JP2006161668A - Exhaust emission control system and desulfurization control method for exhaust emission control system - Google Patents

Exhaust emission control system and desulfurization control method for exhaust emission control system Download PDF

Info

Publication number
JP2006161668A
JP2006161668A JP2004353780A JP2004353780A JP2006161668A JP 2006161668 A JP2006161668 A JP 2006161668A JP 2004353780 A JP2004353780 A JP 2004353780A JP 2004353780 A JP2004353780 A JP 2004353780A JP 2006161668 A JP2006161668 A JP 2006161668A
Authority
JP
Japan
Prior art keywords
control
desulfurization
exhaust gas
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353780A
Other languages
Japanese (ja)
Other versions
JP3876905B2 (en
Inventor
Taiji Nagaoka
大治 長岡
Masashi Gabe
我部  正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2004353780A priority Critical patent/JP3876905B2/en
Priority to PCT/JP2005/020578 priority patent/WO2006059470A1/en
Priority to EP05805962A priority patent/EP1818522B1/en
Priority to US11/667,242 priority patent/US7669410B2/en
Publication of JP2006161668A publication Critical patent/JP2006161668A/en
Application granted granted Critical
Publication of JP3876905B2 publication Critical patent/JP3876905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/47

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device and a desulfurization control method for the exhaust emission control system suppressing H<SB>2</SB>S generation quantity and increasing ratio SO<SB>2</SB>in desulfurization control for sulfur poisoning regeneration and maintaining catalyst temperature during desulfurization control in the exhaust emission control system using NOx storage reduction type catalyst. <P>SOLUTION: In the exhaust emission control system provided with NOx storage reduction type catalyst, control to make air fuel ratio in an inlet side of the NOx storage reduction type catalyst to a rich side and control to make the same to lean side are alternately repeated in desulfurization control for regenerating sulfur poisoning of the NOx storage reduction type catalyst. Target air fuel ratio in the inlet side is set to 0.85-0.95 in excess air ratio conversion in control to rich side, and to 1.05-1.15 in excess air ratio conversion in control to lean side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の排気ガス中の窒素酸化物(NOx)を還元して浄化するNOx吸蔵還元型触媒を備えた排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システムに関する。   The present invention relates to a desulfurization control method and an exhaust gas purification system for an exhaust gas purification system including a NOx occlusion reduction type catalyst that reduces and purifies nitrogen oxides (NOx) in exhaust gas of an internal combustion engine.

ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOxを還元除去するためのNOx触媒について種々の研究や提案がなされている。その一つに、ディーゼルエンジン用のNOx低減触媒としてNOx吸蔵還元型触媒があり、有効に排気ガス中のNOxを浄化できる。   Various studies and proposals have been made on NOx catalysts for reducing and removing NOx from internal combustion engines such as diesel engines and some gasoline engines and exhaust gases from various combustion devices. One of them is a NOx occlusion reduction type catalyst as a NOx reduction catalyst for diesel engines, which can effectively purify NOx in exhaust gas.

このNOx吸蔵還元型触媒は、基本的に、アルミナ等の触媒担体上に、酸化・還元反応を促進する白金(Pt)やパラジウム(Pd)等の貴金属類と、バリウム(Ba)等のアルカリ土類金属等で形成されるNOxを吸蔵・放出する機能を有するNOx吸蔵材(NOx吸蔵物質)を担持した触媒である。   This NOx occlusion reduction type catalyst basically has a noble metal such as platinum (Pt) or palladium (Pd) that promotes an oxidation / reduction reaction and an alkaline earth such as barium (Ba) on a catalyst carrier such as alumina. It is a catalyst carrying a NOx occlusion material (NOx occlusion material) having a function of occluding and releasing NOx formed of a similar metal.

このNOx吸蔵還元型触媒は、流入する排気ガスの空燃比がリーン(酸素過多)状態であって雰囲気中に酸素(O2 )が存在する場合には、排気ガス中の一酸化窒素(NO)が貴金属類により酸化されて二酸化窒素(NO2 )となり、このNO2 はNOx吸蔵材に硝酸塩(Ba2 NO4 等)として蓄積される。 This NOx occlusion reduction type catalyst has a nitrogen (NO) concentration in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean (oxygen-rich) and oxygen (O 2 ) is present in the atmosphere. Is oxidized by noble metals into nitrogen dioxide (NO 2 ), and this NO 2 is accumulated as nitrate (Ba 2 NO 4 etc.) in the NOx storage material.

また、流入する排気ガスの空燃比が理論空燃比やリッチ(低酸素濃度)状態になって雰囲気中に酸素が存在しなくなると、Ba等のNOx吸蔵材は一酸化炭素(CO)と結合し、硝酸塩からNO2 が分解放出され、この放出されたNO2 は貴金属類の三元機能により排気ガス中に含まれている未燃炭化水素(HC)やCO等で還元され窒素(N2 )となり、排気ガス中の諸成分は、二酸化炭素(CO2 ),水(H2 O),N2 等の無害な物質として大気中に放出される。 Further, when the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or a rich (low oxygen concentration) state and oxygen is not present in the atmosphere, the NOx storage material such as Ba is combined with carbon monoxide (CO). NO 2 is decomposed and released from the nitrate, and this released NO 2 is reduced by unburned hydrocarbons (HC), CO, etc. contained in the exhaust gas by the ternary function of noble metals, and nitrogen (N 2 ) Thus, various components in the exhaust gas are released into the atmosphere as harmless substances such as carbon dioxide (CO 2 ), water (H 2 O), and N 2 .

そのため、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵能力が飽和に近くなると、排気ガスの空燃比をリッチにして、流入する排気ガスの酸素濃度を低下させるNOx吸蔵能力回復用のリッチ制御を行うことにより吸収したNOxを放出させて、この放出されたNOxを貴金属触媒により還元させるNOx再生操作を行っている。   Therefore, in an exhaust gas purification system equipped with a NOx occlusion reduction type catalyst, when the NOx occlusion capacity becomes close to saturation, the air-fuel ratio of the exhaust gas is made rich, and the oxygen concentration of the inflowing exhaust gas is reduced, for recovering the NOx occlusion capacity NOx absorbed is released by performing rich control of NOx, and NOx regeneration operation is performed in which the released NOx is reduced by a noble metal catalyst.

しかしながら、このNOx吸蔵還元型触媒には、硫黄被毒による性能劣化という問題がある。つまり、燃料中に含まれている硫黄(サルファー)が燃焼によって二酸化硫黄(SO2 )となり、NO2 と同様に吸蔵材に吸蔵された後、硫酸バリウム(Ba2 SO4 )等の硫酸塩を生成するため、NO2 の吸蔵能力が減少してしまう現象が生じるのである。 However, this NOx occlusion reduction type catalyst has a problem of performance deterioration due to sulfur poisoning. In other words, sulfur (sulfur) contained in the fuel becomes sulfur dioxide (SO 2 ) by combustion and is stored in the storage material in the same manner as NO 2, and then sulfate such as barium sulfate (Ba 2 SO 4 ) is added. As a result, a phenomenon occurs in which the NO 2 storage capacity decreases.

そのため、適時硫酸塩が分解し易い環境を作り、脱硫制御を行う必要がある。この脱硫に必要な条件の一つは、触媒によって多少差があるが、600℃以上の高温である。また、酸素濃度に関しては、O2 があると還元剤(HC,CO)が酸化のためにO2 を使うため、硫酸塩(Ba2 SO4 )の分解が促進されず脱硫が起こらない。 Therefore, it is necessary to create an environment where sulfates are easily decomposed in a timely manner and perform desulfurization control. One of the conditions necessary for this desulfurization is a high temperature of 600 ° C. or higher, although there are some differences depending on the catalyst. As for the oxygen concentration, if O 2 is present, the reducing agent (HC, CO) uses O 2 for oxidation, so that the decomposition of the sulfate (Ba 2 SO 4 ) is not accelerated and desulfurization does not occur.

一方、O2 が全く存在しないと硫黄は水素(H2 )と結合し硫化水素(H2 S)という有害なガスとなり排出されるため、H2 Sを再度酸化しSO2 として放出する必要がある。また、酸化反応による熱の発生が少ないので、脱硫中に触媒温度が低下するので、H2 Sの酸化に必要なだけの微量のO2 を含んだ雰囲気条件が必要となる。 Meanwhile, since the O 2 is discharged becomes harmful gases altogether nonexistent when sulfur is combined with hydrogen (H 2) hydrogen sulfide (H 2 S), is required to release as again oxidizing the H 2 S SO 2 is there. In addition, since the heat generated by the oxidation reaction is small, the catalyst temperature is lowered during the desulfurization, so that an atmospheric condition containing a trace amount of O 2 necessary for the oxidation of H 2 S is required.

そのため、触媒入口側の空燃比を理論空燃比以上のリッチ状態に維持すると、酸素が不足するために、放出されたSO2 と還元剤のHCとが反応して、悪臭を発散させるH2 Sの発生率が高くなるという問題がある。 Therefore, maintaining the air-fuel ratio of the catalyst inlet side to the rich state than the stoichiometric air-fuel ratio, since the oxygen is insufficient, reacts with HC of released SO 2 with a reducing agent, H 2 to dissipate the stench S There is a problem that the occurrence rate of the is increased.

一方、触媒出口の酸素濃度をストイキ状態に固定した場合には、図4の右端Aに示すように、H2 Sを低減することはできるが、脱硫量が1/5以下に低下してしまうため、触媒温度を700℃程度の高温度にする硫黄パージのための脱硫制御時間が長くなり、そのため、コスト悪化、触媒の劣化に至るという問題が生じる。 On the other hand, when the oxygen concentration at the catalyst outlet is fixed in the stoichiometric state, as shown in the right end A of FIG. 4, H 2 S can be reduced, but the desulfurization amount is reduced to 1/5 or less. For this reason, the desulfurization control time for the sulfur purge to increase the catalyst temperature to about 700 ° C. becomes longer, which causes a problem of cost deterioration and catalyst deterioration.

また、NOx触媒の硫黄被毒再生(回復)のための脱硫制御に関して、SOx吸収剤(NOx吸収剤)からのSOx放出の効率向上を図るために、SOx吸収剤出口における排気ガスの空燃比が理論空燃比(ストイキ)になるようにSOx吸収剤に流入する排気ガスの空燃比を制御し、この空燃比制御において、初めにSOx吸収剤に流入する排気ガスの空燃比をリッチに制御し、その後、漸次流入する排気ガスの空燃比を理論空燃比に近づけるように制御する内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照。)。   In addition, regarding desulfurization control for sulfur poisoning regeneration (recovery) of the NOx catalyst, in order to improve the efficiency of SOx release from the SOx absorbent (NOx absorbent), the air-fuel ratio of the exhaust gas at the SOx absorbent outlet is The air-fuel ratio of the exhaust gas flowing into the SOx absorbent is controlled so as to be the stoichiometric air-fuel ratio (stoichiometric), and in this air-fuel ratio control, the air-fuel ratio of the exhaust gas first flowing into the SOx absorbent is controlled to be rich, Thereafter, there has been proposed an exhaust purification device for an internal combustion engine that controls the air-fuel ratio of exhaust gas that gradually flows into the stoichiometric air-fuel ratio (see, for example, Patent Document 1).

しかしながら、この内燃機関の排気浄化装置のように、SOx吸収剤出口における排気ガスの空燃比が理論空燃比(ストイキ)になるように、触媒入口側の空気過剰率λを1.0以下のリッチ状態に維持すると、酸素が不足するために、放出されたSO2 と還元剤のHCとが反応し、H2 Sが発生するという問題がある。 However, as in this exhaust gas purification apparatus for an internal combustion engine, the excess air ratio λ on the catalyst inlet side is not more than 1.0 so that the air-fuel ratio of the exhaust gas at the SOx absorbent outlet becomes the stoichiometric air-fuel ratio (stoichiometric). If the state is maintained, oxygen is insufficient, so that the released SO 2 reacts with the reducing agent HC to generate H 2 S.

なお、脱硫制御時において、過リッチ値を防止するために、SOx被毒回復時には、ECU(制御装置)はフィルタに流入する排気中の酸素濃度を比較的に短い周期でスパイク的に低くする、燃料添加制御(所謂リッチスパイク制御)を実行する内燃機関の排気浄化装置が提案されている(例えば、特許文献2参照。)。   In the desulfurization control, in order to prevent an over-rich value, at the time of SOx poisoning recovery, the ECU (control device) reduces the oxygen concentration in the exhaust gas flowing into the filter in a spike manner with a relatively short cycle. An exhaust emission control device for an internal combustion engine that executes fuel addition control (so-called rich spike control) has been proposed (see, for example, Patent Document 2).

しかし、この排気浄化装置は、酸素が不足するためにSO2 からH2 Sへの変化への対応では無い。また、実用的には、このリッチとリーンの具体的な空燃比の数値やリッチの期間とリーンの時間が必要となるが、これらの具体的な組み合わせについて言及していない。
特開2000−170525号公報 特開2003−336518号公報(第5頁)
However, this exhaust purification device does not cope with the change from SO 2 to H 2 S due to lack of oxygen. Further, practically, a specific numerical value of the rich and lean air-fuel ratio and a rich period and a lean time are required, but a specific combination thereof is not mentioned.
JP 2000-170525 A JP 2003-336518 A (page 5)

本発明は、上記の問題を解決するためになされたものであり、その目的は、排気ガス中のNOxの浄化のためにNOx吸蔵還元型触媒を用いる排気ガス浄化システムにおいて、硫黄被毒再生のための脱硫制御でのH2 Sの発生量を抑えてSO2 の割合を増加することができ、しかも、この脱硫制御中の触媒温度維持を可能とする排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システムを提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to recover sulfur poisoning in an exhaust gas purification system using a NOx occlusion reduction type catalyst for purification of NOx in exhaust gas. The desulfurization control method and exhaust gas of an exhaust gas purification system that can suppress the amount of H 2 S generated in the desulfurization control and increase the SO 2 ratio and can maintain the catalyst temperature during the desulfurization control It is to provide a gas purification system.

以上のような目的を達成するための排気ガス浄化システムの脱硫制御方法は、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、前記NOx吸蔵還元型触媒の硫黄被毒を回復するための脱硫制御で、前記NOx吸蔵還元型触媒の入口側の空燃比を、リッチ側にする制御とリーン側にする制御とを交互に繰り返すと共に、前記入口側の目標空燃比を、前記リッチ側にする制御では、空気過剰率換算で、0.85〜0.95とし、前記リーン側にする制御では、空気過剰率換算で、1.05〜1.15とすることを特徴とする方法として構成される。   The desulfurization control method of the exhaust gas purification system for achieving the above object is to store NOx when the air-fuel ratio of the exhaust gas is lean and store NOx stored when it is rich. In an exhaust gas purification system including a NOx occlusion reduction catalyst that releases and reduces, an air-fuel ratio on the inlet side of the NOx occlusion reduction catalyst is controlled by desulfurization to recover sulfur poisoning of the NOx occlusion reduction catalyst. In the rich side and the lean side control are alternately repeated, and in the control to set the target air-fuel ratio on the inlet side to the rich side, 0.85 to 0.95 in terms of excess air ratio. In the control on the lean side, the air excess ratio is converted to 1.05 to 1.15.

なお、ここでいう排気ガスの空燃比状態とは、必ずしもシリンダ内における空燃比の状態を意味するものではなく、NOx吸蔵還元型触媒に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比のことをいう。   Here, the air-fuel ratio state of the exhaust gas does not necessarily mean the state of the air-fuel ratio in the cylinder, but the amount of air and the amount of fuel supplied to the exhaust gas flowing into the NOx storage reduction catalyst (cylinder) (Including the amount burned inside).

この触媒入口側の空燃比を制御する方法により、NOx吸蔵還元型触媒の硫黄被毒回復(再生、硫黄パージ)のための脱硫制御において、NOx吸蔵還元型触媒の入口の空燃比を空気過剰率換算で0.85〜0.95、好ましくは0.9のリッチ状態と1.05〜1.15好ましくは1.1のリーン状態の間で、周期的に繰り返す。これにより、排気昇温のための還元剤を充分に確保すると共に、H2 SをSO2 に酸化するための酸素量も必要量与えることができる。なお、これらの具体的な数値は実験から導いたものである。 In the desulfurization control for sulfur poisoning recovery (regeneration, sulfur purge) of the NOx storage reduction catalyst by this method of controlling the air-fuel ratio on the catalyst inlet side, the air-fuel ratio at the inlet of the NOx storage reduction catalyst is set to the excess air ratio. Converted periodically between 0.85 and 0.95, preferably 0.9 rich state and 1.05 to 1.15, preferably 1.1 lean state. As a result, a sufficient amount of reducing agent for raising the temperature of the exhaust gas can be secured, and a necessary amount of oxygen for oxidizing H 2 S to SO 2 can be provided. These specific numerical values are derived from experiments.

つまり、NOx吸蔵還元型触媒の入口の空燃比を一時的に1.05〜1.15のリーン状態にすることで、排気ガス昇温及び酸素雰囲気を適切なものとし、H2 Sを酸化してSO2 にするだけの調度よい量のO2 を供給することが可能となり、確実にH2 SをSO2 に酸化できる。従って、SO2 での脱硫の促進と、この酸化で発生する熱により脱硫制御中の温度維持とが可能となる。これにより、H2 Sの発生量を抑えてS2 Oの割合を高めると共に、発生するSO2 の量を確保し、早期に硫黄パージを完了して脱硫制御を短時間で終了できる。 That is, by temporarily setting the air-fuel ratio at the inlet of the NOx storage reduction catalyst to a lean state of 1.05 to 1.15, the exhaust gas temperature rise and the oxygen atmosphere become appropriate, and H 2 S is oxidized. it is possible to supply just the right amount of O 2 that only the sO 2 Te, can be reliably oxidize H 2 S to sO 2. Accordingly, it is possible to promote desulfurization with SO 2 and maintain the temperature during the desulfurization control by the heat generated by this oxidation. Thereby, while suppressing the generation amount of H 2 S and increasing the ratio of S 2 O, the amount of generated SO 2 can be secured, the sulfur purge can be completed early, and the desulfurization control can be completed in a short time.

更に、上記の排気ガス浄化システムの脱硫制御方法において、前記NOx吸蔵還元型触媒の出口側の空燃比が脱硫制御中においてストイキ状態になるように前記入口側の目標空燃比をフィードバック制御する。   Further, in the above desulfurization control method for the exhaust gas purification system, the target air-fuel ratio on the inlet side is feedback-controlled so that the air-fuel ratio on the outlet side of the NOx storage reduction catalyst becomes a stoichiometric state during the desulfurization control.

つまり、触媒出口側(後流側)のO2 センサの値が常にストイキ以下となるようにし、もしも、浅いリッチ時にはストイキ空燃比を目標として維持するように、入口側の空燃比やリッチ/リーンのインターバルの目標値をフィードバック制御する。これにより、触媒中段以降は常にストイキ空燃比以下になるので脱硫可能となる。 In other words, the value of the O 2 sensor on the catalyst outlet side (rear stream side) is always less than or equal to the stoichiometric value, and if it is shallow and rich, the stoichiometric air / fuel ratio is maintained as a target and the air / fuel ratio on the inlet side or rich / lean is maintained. The target value of the interval is feedback controlled. As a result, after the middle stage of the catalyst, it always becomes equal to or lower than the stoichiometric air-fuel ratio, so that desulfurization is possible.

また、上記の排気ガス浄化システムの脱硫制御方法において、前記脱硫制御において繰り返す、リッチ側にする制御とリーン側にする制御の時間割合をリッチ側制御:リーン側制御=5:2〜4:3とする。これらの制御により、脱硫に適した還元剤量と酸素量の割合を適切なものにすることができる。なお、これらの具体的な数値は実験から導いたものである。   Further, in the above-described desulfurization control method of the exhaust gas purification system, the time ratio between the rich side control and the lean side control that is repeatedly performed in the desulfurization control is rich side control: lean side control = 5: 2 to 4: 3. And By these controls, the ratio of the amount of reducing agent and the amount of oxygen suitable for desulfurization can be made appropriate. These specific numerical values are derived from experiments.

そして、以上のような目的を達成するための排気ガス浄化システムは、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒と該NOx吸蔵還元型触媒の硫黄被毒を回復するための脱硫制御を行う触媒再生制御装置を備えた排気ガス浄化システムにおいて、前記脱硫制御手段が、前記NOx吸蔵還元型触媒の入口側の空燃比を、リッチ側にする制御とリーン側にする制御とを交互に繰り返すと共に、前記脱硫制御手段が、前記入口側の目標空燃比を、前記リッチ側にする制御では、空気過剰率換算で、0.85〜0.95とし、前記リーン側にする制御では、空気過剰率換算で、1.05〜1.15とするように構成される。   An exhaust gas purification system for achieving the above object occludes NOx when the air-fuel ratio of the exhaust gas is in a lean state and releases NOx that has been occluded in a rich state. In the exhaust gas purification system comprising a NOx occlusion reduction type catalyst to be reduced together with a catalyst regeneration control device for performing desulfurization control for recovering sulfur poisoning of the NOx occlusion reduction type catalyst, the desulfurization control means comprises the NOx occlusion control means. The control to bring the air-fuel ratio on the inlet side of the reduction catalyst to the rich side and the control to make it lean is alternately repeated, and the desulfurization control means controls the target air-fuel ratio on the inlet side to the rich side. Then, it is set to 0.85 to 0.95 in terms of excess air ratio, and in the control on the lean side, it is configured to be 1.05 to 1.15 in terms of excess air ratio.

そして、上記の排気ガス浄化システムにおいて、前記脱硫制御手段が、前記NOx吸蔵還元型触媒の出口側の空燃比がストイキ(理論空燃比)状態になるようにフィードバック制御する。   In the exhaust gas purification system, the desulfurization control unit performs feedback control so that the air-fuel ratio on the outlet side of the NOx storage reduction catalyst becomes a stoichiometric (theoretical air-fuel ratio) state.

また、上記の排気ガス浄化システムにおいて、前記脱硫制御手段が、前記脱硫制御において繰り返す、リッチ側にする制御とリーン側にする制御の時間割合をリッチ側制御:リーン側制御=5:2〜4:3とする。   In the above exhaust gas purification system, the desulfurization control means repeats the desulfurization control, and the time ratio between the rich side control and the lean side control is rich side control: lean side control = 5: 2-4. : 3.

本発明に係る排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システムによれば、NOx吸蔵還元型触媒の入口の空燃比を空気過剰率換算で0.85〜0.95のリッチ状態と1.05〜1.15のリーン状態の間で、周期的に繰り返し、NOx吸蔵還元型触媒の下流でストイキになるようにフィードバック制御するので、排気昇温のための還元剤を充分に確保できると共に、H2 SをSO2 に酸化するための酸素を必要量だけ与えることができる。 According to the exhaust gas purification system desulfurization control method and the exhaust gas purification system according to the present invention, the air-fuel ratio at the inlet of the NOx storage reduction catalyst is in a rich state of 0.85 to 0.95 in terms of excess air ratio, and Since the feedback control is performed so as to be stoichiometrically downstream of the NOx occlusion reduction type catalyst periodically between the lean states of 05 to 1.15, a sufficient reducing agent for raising the exhaust gas temperature can be secured, A necessary amount of oxygen for oxidizing H 2 S to SO 2 can be provided.

つまり、NOx吸蔵還元型触媒の入口側の空燃比をリッチ状態に維持し続けずに、間欠的に繰り返しリーン状態にすることで、確実にH2 SをSO2 に酸化でき、脱硫の促進と脱硫のための高温維持とが可能となる。 In other words, H 2 S can be reliably oxidized to SO 2 by intermittently repeating the lean state without continuing to maintain the air-fuel ratio on the inlet side of the NOx storage reduction catalyst in a rich state. It is possible to maintain a high temperature for desulfurization.

これにより、酸素雰囲気及び排気ガス温度を適切なものとし、H2 Sの発生量を抑えてSO2 の割合を高めると共に、発生する脱硫量を確保し、早期に硫黄パージを完了して脱硫制御を短時間で終了できるようになる。 This makes the oxygen atmosphere and exhaust gas temperature appropriate, suppresses the generation amount of H 2 S and increases the proportion of SO 2 , secures the generated desulfurization amount, completes the sulfur purge at an early stage, and controls the desulfurization. Can be completed in a short time.

以下、本発明に係る実施の形態の排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システムについて、図面を参照しながら説明する。なお、ここでいう排気ガスの空燃比状態とは、必ずしもシリンダ内における空燃比の状態を意味するものではなく、NOx吸蔵還元型触媒に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比のことをいう。   Hereinafter, an exhaust gas purification system desulfurization control method and an exhaust gas purification system according to an embodiment of the present invention will be described with reference to the drawings. Here, the air-fuel ratio state of the exhaust gas does not necessarily mean the state of the air-fuel ratio in the cylinder, but the amount of air and the amount of fuel supplied to the exhaust gas flowing into the NOx storage reduction catalyst (cylinder) (Including the amount burned inside).

図1に、本発明の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1では、エンジン(内燃機関)Eの排気通路4に、上流側から酸化触媒11aとDPF11bとNOx吸蔵還元型触媒11cを有する排気ガス浄化装置10が配置される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention. In this exhaust gas purification system 1, an exhaust gas purification device 10 having an oxidation catalyst 11a, a DPF 11b, and a NOx occlusion reduction type catalyst 11c from the upstream side is disposed in an exhaust passage 4 of an engine (internal combustion engine) E.

この酸化触媒11aは、コージェライト、SiC、又はステンレスの構造材で形成された、多数の多角形セルを有するモノリス触媒で形成される。このセルの内壁には表面積を稼いでいる触媒コート層があり、その大きい表面に、白金やバナジウム等の触媒金属を担持して触媒機能を発生させる。   The oxidation catalyst 11a is formed of a monolith catalyst having a large number of polygonal cells formed of a cordierite, SiC, or stainless steel structural material. On the inner wall of the cell, there is a catalyst coat layer having a large surface area, and a catalytic metal such as platinum or vanadium is supported on the large surface to generate a catalyst function.

DPF11bは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成でき、排気ガス中のPM(微小粒子)を捕集する。このDPF11bはPMの燃焼除去を促進するために酸化触媒やPM酸化触媒を担持する場合もある。   The DPF 11b can be formed of a monolith honeycomb wall flow type filter or the like in which the inlets and outlets of the porous ceramic honeycomb channels are alternately plugged, and collects PM (microparticles) in the exhaust gas. The DPF 11b may carry an oxidation catalyst or a PM oxidation catalyst in order to promote the combustion removal of PM.

また、NOx吸蔵還元型触媒11cは、モノリス触媒で形成され、酸化アルミニウム、酸化チタン等の担持体に触媒コート層を設け、この触媒コート層に、白金(Pt)(Pd)等の触媒金属とバリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)を担持させて構成される。   The NOx occlusion reduction type catalyst 11c is formed of a monolithic catalyst, and a catalyst coat layer is provided on a carrier such as aluminum oxide or titanium oxide, and a catalyst metal such as platinum (Pt) (Pd) is provided on the catalyst coat layer. A NOx occlusion material (NOx occlusion material) such as barium (Ba) is supported.

このNOx吸蔵還元型触媒11cでは、酸素濃度が高い排気ガスの状態(リーン空燃比状態)の時に、排気ガス中のNOxをNOx吸蔵材が吸蔵することにより、排気ガス中のNOxを浄化し、酸素濃度が低いかゼロの排気ガス状態の時に、吸蔵したNOxを放出すると共に放出されたNOxを触媒金属の触媒作用により還元することにより、大気中へのNOxの流出を防止する。   In the NOx occlusion reduction type catalyst 11c, when the oxygen concentration is in an exhaust gas state (lean air-fuel ratio state), the NOx occlusion material stores NOx in the exhaust gas, thereby purifying NOx in the exhaust gas, In the exhaust gas state where the oxygen concentration is low or zero, the stored NOx is released and the released NOx is reduced by the catalytic action of the catalytic metal, thereby preventing NOx from flowing out into the atmosphere.

このNOx吸蔵還元型触媒11cの上流側と下流側、即ち、前後に上流側空気過剰率センサ(λセンサ)13と下流側酸素濃度センサ(O2 センサ)14をそれぞれ配置する。 An upstream air excess rate sensor (λ sensor) 13 and a downstream oxygen concentration sensor (O 2 sensor) 14 are disposed upstream and downstream of the NOx storage reduction catalyst 11c, that is, before and after.

また、NOx吸蔵還元型触媒11cの温度を判定するための上流側温度センサー15と下流側温度センサー16をNOx吸蔵還元型触媒11cの上流側と下流側、即ち、前後にそれぞれ配置する。   Further, an upstream temperature sensor 15 and a downstream temperature sensor 16 for determining the temperature of the NOx storage reduction catalyst 11c are arranged on the upstream side and the downstream side of the NOx storage reduction catalyst 11c, that is, on the front and rear sides, respectively.

更に、排気ガス浄化装置10の上流側の排気通路4に、NOxの還元剤となる炭化水素(HC)を供給するHC供給弁(燃料噴射用インジェクター)12を設ける。このHC供給弁12は、図示しない燃料タンクからエンジンの燃料である軽油等の炭化水素(HC)を排気通路4内に直接噴射して、排気ガスの空燃比をリッチ状態やストイキ状態(理論空燃比状態)にするためのものである。なお、エンジンEのシリンダ内の燃料噴射においてポスト噴射することにより、同様な空燃比制御を行う場合には、このHC供給弁12の配設を省略できる。   Further, an HC supply valve (fuel injector) 12 for supplying hydrocarbon (HC) as a reducing agent for NOx is provided in the exhaust passage 4 upstream of the exhaust gas purification device 10. The HC supply valve 12 directly injects hydrocarbons (HC) such as light oil as engine fuel from a fuel tank (not shown) into the exhaust passage 4 to adjust the air-fuel ratio of the exhaust gas to a rich state or a stoichiometric state (theoretical air). (Fuel ratio state). In addition, when the same air-fuel ratio control is performed by post-injection in the fuel injection in the cylinder of the engine E, the arrangement of the HC supply valve 12 can be omitted.

そして、エンジンEの運転の全般的な制御を行うと共に、NOx吸蔵還元型触媒11cのNOx浄化能力の回復制御も行う制御装置(ECU:エンジンコントロールユニット)20が設けられる。この制御装置20に上流側λセンサ13,下流側O2 センサ14や上流側及び下流側温度センサ15,16等からの検出値が入力され、この制御装置20からエンジンEのEGR弁6や燃料噴射用のコモンレール電子制御燃料噴射装置の燃料噴射弁8や吸気絞り弁(吸気スロットル弁)9等を制御する信号が出力される。 A control device (ECU: engine control unit) 20 that performs overall control of the operation of the engine E and also performs recovery control of the NOx purification ability of the NOx storage reduction catalyst 11c is provided. Detection values from the upstream λ sensor 13, the downstream O 2 sensor 14, the upstream and downstream temperature sensors 15, 16, and the like are input to the control device 20, and the EGR valve 6 and the fuel of the engine E are transmitted from the control device 20. A signal for controlling the fuel injection valve 8 and the intake throttle valve (intake throttle valve) 9 of the common rail electronically controlled fuel injection device for injection is output.

この排気ガス浄化システム1においては、空気Aは、吸気通路2のマスエアフローセンサ(MAFセンサ)17とターボチャジャー3のコンプレッサー3aを通過して、吸気絞り弁9によりその量を調整されて吸気マニホールド2aよりシリンダ内に入る。そして、シリンダ内で発生した排気ガスGは、排気マニホールド4aから排気通路4に出てターボチャジャー3のタービン3bを駆動し、排気ガス浄化装置10を通過して浄化された排気ガスGcとなって、図示しない消音器を通って大気中に排出される。また、排気ガスGの一部はEGRガスGeとして、EGR通路5のEGRクーラー7を通過し、EGR弁6でその量を調整されて吸気マニホールド2aに再循環される。   In this exhaust gas purification system 1, the air A passes through a mass air flow sensor (MAF sensor) 17 in the intake passage 2 and a compressor 3 a of the turbocharger 3, and the amount of the air A is adjusted by the intake throttle valve 9 to be taken into the intake air. It enters the cylinder from the manifold 2a. The exhaust gas G generated in the cylinder exits from the exhaust manifold 4a to the exhaust passage 4 to drive the turbine 3b of the turbocharger 3 and passes through the exhaust gas purification device 10 to become purified exhaust gas Gc. Then, it is discharged into the atmosphere through a silencer (not shown). A part of the exhaust gas G passes through the EGR cooler 7 of the EGR passage 5 as EGR gas Ge, and the amount thereof is adjusted by the EGR valve 6 and recirculated to the intake manifold 2a.

そして、排気ガス浄化システム1の制御装置が、エンジンEの制御装置20に組み込まれ、エンジンEの運転制御と並行して、排気ガス浄化システム1の制御を行う。この排気ガス浄化システム1の制御装置は、DPF11bのPMを除去するPM再生制御やNOx吸蔵還元型触媒11cのNOx吸蔵能力を回復するNOx再生制御やNOx吸蔵還元型触媒11cの硫黄被毒を回復する脱硫制御等の排気ガス浄化システムの制御を行う。   A control device of the exhaust gas purification system 1 is incorporated in the control device 20 of the engine E, and controls the exhaust gas purification system 1 in parallel with the operation control of the engine E. The control device of the exhaust gas purification system 1 recovers the PM regeneration control for removing PM of the DPF 11b, the NOx regeneration control for recovering the NOx storage capacity of the NOx storage reduction catalyst 11c, and the sulfur poisoning of the NOx storage reduction catalyst 11c. Control of exhaust gas purification system such as desulfurization control.

このPM再生制御は、DPF11bへのPMの蓄積量が増加して目詰まり状態が悪化した時に、排気ガス温度を昇温して、DPF11bに捕集されたPMを酸化して除去する制御である。   This PM regeneration control is a control that raises the exhaust gas temperature and oxidizes and removes the PM collected in the DPF 11b when the accumulated amount of PM in the DPF 11b increases and the clogged state deteriorates. .

また、NOx再生制御は、エンジンの運転状態から単位時間当たりのNOxの排出量ΔNOxを算出し、これを累積計算したNOx累積値ΣNOxが所定の判定値Cnを超えた時に再生を開始し、あるいは、NOx吸蔵還元型触媒11cの上流側と下流側に配置したNOx濃度センサ(図示しない)で検出したNOx濃度からNOx浄化率を算出し、このNOx浄化率が所定の判定値より低くなった場合にNOx触媒の再生を開始する。   Further, the NOx regeneration control calculates the NOx emission amount ΔNOx per unit time from the operating state of the engine, and starts regeneration when the NOx accumulated value ΣNOx obtained by accumulating the calculated amount exceeds a predetermined determination value Cn, or When the NOx purification rate is calculated from the NOx concentration detected by the NOx concentration sensor (not shown) arranged upstream and downstream of the NOx storage reduction catalyst 11c, and this NOx purification rate becomes lower than a predetermined judgment value The regeneration of the NOx catalyst is started.

そして、排気ガスの空燃比をストイキ空燃比(理論空燃比)又はリッチ状態に制御するが、この制御では、EGR弁6を制御してEGR量を増加させたり、吸気絞り弁9を制御して新規の吸気量を減少させたりして、排気ガスの空燃比を低下させたり、排気管内噴射又はシリンダ内噴射におけるポスト噴射等により、排気ガス中へ燃料を添加して空燃比を低下させる。   Then, the air-fuel ratio of the exhaust gas is controlled to a stoichiometric air-fuel ratio (theoretical air-fuel ratio) or a rich state. In this control, the EGR valve 6 is controlled to increase the EGR amount or the intake throttle valve 9 is controlled. The air-fuel ratio is reduced by adding fuel into the exhaust gas by reducing the intake air amount by reducing the air-fuel ratio of the exhaust gas or by post-injection in the exhaust pipe injection or in-cylinder injection.

これらの制御により、排気ガスの状態を所定の目標空燃比状態にすると共に、所定の温度範囲(触媒にもよるが、概ね200℃〜600℃)にして、NOx吸蔵能力、即ちNOx浄化能力を回復し、NOx触媒の再生を行う。   By these controls, the exhaust gas is brought into a predetermined target air-fuel ratio state, and in a predetermined temperature range (approximately 200 ° C. to 600 ° C. depending on the catalyst), so that the NOx occlusion capability, that is, the NOx purification capability is improved. It recovers and the NOx catalyst is regenerated.

そして、本発明において、脱硫制御は、次のように行われる。   And in this invention, desulfurization control is performed as follows.

この脱硫制御は、硫黄(サルファ)蓄積量を積算し、硫黄蓄積量が所定の判定値以上になると、NOx吸蔵能力が低下するまで硫黄が蓄積したとして、脱硫(サルファパージ)制御を開始するが、この脱硫制御においては、硫酸塩は触媒により差があるが、概ね600℃〜700℃のリッチ条件にならないと分解放出しないため、エネルギーの効率的運用の面から、この脱硫制御に先立って、DPF11bのPM再生制御を行い、PM燃焼による排気温度上昇と、NOx吸蔵還元型触媒11cの昇温を行う。   In this desulfurization control, the sulfur (sulfur) accumulation amount is integrated, and when the sulfur accumulation amount exceeds a predetermined determination value, the sulfur desulfurization (sulfur purge) control is started on the assumption that sulfur has accumulated until the NOx storage capacity decreases. In this desulfurization control, sulfates differ depending on the catalyst, but since they are not decomposed and released unless the rich conditions of about 600 ° C to 700 ° C are reached, from the viewpoint of efficient operation of energy, prior to this desulfurization control, PM regeneration control of the DPF 11b is performed to raise the exhaust temperature due to PM combustion and raise the temperature of the NOx storage reduction catalyst 11c.

この排気ガス浄化システムの脱硫制御方法は、図2に示すように、吸気絞り9とEGR弁6を開弁制御して吸入空気量やEGRガスなどのガス量を一定にすると共に、ポスト噴射又は排気管噴射により、高温リッチな雰囲気を作る。更に、NOx吸蔵還元型触媒11cの入口側の空燃比を、空気過剰率(λ)換算で0.85〜0.95、好ましくは0.9のリッチ側にする制御と、空気過剰率換算で1.05〜1.15、好ましくは1.1のリーン側にする制御とを交互に繰り返して行う。   As shown in FIG. 2, the desulfurization control method of this exhaust gas purification system controls the opening of the intake throttle 9 and the EGR valve 6 so that the amount of intake air, EGR gas, etc. is constant, and post-injection or High temperature rich atmosphere is created by exhaust pipe injection. Furthermore, the control is performed so that the air-fuel ratio on the inlet side of the NOx occlusion reduction type catalyst 11c is 0.85 to 0.95, preferably 0.9, in terms of excess air ratio (λ), and in terms of excess air ratio. 1.05 to 1.15, preferably 1.1 to the lean side is alternately repeated.

また、この脱硫制御において、リッチ側にする制御とリーン側にする制御の時間割合をリッチ側制御:リーン側制御(R:L)=5:2〜4:3とする。なお、リッチ側にする制御とリーン側にする制御のサイクル1回あたりの時間は、例えば、リッチ側にする制御の時間は、3s〜5s程度であり、リーン側にする制御の時間は、2s〜4s程度であり、このサイクルを繰り返す脱硫制御の開始から終了までの時間は3min程度である。   In this desulfurization control, the time ratio between the rich side control and the lean side control is set to rich side control: lean side control (R: L) = 5: 2 to 4: 3. It should be noted that the time for one cycle of the control on the rich side and the control on the lean side is, for example, the control time on the rich side is about 3 s to 5 s, and the control time on the lean side is 2 s. The time from the start to the end of the desulfurization control for repeating this cycle is about 3 min.

この触媒入口側の空燃比を制御する方法により、排気昇温のための還元剤を充分に確保すると共に、H2 SをSO2 に酸化するための酸素も必要量与えることができる。 By controlling the air-fuel ratio on the catalyst inlet side, a sufficient amount of reducing agent for raising the exhaust gas temperature can be ensured, and a necessary amount of oxygen for oxidizing H 2 S to SO 2 can be provided.

そして、この入口側の空燃比をリッチ状態を維持し続けずに、繰り返しリーン状態にすることで、排気ガス昇温及び酸素雰囲気を適切なものとし、H2 Sを酸化してSO2 にするだけのO2 を供給することができる。 Then, the air-fuel ratio on the inlet side is made to be in the lean state repeatedly without maintaining the rich state, thereby making the exhaust gas temperature rise and the oxygen atmosphere appropriate, and oxidizing H 2 S to SO 2 . Only O 2 can be supplied.

その結果、確実にH2 SをSO2 に酸化でき、H2 Sの悪臭を防止できると共に、SO2 での脱硫の促進と、この酸化で発生する熱により脱硫制御中の温度維持とが可能となる。これにより、H2 Sの発生量を抑えてSO2 の割合を高めると共に、発生するSO2 の量を確保し、早期に硫黄パージを完了して脱硫制御を短時間で終了できる。 As a result, H 2 S can be reliably oxidized to SO 2 , H 2 S malodor can be prevented, desulfurization with SO 2 can be promoted, and the temperature during desulfurization control can be maintained by the heat generated by this oxidation. It becomes. Thereby, by suppressing the generation of H 2 S increasing the proportion of SO 2, to ensure the amount of generated SO 2, it can be terminated early by completing the sulfur purge desulfurization control in a short time.

更に、この脱硫制御方法において、NOx吸蔵還元型触媒11cの出口側の空燃比が脱硫制御中においてストイキ状態になるように入口側の目標空燃比をフィードバック制御すると共に、この入口側の空燃比を、吸入吸気量と負荷(燃料噴射量)から算出する。   Further, in this desulfurization control method, the target air-fuel ratio on the inlet side is feedback-controlled so that the air-fuel ratio on the outlet side of the NOx storage reduction catalyst 11c is in a stoichiometric state during the desulfurization control, and the air-fuel ratio on the inlet side is also adjusted. Calculated from the intake air intake amount and the load (fuel injection amount).

つまり、触媒出口側(後流側)の下流側O2 センサ14の値が常にストイキ以下となるようにし、もしも、浅いリッチ時にはストイキ空燃比となるように、入口空燃比の目標値をフィードバック制御する。これにより、触媒中段以降を常にストイキ空燃比以下にして脱硫可能にすることができる。 In other words, the value of the downstream O 2 sensor 14 on the catalyst outlet side (rear stream side) is always equal to or lower than the stoichiometric value, and the target value of the inlet air / fuel ratio is feedback-controlled so that the stoichiometric air / fuel ratio becomes the stoichiometric air / fuel ratio when shallow and rich. To do. As a result, it is possible to make the desulfurization possible by always setting the middle and subsequent stages of the catalyst below the stoichiometric air-fuel ratio.

図3にこの制御フローの例を示す。この脱硫制御フローは、排気ガス浄化システム1の制御フローから繰り返し呼ばれて、脱硫再生制御が必要なければそのままリターンし、脱硫再生制御が必要であれば、この脱硫制御を行って、完了した時点でリターンするものとして例示されている。   FIG. 3 shows an example of this control flow. This desulfurization control flow is repeatedly called from the control flow of the exhaust gas purification system 1 and returns as it is if desulfurization regeneration control is not necessary. When desulfurization regeneration control is necessary, the desulfurization control flow is performed and completed. It is illustrated as what returns.

この脱硫制御フローでは、ステップS11で、脱硫再生時期か否かを判定する。このスッテプS11の判定で脱硫再生時期でないと判定された場合には、リターンし、脱硫再生時期であると判定された場合には、ステップS12に行き、脱硫再生制御を開始する。また、脱硫時間tsのタイマーをスタートさせて、脱硫再生制御の経過時間tsを計測し始める。   In this desulfurization control flow, it is determined in step S11 whether or not it is a desulfurization regeneration timing. If it is determined in step S11 that it is not the desulfurization regeneration time, the process returns. If it is determined that it is the desulfurization regeneration time, the process goes to step S12 to start the desulfurization regeneration control. In addition, a timer for the desulfurization time ts is started and measurement of the elapsed time ts of the desulfurization regeneration control is started.

そして、次のステップS13で、所定の時間tr0の間リッチ状態とする脱硫リッチ側制御を行う。次のステップS14 で、脱硫時間tsのチェックを行い、脱硫再生制御が終了か否かを判定する。脱硫時間tsが所定の脱硫完了時間ts0を超えた場合には、脱硫完了としてステップS18で脱硫再生終了の作業を行い、リターンする。   Then, in the next step S13, desulfurization rich side control is performed for setting the rich state for a predetermined time tr0. In the next step S14, the desulfurization time ts is checked to determine whether or not the desulfurization regeneration control is finished. When the desulfurization time ts exceeds the predetermined desulfurization completion time ts0, desulfurization completion is performed in step S18 as desulfurization completion, and the process returns.

また、脱硫時間tsが所定の脱硫完了時間ts0を超えていない場合には、ステップS15で、所定の時間tl0の間リーン状態とする脱硫リーン側制御を行う。このステップS15の後のステップS16で、脱硫再生制御中の触媒出口側λ(空気過剰率)あるいは触媒出口酸素濃度のチェックを行う。この触媒出口側λがストイキでない場合(λ>1.0)には、ステップS17で、リーン時間tl0の短縮、触媒入口側λに関するリーン目標λl0の低下、触媒入口側λに関するリッチ目標λr0の低下のいずれか一つ又は組み合わせを行い、触媒出口側λが低下するようにしてから、ステップS13に戻る。また、この触媒出口側λがストイキである場合(λ≦1.0)には、そのまま、ステップS13に戻る。   If the desulfurization time ts does not exceed the predetermined desulfurization completion time ts0, the desulfurization lean side control is performed in step S15 so that the lean state is maintained for the predetermined time tl0. In step S16 after step S15, the catalyst outlet side λ (excess air ratio) or catalyst outlet oxygen concentration during desulfurization regeneration control is checked. If the catalyst outlet side λ is not stoichiometric (λ> 1.0), in step S17, the lean time tl0 is shortened, the lean target λl0 is decreased for the catalyst inlet side λ, and the rich target λr0 is decreased for the catalyst inlet side λ. Any one or combination of the above is performed to reduce the catalyst outlet side λ, and then the process returns to step S13. When the catalyst outlet side λ is stoichiometric (λ ≦ 1.0), the process returns to step S13.

そして、ステップS13 の脱硫リッチ側制御とステップS15 の脱硫リーン側制御を繰り返す間欠パルス制御を、脱硫時間tsが所定の脱硫完了時間ts0を超えるまで行う。そして、ステップS14 で、脱硫時間tsが所定の脱硫完了時間ts0を超えると、脱硫完了としてステップS18で脱硫再生終了の作業を行い、リターンする。   Then, intermittent pulse control that repeats the desulfurization rich side control in step S13 and the desulfurization lean side control in step S15 is performed until the desulfurization time ts exceeds the predetermined desulfurization completion time ts0. When the desulfurization time ts exceeds the predetermined desulfurization completion time ts0 in step S14, desulfurization completion is performed in step S18 as desulfurization completion, and the process returns.

脱硫制御の違いによる硫化水素排出割合の変化をみるために、連続リッチ制御1例と、本発明の間欠パルス制御4例とを行い、その結果を図4〜図6に示す。   In order to see the change of the hydrogen sulfide discharge ratio due to the difference in desulfurization control, one example of continuous rich control and four examples of intermittent pulse control of the present invention are performed, and the results are shown in FIGS.

いずれの脱硫制御においても、その前に、DPF11bの再生を行い、PM燃焼による排気ガス温度Tginの上昇と触媒温度の上昇を図っている。   Before any desulfurization control, the DPF 11b is regenerated to increase the exhaust gas temperature Tgin and the catalyst temperature due to PM combustion.

従来例の連続リッチ制御では、λで示される触媒の入口側の空気過剰率を目標空燃比0.9とし、3分間の脱硫制御中一定とした。この脱硫制御では、脱流量は0.26gで、平均硫化水素割合は89%で殆どが硫化水素(H2 S)となって排出されていることが分かった。なお、図中「O2 」で示される触媒下流側の酸素濃度は最初は小さいが徐々に増加する。 In the continuous rich control of the conventional example, the excess air ratio on the inlet side of the catalyst indicated by λ is set to a target air-fuel ratio of 0.9 and constant during the desulfurization control for 3 minutes. In this desulfurization control, it was found that the desulfurization flow rate was 0.26 g, the average hydrogen sulfide ratio was 89%, and most of the hydrogen sulfide (H 2 S) was discharged. Note that the oxygen concentration on the downstream side of the catalyst indicated by “O 2 ” in the figure is initially small but gradually increases.

本発明の実施例の間欠パルス制御においては、目標空燃比をリッチ空燃比では、空気過剰率換算で0.9に、リーン空燃比では空気過剰率換算で1.1に設定した。そして、間欠パルス制御のリッチ制御時間(R)とリーン制御時間(L)を、実施例(1)では(R/L=5s/2s),実施例(2)では(R/L=5s/3s),実施例(3)では(R/L=4s/3s),実施例(4)では(R/L=3s/3s)とした。   In the intermittent pulse control of the embodiment of the present invention, the target air-fuel ratio is set to 0.9 in terms of excess air ratio in the case of rich air-fuel ratio, and 1.1 in terms of excess air ratio in the case of lean air-fuel ratio. Then, the rich control time (R) and the lean control time (L) of the intermittent pulse control are expressed as (R / L = 5 s / 2 s) in the embodiment (1) and (R / L = 5 s / in the embodiment (2). 3s), (R / L = 4s / 3s) in Example (3), and (R / L = 3s / 3s) in Example (4).

その結果、脱流量と図中「H2 S」で示される平均硫化水素割合は、それぞれ、実施例(1)では0.32gと74%,実施例(2)では0.31gと66%,実施例(3)では0.30gと50%,実施例(4)では0.06gと34%となった。また、図中「O2 」で示される触媒下流側の酸素濃度も図4及び図5のようになった。 As a result, the deflow rate and the average hydrogen sulfide ratio indicated by “H 2 S” in the figure are 0.32 g and 74% in Example (1), 0.31 g and 66% in Example (2), respectively. In Example (3), it was 0.30 g and 50%, and in Example (4), it was 0.06 g and 34%. Further, the oxygen concentration on the downstream side of the catalyst indicated by “O 2 ” in the figure is also as shown in FIGS.

この図4及び図5で得られた結果の内、1パージあたりの脱硫量Sと平均硫化水素割合H2 Sを、まとめて図6に図示した。図6によれば、今回の実施例中では、実施例(3)が脱硫量Sが多く、かつ、平均硫化水素割合H2 Sが低く、最適な制御条件となった。 Of the results obtained in FIGS. 4 and 5, the desulfurization amount S per purge and the average hydrogen sulfide ratio H 2 S are collectively shown in FIG. According to FIG. 6, in this embodiment, the embodiment (3) has a large amount of desulfurization S and a low average hydrogen sulfide ratio H 2 S, which is the optimum control condition.

本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の脱硫制御を模式的に示す図である。It is a figure which shows typically the desulfurization control of embodiment which concerns on this invention. 本発明に係る実施の形態の脱硫制御フローの例を示す図である。It is a figure which shows the example of the desulfurization control flow of embodiment which concerns on this invention. 連続リッチ制御と間欠パルス制御(1)の脱硫制御の時系列を示す図である。It is a figure which shows the time series of desulfurization control of continuous rich control and intermittent pulse control (1). 間欠パルス制御(2)〜(4)の脱硫制御の時系列を示す図である。It is a figure which shows the time series of desulfurization control of intermittent pulse control (2)-(4). 連続リッチ制御と間欠パルス制御(1)〜(4)の脱硫制御の実験結果の脱硫量と平均硫化水素割合を示す図である。It is a figure which shows the desulfurization amount and average hydrogen sulfide ratio of the experimental result of desulfurization control of continuous rich control and intermittent pulse control (1)-(4).

符号の説明Explanation of symbols

E エンジン
1 排気ガス浄化システム
2 吸気通路
4 排気通路
5 EGR通路
6 EGR弁
8 燃料噴射弁
9 吸気絞り弁(吸気スロットル弁)
10 排気ガス浄化装置
11a 酸化触媒
11b DPF
11c NOx吸蔵還元型触媒
12 HC供給弁
13 上流側空気過剰率センサ(上流側λセンサ)
14 下流側酸素濃度センサ(下流側O2 センサ)
15 上流側温度センサ
16 下流側温度センサ
E engine 1 exhaust gas purification system 2 intake passage 4 exhaust passage 5 EGR passage 6 EGR valve 8 fuel injection valve 9 intake throttle valve (intake throttle valve)
10 Exhaust gas purification device 11a Oxidation catalyst 11b DPF
11c NOx storage reduction catalyst 12 HC supply valve 13 Upstream air excess rate sensor (upstream λ sensor)
14 Downstream oxygen concentration sensor (downstream O 2 sensor)
15 Upstream temperature sensor 16 Downstream temperature sensor

Claims (6)

排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、前記NOx吸蔵還元型触媒の硫黄被毒を回復するための脱硫制御で、前記NOx吸蔵還元型触媒の入口側の空燃比を、リッチ側にする制御とリーン側にする制御とを交互に繰り返すと共に、前記入口側の目標空燃比を、前記リッチ側にする制御では、空気過剰率換算で、0.85〜0.95とし、前記リーン側にする制御では、空気過剰率換算で、1.05〜1.15とすることを特徴とする排気ガス浄化システムの脱硫制御方法。   In the exhaust gas purification system comprising a NOx occlusion reduction type catalyst that stores NOx when the air-fuel ratio of the exhaust gas is lean and releases and reduces NOx that has been occluded when the exhaust is rich, In the desulfurization control for recovering sulfur poisoning of the NOx occlusion reduction catalyst, the control for making the air-fuel ratio on the inlet side of the NOx occlusion reduction catalyst rich and on the lean side are alternately repeated, In the control to bring the target air-fuel ratio on the inlet side to the rich side, 0.85 to 0.95 in terms of excess air ratio, and in the control to make the lean side, 1.05 to 0.55 in terms of excess air ratio. 1. A desulfurization control method for an exhaust gas purification system, wherein 1.15. 前記NOx吸蔵還元型触媒の出口側の空燃比が脱硫制御中においてストイキ状態になるように前記入口側の目標空燃比をフィードバック制御することを特徴とする請求項1記載の排気ガス浄化システムの脱硫制御方法。   2. The desulfurization of an exhaust gas purification system according to claim 1, wherein the target air-fuel ratio on the inlet side is feedback-controlled so that the air-fuel ratio on the outlet side of the NOx storage reduction catalyst becomes a stoichiometric state during the desulfurization control. Control method. 前記脱硫制御において繰り返す、リッチ側にする制御とリーン側にする制御の時間割合をリッチ側制御:リーン側制御=5:2〜4:3とすることを特徴とする請求項1又は2に記載の排気ガス浄化システムの脱硫制御方法。   3. The time ratio between the rich side control and the lean side control that is repeated in the desulfurization control is rich side control: lean side control = 5: 2 to 4: 3. Control method for exhaust gas purification system in Japan. 排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒と該NOx吸蔵還元型触媒の硫黄被毒を回復するための脱硫制御を行う触媒再生制御装置を備えた排気ガス浄化システムにおいて、前記脱硫制御手段が、前記NOx吸蔵還元型触媒の入口側の空燃比を、リッチ側にする制御とリーン側にする制御とを交互に繰り返すと共に、前記脱硫制御手段が、前記入口側の目標空燃比を、前記リッチ側にする制御では、空気過剰率換算で、0.85〜0.95とし、前記リーン側にする制御では、空気過剰率換算で、1.05〜1.15とすることを特徴とする排気ガス浄化システム。   The NOx occlusion reduction catalyst that occludes NOx when the air-fuel ratio of the exhaust gas is lean and releases and reduces the NOx occluded when it is rich, and the sulfur coverage of the NOx occlusion reduction catalyst In the exhaust gas purification system provided with a catalyst regeneration control device that performs desulfurization control for recovering poison, the desulfurization control means is configured to control the lean side of the air-fuel ratio on the inlet side of the NOx occlusion reduction type catalyst and lean And the control to make the desulfurization control means set the target air-fuel ratio on the inlet side to the rich side is 0.85 to 0.95 in terms of excess air ratio, In the control to the lean side, the exhaust gas purification system is set to 1.05 to 1.15 in terms of excess air ratio. 前記脱硫制御手段が、前記NOx吸蔵還元型触媒の出口側の空燃比が脱硫制御中においてストイキ状態になるように前記入口側の目標空燃比をフィードバック制御することを特徴とする請求項4記載の排気ガス浄化システム。   The desulfurization control means feedback-controls the target air-fuel ratio on the inlet side so that the air-fuel ratio on the outlet side of the NOx storage reduction catalyst becomes a stoichiometric state during the desulfurization control. Exhaust gas purification system. 前記脱硫制御手段が、前記脱硫制御において繰り返す、リッチ側にする制御とリーン側にする制御の時間割合をリッチ側制御:リーン側制御=5:2〜4:3とすることを特徴とする請求項4又は5に記載の排気ガス浄化システム。
The desulfurization control means repeats the desulfurization control so that the time ratio between the rich side control and the lean side control is rich side control: lean side control = 5: 2 to 4: 3. Item 6. The exhaust gas purification system according to Item 4 or 5.
JP2004353780A 2004-11-30 2004-12-07 Desulfurization control method for exhaust gas purification system and exhaust gas purification system Expired - Fee Related JP3876905B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004353780A JP3876905B2 (en) 2004-12-07 2004-12-07 Desulfurization control method for exhaust gas purification system and exhaust gas purification system
PCT/JP2005/020578 WO2006059470A1 (en) 2004-11-30 2005-11-10 Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
EP05805962A EP1818522B1 (en) 2004-11-30 2005-11-10 Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
US11/667,242 US7669410B2 (en) 2004-11-30 2005-11-10 Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353780A JP3876905B2 (en) 2004-12-07 2004-12-07 Desulfurization control method for exhaust gas purification system and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2006161668A true JP2006161668A (en) 2006-06-22
JP3876905B2 JP3876905B2 (en) 2007-02-07

Family

ID=36663962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353780A Expired - Fee Related JP3876905B2 (en) 2004-11-30 2004-12-07 Desulfurization control method for exhaust gas purification system and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP3876905B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223576A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010185448A (en) * 2009-01-16 2010-08-26 Toyota Motor Corp Temperature sensor and exhaust emission control device for internal combustion engine
US8307633B2 (en) * 2007-08-21 2012-11-13 Denso Corporation Engine exhaust gas purification apparatus enabling accurate judgement of appropriate time for terminating NOx catalyst regeneration procedure
JP2012246804A (en) * 2011-05-26 2012-12-13 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2016061143A (en) * 2014-09-12 2016-04-25 いすゞ自動車株式会社 Exhaust emission control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223576A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2008126566A1 (en) * 2007-03-12 2008-10-23 Toyota Jidosha Kabushiki Kaisha Apparatus for purifying exhaust gas of internal combustion engine
US8307633B2 (en) * 2007-08-21 2012-11-13 Denso Corporation Engine exhaust gas purification apparatus enabling accurate judgement of appropriate time for terminating NOx catalyst regeneration procedure
JP2010185448A (en) * 2009-01-16 2010-08-26 Toyota Motor Corp Temperature sensor and exhaust emission control device for internal combustion engine
US9181842B2 (en) 2009-01-16 2015-11-10 Toyota Jidosha Kabushiki Kaisha Temperature sensor, sulfur component detector, and exhaust purification system for internal combustion engine
JP2012246804A (en) * 2011-05-26 2012-12-13 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2016061143A (en) * 2014-09-12 2016-04-25 いすゞ自動車株式会社 Exhaust emission control system

Also Published As

Publication number Publication date
JP3876905B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
JP4304447B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5266865B2 (en) Exhaust gas purification system and control method thereof
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP2005155374A (en) Exhaust emission control method and exhaust emission control system
JP2006316757A (en) Exhaust emission control method and exhaust emission control system
WO2003083272A1 (en) Exhaust gas decontamination system and method of controlling the same
WO2006080187A1 (en) Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
WO2006027904A1 (en) Guide structure and exhaust emission control device
JP2004218475A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2007255342A (en) METHOD OF CONTROLLING NOx EMISSION CONTROL SYSTEM AND NOx EMISSION CONTROL SYSTEM
JP2005016317A (en) Method and system for exhaust emission control
JP3797125B2 (en) Exhaust gas purification device and regeneration control method thereof
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3925357B2 (en) Control method of exhaust gas purification system
JP3876905B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP2002295298A (en) Exhaust emission control system and its recovery control method
JP2004092584A (en) Exhaust emission control device for internal combustion engine
JP4442373B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2010180709A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees