JP6676124B1 - Method of recovering valuable resources from lithium ion secondary batteries - Google Patents

Method of recovering valuable resources from lithium ion secondary batteries Download PDF

Info

Publication number
JP6676124B1
JP6676124B1 JP2018192609A JP2018192609A JP6676124B1 JP 6676124 B1 JP6676124 B1 JP 6676124B1 JP 2018192609 A JP2018192609 A JP 2018192609A JP 2018192609 A JP2018192609 A JP 2018192609A JP 6676124 B1 JP6676124 B1 JP 6676124B1
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
magnetic separation
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018192609A
Other languages
Japanese (ja)
Other versions
JP2020061297A (en
Inventor
千尋 西川
千尋 西川
善弘 本間
善弘 本間
教夫 中島
教夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2018192609A priority Critical patent/JP6676124B1/en
Application granted granted Critical
Publication of JP6676124B1 publication Critical patent/JP6676124B1/en
Publication of JP2020061297A publication Critical patent/JP2020061297A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】コバルト・ニッケル・銅といった有価物を低い不純物品位および高い回収率で回収できる手段を提供する。【解決手段】リチウムイオン二次電池を熱処理する熱処理工程と、前記熱処理工程で得られた熱処理物を破砕する破砕工程と、前記破砕工程で得られた破砕物を、1.2〜2.4mmの分級点で分級する1段目の分級工程と、前記1段目の分級工程で細側に得られた中間産物および細粒産物を0.3mm以下の分級点で分級する2段目の分級工程と、前記2段目の分級工程で粗側に得られた中間産物を乾式磁選し、得られた磁着物を再度乾式磁選する工程を1回以上繰返す乾式磁選工程を有することを特徴とする、リチウムイオン二次電池からの有価物の回収方法である。【選択図】図1PROBLEM TO BE SOLVED: To provide means for recovering valuable materials such as cobalt, nickel and copper with low impurity quality and high recovery rate. A heat treatment step of heat-treating a lithium ion secondary battery, a crushing step of crushing the heat-treated product obtained in the heat treatment step, and a crushed product obtained in the crushing step are made to be 1.2 to 2.4 mm. The first-stage classification step of classifying at the classification point of, and the second-stage classification of classifying the intermediate product and the fine-grained product obtained on the narrow side in the first classification step at a classification point of 0.3 mm or less And a dry magnetic separation step in which the intermediate product obtained on the rough side in the second classification step is subjected to dry magnetic separation, and the obtained magnetic substance is again subjected to dry magnetic separation at least once. A method of recovering valuable materials from a lithium ion secondary battery. [Selection diagram] Fig. 1

Description

本発明は、製造過程で発生した不良品や使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池の正極集電体、負極集電体、正極活物質などから有価物を回収可能なリチウムイオン二次電池からの有価物の回収方法に関する。   The present invention can recover valuable materials from the positive electrode current collector, the negative electrode current collector, the positive electrode active material, etc. of the lithium ion secondary battery which is discarded due to defective products generated during the manufacturing process, the life of the used equipment and the battery, etc. The present invention relates to a method for recovering valuable resources from a lithium ion secondary battery.

リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池などに比較して軽量、高容量、高起電力の二次電池であり、パソコン、電気自動車、携帯機器などの二次電池として使用されている。例えば、リチウムイオン二次電池の正極には、コバルトやニッケルなどの有価物が、コバルト酸リチウム(LiCoO)、三元系正極材(LiNiCoMn(x+y+z=1))などとして使用されている。 Lithium-ion rechargeable batteries are lightweight, high-capacity, high-electromotive force rechargeable batteries compared to conventional lead-acid batteries, NiCd rechargeable batteries, etc., and are used as rechargeable batteries for personal computers, electric vehicles, portable devices, etc. Have been. For example, the positive electrode of the lithium ion secondary battery, valuable materials, such as cobalt or nickel, lithium cobaltate (LiCoO 2), ternary positive electrode material (LiNi x Co y Mn z O 2 (x + y + z = 1)) , etc. Has been used as

前記リチウムイオン二次電池は、今後も使用の拡大が予想されていることから、製造過程で発生した不良品や使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池から有価物を回収することが、資源リサイクルの観点から望まれている。リチウムイオン二次電池から有価物を回収する際には、使用されている種々の金属を分離して回収することが、回収物の価値を高める点から重要である。   Since the use of the lithium ion secondary battery is expected to continue to expand in the future, it is possible to recover valuable resources from lithium ion secondary batteries that are discarded due to defective products generated during the manufacturing process or the life of the equipment and battery. Recovery is desired from the viewpoint of resource recycling. When recovering valuable resources from a lithium ion secondary battery, it is important to separate and recover various metals used from the viewpoint of increasing the value of the recovered material.

リチウムイオン二次電池からの有価物の回収方法として、リチウムイオン電池熱処理物の破砕物からコバルトおよびニッケルを回収する手法が提案されている。例えば、特許文献1には、使用済みリチウム二次電池を熱処理し、粉砕した後、粉砕物をふるい分けし、ふるい下を磁力選別することでコバルトを回収する方法が開示されている。   As a method of recovering valuable resources from a lithium ion secondary battery, a method of recovering cobalt and nickel from a crushed product of a heat-treated lithium ion battery has been proposed. For example, Patent Literature 1 discloses a method of recovering cobalt by heat-treating and pulverizing a used lithium secondary battery, sieving the pulverized material, and magnetically sorting under the sieve.

特許第3443446号公報Japanese Patent No. 3444346

リチウムイオン二次電池を熱処理後、破砕・分級すると、粗粒産物に鉄などの外装容器・部材由来の金属および銅などの集電体由来の金属が回収される。また、細粒産物にはコバルト・ニッケルが濃縮するが、前記集電体由来の金属も一部細粒産物に混入する。コバルト・ニッケルリサイクルのため細粒産物からの集電体由来金属および負極活物質の分離回収が求められている。活物質は集電体にバインダーで接着された構造であることから、集電体や活物質をそれぞれ高品位で回収するためには、バインダーの分解および集電体と活物質の単体分離が必要である。上記特許文献1に記載された方法では、(1)せん断式破砕を採用したことにより、破砕時せん断刃が接触した部分以外の集電体と活物質の単体分離が不良であり、(2)磁選成績が不十分でありコバルト濃縮物中の負極活物質由来のカーボン品位が高く、(3)リチウムイオン二次電池の銅などの負極集電体由来金属は主要な有価物であると同時にコバルト・ニッケルのリサイクルにおける不純物である事から分離回収が望まれているが、負極集電体由来金属をコバルト・ニッケルから分離回収する方法に関し検討されていないという問題があった。主に(1)および(2)の理由により、コバルト・ニッケル濃縮物中の銅などの負極集電体由来金属の品位を0.2%未満、カーボンなどの負極活物質由来物質の品位を5%未満まで低減することが困難であった。また、(3)の理由により負極集電体由来金属をコバルト・ニッケル回収物から50%以上分離回収する事が困難であった。   When the lithium ion secondary battery is heat-treated and then crushed and classified, metals derived from the outer container or member such as iron and metals derived from the current collector such as copper are collected as coarse-grained products. Further, although cobalt nickel is concentrated in the fine-grained product, a part of the metal derived from the current collector is also mixed into the fine-grained product. For cobalt / nickel recycling, there is a demand for separation and recovery of current collector-derived metals and negative electrode active materials from fine-grained products. Since the active material has a structure that is bonded to the current collector with a binder, it is necessary to decompose the binder and separate the current collector from the active material in order to collect the current collector and active material with high quality. It is. According to the method described in Patent Literature 1, (1) the use of shear crushing results in poor separation of the active material from the current collector except for the portion where the shear blade contacts during crushing, and (2) The magnetic separation performance is insufficient and the carbon quality derived from the negative electrode active material in the cobalt concentrate is high. (3) Metals derived from the negative electrode current collector such as copper of lithium ion secondary batteries are not only valuable materials but also cobalt -Separation and recovery are desired because they are impurities in nickel recycling, but there is a problem that a method for separating and recovering a metal derived from the negative electrode current collector from cobalt and nickel has not been studied. Mainly for the reasons (1) and (2), the grade of the metal derived from the negative electrode current collector such as copper in the cobalt nickel concentrate is less than 0.2%, and the grade of the material derived from the negative electrode active material such as carbon is 5%. % Was difficult to reduce. Further, for the reason (3), it has been difficult to separate and recover 50% or more of the metal derived from the negative electrode current collector from the recovered cobalt / nickel.

本発明は上記事情に鑑みてなされたものであり、コバルト・ニッケルおよび銅などの負極集電体由来金属といった有価物を低い不純物品位および高い回収率で回収できる手段を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide means for recovering valuable materials such as metals derived from a negative electrode current collector such as cobalt nickel and copper with a low impurity grade and a high recovery rate. .

上記課題を解決するために、本発明によれば、リチウムイオン二次電池を熱処理する熱処理工程と、前記熱処理工程で得られた熱処理物を破砕する破砕工程と、前記破砕工程で得られた破砕物を、1.2〜2.4mmの分級点で分級する1段目の分級工程と、前記1段目の分級工程で細側に得られた中間産物および細粒産物を0.3mm以下の分級点で分級する2段目の分級工程と、前記2段目の分級工程で粗側に得られた中間産物を乾式磁選し、得られた磁着物を再度乾式磁選する工程を1回以上繰返す乾式磁選工程を有することを特徴とする、リチウムイオン二次電池からの有価物の回収方法が提供される。   In order to solve the above problems, according to the present invention, a heat treatment step of heat-treating a lithium ion secondary battery, a crushing step of crushing the heat-treated product obtained in the heat treatment step, and a crushing step obtained in the crushing step The first step of classifying the product at a classification point of 1.2 to 2.4 mm, and the intermediate product and fine-grain product obtained on the narrow side in the first step of classification are reduced to 0.3 mm or less. The second-stage classification step of classifying at the classification point and the step of dry-magnetic-separating the intermediate product obtained on the rough side in the second-stage classification step, and the step of dry-magnetic-separating the obtained magnetized product are repeated at least once. A method for recovering valuable resources from a lithium ion secondary battery, comprising a dry magnetic separation step is provided.

前記熱処理工程でアルミニウムを熔融分離して回収しても良い。また、前記乾式磁選工程で得られた磁着物は、負極活物質由来の物質の含有量が5%未満であっても良い。その場合、負極活物質由来の物質がカーボンであっても良い。また、前記乾式磁選工程で得られた磁着物は、負極集電体由来の金属品位が0.2%未満であっても良い。その場合、前記負極集電体由来の金属が銅であっても良い。また、前記熱処理工程を、酸素濃度が10.5質量%以下の低酸素雰囲気下で行っても良い。また、前記1段目の分級工程で粗側に得られた粗粒産物を乾式磁選する乾式磁選工程をさらに有しても良い。   In the heat treatment step, aluminum may be melted and separated and recovered. Further, the magnetic substance obtained in the dry magnetic separation step may have a content of a substance derived from the negative electrode active material of less than 5%. In that case, the material derived from the negative electrode active material may be carbon. Further, the magnetic substance obtained in the dry magnetic separation step may have a metal quality derived from the negative electrode current collector of less than 0.2%. In that case, the metal derived from the negative electrode current collector may be copper. Further, the heat treatment step may be performed in a low oxygen atmosphere having an oxygen concentration of 10.5% by mass or less. In addition, the method may further include a dry magnetic separation step of dry magnetic separation of the coarse-grained product obtained on the coarse side in the first-stage classification step.

本発明によれば、リチウムイオン二次電池から有価物を回収するにあたり、コバルト・ニッケルといった有価物を低い負極集電体由来金属品位および負極活物質品位で回収できるようになる。   ADVANTAGE OF THE INVENTION According to this invention, when recovering a valuable resource from a lithium ion secondary battery, a valuable resource such as cobalt / nickel can be recovered with a low negative electrode collector-derived metal grade and a negative electrode active material grade.

本発明の実施の形態にかかる回収方法を説明するフローチャートである。It is a flowchart explaining the collection | recovery method concerning embodiment of this invention.

以下、本発明を実施するための形態の一例を説明する。   Hereinafter, an example of an embodiment for carrying out the present invention will be described.

<リチウムイオン二次電池>
リチウムイオン二次電池は、正極と負極の間をリチウムイオンが移動することで充電や放電を行う二次電池であり、例えば、正極と、負極と、セパレーターと、電解質及び有機溶剤を含有する電解液と、正極、負極、セパレーター及び電解液を収容する電池ケースである外装容器とを備えたものが挙げられる。
<Lithium ion secondary battery>
A lithium ion secondary battery is a secondary battery that performs charging and discharging by moving lithium ions between a positive electrode and a negative electrode. For example, an electrolytic cell containing a positive electrode, a negative electrode, a separator, an electrolyte and an organic solvent is used. One provided with a liquid and an outer container which is a battery case containing a positive electrode, a negative electrode, a separator, and an electrolytic solution.

リチウムイオン二次電池の形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。リチウムイオン二次電池の形状として、例えば、ラミネート型、円筒型、ボタン型、コイン型、角型、平型などが挙げられる。   The shape, structure, size, material, and the like of the lithium ion secondary battery are not particularly limited, and can be appropriately selected depending on the purpose. Examples of the shape of the lithium ion secondary battery include a laminate type, a cylindrical type, a button type, a coin type, a square type, and a flat type.

正極としては、正極集電体上に正極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。   The positive electrode is not particularly limited as long as it has a positive electrode material on the positive electrode current collector, and can be appropriately selected depending on the purpose. The shape of the positive electrode is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a flat plate and a sheet.

正極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。正極集電体の形状としては、例えば、箔状などが挙げられる。正極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、アルミニウムが好ましい。   The shape, structure, size, material, and the like of the positive electrode current collector are not particularly limited, and can be appropriately selected depending on the purpose. Examples of the shape of the positive electrode current collector include a foil shape. Examples of the material of the positive electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, aluminum is preferred.

正極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、希少有価物を含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。希少有価物としては、特に制限はなく、目的に応じて適宜選択することができるが、コバルト、ニッケル、及びマンガンの少なくともいずれかであることが好ましい。   The positive electrode material is not particularly limited and can be appropriately selected depending on the purpose. For example, a positive electrode material containing at least a positive electrode active material containing a rare valuable material, and optionally containing a conductive agent and a binder resin And the like. The rare valuables are not particularly limited and may be appropriately selected depending on the purpose. However, it is preferable that at least one of cobalt, nickel, and manganese is used.

正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、LiNiCoMnおよびそれぞれの複合物などが挙げられる。 As the positive electrode active material, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt nickelate (LiCo 1/2 Ni 1/2 O 2 ) , LiNi x Co y Mn z O 2 and their respective composites.

導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。   The conductive agent is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include carbon black, graphite, carbon fiber, and metal carbide.

結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体又は共重合体、スチレン−ブタジエンゴムなどが挙げられる。   The binder resin is not particularly limited and can be appropriately selected depending on the intended purpose.Examples include homopolymers or copolymers of vinylidene fluoride, ethylene tetrafluoride, acrylonitrile, and ethylene oxide, and styrene-butadiene rubber. And the like.

負極としては、負極集電体上に負極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。   The negative electrode is not particularly limited as long as it has a negative electrode material on the negative electrode current collector, and can be appropriately selected depending on the purpose. The shape of the negative electrode is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a flat plate shape and a sheet shape.

負極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。負極集電体の形状としては、例えば、箔状などが挙げられる。負極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、銅が好ましい。   The shape, structure, size, material, and the like of the negative electrode current collector are not particularly limited, and can be appropriately selected depending on the purpose. Examples of the shape of the negative electrode current collector include a foil shape. Examples of the material of the negative electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, copper is preferred.

負極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グラファイト、ハードカーボン等の炭素材、チタネイト、シリコン、およびそれぞれの複合物などが挙げられる。   The negative electrode material is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include carbon materials such as graphite and hard carbon, titanate, silicon, and composites thereof.

なお、正極集電体と、負極集電体とは積層体の構造を有しており、積層体としては、特に制限はなく、目的に応じて適宜選択することができる。   Note that the positive electrode current collector and the negative electrode current collector have a laminated structure, and the laminated body is not particularly limited and can be appropriately selected depending on the purpose.

本発明の実施の形態では、図1に示す手順によって、リチウムイオン二次電池に含まれるアルミニウム・鉄などの外装容器由来金属、コバルトおよびニッケル等の正極活物質由来金属、銅などの負極集電体由来金属を効率的に分離回収する。回収に用いられるリチウムイオン二次電池としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。   In the embodiment of the present invention, according to the procedure shown in FIG. 1, a metal derived from an outer container such as aluminum and iron, a metal derived from a positive electrode active material such as cobalt and nickel, and a negative electrode current collector such as copper are contained in a lithium ion secondary battery. Efficient separation and recovery of body-derived metals. The lithium ion secondary battery used for recovery is not particularly limited and can be appropriately selected depending on the purpose.For example, a defective lithium ion secondary battery generated in the process of manufacturing a lithium ion secondary battery, Examples include a lithium ion secondary battery that is discarded due to a failure of a used device or the life of the used device, a used lithium ion secondary battery that is discarded due to a life, and the like.

<熱処理工程>
図1に示すように、先ず、リチウムイオン二次電池に対して、熱処理工程が行われる。熱処理温度は、正極集電体及び負極集電体のうち、低い融点の集電体の融点以上、かつ高い融点の集電体の融点未満の温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、670℃以上が好ましく、670℃以上1100℃以下がより好ましく、700℃以上900℃以下が特に好ましい。熱処理温度が、670℃未満であると、低い融点の集電体の脆化が十分に生じないことがあり、1100℃を超えると、低い融点の集電体、高い融点の集電体、及び外装容器のいずれもが脆化し、破砕及び分級によるコバルト・ニッケル濃縮物からの集電体の分離効率が低下する。また、前記リチウムイオン二次電池の前記外装容器が前記熱処理中に溶融する場合、前記リチウムイオン二次電池の下に前記溶融金属を回収する受け皿を配置する事で、外装容器由来の金属と電極部を容易に分離する事が出来る。
<Heat treatment process>
As shown in FIG. 1, first, a heat treatment step is performed on a lithium ion secondary battery. The heat treatment temperature is not particularly limited as long as it is a temperature equal to or higher than the melting point of the current collector having a low melting point and lower than the melting point of the current collector having a high melting point, between the positive electrode current collector and the negative electrode current collector. 670 ° C. or higher, preferably 670 ° C. or higher and 1100 ° C. or lower, more preferably 700 ° C. or higher and 900 ° C. or lower. When the heat treatment temperature is lower than 670 ° C., the low melting point current collector may not be sufficiently embrittled. When the heat treatment temperature exceeds 1100 ° C., the low melting point current collector, the high melting point current collector, and Any of the outer containers becomes brittle, and the efficiency of separation of the current collector from the cobalt nickel concentrate by crushing and classification decreases. Further, when the outer container of the lithium ion secondary battery is melted during the heat treatment, by placing a tray for collecting the molten metal below the lithium ion secondary battery, the metal and the electrode derived from the outer container are disposed. The parts can be easily separated.

所定の熱処理温度で熱処理を行うことにより、例えば、正極集電体がアルミニウムであり、負極集電体が銅である積層体において、アルミニウム箔からなる正極集電体が脆化し、後述する破砕工程において細粒化しやすくなる。この正極集電体の脆化は溶融もしくは酸化反応により生ずる。また、溶融して流れ落ちたアルミニウムは、受け皿に回収される。一方、銅からなる負極集電体は、銅の融点未満の温度で熱処理されるため、溶融することがなく、後述する乾式磁選工程において、高度に選別できるようになる。また、積層体及びリチウムイオン二次電池のいずれかを酸素遮蔽容器に収容して熱処理したときは、アルミニウム箔からなる正極集電体が溶融して脆化し、後述する破砕工程において細粒化しやすくなり、一方、銅からなる負極集電体は、前記酸素遮蔽容器の酸素遮蔽効果および積層体やリチウムイオン二次電池に含まれるカーボン等の負極活物質による還元効果により、酸素分圧が低い状態で熱処理されるため、酸化による脆化が生じない。このため、破砕工程における破砕により、正極集電体は細かく破砕され、負極集電体は、破砕後も粗粒として存在し、後述する1段目の分級工程と2段目の分級工程において、より効果的かつ高度に選別できるようになる。   By performing the heat treatment at a predetermined heat treatment temperature, for example, in a laminate in which the positive electrode current collector is aluminum and the negative electrode current collector is copper, the positive electrode current collector made of aluminum foil is embrittled, and a crushing step described below is performed. , It becomes easy to refine. This embrittlement of the positive electrode current collector is caused by a melting or oxidation reaction. In addition, the aluminum that has melted and flowed down is collected in a tray. On the other hand, since the negative electrode current collector made of copper is heat-treated at a temperature lower than the melting point of copper, it does not melt and can be highly sorted in a dry magnetic separation step described later. Further, when any one of the laminate and the lithium ion secondary battery is housed in an oxygen shielding container and heat-treated, the positive electrode current collector made of aluminum foil is melted and embrittled, and is easily granulated in a crushing step described later. On the other hand, the negative electrode current collector made of copper has a low oxygen partial pressure due to the oxygen shielding effect of the oxygen shielding container and the reduction effect of the negative electrode active material such as carbon contained in the laminate or the lithium ion secondary battery. , So that embrittlement due to oxidation does not occur. For this reason, by the crushing in the crushing step, the positive electrode current collector is finely crushed, and the negative electrode current collector is still present as coarse particles even after crushing. In the first-stage classification step and the second-stage classification step described below, Become more effective and highly selective.

熱処理時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間以上5時間以下が好ましく、1分間以上2時間以下がより好ましく、1分間以上1時間以下が特に好ましい。熱処理時間は低い融点の前記集電体が所望の温度まで到達する熱処理時間であればよく、保持時間は短くてもよい。熱処理時間が、特に好ましい範囲内であると、熱処理にかかるコストの点で有利である。   The heat treatment time is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 minute or more and 5 hours or less, more preferably 1 minute or more and 2 hours or less, and particularly preferably 1 minute or more and 1 hour or less. . The heat treatment time may be a heat treatment time for the current collector having a low melting point to reach a desired temperature, and the holding time may be short. When the heat treatment time is within a particularly preferable range, it is advantageous in terms of cost for heat treatment.

熱処理の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱処理炉を用いて行うことが挙げられる。熱処理炉としては、例えば、ロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュポラ、ストーカー炉などが挙げられる。   The method of heat treatment is not particularly limited and can be appropriately selected depending on the purpose. For example, the heat treatment is performed using a heat treatment furnace. Examples of the heat treatment furnace include a batch kiln such as a rotary kiln, a fluidized bed furnace, a tunnel furnace, and a muffle, a cupola, and a stalker furnace.

熱処理に用いる雰囲気としては、特に制限はなく、目的に応じて適宜選択する事ができるが、空気中で行う事ができる。酸素濃度が低い雰囲気とすれば正極集電体由来の金属及び負極集電体由来の金属を高品位かつ高い回収率で回収できる点から好ましい。
具体的には、酸素濃度が10.5質量%以下の低酸素雰囲気が、正極集電体由来の金属及び負極集電体由来の金属を高品位かつ高い回収率で回収できる点から好ましい。酸素濃度を低く調整した雰囲気(低酸素雰囲気)で熱処理工程を行うことで、リチウムイオン二次電池の有価金属の酸化を抑制する事が望ましい。即ち、LiCoO(反磁性体)として存在するコバルトを、負極活物質の共存化で熱処理し還元する事で、コバルトメタル(強磁性体)へ変化させることができる。
The atmosphere used for the heat treatment is not particularly limited and can be appropriately selected depending on the intended purpose; however, the heat treatment can be performed in the air. It is preferable to use an atmosphere having a low oxygen concentration, since a metal derived from the positive electrode current collector and a metal derived from the negative electrode current collector can be recovered with high quality and a high recovery rate.
Specifically, a low oxygen atmosphere having an oxygen concentration of 10.5% by mass or less is preferable because a metal derived from the positive electrode current collector and a metal derived from the negative electrode current collector can be recovered with high quality and a high recovery rate. It is desirable to suppress the oxidation of the valuable metal of the lithium ion secondary battery by performing the heat treatment step in an atmosphere in which the oxygen concentration is adjusted to be low (low oxygen atmosphere). That is, cobalt present as LiCoO 2 (diamagnetic material) can be converted to cobalt metal (ferromagnetic material) by heat treatment and reduction in the coexistence of the negative electrode active material.

上記低酸素雰囲気の実現方法として、リチウムイオン二次電池または積層体を酸素遮蔽容器に収容し熱処理してもよい。酸素遮蔽容器の材質としては、正極集電体及び負極集電体のうち、高い融点の集電体の融点以上の融点である材質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極集電体がアルミニウムであり、負極集電体が銅である場合は、アルミニウムの融点である660.32℃よりも高い融点を有する鉄、ステンレス鋼などが挙げられる。リチウムイオン電池または積層体中の電解液燃焼によるガス圧を放出するために、酸素遮蔽容器には開口部を設けることが好ましい。開口部の開口面積は、開口部が設けられている外装容器の表面積に対して12.5%以下となるように設けることが好ましい。開口部の開口面積は、開口部が設けられている外装容器の表面積に対して6.3%以下であることがより好ましい。開口部の開口面積が外装容器の表面積に対して12.5%を超えると、集電体の大部分が熱処理によって酸化しやすくなってしまう。開口部は、その形状、大きさ、形成箇所などについては特に制限はなく、目的に応じて適宜選択することができる。   As a method for realizing the low oxygen atmosphere, a lithium ion secondary battery or a laminate may be housed in an oxygen shielding container and heat-treated. The material of the oxygen shielding container is not particularly limited as long as the material has a melting point equal to or higher than the melting point of the high-melting current collector among the positive electrode current collector and the negative electrode current collector, and is appropriately selected depending on the purpose. For example, when the positive electrode current collector is aluminum and the negative electrode current collector is copper, iron, stainless steel, or the like having a melting point higher than 660.32 ° C., which is the melting point of aluminum, may be used. It is preferable to provide an opening in the oxygen shielding container in order to release the gas pressure due to the combustion of the electrolyte in the lithium ion battery or the laminate. The opening area of the opening is preferably provided so as to be 12.5% or less based on the surface area of the outer container provided with the opening. The opening area of the opening is more preferably 6.3% or less based on the surface area of the outer container provided with the opening. When the opening area of the opening exceeds 12.5% of the surface area of the outer container, most of the current collector is easily oxidized by the heat treatment. There is no particular limitation on the shape, size, location of the opening, and the like, and the opening can be appropriately selected depending on the purpose.

<破砕工程>
次に、熱処理工程で得られた熱処理物を破砕する破砕工程が行われる。破砕工程では、熱処理物を衝撃により破砕して破砕物を得ることが好ましい。
<Crushing process>
Next, a crushing step of crushing the heat-treated product obtained in the heat treatment step is performed. In the crushing step, it is preferable to crush the heat-treated product by impact to obtain a crushed product.

また破砕としては、特に制限はなく、目的に応じて適宜選択することができる。衝撃により破砕を行う方法としては、回転する打撃板により投げつけ、衝突板に叩きつけて衝撃を与える方法や、回転する打撃子(ビーター)により熱処理物を叩く方法が挙げられ、例えば、ハンマークラッシャーやチェーンクラッシャーなどにより行うことができる。また、セラミックや鉄などのボールやロッドにより熱処理物を叩く方法が挙げられ、ボールミルやロッドミルなどにより行うことができる。また、圧縮による破砕を行う刃幅、刃渡りの短い二軸粉砕機で破砕することにより行うことができる。   The crushing is not particularly limited and can be appropriately selected according to the purpose. Examples of the method of crushing by impact include a method of throwing with a rotating hitting plate and hitting against a collision plate to give an impact, and a method of hitting a heat-treated product with a rotating hitter (beater), such as a hammer crusher or a chain. It can be performed by a crusher or the like. In addition, a method of hitting a heat-treated material with a ball or rod of ceramic or iron, for example, can be used, and can be performed by a ball mill, a rod mill, or the like. Further, the crushing can be performed by crushing with a twin-screw crusher having a short blade width and a short blade for crushing by compression.

衝撃により破砕物を得ることにより、活物質と集電体の単体分離が良好に生じる。また、活物質は元来数10nmの粒子である一方、集電体は箔状の形状であることから、衝撃破砕により活物質の解砕が優先的に生じ、結果篩分で分離することができる。   By obtaining the crushed product by the impact, the active material and the current collector are favorably separated from each other. In addition, since the active material is originally a particle of several tens of nanometers, the current collector has a foil-like shape, so that the active material is preferentially disintegrated by impact crushing, and as a result, separated by sieving. it can.

破砕時間としては、特に制限はなく、目的に応じて適宜選択することができるが、リチウムイオン二次電池1kgあたりの処理時間は1秒間以上30分間以下が好ましく、2秒間以上10分間以下がより好ましく、3秒間以上5分間以下が特に好ましい。破砕時間が、1秒未満であると、破砕されないことがあり、30分間を超えると、過剰に破砕されることがある。   The crushing time is not particularly limited and may be appropriately selected depending on the purpose. The processing time per 1 kg of the lithium ion secondary battery is preferably 1 second or more and 30 minutes or less, more preferably 2 seconds or more and 10 minutes or less. It is preferably from 3 seconds to 5 minutes. If the crushing time is less than 1 second, the crushing may not be performed, and if the crushing time exceeds 30 minutes, the crushing may be excessively performed.

<1段目の分級工程>
次に、破砕工程で得られた破砕物を粗粒産物と中間産物及び細粒産物とに分級する1段目の分級工程が行われる。分級方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩、湿式振動テーブル、エアーテーブルなどを用いて行うことができる。
<First stage classification process>
Next, a first classifying step of classifying the crushed product obtained in the crushing step into a coarse product, an intermediate product and a fine product is performed. The classification method is not particularly limited and can be appropriately selected depending on the purpose. For example, the classification is performed using a vibrating sieve, a multistage vibrating sieve, a cyclone, a JIS Z8801 standard sieve, a wet vibration table, an air table, or the like. be able to.

前記1段目の分級工程で用いる分級点としては、目開きが1.2〜2.4mmの篩を用いる。分級点が2.4mmを超えた場合、細粒産物中へ外装容器由来および融点の高いほうの金属の混入が増加し、活物質由来のコバルト・ニッケルとの分離成績が低下する。一方、分級点が1.2mm未満の場合、低い融点の集電体由来の金属及び活物質の粗粒産物中への混入が増加し、粗粒産物中の高い融点の集電体由来の金属の品位が低下し、かつ細粒産物への正極活物質由来のコバルト・ニッケル回収率が低下する。   As a classification point used in the first-stage classification step, a sieve having an opening of 1.2 to 2.4 mm is used. When the classification point exceeds 2.4 mm, the mixing of the metal from the outer container and the higher melting point into the fine-grained product increases, and the separation performance from the active material-derived cobalt / nickel decreases. On the other hand, when the classification point is less than 1.2 mm, the mixing of the metal and active material from the low melting point current collector into the coarse product increases, and the metal from the high melting point current collector in the coarse particle product increases. And the recovery rate of cobalt / nickel derived from the positive electrode active material in fine-grained products is reduced.

<2段目の分級>
前記1段目の分級工程で細側に得られた中間産物及び細粒産物に対しては2段目の分級工程が行われ、粗側にコバルト、ニッケルなどの正極活物質由来金属を含む中間産物が回収され、細側にカーボンを含む細粒産物が回収される。前記2段目の分級工程で用いる篩の篩目の目開きとしては、分級点が0.3mm以下の分級点を用いる。分級点が0.3mmを超えた場合、細粒産物中へのコバルト・ニッケルの混入が増加し、コバルト・ニッケルの中間産物への回収率が低下する。
<Second stage classification>
A second-stage classification process is performed on the intermediate product and fine-grain product obtained on the fine side in the first-stage classification process, and an intermediate product containing a cathode active material-derived metal such as cobalt or nickel on the coarse side. The product is recovered and the fine product containing carbon on the fine side is recovered. A classification point having a classification point of 0.3 mm or less is used as a mesh opening of the sieve used in the second-stage classification step. When the classification point exceeds 0.3 mm, the incorporation of cobalt nickel into the fine-grained product increases, and the recovery rate of cobalt nickel into the intermediate product decreases.

これらの分級により、粗粒産物として外装容器および融点の高い集電体由来の金属を、中間産物にコバルト、ニッケルなどの正極活物質を含む中間産物を、細粒産物にカーボンなどの負極活物質をそれぞれ分離回収することができる。   By these classifications, the metal derived from the outer container and the high melting point current collector as a coarse-grained product, the intermediate product containing a positive electrode active material such as cobalt and nickel as an intermediate product, and the negative electrode active material such as carbon as a fine-grained product Can be separated and recovered.

箔状の集電体はまた、分級方法として篩を用いた場合に、篩上に解砕促進物、例えば、ステンレス球やアルミナボールを乗せて篩うことにより、篩上に残留した少量の低い融点の集電体を解砕し微粒化させることで、粗粒産物中における外装容器および高い融点の集電体の金属の品位を更に向上させることができる。   When a sieve is used as a classifying method, the foil-shaped current collector is also a crushing accelerator, for example, by sieving a stainless steel ball or alumina ball on the sieve, a small amount of the residue remaining on the sieve is reduced. By crushing and atomizing the current collector having the melting point, the quality of the metal of the outer container and the current collector having a high melting point in the coarse-grained product can be further improved.

<粗粒産物の乾式磁選工程>
次に、1段目の分級工程で粗側に得られた粗粒産物に対しては、乾式磁選工程を行っても良い。この場合磁着物として鉄が回収され、非磁着物として銅などの前記高い融点の集電体由来の金属が回収する事が出来る。
<Dry magnetic separation process for coarse-grained products>
Next, a dry magnetic separation step may be performed on the coarse-grained product obtained on the coarse side in the first-stage classification step. In this case, iron can be recovered as a magnetic substance, and a metal derived from the high melting point current collector such as copper can be recovered as a non-magnetic substance.

<中間産物の乾式磁選工程>
前記2段目の分級工程で粗側に得られた中間産物に対しては、1段目の磁選で回収された磁着物に対し再度2段目の磁選を行う2段の乾式磁選工程が行われる。磁着物としてコバルト・ニッケルが回収され、非磁着物に負極材由来の銅やカーボンが移行する。この磁選により、例えば負極集電体が銅、負極活物質がカーボンである場合に、前記中間産物すなわちコバルト・ニッケル濃縮物中の銅などの負極集電体由来金属品位を0.2%未満、およびカーボンなどの負極活物質由来の物質品位を5%未満にできる。乾式磁選が1段である場合は、負極集電体および負極活物質がコバルト・ニッケルに巻き込まれて回収される割合が高く、磁着物として回収されるコバルト・ニッケル濃縮物中の負極集電体由来金属品位を0.2%未満もしくは負極活物質由来の物質品位を5%未満にできない。なお、中間産物を乾式磁選するに際して、粒子間の付着水分により粒子の凝集が生じる場合があるため、必要に応じて2段目の分級工程後に乾燥処理などを行うことで、前記負極材由来の金属とコバルト・ニッケル粒子を十分に分離できる。
<Dry magnetic separation process for intermediate products>
The intermediate product obtained on the coarse side in the second-stage classification step is subjected to a second-stage dry magnetic separation step in which the magnetically collected product collected in the first-stage magnetic separation is again subjected to a second-stage magnetic separation. Will be Cobalt / nickel is recovered as a magnetized material, and copper and carbon derived from the negative electrode material are transferred to the non-magnetic material. By this magnetic separation, for example, when the negative electrode current collector is copper and the negative electrode active material is carbon, the intermediate product, that is, the negative electrode current collector-derived metal grade such as copper in the cobalt nickel concentrate is less than 0.2%, And the material quality derived from the negative electrode active material such as carbon can be reduced to less than 5%. When the dry magnetic separation is performed in one stage, the negative electrode current collector and the negative electrode active material are entangled in cobalt-nickel, and a high percentage is recovered. The source metal grade cannot be less than 0.2% or the material grade derived from the negative electrode active material cannot be less than 5%. In addition, when the intermediate product is subjected to dry magnetic separation, particles may be agglomerated due to moisture adhering between the particles, so that by performing a drying treatment or the like after the second-stage classification step as necessary, the material derived from the negative electrode material can be obtained. Metal and cobalt nickel particles can be separated sufficiently.

〈乾式磁選磁着物の再破砕・磁選〉
乾式磁選後磁着物には本来非磁着物として回収されるべき負極集電体由来金属が前記衝撃破砕時に磁着物であるコバルトを巻き込む事で回収される場合がある。これら粒子の単体分離を促進するため、磁選後磁着物を再破砕し再度磁選することでコバルト・ニッケル濃縮物中の前記負極集電体由来金属品位を低減できる。
<Re-crushing and magnetic separation of dry magnetic separation magnetism>
The metal from the negative electrode current collector, which should be originally recovered as a non-magnetic material, may be recovered in the magnetic material after the dry magnetic separation by involving cobalt, which is a magnetic material, during the impact crushing. In order to promote the separation of these particles from the magnetic substance, the magnetic material derived from the negative electrode current collector in the cobalt / nickel concentrate can be reduced by re-crushing the magnetized material after magnetic separation and performing magnetic separation again.

以下、本発明の実施例について説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, examples of the present invention will be described. Note that the present invention is not limited to the following examples.

図1のフローに示すように、リチウムイオン二次電池3.7Kgを、熱処理装置としてマッフル炉(FJ−41、ヤマト科学株式会社製)を用いて、熱処理温度850℃(1H昇温・2H保持)、空気送気量5L/minの条件で熱処理工程を行った。次いで、破砕工程では、破砕装置として、ハンマークラッシャー(マキノ式スイングハンマークラッシャーHC−20−3.7、槇野産業株式会社製)を用い、50HZ(ハンマー周速38m/s)、出口部分のパンチングメタルの穴径10mmの条件で1回追加破砕した。   As shown in the flow of FIG. 1, 3.7 kg of a lithium ion secondary battery was subjected to a heat treatment temperature of 850 ° C. (1H rise and 2H hold) using a muffle furnace (FJ-41, manufactured by Yamato Scientific Co., Ltd.) as a heat treatment apparatus. ), A heat treatment step was performed under the conditions of an air supply rate of 5 L / min. Next, in the crushing step, using a hammer crusher (Makino type swing hammer crusher HC-20-3.7, manufactured by Makino Sangyo Co., Ltd.) as a crushing device, 50HZ (hammer peripheral speed 38 m / s), punching metal at the exit portion Was additionally crushed once under the condition of a hole diameter of 10 mm.

次いで、1段目の分級工程として、篩目の目開きが1.2mmの篩を用いて、前記破砕工程で得られた破砕物を篩分けした。篩分け後の1.2mmの篩上(粗側)と篩下(細側)をそれぞれ採取した。この篩下産物(中間産物および細粒産物)について再度0.3mmの篩を用いて2段目の分級を行い、中間産物にコバルト・ニッケルを、細粒産物にカーボンをそれぞれ回収した。   Next, as a first-stage classification step, the crushed material obtained in the crushing step was sieved using a sieve having a sieve opening of 1.2 mm. After the sieving, the top (coarse side) and the bottom (fine side) of a 1.2 mm sieve were collected. The under-sieved product (intermediate product and fine-grained product) was again subjected to second-stage classification using a 0.3 mm sieve, and cobalt / nickel was recovered as the intermediate product and carbon was recovered as the fine-grained product.

2段目の分級の篩上(粗側)に得られた中間産物については、長さ150mm、直径20mmのハンドマグネットを用いて、磁力1500Gで中間産物との間に10mmの間隔を設けた状態で2段の乾式磁選を実施した。   The intermediate product obtained on the second-stage classification sieve (coarse side) is in a state in which a hand magnet having a length of 150 mm and a diameter of 20 mm is used and a magnetic force of 1500 G is applied to provide an interval of 10 mm between the intermediate product and the intermediate product. , Two-stage dry magnetic separation was performed.

また、1段目の分級の篩上(粗側)に得られた粗粒産物に対しても、2段目の分級の篩上(粗側)に得られた中間産物に対する乾式磁選と同様の手順で、乾式磁選を行った。   In addition, the same method as the dry magnetic separation for the intermediate product obtained on the second-stage classification screen (coarse side) is applied to the coarse-grained product obtained on the first-stage classification screen (coarse side). Dry magnetic separation was performed according to the procedure.

粗粒産物・細粒産物および2段目の分級の篩上(粗側)に得られた中間産物に対する乾式磁選で得られた磁着物と非磁着物の質量を測定した後、王水に加熱溶解させ、高周波誘導結合プラズマ発光分光分析装置(iCaP6300、サーモフィッシャーサイエンティフィック社製)により分析を行い、コバルト及びニッケルの回収率、並びに回収された各種金属の含有割合を求めた。中間産物を磁選して得た磁着物および非磁着物の品位分析結果を表1に示す。各産物への各有価物の回収率を表2に示す。なお、表1、表2において(%)はいずれも質量%である。また、表2において、篩上(粗側)を「+」、篩下(細側)を「−」で示した。   After measuring the weight of the magnetically and non-magnetically adhered products obtained by dry magnetic separation on the coarse and fine-grained products and the intermediate products obtained on the second-stage classifying sieve (coarse side), heating to aqua regia The sample was dissolved and analyzed using a high-frequency inductively coupled plasma emission spectrometer (iCaP6300, manufactured by Thermo Fisher Scientific) to determine the recovery rates of cobalt and nickel, and the contents of the recovered metals. Table 1 shows the results of quality analysis of magnetically and non-magnetically attached products obtained by magnetically selecting the intermediate product. Table 2 shows the recovery rate of each valuable resource in each product. In Tables 1 and 2, (%) is% by mass. In Table 2, “+” indicates on the sieve (rough side) and “−” indicates below the sieve (fine side).

2段目の篩分けの目開きを0.15mmとした他は実施例1と同様の方法で実施した。結果を同様に表1、2に示す。   The same procedure as in Example 1 was carried out except that the opening of the second-stage sieving was 0.15 mm. The results are also shown in Tables 1 and 2.

1段目篩分けの目開きを2.4mmとした他は実施例1と同様の方法で実施した。結果を同様に表1、2に示す。   The same procedure as in Example 1 was carried out except that the opening of the first-stage sieving was 2.4 mm. The results are also shown in Tables 1 and 2.

(比較例1)
1段目の篩分けの目開きを4.8mmとした他は実施例3と同様の方法で実施した。
(Comparative Example 1)
Example 3 was carried out in the same manner as in Example 3, except that the opening of the first-stage sieving was 4.8 mm.

(比較例2)
前記2段目の篩分け目開きを0.6mmとした以外は実施例1と同様の方法で実施した。
(Comparative Example 2)
It carried out by the method similar to Example 1 except having set the said 2nd-stage sieve opening to 0.6 mm.

(比較例3)
磁選を1段で行った他は実施例1と同様の方法で実施した。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that the magnetic separation was performed in one stage.

(比較例4)
前記2段目の篩分けを行わず、1段目の篩分けの篩下物に乾式磁選を適用した他は実施例1と同様の手順で行った。
(Comparative Example 4)
The same procedure as in Example 1 was performed, except that the second-stage sieving was not performed, and dry magnetic separation was applied to the sieved material of the first-stage sieving.

表1,2に示すように、本発明の回収方法で得られたコバルト・ニッケル濃縮物は銅品位が0.2%未満、およびカーボン品位が5%未満であることが確認できた。比較例1では表1に示す通り磁着物中の鉄品位が10%を超え、高品質のコバルト・ニッケル濃縮物が得られなかった。比較例2では表2に示した通り磁着産物にコバルト・ニッケルを50%以上回収できなかった。比較例3及び4では表1に示した通り銅品位が0.2%未満もしくはカーボン品位が5%未満のコバルト・ニッケル濃縮物を回収できなかった。   As shown in Tables 1 and 2, it was confirmed that the cobalt nickel concentrate obtained by the recovery method of the present invention had a copper grade of less than 0.2% and a carbon grade of less than 5%. In Comparative Example 1, as shown in Table 1, the iron quality in the magnetic substance exceeded 10%, and a high quality cobalt / nickel concentrate could not be obtained. In Comparative Example 2, as shown in Table 2, 50% or more of cobalt / nickel could not be recovered in the magnetized product. In Comparative Examples 3 and 4, as shown in Table 1, a cobalt nickel concentrate having a copper grade of less than 0.2% or a carbon grade of less than 5% could not be recovered.

Figure 0006676124
Figure 0006676124

Figure 0006676124
Figure 0006676124

Claims (8)

リチウムイオン二次電池を熱処理する熱処理工程と、
前記熱処理工程で得られた熱処理物を破砕する破砕工程と、
前記破砕工程で得られた破砕物を、1.2〜2.4mmの分級点で分級する1段目の分級工程と、前記1段目の分級工程で細側に得られた中間産物および細粒産物を0.3mm以下の分級点で分級する2段目の分級工程と、
前記2段目の分級工程で粗側に得られた中間産物を乾式磁選し、得られた磁着物を再度乾式磁選する工程を1回以上繰返す乾式磁選工程を有することを特徴とする、リチウムイオン二次電池からの有価物の回収方法。
A heat treatment step of heat treating the lithium ion secondary battery,
A crushing step of crushing the heat-treated product obtained in the heat treatment step,
A first-stage classification step of classifying the crushed product obtained in the crushing step at a classification point of 1.2 to 2.4 mm, and an intermediate product and a fine product obtained on the narrow side in the first-stage classification step. A second-stage classification step of classifying the granular product at a classification point of 0.3 mm or less;
Lithium ion, characterized by having a dry magnetic separation step in which the intermediate product obtained on the coarse side in the second-stage classification step is subjected to dry magnetic separation, and the obtained magnetically adhered product is subjected to dry magnetic separation one or more times. A method for collecting valuables from secondary batteries.
前記熱処理工程でアルミニウムを熔融分離して回収することを特徴とする、請求項1に記載のリチウムイオン二次電池からの有価物の回収方法。   2. The method for recovering valuable resources from a lithium ion secondary battery according to claim 1, wherein aluminum is melted and recovered in the heat treatment step. 前記乾式磁選工程で得られた磁着物は、負極活物質由来の物質の含有量が5%未満であることを特徴とする、請求項1又は2に記載のリチウムイオン二次電池からの有価物の回収方法。   3. The valuable material from the lithium ion secondary battery according to claim 1, wherein the magnetic substance obtained in the dry magnetic separation step has a content of a substance derived from a negative electrode active material of less than 5%. 4. Collection method. 負極活物質由来の物質がカーボンであることを特徴とする、請求項3に記載のリチウムイオン二次電池からの有価物の回収方法。   The method for recovering valuable resources from a lithium ion secondary battery according to claim 3, wherein the substance derived from the negative electrode active material is carbon. 前記乾式磁選工程で得られた磁着物は、負極集電体由来の金属品位が0.2%未満であることを特徴とする、請求項1〜4のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein the magnetic material obtained in the dry magnetic separation step has a metal quality derived from a negative electrode current collector of less than 0.2%. How to recover valuables from secondary batteries. 前記負極集電体由来の金属が銅であることを特徴とする、請求項5に記載のリチウムイオン二次電池からの有価物の回収方法。   The method for recovering valuable resources from a lithium ion secondary battery according to claim 5, wherein the metal derived from the negative electrode current collector is copper. 前記熱処理工程を、酸素濃度が10.5質量%以下の低酸素雰囲気下で行うことを特徴とする、請求項1〜6のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。   The heat treatment step is performed in a low oxygen atmosphere having an oxygen concentration of 10.5% by mass or less, wherein valuable substances from the lithium ion secondary battery according to any one of claims 1 to 6 are characterized. Collection method. 前記1段目の分級工程で粗側に得られた粗粒産物を乾式磁選する乾式磁選工程をさらに有することを特徴とする、請求項1〜7のいずれか一項に記載のリチウムイオン二次電池からの有価物の回収方法。   The lithium ion secondary according to any one of claims 1 to 7, further comprising a dry magnetic separation step of performing dry magnetic separation of a coarse-grained product obtained on the coarse side in the first-stage classification step. A method for collecting valuables from batteries.
JP2018192609A 2018-10-11 2018-10-11 Method of recovering valuable resources from lithium ion secondary batteries Active JP6676124B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192609A JP6676124B1 (en) 2018-10-11 2018-10-11 Method of recovering valuable resources from lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192609A JP6676124B1 (en) 2018-10-11 2018-10-11 Method of recovering valuable resources from lithium ion secondary batteries

Publications (2)

Publication Number Publication Date
JP6676124B1 true JP6676124B1 (en) 2020-04-08
JP2020061297A JP2020061297A (en) 2020-04-16

Family

ID=70057918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192609A Active JP6676124B1 (en) 2018-10-11 2018-10-11 Method of recovering valuable resources from lithium ion secondary batteries

Country Status (1)

Country Link
JP (1) JP6676124B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039121A (en) * 2021-11-30 2022-02-11 深圳市佰泽电子有限公司 Full-reverse low-loss recovery and regeneration equipment for lithium carbonate battery
WO2022249615A1 (en) 2021-05-28 2022-12-01 Dowaエコシステム株式会社 Sorting method for valuable materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581418B (en) * 2023-07-13 2023-11-14 深圳先进储能材料国家工程研究中心有限公司 Automatic disassembling method and device for waste battery packs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443446B2 (en) * 1994-03-07 2003-09-02 住友金属鉱山株式会社 Method for recovering cobalt from used lithium secondary battery
JP3069306B2 (en) * 1997-02-10 2000-07-24 アサカ理研工業株式会社 Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same
JP4099057B2 (en) * 2002-12-27 2008-06-11 三井金属鉱業株式会社 Cobalt recovery method and cobalt recovery system in lithium ion battery
JP6469362B2 (en) * 2014-05-14 2019-02-13 松田産業株式会社 Method for recovering valuable materials from lithium ion secondary batteries
JP6650806B2 (en) * 2015-05-15 2020-02-19 Dowaエコシステム株式会社 Method of recovering valuable resources from lithium ion secondary batteries
JP6268130B2 (en) * 2015-06-11 2018-01-24 日本リサイクルセンター株式会社 Method for recovering valuable materials from lithium-ion batteries
JP6840512B2 (en) * 2016-11-09 2021-03-10 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249615A1 (en) 2021-05-28 2022-12-01 Dowaエコシステム株式会社 Sorting method for valuable materials
CN114039121A (en) * 2021-11-30 2022-02-11 深圳市佰泽电子有限公司 Full-reverse low-loss recovery and regeneration equipment for lithium carbonate battery

Also Published As

Publication number Publication date
JP2020061297A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
JP6859598B2 (en) How to recover valuables from used lithium-ion batteries
JP6692196B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
JP6888130B1 (en) Valuables sorting method
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
US20230119544A1 (en) Method for concentrating valuable metal contained in lithium ion secondary battery
JP6984055B2 (en) Method for concentrating valuable metals contained in lithium-ion secondary batteries
EP3836288B1 (en) Method for recovering valuable material from lithium ion secondary battery
US20210210807A1 (en) Method for recovering valuable material from lithium ion secondary battery
US20230411719A1 (en) Method for recovering valuable materials from lithium ion secondary battery
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
WO2022249615A1 (en) Sorting method for valuable materials
WO2024014144A1 (en) Method for recovering valuable materials from lithium ion secondary batteries
WO2023204230A1 (en) Method for recovering valuable materials from lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6676124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250