JP6733383B2 - Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Download PDF

Info

Publication number
JP6733383B2
JP6733383B2 JP2016141365A JP2016141365A JP6733383B2 JP 6733383 B2 JP6733383 B2 JP 6733383B2 JP 2016141365 A JP2016141365 A JP 2016141365A JP 2016141365 A JP2016141365 A JP 2016141365A JP 6733383 B2 JP6733383 B2 JP 6733383B2
Authority
JP
Japan
Prior art keywords
exhaust gas
internal combustion
combustion engine
amount
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016141365A
Other languages
Japanese (ja)
Other versions
JP2018013045A (en
Inventor
鉄平 大堀
鉄平 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016141365A priority Critical patent/JP6733383B2/en
Publication of JP2018013045A publication Critical patent/JP2018013045A/en
Application granted granted Critical
Publication of JP6733383B2 publication Critical patent/JP6733383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。 The present invention relates to an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine.

ディーゼルエンジンの排気通路には、選択還元型触媒装置(SCR)より下流側の排気通路に流出したアンモニアの大気への放出を防止するために、アンモニアスリップ触媒装置(ASC)が備えられることがある。 The exhaust passage of a diesel engine may be equipped with an ammonia slip catalyst device (ASC) in order to prevent release of ammonia flowing into the exhaust passage downstream of the selective reduction catalyst device (SCR) to the atmosphere. ..

このアンモニアスリップ触媒装置は、白金(Pt)等の貴金属触媒を担持して、この貴金属触媒の機能によりアンモニアを無害な窒素(N2)に化学変化させる装置である。しかしながら、触媒の高温時には、アンモニアを窒素にだけ化学変化させるのではなく窒素酸化物(NOx)や亜酸化窒素(N2O)に化学変化させる虞があり、この場合には、排気ガス浄化システム全体としてのNOx浄化性能が低下する可能性があった。 This ammonia slip catalyst device is a device that carries a noble metal catalyst such as platinum (Pt) and chemically changes ammonia into harmless nitrogen (N 2 ) by the function of this noble metal catalyst. However, when the temperature of the catalyst is high, ammonia may not be chemically changed to only nitrogen but may be chemically changed to nitrogen oxide (NOx) or nitrous oxide (N 2 O). In this case, the exhaust gas purification system There was a possibility that the NOx purification performance as a whole would deteriorate.

また、排気通路に上流側より順に、前段NOx触媒、後段NOx触媒を設けるとともに、この後段NOx触媒の温度上昇に起因する吸着アンモニアの脱離放出を防止するために、排気通路に並列して、後段NOx触媒をバイパスするバイパス通路を設け、後段NOx触媒の温度が温度閾値より高い高温のときには、排ガスをバイパス通路に流す内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照)。 In addition, a front NOx catalyst and a rear NOx catalyst are provided in this order from the upstream side in the exhaust passage, and in order to prevent desorption and release of adsorbed ammonia due to a temperature rise of the rear NOx catalyst, the exhaust passage is arranged in parallel with the exhaust passage. An exhaust gas purification device for an internal combustion engine has been proposed in which a bypass passage that bypasses the latter-stage NOx catalyst is provided, and when the temperature of the latter-stage NOx catalyst is higher than a temperature threshold value, exhaust gas is caused to flow through the bypass passage. ..

特開2010−209737号公報JP, 2010-209737, A

ところで、上記の内燃機関の排気浄化装置では、後段NOx触媒(アンモニアスリップ触媒装置)の高温時には、排ガスをバイパス通路に流しているが、エンジンの運転状態が急に高負荷になって排ガスが急激に高温化したときには、前段NOx触媒(選択還元型触媒装置)に吸着したアンモニアが大量に脱離して、この脱離したアンモニアがバイパス通路を経由して大気に放出される懸念がある。 By the way, in the above exhaust gas purification apparatus for an internal combustion engine, the exhaust gas is caused to flow in the bypass passage when the post-stage NOx catalyst (ammonia slip catalyst device) is at a high temperature. When the temperature rises to 1, there is a concern that a large amount of ammonia adsorbed on the front NOx catalyst (selective reduction type catalyst device) will be desorbed and this desorbed ammonia will be released to the atmosphere via the bypass passage.

本発明の目的は、アンモニアスリップ触媒装置で生成されるNOxの量の抑制と、大気へのアンモニアスリップ量の抑制を両立させることができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することにある。 An object of the present invention is to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine capable of achieving both suppression of the amount of NOx produced by an ammonia slip catalyst device and suppression of the amount of ammonia slip to the atmosphere. To provide.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に上流側より順に、尿素水供給装置、選択還元型触媒装置、アンモニアスリップ触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記アンモニアスリップ触媒装置をバイパスするバイパス通路を前記排気通路に並行して備え、排気ガスの流れを前記排気通路と前記バイパス通路の間で切り替える流路切替装置を備えるとともに、前記選択還元型触媒装置より上流側の前記排気通路に温度検出装置を備えて、前記排気ガス浄化システムを制御する制御装置が、前記温度検出装置の検出値が予め設定された設定温度閾値以上であるときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記バイパス通路に切り替えるとともに、さらに、前記温度検出装置の検出値が上昇する場合の変動量が予め設定された設定変動量閾値以上であるときに、前記尿素水供給装置からの尿素水の供給量を前記内燃機関の運転状態に基づいて設定される設定供給量より予め設定される設定減少量だけ減量させる制御を行うように構成される。 An exhaust gas purifying system for an internal combustion engine of the present invention to achieve the above object is configured by including an urea water supply device, a selective reduction catalyst device, and an ammonia slip catalyst device in the exhaust passage of the internal combustion engine in order from the upstream side. In an exhaust gas purification system for an internal combustion engine, a bypass passage that bypasses the ammonia slip catalyst device is provided in parallel with the exhaust passage, and a flow passage switching that switches the flow of exhaust gas between the exhaust passage and the bypass passage. In addition to a device, a control device for controlling the exhaust gas purification system is equipped with a temperature detection device in the exhaust passage upstream of the selective reduction catalyst device, and the detection value of the temperature detection device is preset. When the temperature is equal to or higher than the set temperature threshold value, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the bypass passage, and further, the fluctuation when the detection value of the temperature detection device rises. When the amount is equal to or greater than a preset variation amount threshold value, the urea water supply amount from the urea water supply device is set in advance from a set supply amount set based on the operating state of the internal combustion engine. It is configured to perform control for reducing the amount by the amount of reduction.

また、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に上流側より順に、尿素水供給装置、選択還元型触媒装置、アンモニアスリップ触媒装置を備え、前記アンモニアスリップ触媒装置をバイパスするバイパス通路を前記排気通路に並行して備え、排気ガスの流れを前記排気通路と前記バイパス通路の間で切り替える流路切替装置を備えて構成される内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置に流入する排気ガスの温度が予め設定された設定温度閾値以上であるときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記バイパス通路に切り替えるとともに、さらに、前記選択還元型触媒装置に流入する排気ガスの温度が上昇する場合の変動量が予め設定された設定変動量閾値以上であるときに、前記尿素水供給装置からの尿素水の供給量を前記内燃機関の運転状態に基づいて設定される設定供給量より予め設定される設定減少量だけ減量させる制御を行うことを特徴とする方法である。 Further, an exhaust gas purification method for an internal combustion engine of the present invention to achieve the above object, in order from the upstream side in the exhaust passage of the internal combustion engine, a urea water supply device, a selective reduction catalyst device, an ammonia slip catalyst device An internal combustion engine configured to include a bypass passage that bypasses the ammonia slip catalyst device in parallel with the exhaust passage, and a passage switching device that switches a flow of exhaust gas between the exhaust passage and the bypass passage. In the exhaust gas purification method, when the temperature of the exhaust gas flowing into the selective reduction catalyst device is equal to or higher than a preset temperature threshold value, the flow path switching device is controlled to change the flow of the exhaust gas to the exhaust gas. While switching from the passage to the bypass passage, when the variation amount when the temperature of the exhaust gas flowing into the selective reduction catalyst device rises is equal to or more than a preset variation amount threshold value, the urea water supply The method is characterized in that control is performed to reduce the supply amount of urea water from the device by a preset decrease amount set from a set supply amount set based on the operating state of the internal combustion engine.

本発明の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法によれば、選択還元型触媒装置に流入する排気ガスが高温時で、選択還元型触媒装置より下流側のアンモニアスリップ触媒装置の温度がまもなく高温になり、アンモニアスリップ触媒装置でNOxが生成される虞があるときに、排気ガスをバイパス通路に流すことで、アンモニアスリップ触媒装置で生成されるNOxの量を抑制することができる。 According to the exhaust gas purifying system for an internal combustion engine and the exhaust gas purifying method for an internal combustion engine of the present invention, an ammonia slip catalyst device downstream of the selective reduction catalyst device when the exhaust gas flowing into the selective reduction catalyst device is at a high temperature When the temperature of NOx becomes high soon and NOx may be generated in the ammonia slip catalyst device, the amount of NOx generated in the ammonia slip catalyst device can be suppressed by flowing the exhaust gas into the bypass passage. it can.

さらに、排気ガスをバイパス通路に流しているときで、選択還元型触媒装置に流入する排気ガスの温度が急上昇して、選択還元型触媒装置に貯留したアンモニアが脱離する虞があるときに、尿素水供給装置からの尿素水の供給量を減量することで、尿素水を加水分解して生成されるアンモニアを減量するので、大気へのアンモニアスリップ量を抑制することができる。 Furthermore, when the exhaust gas is flowing through the bypass passage, the temperature of the exhaust gas flowing into the selective reduction catalyst device rises sharply, and when ammonia stored in the selective reduction catalyst device may be desorbed, By reducing the amount of urea water supplied from the urea water supply device, the amount of ammonia produced by hydrolyzing urea water is reduced, so that the amount of ammonia slip to the atmosphere can be suppressed.

すなわち、アンモニアスリップ触媒装置で生成されるNOxの量の抑制と、大気へのアンモニアスリップ量の抑制を両立させることができる。 That is, it is possible to achieve both suppression of the amount of NOx generated by the ammonia slip catalyst device and suppression of the amount of ammonia slip to the atmosphere.

本発明の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of the internal combustion engine of this invention. 本発明の内燃機関の排気ガス浄化方法の制御フローを示す図である。It is a figure which shows the control flow of the exhaust gas purification method of the internal combustion engine of this invention. 従来技術の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of the internal combustion engine of a prior art. 酸素雰囲気化における、アンモニアスリップ触媒装置の温度と、排気ガスに含まれる各ガス成分の濃度の関係を示す図である。It is a figure which shows the relationship of the temperature of the ammonia slip catalyst apparatus in oxygen atmosphere, and the density|concentration of each gas component contained in exhaust gas.

以下、本発明に係る実施形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。 Hereinafter, an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本発明の排気ガス浄化システム1は、エンジン(内燃機関)(図示しない)の排気通路(排気管)11に、上流側(エンジン側)より順に、酸化触媒装置(DOC)12、微粒子捕集装置13、尿素水供給装置20、選択還元型触媒装置(SCR)14、アンモニアスリップ触媒装置(ASC)15を備えて構成されるシステムである。 As shown in FIG. 1, an exhaust gas purification system 1 of the present invention includes an oxidation catalyst device (DOC) in an exhaust passage (exhaust pipe) 11 of an engine (internal combustion engine) (not shown) in order from an upstream side (engine side). ) 12, a particulate collection device 13, a urea water supply device 20, a selective reduction catalyst device (SCR) 14, and an ammonia slip catalyst device (ASC) 15.

酸化触媒装置12は、ハニカム構造を形成する基材に、排気ガスGの炭化水素(HC)や一酸化炭素(CO)等を酸化する貴金属触媒(酸化触媒)が担持されて構成される。貴金属触媒としては、炭化水素を水と二酸化炭素に、一酸化炭素を二酸化炭素にそれぞれ酸化する白金(Pt)系の触媒が好ましい。 The oxidation catalyst device 12 is configured such that a base material forming a honeycomb structure carries a precious metal catalyst (oxidation catalyst) that oxidizes hydrocarbon (HC), carbon monoxide (CO), and the like of the exhaust gas G. As the noble metal catalyst, a platinum (Pt)-based catalyst that oxidizes hydrocarbon into water and carbon dioxide and carbon monoxide into carbon dioxide is preferable.

この貴金属触媒による炭化水素及び一酸化炭素の酸化反応は発熱反応であるので、この発熱により排気ガスGは昇温する。これを利用して、微粒子捕集装置13の強制PM再生制御時等、高温の排気ガスGが必要となるときには、酸化触媒装置12より上流側の排気通路11を通過する排気ガスGに含まれる炭化水素の量を一時的に増加させて、この増加分の炭化水素を酸化触媒装置12で酸化させることで、排気ガスGを高温化している。 Since the oxidation reaction of hydrocarbons and carbon monoxide by this noble metal catalyst is an exothermic reaction, the heat of the exhaust gas G rises due to this heat generation. By utilizing this, when a high temperature exhaust gas G is required, such as during forced PM regeneration control of the particulate matter collection device 13, it is included in the exhaust gas G passing through the exhaust passage 11 on the upstream side of the oxidation catalyst device 12. The exhaust gas G is heated to a high temperature by temporarily increasing the amount of hydrocarbons and oxidizing the increased amount of hydrocarbons by the oxidation catalyst device 12.

なお、炭化水素の量を一時的に増加させる方法としては、例えば、エンジンの気筒(シリンダ)(図示しない)内で燃料のポスト噴射を行う方法や、酸化触媒装置12より上流側の排気通路11に燃料噴射装置(図示しない)を備えて、この燃料噴射装置から燃料を噴射する方法がある。 As a method of temporarily increasing the amount of hydrocarbons, for example, a method of performing post-injection of fuel in a cylinder (not shown) of the engine, or an exhaust passage 11 upstream of the oxidation catalyst device 12 is used. There is a method of injecting fuel from this fuel injection device by providing a fuel injection device (not shown).

微粒子捕集装置13は、排気ガスG中の粒子状物質(PM)を捕集するために、その内部にフィルタを備えて構成される。このフィルタは、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタで構成される。 The particulate matter collection device 13 is configured to include a filter therein to collect particulate matter (PM) in the exhaust gas G. This filter is composed of a monolith honeycomb type wall flow type filter in which inlets and outlets of cells (channels) of a porous ceramic honeycomb are alternately sealed.

排気ガスGは、微粒子捕集装置13の目封じされていないセルの入口より流入し、隣接する出口を目封じされていないセルとの境界に形成されたPM捕集用の壁を通過した後、出口を目封じされていないセルの出口より流出する。排気ガスGに含まれるPMはPM捕集用の壁で捕集されるが、捕集量には限界がある。したがって、PM捕集量が限界値に到達する前に、微粒子捕集装置13の内部に高温の排気ガスGを通過させて、この排気ガスGの熱により微粒子捕集装置13の内部に捕集されたPMを燃焼除去する強制PM再生制御を定期的に行っている。 Exhaust gas G flows in from the inlet of the unplugged cell of the particulate collection device 13 and, after passing through the PM trapping wall formed at the boundary with the unplugged cell at the adjacent outlet. , The outlet flows out from the outlet of an unsealed cell. The PM contained in the exhaust gas G is collected by the PM collection wall, but the collection amount is limited. Therefore, before the amount of collected PM reaches the limit value, the high temperature exhaust gas G is passed through the inside of the particulate collection device 13, and the heat of the exhaust gas G collects inside the particulate collection device 13. The forced PM regeneration control for burning and removing the generated PM is regularly performed.

選択還元型触媒装置14は、その上流側の排気通路11に備えた尿素水供給装置20より噴射される尿素水Uを排気ガスGの熱により加水分解して生成されたアンモニア(NH3)を還元剤として、排気ガスGに含まれる窒素酸化物(NOx)を窒素(N2)に浄化する装置である。 The selective reduction catalyst device 14 produces ammonia (NH 3 ) produced by hydrolyzing the urea water U injected from the urea water supply device 20 provided in the exhaust passage 11 on the upstream side thereof with the heat of the exhaust gas G. This is a device that purifies nitrogen oxides (NOx) contained in the exhaust gas G into nitrogen (N 2 ) as a reducing agent.

なお、排気ガスGに含まれるNOxの浄化に使用されないアンモニアは、選択還元型触媒装置14の内部に吸蔵されるか、または、選択還元型触媒装置14より下流側の排気通路11に流出(スリップ)する。また、選択還元型触媒装置14のアンモニア吸蔵容量(アンモニアを吸蔵可能な上限量)は、選択還元型触媒装置14の温度が高くなるにつれて、少なくなる。 It should be noted that ammonia that is not used for purifying NOx contained in the exhaust gas G is stored inside the selective reduction catalyst device 14 or flows out (slip) to the exhaust passage 11 on the downstream side of the selective reduction catalyst device 14. ) Do. Further, the ammonia storage capacity (upper limit amount of ammonia that can be stored) of the selective reduction catalyst device 14 decreases as the temperature of the selective reduction catalyst device 14 increases.

アンモニアスリップ触媒装置15は、酸化触媒装置11の構造と同じ構造で、白金(Pt)等の貴金属触媒を担持して、この貴金属触媒の機能により選択還元型触媒装置14より下流側の排気通路11に流出したアンモニアを無害な窒素(N2)に化学変化させる装置である。ただし、このアンモニアスリップ触媒装置15では、図4に示すように、触媒の高温時においては、アンモニアを窒素にだけ化学変化させるのではなく窒素酸化物(NOx)や亜酸化窒素(N2O)に化学変化させる虞がある。 The ammonia slip catalyst device 15 has the same structure as that of the oxidation catalyst device 11 and carries a noble metal catalyst such as platinum (Pt), and the function of this noble metal catalyst causes the exhaust passage 11 on the downstream side of the selective reduction catalyst device 14. It is a device that chemically changes the ammonia that has flowed out into harmless nitrogen (N 2 ). However, in this ammonia slip catalyst device 15, as shown in FIG. 4, when the temperature of the catalyst is high, ammonia is not chemically changed into only nitrogen but nitrogen oxides (NOx) and nitrous oxide (N 2 O). There is a risk of chemical changes.

また、尿素水供給装置20には、尿素水供給ポンプ21により尿素水タンク22に貯留した尿素水Uが供給される。排気通路11への尿素水Uの供給量(噴射量)は、後述する尿素水供給制御装置(DCU)40により尿素水供給ポンプ21の出力を調整制御することにより、制御される。なお、尿素水Uの供給量を、尿素水供給装置20の弁開度を調整制御することにより、制御してもよい。 Further, the urea water supply device 20 is supplied with the urea water U stored in the urea water tank 22 by the urea water supply pump 21. The supply amount (injection amount) of the urea water U to the exhaust passage 11 is controlled by adjusting and controlling the output of the urea water supply pump 21 by a urea water supply control unit (DCU) 40 described later. The supply amount of the urea water U may be controlled by adjusting the valve opening degree of the urea water supply device 20.

また、選択還元型触媒装置14より上流側の尿素水供給装置20と微粒子捕集装置13の間の排気通路11に上流NOx濃度センサ23を備えるとともに、尿素水供給装置20と選択還元型触媒装置14の間の排気通路11(選択還元型触媒装置14より上流側の排気通路11)に温度センサ(温度検出装置)24を備える。また、選択還元型触媒装置14より下流側の排気通路11に下流NOx濃度センサ25を備える。 Further, an upstream NOx concentration sensor 23 is provided in the exhaust passage 11 between the urea water supply device 20 and the particulate collection device 13 on the upstream side of the selective reduction catalyst device 14, and the urea water supply device 20 and the selective reduction catalyst device are provided. A temperature sensor (temperature detection device) 24 is provided in the exhaust passage 11 (exhaust passage 11 upstream of the selective reduction catalyst device 14) between the two. Further, a downstream NOx concentration sensor 25 is provided in the exhaust passage 11 on the downstream side of the selective reduction catalyst device 14.

また、本発明の内燃機関の排気ガス浄化システム1を制御する尿素水供給制御装置(DCU、制御装置)40が備えられる。この尿素水供給制御装置40は、エンジンの運転状態を制御するエンジン制御装置(ECU)41より、エンジンへの吸気流量等、エンジンの運転状態に関わるデータを受信するとともに、上流NOx濃度センサ23、温度センサ24及び下流NOx濃度センサ25の各検出値のデータを受信して、これらの受信したデータを基に、尿素水供給ポンプ21の出力を調整制御して、尿素水供給装置20からの尿素水Uの供給量を制御する装置である。 Further, a urea water supply control device (DCU, control device) 40 that controls the exhaust gas purification system 1 of the internal combustion engine of the present invention is provided. The urea water supply control device 40 receives data relating to the operating state of the engine, such as the intake air flow rate to the engine, from the engine control device (ECU) 41 that controls the operating state of the engine, and the upstream NOx concentration sensor 23, The data of the detection values of the temperature sensor 24 and the downstream NOx concentration sensor 25 are received, and the output of the urea water supply pump 21 is adjusted and controlled based on the received data, and the urea from the urea water supply device 20 is adjusted. This is a device for controlling the supply amount of water U.

上述したように、アンモニアスリップ触媒装置15では、触媒の高温時に、アンモニアを窒素にだけ化学変化させるのではなく窒素酸化物や亜酸化窒素に化学変化させる虞があり、排気ガス浄化システム全体としてのNOx浄化性能を低下させる虞がある。 As described above, in the ammonia slip catalyst device 15, when the temperature of the catalyst is high, there is a possibility that ammonia may be chemically changed to nitrogen oxides or nitrous oxide instead of being chemically changed to only nitrogen. The NOx purification performance may be reduced.

これへの対応として、本発明の排気ガス浄化システム1は、図1に示すように、アンモニアスリップ触媒装置15をバイパスするバイパス通路31を排気通路11に並行して備え、排気ガスGの流れを排気通路11とバイパス通路31の間で切り替える三方弁(流路切替装置)32を備えるシステムとして構成されている。この点が、図3に示す従来技術の比較例としての内燃機関の排気ガス浄化システム1Xとは異なっている。 To cope with this, the exhaust gas purification system 1 of the present invention is provided with a bypass passage 31 that bypasses the ammonia slip catalyst device 15 in parallel with the exhaust passage 11 as shown in FIG. The system is provided with a three-way valve (flow path switching device) 32 that switches between the exhaust passage 11 and the bypass passage 31. This point is different from the exhaust gas purification system 1X of the internal combustion engine as the comparative example of the conventional technique shown in FIG.

そして、尿素水供給制御装置40が、温度センサ24の検出値Taが設定温度閾値T1以上であるときに、三方弁32を制御して、排気ガスGの流れを排気通路11からバイパス通路31に切り替える制御を行う。この設定温度閾値T1は、この閾値以上となると、アンモニアスリップ触媒装置15でアンモニアが窒素酸化物や亜酸化窒素に化学変化する虞がある値として、実験等により予め設定される閾値である。なお、図1では、排気通路11を通過する排気ガスをGa、バイパス通路31を通過する排気ガスをGbとして表している。 Then, when the detected value Ta of the temperature sensor 24 is equal to or higher than the set temperature threshold value T1, the urea water supply control device 40 controls the three-way valve 32 to cause the flow of the exhaust gas G from the exhaust passage 11 to the bypass passage 31. Control to switch. The set temperature threshold value T1 is a threshold value set in advance by experiments or the like as a value at which ammonia may chemically change to nitrogen oxides or nitrous oxide in the ammonia slip catalyst device 15 when the threshold temperature T1 is equal to or higher than the threshold value. In FIG. 1, the exhaust gas passing through the exhaust passage 11 is represented by Ga, and the exhaust gas passing through the bypass passage 31 is represented by Gb.

この構成によれば、選択還元型触媒装置14に流入する排気ガスGが高温時で、選択還元型触媒装置14より下流側のアンモニアスリップ触媒装置15の温度がまもなく高温になり、アンモニアスリップ触媒装置15でNOxが生成される虞があるときに、排気ガスGをバイパス通路31に流すことで、アンモニアスリップ触媒装置15で生成されるNOxの量を抑制することができる。 According to this configuration, when the exhaust gas G flowing into the selective reduction catalyst device 14 is at a high temperature, the temperature of the ammonia slip catalyst device 15 on the downstream side of the selective reduction catalyst device 14 soon becomes high, and the ammonia slip catalyst device When there is a possibility that NOx will be generated in 15, the amount of NOx generated in the ammonia slip catalyst device 15 can be suppressed by causing the exhaust gas G to flow in the bypass passage 31.

しかしながら、上記の排気ガスGの流れを排気通路11からバイパス通路31に切り替える制御のみでは、エンジンの運転状態が急に高負荷になって排気ガスGが急激に高温化したときに、選択還元型触媒装置14に吸着したアンモニアが大量に脱離して、この脱離したアンモニアがバイパス通路31を経由して大気に放出される懸念がある。 However, only by the control for switching the flow of the exhaust gas G from the exhaust passage 11 to the bypass passage 31, when the operating state of the engine suddenly becomes a high load and the exhaust gas G rapidly rises in temperature, the selective reduction type is selected. A large amount of ammonia adsorbed in the catalyst device 14 is desorbed, and this desorbed ammonia may be released to the atmosphere via the bypass passage 31.

そこで、本発明の排気ガス浄化システム1では、さらに、尿素水供給制御装置40が、排気ガスGの流れを排気通路11からバイパス通路31に切り替えているときで、温度センサ24の検出値Tが上昇する場合の変動量ΔTが設定変動量閾値ΔT1以上であるときに、尿素水供給装置20からの尿素水Uの供給量Sをエンジンの運転状態に基づいて予め設定される設定供給量S1より設定減少量S2だけ減量させる制御を行う。この設定変動量閾値ΔT1は、この閾値以上となると、選択還元型触媒装置14から脱離するアンモニアの量が過剰になる値として、実験等により予め設定される閾値である。また、変動量ΔTは、尿素水供給制御装置40に温度センサ24より送信される最新のデータTaより前回送信されたデータTbを減算した値である(ΔT=Ta−Tb)。 Therefore, in the exhaust gas purification system 1 of the present invention, when the urea water supply control device 40 is switching the flow of the exhaust gas G from the exhaust passage 11 to the bypass passage 31, the detected value T of the temperature sensor 24 is further increased. When the variation amount ΔT when increasing is equal to or greater than the set variation amount threshold value ΔT1, the supply amount S of the urea water U from the urea water supply device 20 is set to a preset supply amount S1 that is preset based on the operating state of the engine. Control is performed to reduce the set reduction amount S2. This set fluctuation amount threshold value ΔT1 is a threshold value set in advance by experiments or the like as a value at which the amount of ammonia desorbed from the selective reduction catalyst device 14 becomes excessive when the threshold value ΔT1 is equal to or more than this threshold value. Further, the variation amount ΔT is a value obtained by subtracting the previously transmitted data Tb from the latest data Ta transmitted from the temperature sensor 24 to the urea water supply control device 40 (ΔT=Ta−Tb).

この構成によれば、排気ガスGをバイパス通路31に流しているときで、選択還元型触媒装置14に流入する排気ガスGの温度が急上昇して、選択還元型触媒装置14に貯留したアンモニアが脱離する虞があるときに、尿素水供給装置20からの尿素水Uの供給量を減量することで、尿素水Uを加水分解して生成されるアンモニアを減量するので、大気へのアンモニアスリップ量を抑制することができる。 According to this configuration, when the exhaust gas G is flowing in the bypass passage 31, the temperature of the exhaust gas G flowing into the selective reduction catalyst device 14 suddenly rises, and the ammonia stored in the selective reduction catalyst device 14 is discharged. When there is a risk of desorption, the amount of urea water U supplied from the urea water supply device 20 is reduced to reduce the amount of ammonia generated by hydrolyzing the urea water U. Therefore, ammonia slip to the atmosphere The amount can be suppressed.

なお、上記の設定減少量S2については、尿素水供給制御装置40が、設定減少量S2を、選択還元型触媒装置14に貯留されるアンモニアの量に基づいて設定する制御を行うと、選択還元型触媒装置14によるNOx浄化性能を維持しつつ、選択還元型触媒装置14よりバイパス通路31へ流出するアンモニアの量を確実に抑制することができる。 Regarding the above-mentioned set reduction amount S2, if the urea water supply control device 40 performs control to set the set reduction amount S2 based on the amount of ammonia stored in the selective reduction catalyst device 14, the selective reduction will be performed. The amount of ammonia flowing from the selective reduction catalyst device 14 to the bypass passage 31 can be reliably suppressed while maintaining the NOx purification performance of the catalyst device 14.

また、図1では、流路切替装置32として三方弁を用いたが、流路切替機能だけでなく流量調整機能も備えた流量調整弁(流量調整装置)32を代わりに備えてもよい。この場合は、三方弁32のように排気通路11またはバイパス通路31のいずれか一方に排気ガスGを流通させるのではなく、排気通路11またはバイパス通路31のいずれか一方または両方に排気ガスGを流通させることができる。 Although a three-way valve is used as the flow path switching device 32 in FIG. 1, a flow rate adjusting valve (flow rate adjusting device) 32 having not only a flow path switching function but also a flow rate adjusting function may be provided instead. In this case, the exhaust gas G is not passed through either the exhaust passage 11 or the bypass passage 31 like the three-way valve 32, but the exhaust gas G is passed through either the exhaust passage 11 or the bypass passage 31 or both. It can be distributed.

次に、上記の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法の制御フローについて、図2を参照しながら説明する。図2の制御フローは、エンジンの運転中に実験等により予め設定した制御時間毎に、上級の制御フローより呼ばれてスタートする制御フローである。 Next, a control flow of the exhaust gas purification method for an internal combustion engine of the present invention based on the exhaust gas purification system 1 for an internal combustion engine will be described with reference to FIG. The control flow of FIG. 2 is a control flow that is called by a higher-level control flow and starts at every control time preset by experiments or the like while the engine is operating.

図2の制御フローがスタートすると、ステップS10にて、選択還元型触媒装置14に流入する排気ガスGの温度Taを温度センサ(温度検出装置)24により検出して記憶するとともに、前回の本制御フローによる制御時に温度センサ24により検出して記憶した温度Tbを呼び出しておく。なお、本制御フローによる制御が、エンジンの運転開始後初めてである場合は、この温度Tbはゼロとする。ステップS10の制御を実施後、ステップS20に進む。 When the control flow of FIG. 2 starts, in step S10, the temperature Ta of the exhaust gas G flowing into the selective reduction catalyst device 14 is detected and stored by the temperature sensor (temperature detection device) 24, and the previous main control is performed. At the time of control by the flow, the temperature Tb detected and stored by the temperature sensor 24 is recalled. When the control according to this control flow is the first time after the engine operation is started, the temperature Tb is set to zero. After performing the control of step S10, the process proceeds to step S20.

ステップS20にて、ステップS10で検出した温度Taが設定温度閾値T1以上であるか否かを判定する。この設定温度閾値T1は、予め実験等により最適値に設定される。温度Taが設定温度閾値T1未満である場合(NO)は、ステップS90に進み、ステップS90にて、前回の本制御フローによる制御時に排気ガスGの流れをバイパス通路(分岐通路)31に切り替えていたときには、排気ガスGの流れをバイパス通路31から排気通路11に切り替える。ステップS90の制御を実施後、リターンに進んで、本制御フローを終了する。 In step S20, it is determined whether the temperature Ta detected in step S10 is equal to or higher than the set temperature threshold T1. This set temperature threshold T1 is set to an optimum value in advance by experiments or the like. If the temperature Ta is lower than the set temperature threshold T1 (NO), the process proceeds to step S90, and in step S90, the flow of the exhaust gas G is switched to the bypass passage (branch passage) 31 at the time of the control by the previous main control flow. In this case, the flow of the exhaust gas G is switched from the bypass passage 31 to the exhaust passage 11. After performing the control of step S90, the process proceeds to return and the present control flow ends.

一方、ステップS20にて、温度Taが設定温度閾値T1以上である場合(YES)は、ステップS30に進み、ステップS30にて、排気ガスGの流れを排気通路11からバイパス通路(分岐通路)31に切り替える。ステップS30の制御を実施後、ステップS40に進む。 On the other hand, if the temperature Ta is equal to or higher than the set temperature threshold T1 in step S20 (YES), the process proceeds to step S30, and in step S30, the flow of the exhaust gas G is changed from the exhaust passage 11 to the bypass passage (branch passage) 31. Switch to. After performing the control of step S30, the process proceeds to step S40.

ステップS40にて、ステップS10で検出した今回の選択還元型触媒装置14に流入する排気ガスGの温度Taが前回の選択還元型触媒装置に流入する排気ガスGaの温度Tbより大きいか否かを判定する。ステップS40にて、温度Taが温度Tb以下である場合(NO)には、ステップS80に進み、ステップS80にて、尿素水供給装置20からの尿素水Uの供給量Sを、エンジンの運転状態に基づいて設定される設定供給量(通常の供給量)S1に設定する。ステップS80の制御を実施後、リターンに進んで、本制御フローを終了する。 In step S40, it is determined whether or not the temperature Ta of the exhaust gas G flowing into the selective reduction catalyst apparatus 14 of this time detected in step S10 is higher than the temperature Tb of the exhaust gas Ga flowing into the selective reduction catalyst apparatus of the previous time. judge. When the temperature Ta is equal to or lower than the temperature Tb in step S40 (NO), the process proceeds to step S80, and in step S80, the supply amount S of the urea water U from the urea water supply device 20 is changed to the operating state of the engine. The set supply amount (normal supply amount) S1 set based on the above is set. After performing the control of step S80, the process proceeds to return and the present control flow ends.

一方、ステップS40にて、温度Taが温度Tbよりも大きい場合(YES)には、ステップS50に進み、ステップS50にて、温度Taと温度Tbの差、すなわち、選択還元型触媒装置14に流入する排気ガスGの温度が上昇する場合の変動量ΔT(=Ta−Tb)を算出する。ステップS50の制御を実施後、ステップS60に進む。 On the other hand, if the temperature Ta is higher than the temperature Tb in step S40 (YES), the process proceeds to step S50, and in step S50, the difference between the temperature Ta and the temperature Tb, that is, the selective reduction catalyst device 14 flows. The variation amount ΔT (=Ta−Tb) when the temperature of the exhaust gas G increases is calculated. After performing the control of step S50, the process proceeds to step S60.

ステップS60にて、ステップS50で算出した変動量ΔTが設定変動量閾値ΔT1以上であるか否かを判定する。この設定変動量閾値ΔT1は予め実験等により求めた最適値に設定する。変動量ΔTが設定変動量閾値ΔT1未満である場合(NO)は、ステップS80に進み、ステップS80にて、尿素水供給装置20からの尿素水Uの供給量Sを、エンジンの運転状態に基づいて設定される設定供給量(通常の供給量)S1に設定する。ステップS80の制御を実施後、リターンに進んで、本制御フローを終了する。 In step S60, it is determined whether or not the variation amount ΔT calculated in step S50 is equal to or greater than the set variation amount threshold ΔT1. This set variation threshold ΔT1 is set to an optimum value obtained in advance by experiments or the like. If the fluctuation amount ΔT is less than the set fluctuation amount threshold ΔT1 (NO), the process proceeds to step S80, and in step S80, the supply amount S of the urea water U from the urea water supply device 20 is determined based on the operating state of the engine. It is set to the set supply amount (normal supply amount) S1 set by the above. After performing the control of step S80, the process proceeds to return and the present control flow ends.

一方、ステップS60にて、変動量ΔTが設定変動量閾値ΔT1以上である場合(YES)は、ステップS70に進み、ステップS70にて、尿素水供給装置20からの尿素水Uの供給量Sを内燃機関の運転状態に基づいて設定される設定供給量S1より設定減少量S2だけ減量させた量に設定する。この設定減少量S2は、選択還元型触媒装置14に貯留されるアンモニアの量に基づいて予め設定する。ステップS70の制御を実施後、リターンに進んで、本制御フローを終了する。 On the other hand, in step S60, when the variation amount ΔT is equal to or greater than the set variation amount threshold ΔT1 (YES), the process proceeds to step S70, and in step S70, the supply amount S of the urea water U from the urea water supply device 20 is changed. The set supply amount S1 set based on the operating state of the internal combustion engine is set to an amount reduced by the set reduction amount S2. This set reduction amount S2 is set in advance based on the amount of ammonia stored in the selective reduction catalyst device 14. After performing the control of step S70, the process proceeds to return and the control flow ends.

以上より、本発明の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路11に上流側より順に、尿素水供給装置20、選択還元型触媒装置14、アンモニアスリップ触媒装置15を備え、アンモニアスリップ触媒装置15をバイパスするバイパス通路31を排気通路11に並行して備え、排気ガスGの流れを排気通路11とバイパス通路31の間で切り替える流路切替装置32を備えて構成される内燃機関の排気ガス浄化方法において、選択還元型触媒装置14に流入する排気ガスGの温度Taが予め設定された設定温度閾値T1以上であるときに、流路切替装置32を制御して、排気ガスGの流れを排気通路11からバイパス通路31に切り替えるとともに、さらに、選択還元型触媒装置14に流入する排気ガスGの温度が上昇する場合の変動量ΔT(=Ta−Tb)が予め設定された設定変動量閾値ΔT1以上であるときに、尿素水供給装置20からの尿素水Uの供給量Sを内燃機関の運転状態に基づいて設定される設定供給量S1より予め設定される設定減少量S2だけ減量させる制御を行うことを特徴とする方法となる。 As described above, the exhaust gas purification method for an internal combustion engine according to the present invention, which is based on the exhaust gas purification system 1 for an internal combustion engine according to the present invention, selects the urea water supply device 20 and the urea water supply device 20 in order from the upstream side in the exhaust passage 11 of the internal combustion engine. A reduction catalyst device 14 and an ammonia slip catalyst device 15 are provided, and a bypass passage 31 that bypasses the ammonia slip catalyst device 15 is provided in parallel with the exhaust passage 11, and a flow of the exhaust gas G is provided between the exhaust passage 11 and the bypass passage 31. In the exhaust gas purifying method for an internal combustion engine, which is configured to include the flow path switching device 32 that switches with the above, when the temperature Ta of the exhaust gas G flowing into the selective reduction catalyst device 14 is equal to or higher than a preset temperature threshold value T1. In addition, when the flow path switching device 32 is controlled to switch the flow of the exhaust gas G from the exhaust passage 11 to the bypass passage 31 and the temperature of the exhaust gas G flowing into the selective reduction catalyst device 14 further rises. When the variation amount ΔT (=Ta−Tb) is equal to or greater than the preset variation amount threshold value ΔT1, the supply amount S of the urea water U from the urea water supply device 20 is set based on the operating state of the internal combustion engine. The method is characterized in that control is performed to reduce the preset supply amount S1 by a preset decrease amount S2.

本発明の内燃機関の排気ガス浄化システム1及び内燃機関の排気ガス浄化方法によれば、アンモニアスリップ触媒装置15で生成されるNOxの量の抑制と、大気へのアンモニアスリップ量の抑制を両立させることができる。 According to the exhaust gas purification system 1 for an internal combustion engine and the exhaust gas purification method for an internal combustion engine of the present invention, it is possible to achieve both suppression of the amount of NOx generated in the ammonia slip catalyst device 15 and suppression of the amount of ammonia slip to the atmosphere. be able to.

なお、本発明の制御において、流路切替装置32を制御して、排気ガスGの流れを排気通路11とバイパス通路31の間で切り替える場合で、既に切り替えたい側の通路に切り替わっているときには、流路切替装置32を新たに操作する必要はない。 In the control of the present invention, the flow path switching device 32 is controlled to switch the flow of the exhaust gas G between the exhaust passage 11 and the bypass passage 31, and when the passage has already been switched to the side to be switched, There is no need to newly operate the flow path switching device 32.

1、1X 内燃機関の排気ガス浄化システム
11 排気通路
14 選択還元型触媒装置(SCR)
15 アンモニアスリップ触媒装置(ASC)
20 尿素水供給装置
24 温度センサ(温度検出装置)
31 バイパス通路(分岐通路)
32 三方弁、流量調整弁(流路切替装置)
40 尿素水供給制御装置(制御装置)
G 排気ガス
Ga 排気通路を通過する排気ガス
Gb 分岐通路を通過する排気ガス
Ta 温度センサの検出値
T1 設定温度閾値
ΔT 温度センサの検出値が上昇する場合の変動量
ΔT1 設定変動量閾値
S 尿素水供給装置からの尿素水の供給量
S1 設定供給量
S2 設定減少量
1, 1X Exhaust Gas Purification System for Internal Combustion Engine 11 Exhaust Passage 14 Selective Reduction Catalyst (SCR)
15 Ammonia slip catalyst system (ASC)
20 Urea Water Supply Device 24 Temperature Sensor (Temperature Detection Device)
31 Bypass passage (branch passage)
32 Three-way valve, flow control valve (flow path switching device)
40 Urea water supply control device (control device)
G Exhaust gas Ga Exhaust gas passing through the exhaust passage Gb Exhaust gas passing through the branch passage Ta Temperature sensor detected value T1 Set temperature threshold ΔT Variation amount when temperature sensor detected value ΔT1 Set variation threshold S urea water Amount of urea water supplied from the supply device S1 Set supply amount S2 Set decrease amount

Claims (3)

内燃機関の排気通路に上流側より順に、尿素水供給装置、選択還元型触媒装置、アンモニアスリップ触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、
前記アンモニアスリップ触媒装置をバイパスするバイパス通路を前記排気通路に並行して備え、排気ガスの流れを前記排気通路と前記バイパス通路の間で切り替える流路切替装置を備えるとともに、
前記選択還元型触媒装置より上流側の前記排気通路に温度検出装置を備えて、
前記排気ガス浄化システムを制御する制御装置が、
前記温度検出装置の検出値が予め設定された設定温度閾値以上であるときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記バイパス通路に切り替えるとともに、
さらに、前記温度検出装置の検出値が上昇する場合の変動量が予め設定された設定変動量閾値以上であるときに、前記尿素水供給装置からの尿素水の供給量を前記内燃機関の運転状態に基づいて設定される設定供給量より予め設定される設定減少量だけ減量させる制御を行うように構成される内燃機関の排気ガス浄化システム。
In an exhaust gas purifying system for an internal combustion engine, which comprises an urea water supply device, a selective reduction catalyst device, and an ammonia slip catalyst device in order from the upstream side to an exhaust passage of the internal combustion engine
A bypass passage that bypasses the ammonia slip catalyst device is provided in parallel with the exhaust passage, and a flow passage switching device that switches the flow of exhaust gas between the exhaust passage and the bypass passage is provided.
A temperature detection device is provided in the exhaust passage on the upstream side of the selective reduction catalyst device,
A control device for controlling the exhaust gas purification system,
When the detected value of the temperature detection device is equal to or higher than a preset temperature threshold value, by controlling the flow passage switching device, while switching the flow of exhaust gas from the exhaust passage to the bypass passage,
Furthermore, when the fluctuation amount when the detection value of the temperature detection device increases is equal to or greater than a preset fluctuation amount threshold value, the urea water supply amount from the urea water supply device is changed to the operating state of the internal combustion engine. An exhaust gas purification system for an internal combustion engine configured to perform control to reduce a preset supply amount that is set based on the above, by a preset decrease amount.
前記制御装置が、
前記設定減少量を、前記選択還元型触媒装置に貯留されるアンモニアの量に基づいて設定する制御を行うように構成される請求項1に記載の内燃機関の排気ガス浄化システム。
The control device is
The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the set reduction amount is configured to be set based on the amount of ammonia stored in the selective reduction catalyst device.
内燃機関の排気通路に上流側より順に、尿素水供給装置、選択還元型触媒装置、アンモニアスリップ触媒装置を備え、前記アンモニアスリップ触媒装置をバイパスするバイパス通路を前記排気通路に並行して備え、排気ガスの流れを前記排気通路と前記バイパス通路の間で切り替える流路切替装置を備えて構成される内燃機関の排気ガス浄化方法において、
前記選択還元型触媒装置に流入する排気ガスの温度が予め設定された設定温度閾値以上であるときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記バイパス通路に切り替えるとともに、
さらに、前記選択還元型触媒装置に流入する排気ガスの温度が上昇する場合の変動量が予め設定された設定変動量閾値以上であるときに、前記尿素水供給装置からの尿素水の供給量を前記内燃機関の運転状態に基づいて設定される設定供給量より予め設定される設定減少量だけ減量させる制御を行うことを特徴とする内燃機関の排気ガス浄化方法。
The exhaust passage of the internal combustion engine is provided with a urea water supply device, a selective reduction catalyst device, and an ammonia slip catalyst device in this order from the upstream side, and a bypass passage that bypasses the ammonia slip catalyst device is provided in parallel with the exhaust passage. In an exhaust gas purification method for an internal combustion engine configured to include a flow path switching device that switches a flow of gas between the exhaust passage and the bypass passage,
When the temperature of the exhaust gas flowing into the selective reduction catalyst device is equal to or higher than a preset temperature threshold value, the flow passage switching device is controlled so that the exhaust gas flows from the exhaust passage to the bypass passage. With switching
Furthermore, when the variation amount when the temperature of the exhaust gas flowing into the selective reduction catalyst device rises is equal to or more than a preset variation amount threshold value, the urea water supply amount from the urea water supply device is changed. An exhaust gas purification method for an internal combustion engine, comprising performing control to reduce a preset supply amount set based on an operating state of the internal combustion engine by a preset decrease amount.
JP2016141365A 2016-07-19 2016-07-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Active JP6733383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141365A JP6733383B2 (en) 2016-07-19 2016-07-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141365A JP6733383B2 (en) 2016-07-19 2016-07-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018013045A JP2018013045A (en) 2018-01-25
JP6733383B2 true JP6733383B2 (en) 2020-07-29

Family

ID=61019256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141365A Active JP6733383B2 (en) 2016-07-19 2016-07-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6733383B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256727A (en) * 2004-03-11 2005-09-22 Nissan Diesel Motor Co Ltd Exhaust emission control device of engine
JP4267538B2 (en) * 2004-08-23 2009-05-27 日野自動車株式会社 Exhaust purification equipment
JP2010209737A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2015071994A (en) * 2013-10-04 2015-04-16 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2018013045A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
JP5119690B2 (en) Exhaust gas purification device for internal combustion engine
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP6051948B2 (en) Exhaust gas purification device for internal combustion engine
JP2006207512A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
KR20180068808A (en) Exhaust gas purification system and controlling method thereof
JP6733352B2 (en) Oxidation catalyst and exhaust gas purification system
JP2010209783A (en) Exhaust emission control device
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5861921B2 (en) Exhaust purification equipment
JP2007198315A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method
KR20130008881A (en) System for purifying exhaust gas and method for controlling the same
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5761517B2 (en) Engine exhaust heat recovery device
JP6733383B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP3747793B2 (en) Fuel injection control method and regeneration control method for continuous regeneration type diesel particulate filter system
JP2006161668A (en) Exhaust emission control system and desulfurization control method for exhaust emission control system
JP6772798B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2018080602A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP6743499B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150