした。当該混合物に対してN-メチルピロリドンを加えてスラリーを得た。当該混合物に対して加えたN-メチルピロリドンの量は、質量比にて当該混合物:N-メチルピロリドン=1:1.25とした。
得られたスラリーを攪拌機で10分間攪拌した後、ベーカー式アプリケータ用いてスラリーを塗工して、塗工物とし100℃の乾燥機中で乾燥した。そして、乾燥した塗工物を4tプレスした後に、直径φ15mmで打ち抜き正極を製造した。
<Battery manufacturing>
(1) Manufacture of positive electrode The recycled positive electrode materials according to Example 1 and Comparative Examples 1 and 2 were used as active materials, acetylene black (Denka Black, manufactured by Denka Co., Ltd.) was used as a conductive agent, and polyvinylidene fluoride (KF Polymer) was used as a binder. F #9130, manufactured by Kureha Co., Ltd.), and N-methylpyrrolidone was prepared as a solvent.
Then, recycled positive electrode material: acetylene black: polyvinylidene fluoride was mixed in a ratio of 80:10:10 (% by mass) to form a mixture. N-methylpyrrolidone was added to the mixture to obtain a slurry. The amount of N-methylpyrrolidone added to the mixture was such that the mass ratio of the mixture:N-methylpyrrolidone was 1:1.25.
The resulting slurry was stirred for 10 minutes using a stirrer, and then applied using a Baker applicator to form a coated product and dried in a dryer at 100°C. After pressing the dried coating material for 4 tons, a positive electrode was punched out to a diameter of 15 mm.

(2)負極の製造
活物質として黒鉛(CGB-10、日本黒鉛工業株式会社製)と、導電助剤としてアセチレンブラック(デンカブラック、デンカ株式会社製)と、バインダとしてカルボキシメチルセルロース(セロゲン7A、第一工業製薬株式会社製)とスチレン-ブタジエンゴム(TRD2001、JSR株式会社製)、溶媒として純水を準備した。
そして、黒鉛:アセチレンブラック:カルボキシメチルセルロース:スチレン-ブタジエンゴム=90:5:2.5:2.5(質量%)の割合で混合して混合物とした。当該混合物に対して蒸留水を加えてスラリーを得た。当該混合物に対して加えた蒸留水の量は、質量比にて当該混合物:蒸留水=1:1.6とした。
得られたスラリーへ、上述した正極の製造と同様に、攪拌、塗工、乾燥、プレス、および打ち抜きを実施し、負極を製造した。
(2) Manufacture of negative electrode Graphite (CGB-10, manufactured by Nippon Graphite Industries Co., Ltd.) is used as an active material, acetylene black (Denka Black, manufactured by Denka Co., Ltd.) is used as a conductive agent, and carboxymethyl cellulose (Celogen 7A, manufactured by Denka Co., Ltd.) is used as a binder. (manufactured by Ichi Kogyo Seiyaku Co., Ltd.), styrene-butadiene rubber (TRD2001, manufactured by JSR Corporation), and pure water as a solvent were prepared.
Then, a mixture was prepared by mixing graphite: acetylene black: carboxymethyl cellulose: styrene-butadiene rubber in a ratio of 90:5:2.5:2.5 (% by mass). Distilled water was added to the mixture to obtain a slurry. The amount of distilled water added to the mixture was such that the mass ratio of the mixture: distilled water was 1:1.6.
The obtained slurry was subjected to stirring, coating, drying, pressing, and punching in the same manner as in the production of the positive electrode described above to produce a negative electrode.

(3)リチウムイオン二次電池の組み立て
純アルゴンガスで満たされたグローブボックス内でCR2032型コインセルを用いて、図2に示すように、正極集電体1、正極2、セパレータ3、ガスケット4、負極5、スペーサー6、ワッシャー7、および負極集電体8の順に積層し、実施例1および比較例1~2に係るフルセルを組み立てた。フルセルは黒鉛を活物とし、黒鉛の想定比容量は340mAh/gとした。
なお、セパレータには直径φ19mmの多孔質ポリプロピレン(#2500、Celgard LLC製)、電解液には溶質として濃度1mol/LのLiPF、溶媒としてエチレンカーボネート+ジエチルカーボネート(容積比1:1)を用いた。
フルセルの場合、通常の正極材および再生正極材の想定比容量は充放電時のセル電圧範囲によって100mAh/g~150mAh/gの範囲で変化させたが、正極容量に対する負極容量の比(NP比)は1.2とした。フルセルに使用された正極材の想定比容量はその都度明記する。
(3) Assembling a lithium ion secondary battery Using a CR2032 type coin cell in a glove box filled with pure argon gas, as shown in FIG. The negative electrode 5, spacer 6, washer 7, and negative electrode current collector 8 were laminated in this order to assemble full cells according to Example 1 and Comparative Examples 1 and 2. The full cell used graphite as an active substance, and the assumed specific capacity of graphite was 340 mAh/g.
The separator used was porous polypropylene (#2500, manufactured by Celgard LLC) with a diameter of 19 mm, the electrolyte used LiPF 6 at a concentration of 1 mol/L as the solute, and ethylene carbonate + diethyl carbonate (volume ratio 1:1) was used as the solvent. there was.
In the case of a full cell, the assumed specific capacity of normal cathode material and recycled cathode material was varied in the range of 100mAh/g to 150mAh/g depending on the cell voltage range during charging and discharging, but the ratio of negative electrode capacity to positive electrode capacity (NP ratio ) was set to 1.2. The assumed specific capacity of the cathode material used in the full cell shall be specified in each case.

3.電池の充放電試験
製造した実施例1および比較例1~2に係るフルセルに対し、以下のようにして、サイクル試験による充放電試験を実施し、実施例1および比較例1~2に係る再生正極材の充放電比容量、クーロン効率(充放電効率、以降単に効率と記す)を測定した。フルセルの場合、セルの充電時および放電時に計測された容量を、セル内の再生正極材の質量で除した、正極基準比容量でセルの性能を評価した。
3. Battery charge/discharge test A charge/discharge test using a cycle test was carried out on the manufactured full cells according to Example 1 and Comparative Examples 1 and 2 as follows, and the regeneration according to Example 1 and Comparative Examples 1 and 2 was carried out as follows. The charge/discharge specific capacity and Coulomb efficiency (charge/discharge efficiency, hereinafter simply referred to as efficiency) of the positive electrode material were measured. In the case of a full cell, the performance of the cell was evaluated using the positive electrode reference specific capacity, which is the capacity measured during charging and discharging of the cell divided by the mass of recycled positive electrode material in the cell.

(1)フルセルの充放電試験
(I)(フルセルのサイクル試験)
下記条件で、電流密度一定で充放電を実施した。
試験温度:25℃
セル電圧範囲:2.5V~4.2V(初回充電:0V~4.2V)
電流密度:2C
サイクル数:500サイクル
通常の正極材の想定比容量:140mAh/g
但し、1C=140mA/g-通常の正極材
再生正極材の想定比容量:100mAh/g
但し、1C=100mA/g-再生正極材
サイクル試験におけるサイクル数と比容量特性との関係の結果を図3~図5および表2に示す。また、サイクル試験における比容量とセル電圧との関係の結果を図6~図8に示す。但し、図3~図5において横軸はサイクル数、左側縦軸は比容量、右側縦軸は効率である。そして、充電比容量を□、放電比容量を◇、効率を〇でプロットしたところ、充電比容量:□と放電比容量:◇とのプロットは重複した。
(1) Full cell charge/discharge test (I) (full cell cycle test)
Charging and discharging were carried out at a constant current density under the following conditions.
Test temperature: 25℃
Cell voltage range: 2.5V to 4.2V (Initial charge: 0V to 4.2V)
Current density: 2C
Number of cycles: 500 cycles Assumed specific capacity of normal cathode material: 140mAh/g
However, 1C = 140mA/g - normal cathode material Assumed specific capacity of recycled cathode material: 100mAh/g
However, 1C=100mA/g - Regenerated positive electrode material The results of the relationship between the number of cycles and specific capacity characteristics in the cycle test are shown in FIGS. 3 to 5 and Table 2. Further, the results of the relationship between specific capacity and cell voltage in the cycle test are shown in FIGS. 6 to 8. However, in FIGS. 3 to 5, the horizontal axis is the number of cycles, the left vertical axis is the specific capacity, and the right vertical axis is the efficiency. When the charging specific capacity was plotted as □, the discharging specific capacity as ◇, and the efficiency as ○, the plots of charging specific capacity: □ and discharging specific capacity: ◇ overlapped.

(II)(フルセルのサイクル試験、2.5V~4.4V(初回充電:0V~4.4V))
セル電圧範囲を2.5V~4.4Vに上げて、上記と同様にサイクル試験を行った。正極材の想定比容量はすべて150mAh/gとした。但し、1C=150mA/gである。結果を表3に示す。
(II) (Full cell cycle test, 2.5V to 4.4V (first charge: 0V to 4.4V))
The cell voltage range was raised to 2.5V to 4.4V, and a cycle test was conducted in the same manner as above. The assumed specific capacity of all positive electrode materials was 150 mAh/g. However, 1C=150mA/g. The results are shown in Table 3.

通常の充放電における上限セル電圧である4.2Vより0.2V高い上限セル電圧の範囲の充放電を事前に行うと、比較例1および2と比較してより大きなサイクル特性の改善効果を示すことがわかった。
このことは、上限セル電圧を高める、即ち、正極の電位をより高めると、実施例1の再生正極からLiが脱離しやすくなり、一度脱離したLiはそれ以降繰り返し脱離・挿入できることがわかった。実施例1は、通常のセル電圧範囲である2.5V~4.2Vの使用では比較例1および2より優れた比容量を発現できるが、2.5V~4.4Vの高い上限セル電圧の範囲とすると、比較例1および2と比較した電池特性の改善効果がより顕著になることがわかった。
If charging and discharging is performed in advance in a range of upper limit cell voltage that is 0.2V higher than 4.2V, which is the upper limit cell voltage in normal charging and discharging, a greater effect of improving cycle characteristics is shown compared to Comparative Examples 1 and 2. I understand.
This shows that when the upper limit cell voltage is increased, that is, when the potential of the positive electrode is further increased, Li is more easily desorbed from the regenerated positive electrode of Example 1, and once desorbed Li can be repeatedly desorbed and inserted thereafter. Ta. Example 1 can exhibit better specific capacity than Comparative Examples 1 and 2 when used in the normal cell voltage range of 2.5V to 4.2V, but when used at a high upper limit cell voltage of 2.5V to 4.4V, It was found that within this range, the effect of improving battery characteristics compared to Comparative Examples 1 and 2 becomes more significant.

(III)(フルセルの2.5V~4.4V、0.1C、3サイクル後、サイクル試験2.5V~4.2V)
実施例1のフルセルについて、2.5V~4.4V(初回充電:0V~4.4V)、0.1Cの充放電を3サイクル行った後、セル電圧範囲2.5V~4.2Vで上記と同様にしてサイクル試験を行った。正極材の想定比容量はすべて140mAh/gとした。但し、1C=140mA/gである。結果を表4に示す。
(III) (Full cell 2.5V to 4.4V, 0.1C, after 3 cycles, cycle test 2.5V to 4.2V)
For the full cell of Example 1, after 3 cycles of charging and discharging at 2.5V to 4.4V (initial charge: 0V to 4.4V) and 0.1C, the above conditions were applied in the cell voltage range of 2.5V to 4.2V. A cycle test was conducted in the same manner as above. The assumed specific capacity of all positive electrode materials was 140 mAh/g. However, 1C=140mA/g. The results are shown in Table 4.

(実施例2)
(IV)(フルセルの2.5V~4.3V、0.1C、3サイクル後、サイクル試験2.5V~4.2V)
実施例1と同様に組み立てたフルセルに対して、2.5V~4.3V(但し、初回の充電は0V~4.3Vとした)、0.1Cの充放電を3サイクル行った。その後、セル電圧範囲2.5V~4.2Vで上記と同様にしてサイクル試験を行った。この場合も、正極材の想定比容量はすべて140mAh/gとした。但し、1C=140mA/gである。結果を表4に示す。
(Example 2)
(IV) (Full cell 2.5V to 4.3V, 0.1C, after 3 cycles, cycle test 2.5V to 4.2V)
A full cell assembled in the same manner as in Example 1 was charged and discharged for 3 cycles at 2.5V to 4.3V (however, the initial charge was 0V to 4.3V) and 0.1C. Thereafter, a cycle test was conducted in the same manner as above in a cell voltage range of 2.5V to 4.2V. In this case as well, the assumed specific capacity of all positive electrode materials was 140 mAh/g. However, 1C=140mA/g. The results are shown in Table 4.

(実施例3)
(V)(フルセルの2.5V~4.5V、0.1C、3サイクル後、サイクル試験2.5V~4.2V)
実施例1と同様に組み立てたフルセルに対して、2.5V~4.5V(但し、初回の充電は0V~4.5Vとした)、0.1Cの充放電を3サイクル行った後、セル電圧範囲2.5V~4.2Vで上記と同様にしてサイクル試験を行った。この場合も、正極材の想定比容量はすべて140mAh/gとした。但し、1C=140mA/gである。結果を表4に示す。
(Example 3)
(V) (Full cell 2.5V to 4.5V, 0.1C, after 3 cycles, cycle test 2.5V to 4.2V)
After performing 3 cycles of charging and discharging at 2.5V to 4.5V (however, the first charge was 0V to 4.5V) and 0.1C to a full cell assembled in the same manner as in Example 1, the cell A cycle test was conducted in the same manner as above in the voltage range of 2.5V to 4.2V. In this case as well, the assumed specific capacity of all positive electrode materials was 140 mAh/g. However, 1C=140mA/g. The results are shown in Table 4.

Figure 2023183355000005
Figure 2023183355000005

表4の結果から、正極材の想定比容量を140mAh/gとした場合でも、実施例1のフルセルは、2.5V~4.4V、0.1Cの充放電を3サイクル事前に行うことにより、2.5V~4.4V、0.1Cの充放電を3サイクル事前に行わなかった場合、さらには、比較例1および2のフルセルよりも優れたサイクル特性を示すことがわかった。 From the results in Table 4, even when the assumed specific capacity of the cathode material is 140mAh/g, the full cell of Example 1 can be obtained by performing three cycles of charging and discharging at 2.5V to 4.4V and 0.1C in advance. , 2.5 V to 4.4 V, and 0.1 C without performing 3 cycles of charging and discharging in advance, it was found that cycle characteristics were even better than those of the full cells of Comparative Examples 1 and 2.

実施例1のフルセルは、実施例2および実施例3のフルセルよりも、その再生正極材の比容量は高く、さらにサイクル試験後のその維持率も高く維持された。
一方、実施例2と比較して、実施例1および実施例3のように、セルの活性化をより高い電圧で行う工程を経由することで、再生正極材は高いサイクル安定性を示した。なお、4.6Vより高いセル電圧は、リチウムイオン二次電池の電解液の分解を大きく加速させる可能性が高いことから、活性化工程における最高セル電圧は4.3V~4.5Vが好ましく、その中でも、4.4Vがさらに好ましいことを確認した。
The full cell of Example 1 had a higher specific capacity of the recycled cathode material than the full cells of Examples 2 and 3, and also maintained a high retention rate after the cycle test.
On the other hand, compared to Example 2, the recycled positive electrode material showed high cycle stability by going through the step of activating the cell at a higher voltage as in Examples 1 and 3. In addition, since a cell voltage higher than 4.6V is likely to greatly accelerate the decomposition of the electrolyte of the lithium ion secondary battery, the highest cell voltage in the activation step is preferably 4.3V to 4.5V. Among these, it was confirmed that 4.4V is more preferable.

1 正極集電体
2 正極
3 セパレータ
4 ガスケット
5 負極
6 スペーサー
7 ワッシャー
8 負極集電体
10 リチウムイオン二次電池

1 Positive electrode current collector 2 Positive electrode 3 Separator 4 Gasket 5 Negative electrode 6 Spacer 7 Washer 8 Negative electrode current collector 10 Lithium ion secondary battery

Claims (13)

リチウム、ニッケル、コバルト、およびマンガンと、
アルミニウムを0.3質量%以上3質量%以下と、
銅および鉄の少なくともいずれかを1質量%未満と、
を含有することを特徴とする再生正極材。
lithium, nickel, cobalt, and manganese;
0.3% by mass or more and 3% by mass or less of aluminum,
less than 1% by mass of at least one of copper and iron;
A recycled cathode material characterized by containing.
カルシウムおよびマグネシウムの少なくともいずれかを含み、前記カルシウムおよび前記マグネシウムの少なくともいずれかの含有量が0.02質量%以上0.1質量%以下である、請求項1に記載の再生正極材。 The recycled positive electrode material according to claim 1, which contains at least one of calcium and magnesium, and has a content of at least one of calcium and magnesium of 0.02% by mass or more and 0.1% by mass or less. 前記アルミニウムの含有量が0.5質量%以上2.5質量%以下である、請求項1から2のいずれかに記載の再生正極材。 The recycled positive electrode material according to any one of claims 1 to 2, wherein the aluminum content is 0.5% by mass or more and 2.5% by mass or less. 前記リチウムの含有量が5質量%以上9質量%以下である、請求項1から2のいずれかに記載の再生正極材。 The recycled cathode material according to claim 1, wherein the lithium content is 5% by mass or more and 9% by mass or less. 前記銅の含有量が0.01質量%以下であり、
前記鉄の含有量が0.6質量%以下である、請求項1から2のいずれかに記載の再生正極材。
The copper content is 0.01% by mass or less,
The recycled cathode material according to any one of claims 1 to 2, wherein the iron content is 0.6% by mass or less.
前記銅の含有量が0.0005質量%以上0.005質量%以下であり、
前記鉄の含有量が0.002質量%以上0.6質量%以下である、請求項5に記載の再生正極材。
The copper content is 0.0005% by mass or more and 0.005% by mass or less,
The recycled positive electrode material according to claim 5, wherein the iron content is 0.002% by mass or more and 0.6% by mass or less.
前記アルミニウム(Al)の含有量(質量%)と、前記銅(Cu)の含有量(質量%)と、鉄(Fe)の含有量(質量%)とが、次式、Al/(Al+Cu+Fe)≧0.4、を充たす、請求項1から2のいずれかに記載の再生正極材。 The aluminum (Al) content (mass %), the copper (Cu) content (mass %), and the iron (Fe) content (mass %) are expressed by the following formula, Al/(Al+Cu+Fe) The recycled cathode material according to any one of claims 1 to 2, which satisfies ≧0.4. 前記ニッケル、前記コバルト、および前記マンガンを合計50質量%以上含有する、請求項1から2のいずれかに記載の再生正極材。 The recycled cathode material according to any one of claims 1 to 2, containing the nickel, the cobalt, and the manganese in a total amount of 50% by mass or more. 請求項1から2のいずれかに記載の再生正極材を製造する方法であって、
リチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程と、
前記熱処理物を破砕した破砕物を得る破砕工程と、
前記破砕物に対して物理的選別を行って物理的処理物を得る物理的選別工程と、
前記物理的処理物に酸性溶液を添加し、酸処理溶液を得る酸処理工程と、
前記酸処理溶液に酸化剤を添加した後、アルカリ溶液を添加し、水酸化鉄の沈殿を濾別する鉄除去工程と、
前記鉄除去工程後の濾液とアルカリ溶液とを混合するアルカリ処理工程と、
を含むことを特徴とする再生正極材の製造方法。
A method for manufacturing a recycled cathode material according to any one of claims 1 to 2, comprising:
a heat treatment step of obtaining a heat-treated product by heat-treating a lithium ion secondary battery;
A crushing step of crushing the heat-treated product to obtain a crushed product;
a physical sorting step of physically sorting the crushed material to obtain a physically processed material;
an acid treatment step of adding an acidic solution to the physically treated product to obtain an acid treatment solution;
an iron removal step of adding an oxidizing agent to the acid treatment solution, then adding an alkaline solution, and filtering out the iron hydroxide precipitate;
an alkali treatment step of mixing the filtrate after the iron removal step with an alkaline solution;
A method for producing a recycled cathode material, comprising:
リチウム源を添加するリチウム源添加工程を含む、請求項9に記載の再生正極材の製造方法。 The method for producing a recycled cathode material according to claim 9, comprising a lithium source addition step of adding a lithium source. 請求項1から2のいずれかに記載の再生正極材を有するリチウムイオン二次電池を組み立てる組立工程と、
前記組立工程で組み立てたリチウムイオン二次電池を、セル電圧0V付近から4.3V~4.6Vまで充電し、その後、セル電圧0V~3.5Vから4.3V~4.6Vの範囲で充放電を行う活性化工程と、
を含むことを特徴とする再生正極材の使用方法。
An assembly step of assembling a lithium ion secondary battery having the recycled cathode material according to any one of claims 1 to 2;
The lithium ion secondary battery assembled in the above assembly process is charged from a cell voltage of around 0V to 4.3V to 4.6V, and then charged from a cell voltage of 0V to 3.5V to a range of 4.3V to 4.6V. an activation step of discharging;
A method of using a recycled cathode material characterized by comprising:
請求項1から2のいずれかに記載の再生正極材を含むことを特徴とする再生正極。 A recycled positive electrode comprising the recycled positive electrode material according to any one of claims 1 to 2. 請求項12に記載の再生正極を有することを特徴とするリチウムイオン二次電池。

A lithium ion secondary battery comprising the regenerated positive electrode according to claim 12.

JP2022165994A 2022-06-15 2022-10-17 Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery Pending JP2023183355A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2023/019970 WO2023243385A1 (en) 2022-06-15 2023-05-29 Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery
TW112120902A TW202410535A (en) 2022-06-15 2023-06-05 Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096429 2022-06-15
JP2022096429 2022-06-15

Publications (1)

Publication Number Publication Date
JP2023183355A true JP2023183355A (en) 2023-12-27

Family

ID=89321197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022165994A Pending JP2023183355A (en) 2022-06-15 2022-10-17 Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2023183355A (en)

Similar Documents

Publication Publication Date Title
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6650806B2 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP6963135B2 (en) Lithium recovery method and lithium ion secondary battery processing method
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
US20230327226A1 (en) Apparatus for recovering active material and method for reusing active material by using same
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP7357799B2 (en) How to reuse active materials using cathode scraps
JP7451683B2 (en) How to reuse active materials using cathode scraps
CN115210935A (en) Apparatus for recovering active material and method of reusing active material using the same
WO2012161168A1 (en) Method for recovering valuable material from positive electrode in lithium-ion secondary battery
WO2023243385A1 (en) Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery
JP2023183355A (en) Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery
WO2021182452A1 (en) Method for recovering lithium and method for processing lithium ion secondary battery
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
EP3836288B1 (en) Method for recovering valuable material from lithium ion secondary battery
US20210210807A1 (en) Method for recovering valuable material from lithium ion secondary battery
JP2023524700A (en) Method for reusing active material using positive electrode scrap
JP7176707B1 (en) Recycled positive electrode material precursor, recycled positive electrode material, production method thereof, and recycled lithium ion secondary battery
JP7220340B1 (en) METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY
WO2024014144A1 (en) Method for recovering valuable materials from lithium ion secondary batteries
TW202247521A (en) Method for separating valuable substance

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026