JP6733352B2 - Oxidation catalyst and exhaust gas purification system - Google Patents

Oxidation catalyst and exhaust gas purification system Download PDF

Info

Publication number
JP6733352B2
JP6733352B2 JP2016124335A JP2016124335A JP6733352B2 JP 6733352 B2 JP6733352 B2 JP 6733352B2 JP 2016124335 A JP2016124335 A JP 2016124335A JP 2016124335 A JP2016124335 A JP 2016124335A JP 6733352 B2 JP6733352 B2 JP 6733352B2
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
reducing solution
urea water
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016124335A
Other languages
Japanese (ja)
Other versions
JP2017227181A (en
Inventor
耕平 岡
耕平 岡
慶子 柴田
慶子 柴田
宗昌 橋本
宗昌 橋本
和成 山本
和成 山本
聖 鎌倉
聖 鎌倉
美由紀 日▲高▼
美由紀 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016124335A priority Critical patent/JP6733352B2/en
Publication of JP2017227181A publication Critical patent/JP2017227181A/en
Application granted granted Critical
Publication of JP6733352B2 publication Critical patent/JP6733352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、車両に搭載した内燃機関等の排気ガス中の窒素酸化物を浄化するための排気ガス浄化システム、及び排気ガス浄化方法に関する。 The present invention relates to an exhaust gas purification system and an exhaust gas purification method for purifying nitrogen oxides in exhaust gas of an internal combustion engine mounted on a vehicle.

車両に搭載した内燃機関では、酸化触媒装置や粒子状物質浄化用の捕集フィルター装置や窒素酸化物浄化用の選択還元型触媒装置(SCR触媒装置)等を組み合わせた排気ガス浄化システムを備えて、排気ガスを浄化している。この選択還元型触媒装置は、その上流側の尿素水供給装置から排気ガス中に供給される尿素水が加水分解して生成されるアンモニアを還元剤として排気ガス中の窒素酸化物を浄化している。 An internal combustion engine mounted on a vehicle is equipped with an exhaust gas purification system that combines an oxidation catalyst device, a collection filter device for purifying particulate matter, a selective reduction catalyst device (SCR catalyst device) for purifying nitrogen oxides, and the like. , Purifying exhaust gas. This selective reduction catalyst device purifies nitrogen oxides in exhaust gas by using ammonia generated by hydrolysis of urea water supplied from the urea water supply device on the upstream side as a reducing agent. There is.

この窒素酸化物の浄化に際しては、尿素水などの還元剤の噴射量を過不足なく適切に制御してNOx低減率を高く維持することを意図して、選択還元型触媒の触媒温度若しくはこの選択還元型触媒の上流側の排気温度に応じて尿素水の噴射量を制御している(例えば、特許文献1、2参照)。 At the time of purifying this nitrogen oxide, the catalyst temperature of the selective reduction catalyst or this selection is selected with the intention of properly controlling the injection amount of the reducing agent such as urea water to maintain a high NOx reduction rate. The injection amount of urea water is controlled according to the exhaust temperature on the upstream side of the reduction catalyst (see, for example, Patent Documents 1 and 2).

特開2006−46289号公報JP, 2006-46289, A 特開2010−71227号公報JP, 2010-71227, A

一方、排気ガス浄化システムでは、選択還元型触媒装置に加えて、捕集フィルター装置を備えていることが多く、粒子状物質の捕集量が飽和に達する前に、強制的に排気ガスを昇温して捕集された粒子状物質を燃焼除去する強制再生制御を行っている。この強制再生制御時に、選択還元型触媒装置を通過する排気ガスの温度が350℃〜400℃程度の高温になることがあるため、排気ガス浄化率が悪化したり、選択還元型触媒装置に不可逆的な劣化が生じたりするという問題がある。 On the other hand, exhaust gas purification systems are often equipped with a collection filter device in addition to a selective reduction catalyst device, so that the exhaust gas is forced to rise before the amount of trapped particulate matter reaches saturation. Forced regeneration control is performed to burn and remove the particulate matter that is warmed and collected. During this forced regeneration control, the temperature of the exhaust gas passing through the selective reduction catalyst device may rise to a high temperature of about 350° C. to 400° C., which deteriorates the exhaust gas purification rate and is irreversible with the selective reduction catalyst device. There is a problem that the deterioration may occur.

本発明の目的は、捕集フィルター装置の強制再生制御時においても、選択還元型触媒装置の温度が過度に高くなることを防止して、選択還元型触媒装置の構造的な破壊を伴う不可逆的な劣化を回避して、選択還元型触媒装置の長寿命化を実現しつつ、高い浄化性能を維持できる排気ガス浄化システム、及び排気ガス浄化方法を提供することにある。 An object of the present invention is to prevent the temperature of the selective reduction catalyst device from becoming excessively high even during forced regeneration control of the collection filter device, and to cause irreversible destruction of the selective reduction catalyst device with structural damage. To provide an exhaust gas purifying system and an exhaust gas purifying method capable of maintaining a high purifying performance while achieving a long service life of a selective reduction catalyst device while avoiding any significant deterioration.

上記の目的を達成するための本発明の排気ガス浄化システムは、粒子状物質を捕集して浄化する捕集フィルター装置と、窒素酸化物を浄化する選択還元型触媒装置と、該選択還元型触媒装置の上流側で排気ガス中に還元用溶液を供給する還元用溶液供給装置と、還元用溶液の供給量を制御する制御装置とを備えている排気ガス浄化システムにおいて、前記制御装置が、還元用溶液の供給量の制御に際して、前記捕集フィルター装置の強制再生制御時に、前記選択還元型触媒装置の触媒温度が予め設定した上限温度以上にならないように、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元できる必要最低限の量よりも増量して、この還元用溶液により前記選択還元型触媒装置を冷却する尿素水増量制御と、前記尿素水増量制御中に前記強制再生制御が終了すると、前記還元用溶液供給装置から供給される還元用溶液の供給量を排気ガス中の窒素酸化物を還元できる必要最低限の量よりも減量する尿素水減量制御と、前記尿素水減量制御における還元用溶液の減少量の累積量が、前記尿素水増量制御での還元用溶液の増加量の累積量に相当する量になると、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元するのに必要最低限の量にする尿素水通常制御を実施するように構成されていることを特徴とする排気ガス浄化システム。 An exhaust gas purification system of the present invention for achieving the above object is a collection filter device that collects and purifies particulate matter, a selective reduction type catalyst device that purifies nitrogen oxides, and the selective reduction type. In the exhaust gas purification system comprising a reducing solution supply device that supplies a reducing solution into the exhaust gas on the upstream side of the catalyst device, and a control device that controls the supply amount of the reducing solution, the control device is At the time of controlling the supply amount of the reducing solution, during the forced regeneration control of the collection filter device, the catalyst solution temperature of the selective reduction type catalyst device is supplied from the reducing solution supply device so as not to exceed a preset upper limit temperature. And a urea water increase control for increasing the supply amount of the reducing solution supplied above the minimum amount necessary for reducing the nitrogen oxides in the exhaust gas, and cooling the selective reduction catalyst device with the reducing solution. When the forced regeneration control is terminated during the urea water increase control, the supply amount of the reducing solution supplied from the reducing solution supply device is lower than the minimum necessary amount capable of reducing nitrogen oxides in exhaust gas. Urea water reduction control to reduce the amount, the cumulative amount of the reduction amount of the reducing solution in the urea water reduction control, when the amount corresponding to the cumulative amount of the increasing amount of the reducing solution in the urea water increasing control, the reduction The urea solution normal control is performed so that the supply amount of the reducing solution supplied from the solution supply device is the minimum amount necessary to reduce the nitrogen oxides in the exhaust gas. A characteristic exhaust gas purification system.

また、上記の目的を達成するための本発明の排気ガス浄化方法は、内燃機関の排気ガスの浄化の際に、捕集フィルター装置で粒子状物質を捕集して浄化し、還元用溶液供給装置で排気ガス中に供給された還元用溶液を使用して選択還元型触媒装置で窒素酸化物を浄化する排気ガス浄化方法において、前記捕集フィルター装置の強制再生制御時に、前記選択還元型触媒装置の触媒温度が予め設定した上限温度以上にならないように、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元できる必要最低限の量よりも増量して、この還元用溶液により前記選択還元型触媒装置を冷却し、還元用溶液の増量中に前記強制再生制御が終了すると、前記還元用溶液供給装置から供給される還元用溶液の供給量を排気ガス中の窒素酸化物を還元できる必要最低限の量よりも減量し、この減量における還元用溶液の減少量の累積量が、還元用溶液の増量中における還元用溶液の増加量の累積量に相当する量になると、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元するのに必要最低限の量にすることを特徴とする排気ガス浄化方法。 Further, the exhaust gas purifying method of the present invention for achieving the above object, when purifying exhaust gas of an internal combustion engine, collects and purifies particulate matter with a trapping filter device, and supplies a reducing solution. In the exhaust gas purification method for purifying nitrogen oxides in a selective reduction catalyst device using a reducing solution supplied to the exhaust gas in the device, the selective reduction catalyst is controlled during forced regeneration control of the collection filter device. The supply amount of the reducing solution supplied from the reducing solution supply device is set so that the catalyst temperature of the device does not become higher than a preset upper limit temperature than a necessary minimum amount capable of reducing nitrogen oxides in exhaust gas. Also, the selective reduction type catalyst device is cooled by this reducing solution, and when the forced regeneration control is completed while the reducing solution is being increased, the reducing solution is supplied from the reducing solution supply device. The amount is reduced below the minimum amount required to reduce the nitrogen oxides in the exhaust gas, and the cumulative amount of reduction of the reducing solution in this reduction is calculated as When the amount corresponding to the cumulative amount is reached, the supply amount of the reducing solution supplied from the reducing solution supply device is set to the minimum amount necessary to reduce the nitrogen oxides in the exhaust gas. Exhaust gas purification method.

本発明の排気ガス浄化システム、及び、排気ガス浄化方法によれば、捕集フィルター装置の強制再生制御時において、選択還元型触媒装置の触媒温度が予め設定した上限温度以上にならないように還元用溶液の供給量を排気ガス中の窒素酸化物を還元できる必要最低限の量よりも増加して選択還元型触媒装置を冷却するので、捕集フィルター装置の強制再生制御時においても、選択還元型触媒装置の触媒温度を上限温度より低い温度に維持することができるので、選択還元型触媒装置の構造的な破壊を伴う不可逆的な劣化を回避して選択還元型触媒装置の長寿命化を実現しつつ、高い浄化性能を維持できる。 According to the exhaust gas purifying system and the exhaust gas purifying method of the present invention, during the forced regeneration control of the trapping filter device, the catalyst temperature of the selective reduction catalyst device is reduced so as not to exceed the preset upper limit temperature. Since the selective reduction type catalyst device is cooled by increasing the supply amount of the solution above the minimum amount required to reduce the nitrogen oxides in the exhaust gas, the selective reduction type catalyst device is cooled even during the forced regeneration control of the collection filter device. Since the catalyst temperature of the catalytic converter can be maintained at a temperature lower than the upper limit temperature, irreversible deterioration that accompanies structural destruction of the selective catalytic reduction apparatus is avoided and the life of the selective catalytic reduction apparatus is extended. While maintaining high purification performance.

本発明に係る実施の形態の排気ガス浄化システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化方法の制御フローの1例を示す図である。It is a figure which shows an example of the control flow of the exhaust gas purification method of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化システムにおける、図1とは別の配置の構成を模式的に示す図である。It is a figure which shows typically the structure of arrangement|positioning different from FIG. 1 in the exhaust gas purification system of embodiment which concerns on this invention. 比較例としての排気ガス浄化システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the exhaust gas purification system as a comparative example.

以下、本発明に係る実施の形態の排気ガス浄化システム、及び排気ガス浄化方法について図面を参照しながら説明する。 Hereinafter, an exhaust gas purification system and an exhaust gas purification method according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本発明の実施の形態の排気ガス浄化システム1は、エンジン(内燃機関)10から排出される排気ガスGが通過する排気通路11に、酸化触媒装置(DOC)20と、PM(粒子状物質)を捕集して浄化する捕集フィルター装置(DPD)30、排気ガスG中のNOx(窒素酸化物)を浄化するSCR触媒装置(選択還元型触媒装置:SRC)40と、このSCR触媒装置40の上流側で排気ガスG中に尿素水(還元用溶液)Uを供給する尿素水供給装置(還元用溶液供給装置)41と、還元用溶液の供給量を制御する制御装置50とを備えている排気ガス浄化システムである。 As shown in FIG. 1, an exhaust gas purification system 1 according to an embodiment of the present invention includes an oxidation catalyst device (DOC) 20 in an exhaust passage 11 through which exhaust gas G discharged from an engine (internal combustion engine) 10 passes. , A collection filter device (DPD) 30 that collects and purifies PM (particulate matter), and an SCR catalyst device (selective reduction catalyst device: SRC) 40 that purifies NOx (nitrogen oxide) in the exhaust gas G And a urea water supply device (reduction solution supply device) 41 that supplies urea water (reduction solution) U into the exhaust gas G on the upstream side of the SCR catalyst device 40, and the supply amount of the reduction solution is controlled. An exhaust gas purification system including a control device 50.

そして、この酸化触媒装置20は、排気ガスG中の酸素(O2)を使用して排気ガスG中に含まれる炭化水素(HC)や一酸化炭素(CO)を酸化したり、PMに含まれるSOF(未燃燃焼物質)を酸化したりして、水(H2O)と二酸化炭素(CO2)に変える排気ガス浄化装置であり、コーディエライトなどを原料としたセラミックスで構成された、フルスロー型のハニカム構造体21に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの貴金属を酸化触媒として担持して構成される。 Then, the oxidation catalyst device 20 uses oxygen (O 2 ) in the exhaust gas G to oxidize hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas G, and to include them in PM. It is an exhaust gas purification device that oxidizes SOF (unburned combustible substance) that is converted into water (H 2 O) and carbon dioxide (CO 2 ), and is composed of ceramics such as cordierite. The full-throw type honeycomb structure 21 is configured to carry a precious metal such as platinum (Pt), palladium (Pd), and rhodium (Rh) as an oxidation catalyst.

また、捕集フィルター装置30は、排気ガスG中のPMを捕集するためのもので、例えば、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルターで構成される。そして、排気ガスGは、捕集フィルター装置30の目封じされていないセルの入口より流入し、隣接する出口を目封じされていないセルとの境界に形成されたPM捕集用のセル壁を通過して隣接する出口を目封じされていないセルの出口より流出する。このセル壁を排気ガスGが通過する際に、排気ガスGに含まれているPMがセル壁に捕集される。 The trapping filter device 30 is for trapping PM in the exhaust gas G, and is, for example, a monolith honeycomb type in which the inlets and outlets of cells (channels) of a honeycomb of porous ceramic are alternately plugged. It is composed of wall flow type filters. Then, the exhaust gas G flows from the inlet of the unsealed cell of the collection filter device 30 and the PM outlet cell wall formed at the boundary between the adjacent outlet and the unsealed cell. It passes through and exits the adjacent exit from the exit of the unsealed cell. When the exhaust gas G passes through the cell wall, PM contained in the exhaust gas G is collected on the cell wall.

この捕集フィルター装置30では、捕集できるPMの捕集量には限界があるため、PMの捕集量が飽和する前に、捕集フィルター装置30を通過する排気ガスGを昇温させて、捕集されたPMを燃焼除去する強制再生制御を定期的に行っている。 Since the amount of collected PM that can be collected is limited in this collection filter device 30, the temperature of the exhaust gas G passing through the collection filter device 30 is raised before the amount of collected PM is saturated. The forced regeneration control for burning and removing the collected PM is regularly performed.

この強制再生制御においては、排気通路11に設けた燃料噴射ノズル31から燃料Fを通気通路11の排気管内に直接噴射する排気管内直接噴射により、または、エンジン10のシリンダ内燃料噴射のポスト噴射により、燃料Fを排気ガスG中に供給する。これにより、排気ガスG中の未燃燃料を増加し、この未燃燃料を酸化触媒装置20で触媒反応により酸化して、この酸化で発生する熱により排気ガスGの温度を上昇させる。それと共に、排気ガスG中の一酸化窒素(NO)を二酸化窒素(NO2)に酸化して排気ガスG中のNO:NO2の割合を1:1に近くにする。この温度上昇とNOxの割合の変化とにより、捕集フィルター装置30におけるPMの燃焼を促進し、また、それと共に、SCR触媒装置40におけるNOx浄化を促進する。 In this forced regeneration control, the fuel F is directly injected into the exhaust pipe of the ventilation passage 11 from the fuel injection nozzle 31 provided in the exhaust passage 11, or the post injection of the cylinder fuel injection of the engine 10 is performed. , The fuel F is supplied into the exhaust gas G. As a result, the unburned fuel in the exhaust gas G is increased, the unburned fuel is oxidized by the catalytic reaction in the oxidation catalyst device 20, and the temperature of the exhaust gas G is raised by the heat generated by this oxidation. At the same time, nitric oxide (NO) in the exhaust gas G is oxidized to nitrogen dioxide (NO 2 ) to bring the NO:NO 2 ratio in the exhaust gas G close to 1:1. The temperature increase and the change in the ratio of NOx promote the combustion of PM in the collection filter device 30 and, at the same time, promote the purification of NOx in the SCR catalyst device 40.

また、SCR触媒装置40は、鉄イオン交換アルミノシリケート等の触媒ゼオライトをセラミックハニカム等の担体に担持させたもので、その上流側の排気通路11に備えた尿素水供給装置41により噴射される尿素水Uが排気ガスGの熱により加水分解して生成されたアンモニア(NH3)を還元剤として、排気ガスGに含まれるNOxを窒素(N2)と水(H2O)にして浄化する装置である。このNOxの還元に際しては、アンモニアをSCR触媒装置40で吸着してから、触媒反応によりNOxの還元が行われる。このSCR触媒によるNOx浄化方法は、NOx削減率は高く、燃費への悪影響が少ないという利点がある。 Further, the SCR catalyst device 40 is one in which catalytic zeolite such as iron ion-exchange aluminosilicate is carried on a carrier such as a ceramic honeycomb, and urea injected by a urea water supply device 41 provided in the exhaust passage 11 on the upstream side thereof. Ammonia (NH 3 ) generated by hydrolysis of water U by the heat of exhaust gas G is used as a reducing agent, and NOx contained in exhaust gas G is purified to nitrogen (N 2 ) and water (H 2 O). It is a device. In the reduction of NOx, ammonia is adsorbed by the SCR catalyst device 40, and then NOx is reduced by a catalytic reaction. This NOx purification method using an SCR catalyst has the advantages that the NOx reduction rate is high and there is little adverse effect on fuel efficiency.

本発明においては、このSCR触媒装置40は、上流側の第1のSCR触媒40Aと下流側の第2のSCR触媒装置40Bとで構成し、この第1のSCR触媒装置40Aは、エンジン10の全域での運転状態のときに発生するNOxをそれに見合った尿素水Uの供給量Wuで、排気ガスG中のNOxを十分に還元できる触媒の担持量と装置の容量を有して構成される。 In the present invention, the SCR catalyst device 40 is composed of an upstream first SCR catalyst device 40A and a downstream second SCR catalyst device 40B, and the first SCR catalyst device 40A is installed in the engine 10. It is configured to have a catalyst carrying amount and a device capacity capable of sufficiently reducing NOx in the exhaust gas G with the supply amount Wu of the urea water U corresponding to the NOx generated in the entire operating state. ..

一方、第2のSCR触媒装置40Bは、後述する尿素水供給装置41からの尿素水Uの供給量Wuを増加する尿素水増量制御を実施したときに、尿素水Uが加水分解してできたアンモニアが第1のSCR触媒40Aで消費しきれずに第1のSCR触媒40Aから流出するので、この流出アンモニアを十分に吸着して下流側への流出を抑制できる触媒の担持量と装置の容量を有して構成される。この第2のSCR触媒装置40Bでは、アンモニア吸着量が多い触媒組成、例えば、シリコアルミノリン酸塩型ゼオライト(SAPO)とすることが望まれる。 On the other hand, the second SCR catalyst device 40B is formed by hydrolysis of the urea water U when the urea water increase control is performed to increase the supply amount Wu of the urea water U from the urea water supply device 41 described later. Ammonia cannot be completely consumed by the first SCR catalyst 40A and flows out from the first SCR catalyst 40A. Therefore, the amount of catalyst carried and the capacity of the device that can sufficiently adsorb this outflowing ammonia and suppress the outflow to the downstream side can be provided. Configured to have. In the second SCR catalyst device 40B, it is desired that the catalyst composition has a large ammonia adsorption amount, for example, silicoaluminophosphate type zeolite (SAPO).

さらに、尿素水Unによる第1のSCR触媒40Aの冷却効果を向上させるために、尿素水供給装置41と第1のSCR触媒40Aの間に冷却促進用回転羽42を設けて、尿素水供給装置41から供給される尿素水Uの噴射流で、この上流側で冷却促進用回転羽42を回転させて、第1のSCR触媒40Aに送風して第1のSCR触媒40Aの冷却を促進するように構成することが好ましい。 Further, in order to improve the cooling effect of the urea water Un on the first SCR catalyst 40A, a cooling accelerating rotary blade 42 is provided between the urea water supply device 41 and the first SCR catalyst 40A to provide the urea water supply device. With the jet flow of the urea water U supplied from 41, the cooling-promoting rotary blades 42 are rotated on the upstream side to blow air to the first SCR catalyst 40A to accelerate the cooling of the first SCR catalyst 40A. It is preferable to configure.

また、この冷却促進用回転羽42により、第1のSCR触媒40Aに流入する尿素水Uや排気ガス量の流路断面における分布を調整して、第1のSCR触媒40Aの高温となり易い部分により多くの尿素水Uが流入するように構成することが好ましい。また、冷却促進用回転羽42を設けない場合でも、尿素水供給装置41から供給される尿素水Uの噴射分布を調整して、第1のSCR触媒40Aの高温となり易い部分により多くの尿素水Uが流入するように構成することが好ましい。 In addition, the distribution of the urea water U flowing into the first SCR catalyst 40A and the amount of exhaust gas in the flow passage cross section is adjusted by the cooling accelerating rotary blades 42, so that the temperature of the first SCR catalyst 40A is likely to increase. It is preferable to configure such that a large amount of urea water U flows in. Even when the cooling promotion rotary vane 42 is not provided, the injection distribution of the urea water U supplied from the urea water supply device 41 is adjusted to increase the urea water in a portion of the first SCR catalyst 40A that is likely to reach a high temperature. It is preferable to configure so that U flows in.

また、この排気ガス浄化システム1は、SCR触媒装置40における触媒温度Tcを検出又は推定するための排気ガス温度センサ51を備えている。この排気ガス温度センサ51は、図1に示す構成では、SCR触媒装置40の下流側に配置し、SCR触媒装置40に流出する排気ガスGの温度Tgdを検出しているが、点線で示すように、排気ガス温度センサ51をSCR触媒装置40の上流側に配置して、SCR触媒装置40から流出する排気ガスGの温度Tguを検出してもよい。 The exhaust gas purification system 1 also includes an exhaust gas temperature sensor 51 for detecting or estimating the catalyst temperature Tc in the SCR catalyst device 40. In the configuration shown in FIG. 1, the exhaust gas temperature sensor 51 is arranged on the downstream side of the SCR catalyst device 40 and detects the temperature Tgd of the exhaust gas G flowing out to the SCR catalyst device 40. Alternatively, the exhaust gas temperature sensor 51 may be arranged upstream of the SCR catalyst device 40 to detect the temperature Tgu of the exhaust gas G flowing out from the SCR catalyst device 40.

さらに、この排気ガス浄化システム1は、尿素水Uの供給量Wuを制御するために、NOx濃度センサ52、53を備えている。この第1のNOx濃度センサ52は、SCR触媒装置40の上流側に配置し、SCR触媒装置40に流入する排気ガスGのNOx濃度C1を検出し、第2のNOx濃度センサ53は、SCR触媒装置40の下流側に配置して、SCR触媒装置40から流出する排気ガスGのNOx濃度C2を検出する。また、捕集フィルター装置30の前後差圧ΔPを検出するための差圧センサ54を備えている。 Further, the exhaust gas purification system 1 includes NOx concentration sensors 52 and 53 in order to control the supply amount Wu of the urea water U. The first NOx concentration sensor 52 is arranged on the upstream side of the SCR catalyst device 40, detects the NOx concentration C1 of the exhaust gas G flowing into the SCR catalyst device 40, and the second NOx concentration sensor 53 is the SCR catalyst. The NOx concentration C2 of the exhaust gas G flowing out from the SCR catalyst device 40 is detected by being arranged on the downstream side of the device 40. Further, a differential pressure sensor 54 for detecting the differential pressure ΔP across the collection filter device 30 is provided.

そして、本発明においては、尿素水Uの供給量Wuを制御する制御装置50が、尿素水Uの供給量Wuの制御に際して、捕集フィルター装置30の強制再生制御時に、温度センサ51で検出した温度Tgdから推定されるSCR触媒装置40の触媒温度Tcが予め設定した上限温度Tu以上にならないように、尿素水供給装置41から供給する尿素水Uの供給量Wuを、排気ガスG中のNOxを還元できる必要最低限の量Wbよりも増量して、この尿素水UによりSCR触媒装置40を冷却する尿素水増量制御を行うように構成される。 In the present invention, the control device 50 that controls the supply amount Wu of the urea water U detects the temperature sensor 51 during the forced regeneration control of the collection filter device 30 when controlling the supply amount Wu of the urea water U. The supply amount Wu of the urea water U supplied from the urea water supply device 41 is set to NOx in the exhaust gas G so that the catalyst temperature Tc of the SCR catalyst device 40 estimated from the temperature Tgd does not exceed a preset upper limit temperature Tu. Is increased beyond the minimum necessary amount Wb that can reduce the urea water, and the urea water increase control for cooling the SCR catalyst device 40 with this urea water U is performed.

このSCR触媒装置40の触媒温度Tcは直接計測することが好ましいが、一般には困難なので、SCR触媒装置40を通過した後の排気ガスGの温度Tgdを排気ガス温度センサ51で検出して、この検出温度TgからSCR触媒装置40の触媒温度Tcを推定する。簡便な方法としては、検出温度Tgdを触媒温度Tcとする。 Although it is preferable to directly measure the catalyst temperature Tc of the SCR catalyst device 40, it is generally difficult to measure the temperature Tgd of the exhaust gas G after passing through the SCR catalyst device 40 by the exhaust gas temperature sensor 51. The catalyst temperature Tc of the SCR catalyst device 40 is estimated from the detected temperature Tg. As a simple method, the detection temperature Tgd is set to the catalyst temperature Tc.

また、予め設定した上限温度Tuは、SCR触媒装置40の不可逆的な劣化が始まる温度Tsに余裕を持たせた温度であり、好ましくは、SCR触媒装置40の浄化性能が悪化しない温度範囲内の高温側の温度であり、予め実験結果等により設定される温度である。例えば、350℃〜400℃の範囲の温度を採用する。この上限温度Tuは、触媒温度Tcに対応する温度であるが、排気ガスGの温度Tgdを採用する場合にはこの排気ガスGの温度Tgdと触媒温度Tcの差を考慮して排気ガスGの温度Tgdに対応する温度として設定する。さらに、この上限温度Tuは、SCR触媒装置40の触媒温度Tcを浄化性能を高い状態で維持できる温度とすることがより好ましい。 Further, the preset upper limit temperature Tu is a temperature in which the temperature Ts at which the irreversible deterioration of the SCR catalyst device 40 starts has a margin, and is preferably within a temperature range in which the purification performance of the SCR catalyst device 40 does not deteriorate. It is the temperature on the high temperature side, and is the temperature set in advance by experimental results and the like. For example, a temperature in the range of 350°C to 400°C is adopted. The upper limit temperature Tu is a temperature corresponding to the catalyst temperature Tc, but when the temperature Tgd of the exhaust gas G is adopted, the difference between the temperature Tgd of the exhaust gas G and the catalyst temperature Tc is taken into consideration. It is set as a temperature corresponding to the temperature Tgd. Further, it is more preferable that the upper limit temperature Tu is a temperature at which the catalyst temperature Tc of the SCR catalyst device 40 can be maintained in a high purification performance.

また、この排気ガスG中のNOxを還元できる必要最低限の尿素水Uの量Wbとは、エンジン10のエンジン回転数Neや負荷Q(若しくは燃料噴射量q)で設定されるエンジン運転状態Ecに対して、制御時のエンジン運転状態Ecから、そのエンジン運転状態Ecのエンジン10から排出されるNOxを化学反応で還元できるアンモニアの量を発生できる尿素水Uの量であり、言い換えれば、排出されるNOxと化学当量の関係にある尿素水の量をいう。 Further, the minimum necessary amount Wb of urea water U capable of reducing NOx in the exhaust gas G is the engine operating state Ec set by the engine speed Ne and the load Q (or the fuel injection amount q) of the engine 10. On the other hand, the amount of urea water U that can generate the amount of ammonia that can reduce NOx discharged from the engine 10 in the engine operating state Ec by a chemical reaction from the engine operating state Ec at the time of control, in other words, the discharge amount The amount of urea water that has a chemical equivalent relationship with the NOx that is stored.

また、尿素水増量制御中の尿素水Uの過剰噴射により余分に生成したアンモニアを、第1のSCR触媒装置40Aの下流に設置したアンモニア吸着量の多い新たな第2のSCR触媒装置40Bに吸着させる。つまり、このアンモニア吸着量の多い第2のSCR触媒装置40Bを配置することで、浄化性能を維持しつつ、余分なアンモニアの流出(スリップ)を抑制する。 Further, the ammonia that is excessively generated by the excessive injection of the urea water U during the urea water increase control is adsorbed to the new second SCR catalyst device 40B that is installed downstream of the first SCR catalyst device 40A and has a large ammonia adsorption amount. Let That is, by arranging the second SCR catalyst device 40B having a large amount of adsorbed ammonia, the purging performance is maintained and the outflow (slip) of extra ammonia is suppressed.

更に、捕集フィルター装置30の強制再生制御が終了した後の尿素水Uの供給量Wuを、強制再生制御中に増加した量の分だけ減少する尿素水減量制御を行うことにより、この第2のSCR触媒装置40Bで吸着させたアンモニアをNOxの浄化に使用する。この尿素水減量制御を行って強制再生制御中の尿素水増量制御で増加した量ΔWuに相当する尿素水Uの量ΔWuを減量し、その後は、尿素水通常制御に戻る。 Further, by performing the urea water reduction control in which the supply amount Wu of the urea water U after the forced regeneration control of the collection filter device 30 is finished is reduced by the amount increased during the forced regeneration control, The ammonia adsorbed by the SCR catalyst device 40B is used for purification of NOx. This urea water reduction control is performed to reduce the amount ΔWu of the urea water U corresponding to the amount ΔWu increased by the urea water increase control during the forced regeneration control, and thereafter, the normal urea water control is resumed.

次に、本願発明に係る実施の形態の排気ガス浄化方法について説明する。この排気ガス浄化方法は、エンジン10の排気ガスの浄化の際に、捕集フィルター装置30でPMを捕集して浄化し、尿素水供給装置41で排気ガスG中に供給された尿素水Uを使用してSC触媒装置40でNOxを浄化する排気ガス浄化方法であり、この排気ガス浄化方法において、捕集フィルター装置30の強制再生制御時に、SCR触媒装置40の触媒温度Tcが予め設定した上限温度Tu以上にならないように、尿素水供給装置41から供給される尿素水Uの供給量Wuを、排気ガスG中のNOxを還元できる必要最低限の量Wbよりも増量して、この尿素水UによりSCR触媒装置を冷却する方法である。 Next, an exhaust gas purification method according to an embodiment of the present invention will be described. In this exhaust gas purification method, when purifying the exhaust gas of the engine 10, the collection filter device 30 collects and purifies PM, and the urea water supply device 41 supplies urea water U into the exhaust gas G. Is a method for purifying NOx in the SC catalyst device 40 by using the exhaust gas purifying method. In this exhaust gas purification method, the catalyst temperature Tc of the SCR catalyst device 40 is set in advance during forced regeneration control of the collection filter device 30. In order to prevent the temperature from becoming higher than the upper limit temperature Tu, the supply amount Wu of the urea water U supplied from the urea water supply device 41 is increased above the minimum necessary amount Wb capable of reducing NOx in the exhaust gas G, and this urea is supplied. This is a method of cooling the SCR catalyst device with water U.

より具体的には、この方法は、図2の制御フローに従った制御で行うことができる。この図2の制御フローは、エンジン10を始動すると上級の制御フローから呼ばれてスタートし、エンジン10の停止と共に上級の制御フローに戻って終了する制御フローとして示している。この制御フローがスタートすると、ステップS10で、捕集フィルター装置30の強制再生制御中であるか否かを判定する。 More specifically, this method can be performed by control according to the control flow of FIG. The control flow of FIG. 2 is shown as a control flow that is started by being called from the advanced control flow when the engine 10 is started, and returns to the advanced control flow when the engine 10 is stopped and ends. When this control flow starts, it is determined in step S10 whether the forced regeneration control of the collection filter device 30 is being performed.

このステップS10の判定で強制再生制御中でなければ、ステップS20に行き、NOx浄化に関して尿素水通常制御を予め設定された制御時間Δtの間行う。この尿素水通常制御は、エンジン運転状態Ecで排出されるNOxを浄化するのに必要かつ十分な尿素水Uの量Wbを尿素水供給装置41から排気ガスG中に供給する制御である。 If it is determined in step S10 that the forced regeneration control is not being performed, the process proceeds to step S20, and the urea water normal control for NOx purification is performed for a preset control time Δt. This normal urea water control is control for supplying the urea water supply device 41 into the exhaust gas G with the amount Wb of urea water U necessary and sufficient for purifying NOx discharged in the engine operating state Ec.

この尿素水供給装置41からの尿素水供給制御としては、エンジン運転状態EcからNOx排出量を推定してこのNOx排出量に見合った必要かつ十分な尿素水Uの供給量Wbを算出して、この供給量Wbでな尿素水Uを供給するフィードフォワード制御や、NOx濃度センサ52,53の検出値C1,C2が浄化目標のNOx濃度になるように尿素水Uの供給量Wuを制御するフィードバック制御等を用いることができる。 As the urea water supply control from the urea water supply device 41, the NOx emission amount is estimated from the engine operating state Ec, and the necessary and sufficient supply amount Wb of the urea water U corresponding to the NOx emission amount is calculated, Feed-forward control for supplying the urea water U with this supply amount Wb, and feedback for controlling the supply amount Wu of the urea water U so that the detection values C1, C2 of the NOx concentration sensors 52, 53 become the purification target NOx concentration. Control or the like can be used.

このステップS10の判定で強制再生制御中であれば、ステップS30に行き、尿素水増量制御を行う。この尿素水増量制御では、エンジン運転状態Ecのエンジン10から排出されるNOxを浄化するのに必要かつ十分な尿素水Uの量(必要最低限の量)Wbに対して、排気ガス温度センサ51で検出した排気ガスGの温度Tgdから触媒温度Tcを推定し、SCR触媒装置40の触媒温度Tcが上限温度Tu以下になるように、尿素水Uの供給量Wuを増加する。 If the forced regeneration control is being performed in the determination in step S10, the process proceeds to step S30, and urea water increase control is performed. In this urea water increase control, the exhaust gas temperature sensor 51 is used for the amount (the minimum necessary amount) Wb of the urea water U that is necessary and sufficient for purifying NOx discharged from the engine 10 in the engine operating state Ec. The catalyst temperature Tc is estimated from the temperature Tgd of the exhaust gas G detected in 1. and the supply amount Wu of the urea water U is increased so that the catalyst temperature Tc of the SCR catalyst device 40 becomes equal to or lower than the upper limit temperature Tu.

この増加量ΔWuは、排気ガス温度センサ51をSCR触媒装置40の下流側に配置したときは次のように算出される。エンジン運転状態Ecから排気ガスGの流量Wgと、その比熱が推定できるので、上限温度Tuと排気ガスGの温度Tgとの温度差ΔTugと排気ガスGの比熱と排気ガスGの量Wgとから排気ガスGを温度低下させるための熱量Qgと、温度差ΔTugとSCR触媒装置40の比熱とから排気ガス浄化装置40を温度低下させるための熱量Qcとを算出でき、両方の熱量(Qg+Qc)を奪うために必要な尿素水Uの増加量ΔWuを算出できるので、フィードフォワード制御で、尿素水Uの供給量Wuを制御して、SCR触媒装置40が上限温度Tu以上にならないようにすることができる。 This increase amount ΔWu is calculated as follows when the exhaust gas temperature sensor 51 is arranged on the downstream side of the SCR catalyst device 40. Since the flow rate Wg of the exhaust gas G and its specific heat can be estimated from the engine operating state Ec, from the temperature difference ΔTug between the upper limit temperature Tu and the temperature Tg of the exhaust gas G, the specific heat of the exhaust gas G and the amount Wg of the exhaust gas G. The heat quantity Qg for lowering the temperature of the exhaust gas G and the heat quantity Qc for lowering the temperature of the exhaust gas purifying apparatus 40 can be calculated from the temperature difference ΔTug and the specific heat of the SCR catalyst device 40, and both heat quantities (Qg+Qc) can be calculated. Since it is possible to calculate the increase amount ΔWu of the urea water U necessary for deprivation, it is possible to control the supply amount Wu of the urea water U by feedforward control so that the SCR catalyst device 40 does not exceed the upper limit temperature Tu. it can.

あるいは、SCR触媒装置40の下流側に配置した排気ガス温度センサ51を検出温度Tgdが上限温度Tuを超えないように、尿素水Uの供給量Wuをフィードバック制御してもよい。 Alternatively, the exhaust gas temperature sensor 51 arranged on the downstream side of the SCR catalyst device 40 may perform feedback control of the supply amount Wu of the urea water U so that the detected temperature Tgd does not exceed the upper limit temperature Tu.

一方、この増加量ΔWuは、排気ガス温度センサ51をSCR触媒装置40の上流側に配置したときは次のように算出される。エンジン運転状態Ecから排気ガスGの流量Wgと、その比熱が推定できるので、上限温度Tuと排気ガスGの温度Tgとの温度差ΔTgu(=Tg−Tu)と排気ガスGの比熱と排気ガスGの量Wgとから排気ガスGの温度低下に必要な尿素水Uの増量分ΔWuを算出できるので、フィードフォワード制御で、尿素水Uの供給量Wuを制御して、SCR触媒装置40が上限温度Tu以上にならないようにすることができる。 On the other hand, this increase amount ΔWu is calculated as follows when the exhaust gas temperature sensor 51 is arranged on the upstream side of the SCR catalyst device 40. Since the flow rate Wg of the exhaust gas G and its specific heat can be estimated from the engine operating state Ec, the temperature difference ΔTgu (=Tg−Tu) between the upper limit temperature Tu and the temperature Tg of the exhaust gas G, the specific heat of the exhaust gas G, and the exhaust gas Since the increase amount ΔWu of the urea water U necessary for lowering the temperature of the exhaust gas G can be calculated from the amount Wg of G, the feed-forward control controls the supply amount Wu of the urea water U so that the SCR catalyst device 40 has the upper limit. It is possible to prevent the temperature from becoming equal to or higher than Tu.

あるいは、SCR触媒装置40の下流側に配置した排気ガス温度センサ51の検出温度Tgdが上限温度Tuを超えないように、尿素水Uの供給量Wuをフィードバック制御してもよい。 Alternatively, the supply amount Wu of the urea water U may be feedback-controlled so that the detected temperature Tgd of the exhaust gas temperature sensor 51 arranged on the downstream side of the SCR catalyst device 40 does not exceed the upper limit temperature Tu.

つまり、捕集フィルター装置30の強制再生制御時において、SCR触媒装置40が高温の排気ガスGに晒される可能性があるときに尿素水Uを増量する尿素水増量制御をして、排気ガスG中のNOxを還元可能な通常の尿素水Uの量Wbよりも過剰に尿素水Uを排気ガスG中に噴射し、SCR触媒装置40の触媒温度Tcを低下させる制御を行う。 That is, during the forced regeneration control of the collection filter device 30, when the SCR catalyst device 40 is likely to be exposed to the high temperature exhaust gas G, the urea water increase control for increasing the urea water U is performed to perform the exhaust gas G. The urea water U is injected into the exhaust gas G in excess of the amount Wb of the normal urea water U capable of reducing NOx therein, and control is performed to lower the catalyst temperature Tc of the SCR catalyst device 40.

このステップS30の尿素水増量制御を制御時間Δtの間行い、ステップS31の強制再生制御が終了したか否かの判定に行く。この判定で終了していなければ、ステップS30の尿素水増量制御を繰り返す。 The urea water increasing control of step S30 is performed for the control time Δt, and it is determined whether or not the forced regeneration control of step S31 is completed. If the determination has not ended, the urea water increase control in step S30 is repeated.

なお、この尿素水Uの過剰噴射により余分に生成したアンモニアは、通常の第1のSCR触媒装置40Aの下流に設置した、アンモニア吸着量の多い新たな第2のSCR触媒装置40Bに吸着させる。これにより、浄化性能を維持しつつ、余分なアンモニアの流出(スリップ)を抑制する。 The extra ammonia produced by the excessive injection of the urea water U is adsorbed by the new second SCR catalyst device 40B, which is installed downstream of the normal first SCR catalyst device 40A and has a large ammonia adsorption amount. This suppresses the outflow (slip) of excess ammonia while maintaining the purification performance.

そして、ステップS31の判定で強制再生制御が終了していれば、ステップS40の尿素水減量制御に行き、このステップS40で通常の尿素水Uの量Wbから減少量ΔWdだけ少ない供給量Wuで尿素水Uを供給する尿素水減量制御を制御時間Δtの間行い、ステップS41で、ステップS30における尿素水Uの増加量ΔWuの累積量ΣΔWuと、ステップS40における尿素水Uの減少量ΔWdの累積量ΣΔWdの比較を行い、減少量ΔWdの累積量ΣΔWdが増加量ΔWuの累積量ΣΔWu未満ではステップS40に戻り、ステップS40の尿素水減量制御を繰り返す。そして、ステップS41で、ΔWdの累積量ΣΔWdが増加量ΔWuの累積量ΣΔWu以上であれば、ステップS10に戻る。 Then, if the forced regeneration control is completed in the determination in step S31, the process goes to the urea water reduction control in step S40, and in this step S40, the urea is supplied at the supply amount Wu which is smaller than the normal urea water U amount Wb by the decrease amount ΔWd. The urea water reduction control for supplying the water U is performed for the control time Δt, and in step S41, the cumulative amount ΣΔWu of the increase amount ΔWu of the urea water U in step S30 and the cumulative amount of the decrease amount ΔWd of the urea water U in step S40. ΣΔWd is compared, and if the cumulative amount ΣΔWd of the decrease amount ΔWd is less than the cumulative amount ΣΔWu of the increase amount ΔWu, the process returns to step S40, and the urea water reduction control of step S40 is repeated. Then, in step S41, if the cumulative amount ΣΔWd of ΔWd is equal to or larger than the cumulative amount ΣΔWu of the increased amount ΔWu, the process returns to step S10.

その後は、ステップS10から、ステップS20の尿素水通常制御、又は、ステップS30の尿素水増量制御とステップS40の尿素水減量制御とを繰り返し実施し、エンジン10の運転の停止と共に上級の制御フローに戻り、この上級の制御フローの終了と共に、この図2の制御フローも終了する。 After that, from step S10, the urea water normal control of step S20, or the urea water increase control of step S30 and the urea water decrease control of step S40 are repeatedly performed, and the operation of the engine 10 is stopped and a high-level control flow is performed. Returning to this, the control flow of FIG. 2 is also ended together with the end of this advanced control flow.

そして、捕集フィルター装置30の強制再生制御が終了した後の尿素水Uの供給量Wuを、予め設定された減少量ΔWdだけ通常の尿素水Uの量Wbから減少する尿素水減量制御を、強制再生制御中に増加した量ΔWuの累積量ΣΔWuになるまで行うことにより、この第2のSCR触媒装置40Bで吸着させたアンモニアをNOxの浄化に使用する。この尿素水減量制御を行って強制再生制御中の尿素水増量制御で増加した量ΔWuの蓄積量ΣΔWuに相当する分になるまで尿素水Uの供給量Wuを減量し、その後は、尿素水通常制御に戻る。 Then, the urea water reduction control for reducing the supply amount Wu of the urea water U after the forced regeneration control of the collection filter device 30 is finished from the normal amount Wb of the urea water U by the preset reduction amount ΔWd, The ammonia adsorbed by the second SCR catalyst device 40B is used for purification of NOx by performing the process until the cumulative amount ΣΔWu of the amount ΔWu increased during the forced regeneration control. By performing this urea water reduction control, the supply amount Wu of the urea water U is reduced until the amount corresponding to the accumulated amount ΣΔWu of the amount ΔWu increased by the urea water increase control during the forced regeneration control is reached. Return to control.

なお、図1に示す、この実施の形態の排気ガス浄化システム1では、捕集フィルター装置30の強制再生制御時に、SCR触媒装置40に流入する排気ガスGの温度Tguが、捕集フィルター装置30に捕集されたPMの燃焼で発生する酸化熱により高くなり易いので、捕集フィルター装置30が、SCR触媒装置40の上流側にある構成を例にして説明したが、本発明は、図3に示す、捕集フィルター装置30が、SCR触媒装置40の下流側にある排気ガス浄化システム1Aについても適用できる。 In the exhaust gas purification system 1 of this embodiment shown in FIG. 1, the temperature Tgu of the exhaust gas G flowing into the SCR catalyst device 40 during the forced regeneration control of the collection filter device 30 is determined by the collection filter device 30. Since the heat of oxidation generated by the combustion of the PM trapped in the PM tends to increase, the trapping filter device 30 has been described by exemplifying the configuration on the upstream side of the SCR catalyst device 40. The collection filter device 30 shown in FIG. 4 can also be applied to the exhaust gas purification system 1A on the downstream side of the SCR catalyst device 40.

そして、上記の構成の排気ガス浄化システム1及び排気ガス浄化方法によれば、捕集フィルター装置30の強制再生制御時において、SCR触媒装置40の触媒温度Tcが予め設定した上限温度Tu以上にならないように尿素水Uの供給量Wuを増加してSCR触媒装置40を冷却するので、捕集フィルター装置30の強制再生制御時においても、SCR触媒装置40の触媒温度Tcが過度に高くなることを防止して、SCR触媒装置40の構造的な破壊を伴う不可逆的な劣化を回避してSCR触媒装置40の長寿命化を実現しつつ、高い浄化性能を維持できる。 Then, according to the exhaust gas purification system 1 and the exhaust gas purification method having the above-described configurations, the catalyst temperature Tc of the SCR catalyst device 40 does not exceed the preset upper limit temperature Tu during the forced regeneration control of the collection filter device 30. As described above, since the supply amount Wu of the urea water U is increased to cool the SCR catalyst device 40, it is possible to prevent the catalyst temperature Tc of the SCR catalyst device 40 from becoming excessively high even during the forced regeneration control of the collection filter device 30. It is possible to prevent the irreversible deterioration that accompanies the structural destruction of the SCR catalyst device 40 and realize the long life of the SCR catalyst device 40, while maintaining the high purification performance.

つまり、図4に示す比較例の排気ガス浄化システム1Xにおけるように、捕集フィルター装置30の強制再生制御時にSCR触媒装置40が400℃程度の高温になり、排気ガス浄化率が悪化して、高温に晒されたSCR触媒装置40の構造が破壊され、不可逆的な劣化を起こして、SCR触媒装置40の寿命が短くなってしまうという問題に対して、本発明では、この第2のSCR触媒装置40Bの配置と尿素水増量制御と尿素水減量制御と組み合わせにより、より効率よく、高い浄化性能を維持しつつ、SCR触媒装置40の不可逆的な劣化を防いで、触媒寿命の高耐久化を実現することができ、これにより、長期的なコスト減につなげることができるという解決策を提供できる。 That is, as in the exhaust gas purification system 1X of the comparative example shown in FIG. 4, the SCR catalyst device 40 becomes a high temperature of about 400° C. during the forced regeneration control of the collection filter device 30, and the exhaust gas purification rate deteriorates. In contrast to the problem that the structure of the SCR catalyst device 40 exposed to high temperature is destroyed and irreversible deterioration occurs and the life of the SCR catalyst device 40 is shortened, the second SCR catalyst of the present invention is used. By arranging the device 40B and the urea water increase control and the urea water decrease control, it is possible to prevent irreversible deterioration of the SCR catalyst device 40 while maintaining high purification performance more efficiently, and to extend the life of the catalyst. Can be realized, which can provide a solution that can lead to long-term cost savings.

1 排気ガス浄化システム
10 エンジン(内燃機関)
11 排気通路
20 酸化触媒装置(DOC)
30 捕集フィルター装置(DPD)
31 燃料噴射ノズル
40 SCR触媒装置(SCR)
40A 第1のSCR触媒装置
40B 第2のSCR触媒装置
41 尿素水供給装置(還元用溶液供給装置)
42 冷却促進用回転羽
50 制御装置
51 排気ガス温度センサ
52 NOx濃度センサ
1 Exhaust Gas Purification System 10 Engine (Internal Combustion Engine)
11 Exhaust passage 20 Oxidation catalyst device (DOC)
30 Collection filter device (DPD)
31 Fuel injection nozzle 40 SCR catalyst device (SCR)
40A 1st SCR catalyst device 40B 2nd SCR catalyst device 41 Urea water supply device (reduction solution supply device)
42 Cooling promotion rotary vanes 50 Control device 51 Exhaust gas temperature sensor 52 NOx concentration sensor

Claims (3)

粒子状物質を捕集して浄化する捕集フィルター装置と、窒素酸化物を浄化する選択還元型触媒装置と、該選択還元型触媒装置の上流側で排気ガス中に還元用溶液を供給する還元用溶液供給装置と、還元用溶液の供給量を制御する制御装置とを備えている排気ガス浄化システムにおいて、
前記制御装置が、
還元用溶液の供給量の制御に際して、前記捕集フィルター装置の強制再生制御時に、前記選択還元型触媒装置の触媒温度が予め設定した上限温度以上にならないように、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元できる必要最低限の量よりも増量して、この還元用溶液により前記選択還元型触媒装置を冷却する尿素水増量制御と、
前記尿素水増量制御中に前記強制再生制御が終了すると、前記還元用溶液供給装置から供給される還元用溶液の供給量を排気ガス中の窒素酸化物を還元できる必要最低限の量よりも減量する尿素水減量制御と、
前記尿素水減量制御における還元用溶液の減少量の累積量が、前記尿素水増量制御での還元用溶液の増加量の累積量に相当する量になると、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元するのに必要最低限の量にする尿素水通常制御を実施するように構成されていることを特徴とする排気ガス浄化システム。
A collection filter device that collects and purifies particulate matter, a selective reduction catalyst device that purifies nitrogen oxides, and a reduction that supplies a reducing solution into the exhaust gas on the upstream side of the selective reduction catalyst device. Solution supply device, and an exhaust gas purification system comprising a control device for controlling the supply amount of the reducing solution,
The control device is
At the time of controlling the supply amount of the reducing solution, during the forced regeneration control of the collection filter device, the catalyst solution of the selective reduction type catalyst device is supplied from the reducing solution supply device so as not to exceed a preset upper limit temperature. And a urea water increase control for increasing the supply amount of the reducing solution supplied above the minimum amount necessary for reducing the nitrogen oxides in the exhaust gas, and cooling the selective reduction catalyst device with the reducing solution. ,
When the forced regeneration control is terminated during the urea water increase control, the supply amount of the reducing solution supplied from the reducing solution supply device is reduced below the necessary minimum amount capable of reducing nitrogen oxides in the exhaust gas. Urea water reduction control to
When the cumulative amount of the reduction amount of the reducing solution in the urea water reduction control reaches an amount corresponding to the cumulative amount of the increasing amount of the reducing solution in the urea aqueous solution increase control, the reducing solution is supplied from the reducing solution supply device. An exhaust gas purification system, which is configured to perform a urea water normal control in which a supply amount of a reducing solution is set to a minimum amount necessary for reducing nitrogen oxides in exhaust gas.
前記選択還元型触媒装置の下流側に、第2の選択還元型触媒装置を配設したことを特徴とする請求項1に記載の排気ガス浄化システム。 The exhaust gas purification system according to claim 1, wherein a second selective reduction catalyst device is disposed downstream of the selective reduction catalyst device. 内燃機関の排気ガスの浄化の際に、捕集フィルター装置で粒子状物質を捕集して浄化し、還元用溶液供給装置で排気ガス中に供給された還元用溶液を使用して選択還元型触媒装置で窒素酸化物を浄化する排気ガス浄化方法において、前記捕集フィルター装置の強制再生制御時に、前記選択還元型触媒装置の触媒温度が予め設定した上限温度以上にならないように、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元できる必要最低限の量よりも増量して、この還元用溶液により前記選択還元型触媒装置を冷却し、
還元用溶液の増量中に前記強制再生制御が終了すると、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元できる必要最低限の量よりも減量し、
この減量における還元用溶液の減少量の累積量が、還元用溶液の増量中における還元用溶液の増加量の累積量に相当する量になると、前記還元用溶液供給装置から供給される還元用溶液の供給量を、排気ガス中の窒素酸化物を還元するのに必要最低限の量にすることを特徴とする排気ガス浄化方法。
When purifying exhaust gas from an internal combustion engine, a particulate filter is used to collect and purify particulate matter, and a reducing solution supply device uses the reducing solution supplied into the exhaust gas for selective reduction. In an exhaust gas purification method for purifying nitrogen oxides with a catalyst device, during the forced regeneration control of the collection filter device, the catalyst temperature of the selective reduction catalyst device does not exceed a preset upper limit temperature, the reduction The supply amount of the reducing solution supplied from the solution supply device is increased beyond the minimum amount required to reduce nitrogen oxides in the exhaust gas, and the selective reduction catalyst device is cooled by this reducing solution. ,
When the forced regeneration control is finished while increasing the amount of the reducing solution, the supply amount of the reducing solution supplied from the reducing solution supply device is lower than the minimum necessary amount capable of reducing nitrogen oxides in the exhaust gas. Lose weight,
When the cumulative amount of the reduced amount of the reducing solution in this reduced amount corresponds to the cumulative amount of the increased amount of the reducing solution during the increasing amount of the reducing solution, the reducing solution supplied from the reducing solution supply device. The exhaust gas purification method is characterized in that the supply amount of is reduced to the minimum amount necessary for reducing nitrogen oxides in the exhaust gas.
JP2016124335A 2016-06-23 2016-06-23 Oxidation catalyst and exhaust gas purification system Active JP6733352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016124335A JP6733352B2 (en) 2016-06-23 2016-06-23 Oxidation catalyst and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124335A JP6733352B2 (en) 2016-06-23 2016-06-23 Oxidation catalyst and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2017227181A JP2017227181A (en) 2017-12-28
JP6733352B2 true JP6733352B2 (en) 2020-07-29

Family

ID=60891305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124335A Active JP6733352B2 (en) 2016-06-23 2016-06-23 Oxidation catalyst and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP6733352B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426945B2 (en) 2018-12-06 2024-02-02 エヌ・イーケムキャット株式会社 Exhaust gas purification device
JP2020190232A (en) * 2019-05-22 2020-11-26 いすゞ自動車株式会社 Exhaust emission control system of internal combustion engine
IT202200000956A1 (en) * 2022-01-20 2023-07-20 Fpt Motorenforschung Ag AN EXHAUST GAS AFTER-TREATMENT SYSTEM AND A PROPULSION SYSTEM INCLUDING THE AFTER-TREATMENT SYSTEM
IT202200000941A1 (en) * 2022-01-20 2023-07-20 Fpt Motorenforschung Ag AN EXHAUST GAS AFTER-TREATMENT DEVICE AND A PROPULSION SYSTEM INCLUDING THE DEVICE

Also Published As

Publication number Publication date
JP2017227181A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP3829699B2 (en) Exhaust gas purification system and its regeneration control method
JP4274270B2 (en) NOx purification system and control method of NOx purification system
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
JP5266865B2 (en) Exhaust gas purification system and control method thereof
JP5119690B2 (en) Exhaust gas purification device for internal combustion engine
JP6733352B2 (en) Oxidation catalyst and exhaust gas purification system
JP2009293431A (en) Exhaust emission control device and exhaust emission control system
CN207363741U (en) Exhaust after treatment system for diesel engine
JP2013002283A (en) Exhaust emission control device
JP2006183507A (en) Exhaust emission control device for internal combustion engine
JP2008115775A (en) Exhaust emission control system for internal combustion engine
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2007198315A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method
JP2005299474A (en) Exhaust gas purification system
JP6753179B2 (en) Oxidation catalyst and exhaust gas purification system
JP3747793B2 (en) Fuel injection control method and regeneration control method for continuous regeneration type diesel particulate filter system
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP3876905B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP6753151B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5470808B2 (en) Exhaust gas purification system and exhaust gas purification method
JP6705294B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP6252375B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP6733383B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150