JP6731998B2 - 超低レイテンシlteアップリンクフレーム構造 - Google Patents

超低レイテンシlteアップリンクフレーム構造 Download PDF

Info

Publication number
JP6731998B2
JP6731998B2 JP2018231474A JP2018231474A JP6731998B2 JP 6731998 B2 JP6731998 B2 JP 6731998B2 JP 2018231474 A JP2018231474 A JP 2018231474A JP 2018231474 A JP2018231474 A JP 2018231474A JP 6731998 B2 JP6731998 B2 JP 6731998B2
Authority
JP
Japan
Prior art keywords
resource grant
tti
symbol
communication
uplink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018231474A
Other languages
English (en)
Other versions
JP2019062563A (ja
Inventor
ワンシ・チェン
ピーター・ガール
シマン・アービンド・パテル
アレクサンダー・ダムンジャノビック
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2019062563A publication Critical patent/JP2019062563A/ja
Application granted granted Critical
Publication of JP6731998B2 publication Critical patent/JP6731998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

米国特許法第119条に基づく優先権の主張
本特許出願は、本願の譲受人に譲渡され、参照によって本明細書に明確に組み込まれる、「ULTRA-LOW LATENCY LTE UPLINK FRAME STRUCTURE」と題され、2014年9月26日に出願された仮出願第62/056281号、「ULTRA-LOW LATENCY LTE CONTROL DATA COMMUNICATION」と題され、2014年9月26日に出願された仮出願第62/056397号、および「ULTRA-LOW LATENCY LTE REFERENCE SIGNAL TRANSMISSION」と題され、2014年9月26日に出願された仮出願第62/056403号の優先権を主張するものである。
一般には通信システムに関し、より詳細にはワイヤレス通信システムにおいてユーザ機器との通信を管理するためのアップリンクフレーム構造およびアップリンク送信の方法に関する態様が本明細書で説明される。
ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、および放送などの種々の電気通信サービスを提供するために広く展開されている。通常のワイヤレス通信システムは、利用可能なシステムリソース(たとえば、帯域幅、送信電力)を共有することによって、複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例は、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、および時分割同期符号分割多元接続(TD-SCDMA)システムを含む。
これらの多元接続技術は、異なるワイヤレスデバイスが、都市、国家、地域、さらには世界レベルで通信することを可能にする共通のプロトコルを提供するために、種々の電気通信規格において採用されている。電気通信規格の一例は、ロングタームエボリューション(LTE)である。LTEは、第3世代パートナーシッププロジェクト(3GPP)によって公表されたユニバーサルモバイルテレコミュニケーションシステム(UMTS)のモバイル規格に対する拡張のセットである。LTEは、スペクトル効率を改善することによってモバイルブロードバンドインターネットアクセスをより良好にサポートすることと、コストを下げることと、サービスを改善することと、新しいスペクトルを利用することと、ダウンリンク(DL)上のOFDMA、アップリンク(UL)上のSC-FDMA、および多入力多出力(MIMO)アンテナ技術を使用して他のオープン規格とより良好に統合することとを行うように設計される。しかしながら、モバイルブロードバンドアクセスに対する需要が増加し続けるにつれて、LTE技術のさらなる改善が必要とされている。好ましくは、これらの改善は、他の多元接続技術、およびこれらの技術を利用する電気通信規格に適用できるべきである。
レガシーLTEを採用するワイヤレス通信システムでは、特定のeNodeBによってサービスされる複数のUEが、物理アップリンク制御チャネル(PUCCH)、物理アップリンク共有チャネル(PUSCH)などの1つまたは複数のアップリンクチャネルを介してeNodeBと通信するためのリソースをスケジュールされ得る。レガシーLTEでは、各LTEサブフレームは、制御情報がPUCCHを介して送信される制御領域と、データがPUSCHを介して送信されるデータ領域とを含む。加えて、UEは、1ミリ秒程度のサブフレーム上の送信時間間隔(TTI)においてPUCCHおよび/またはPUSCHを介して送信する。
UE能力および帯域幅に対する需要が増大するにつれて、通信におけるより低いレイテンシが望まれ得る。
以下は、1つまたは複数の態様の基本的な理解を提供するために、そのような態様の簡略化された概要を提示する。この概要は、すべての企図された態様の包括的な概要ではなく、すべての態様の主要または重要な要素を識別する、または、いずれかもしくはすべての態様の範囲を定めることを意図したものでもない。その唯一の目的は、後に提示されるより詳細な説明の前置きとして、簡略化された形態で1つまたは複数の態様のいくつかの概念を提示することである。
一例によれば、ワイヤレスネットワークにおいて通信するための方法が提供される。本方法は、ネットワークエンティティから、アップリンク制御チャネルまたはアップリンクデータチャネル用の復調基準信号(RS)を送信すべきかどうかのインジケータを含み得るリソース許可を受信するステップと、そのインジケータに少なくとも部分的に基づいて少なくとも1つの送信時間間隔(TTI)においてRSを送信すべきかどうかを決定するステップとを含み得る。
別の例では、ワイヤレスネットワークにおいて通信するためのユーザ機器が提供される。ユーザ機器は、トランシーバと、ワイヤレスネットワークにおいて通信するためにバスを介してトランシーバに通信可能に結合された少なくとも1つのプロセッサと、バスを介して少なくとも1つのプロセッサおよび/またはトランシーバに通信可能に結合されたメモリとを含む。少なくとも1つのプロセッサおよびメモリは、ネットワークエンティティから、アップリンク制御チャネルまたはアップリンクデータチャネル用の復調RSを送信すべきかどうかのインジケータを含み得るリソース許可を受信し、そのインジケータに少なくとも部分的に基づいて少なくとも1つのTTIにおいてRSを送信すべきかどうかを決定するように動作可能である。
別の例では、ワイヤレスネットワークにおいて通信するためのユーザ機器が提供される。ユーザ機器は、ネットワークエンティティから、アップリンク制御チャネルまたはアップリンクデータチャネル用の復調RSを送信すべきかどうかのインジケータを含み得るリソース許可を受信するための手段と、そのインジケータに少なくとも部分的に基づいて少なくとも1つのTTIにおいてRSを送信すべきかどうかを決定するための手段とを含む。
さらなる一例では、ワイヤレスネットワークにおいて通信するためのコンピュータ実行可能コードを備えるコンピュータ可読記憶媒体が提供される。このコードは、ネットワークエンティティから、アップリンク制御チャネルまたはアップリンクデータチャネル用の復調RSを送信すべきかどうかのインジケータを含み得るリソース許可を受信するためのコードと、そのインジケータに少なくとも部分的に基づいて少なくとも1つのTTIにおいてRSを送信すべきかどうかを決定するためのコードとを含む。
上記の目的および関連する目的を達成するために、1つまたは複数の態様は、以下で十分に説明され、特に特許請求の範囲において指摘される特徴を備える。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に記載する。しかしながら、これらの特徴は、様々な態様の原理が利用される場合がある種々の方法のうちのいくつかを示すにすぎず、この説明は、そのようなすべての態様およびそれらの均等物を含むことを意図している。
本明細書で説明する態様による、電気通信システムの一例を概念的に示すブロック図である。 アクセスネットワークの一例を示す図である。 ロングタームエボリューション(LTE)におけるダウンリンク(DL)フレーム構造の例を示す図である。 LTEにおけるアップリンク(UL)フレーム構造の例を示す図である。 ユーザプレーンおよび制御プレーンのための無線プロトコルアーキテクチャの一例を示す図である。 アクセスネットワークにおける発展型NodeBおよびユーザ機器の一例を示す図である。 アップリンク帯域幅割振りの例示的なタイムラインを示す図である。 超低レイテンシ(ULL)LTEシステムにおけるシンボルの例示的なフレーム構造を示す図である。 ULL LTEシステムにおけるシンボルの例示的なフレーム構造を示す図である。 アップリンク帯域幅割振りの例示的なタイムラインを示す図である。 ULL LTEシステムにおけるシンボルの例示的なフレーム構造を示す図である。 本明細書で説明する態様による、ULL無線アクセス技術を使用して通信するための例示的なシステムを示す図である。 本明細書で説明する態様による、ULLリソース許可に基づいて通信を送信するための例示的な方法を示す図である。 本明細書で説明する態様による、ULLリソース許可を生成するための例示的な方法を示す図である。 本明細書で説明する態様による、ULL通信において基準信号を送信するための例示的な方法を示す図である。 本明細書で説明する態様による、ULL通信において基準信号を受信するための例示的な方法を示す図である。 本明細書で説明する態様による、ULL通信において制御データを送信するための例示的な方法を示す図である。 本明細書で説明する態様による、ULL通信において制御データを受信するための例示的な方法を示す図である。
添付の図面に関して以下に記載する詳細な説明は、様々な構成の説明として意図されており、本明細書において説明する概念が実践される場合がある唯一の構成を表すことは意図されていない。詳細な説明は、様々な概念の完全な理解を提供する目的で、具体的な詳細を含む。しかしながら、これらの概念がこれらの具体的な詳細なしに実践される場合があることは当業者に明らかであろう。場合によっては、そのような概念を曖昧にすることを回避するために、よく知られている構造および構成要素がブロック図の形態で示される。
次に、電気通信システムのいくつかの態様が、様々な装置および方法を参照しながら提示される。これらの装置および方法について、以下の詳細な説明において説明し、様々なブロック、モジュール、構成要素、回路、ステップ、プロセス、アルゴリズムなど(「要素」と総称される)によって添付の図面に示す。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはこれらの任意の組合せを使用して実装されてよい。そのような要素がハードウェアとして実装されるかソフトウェアとして実装されるかは、システム全体に課される特定の適用および設計制約に依存する。
例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」を用いて実装されてよい。プロセッサの例は、本開示の全体にわたって記載される様々な機能を実施するように構成された、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックデバイス(PLD)、ステートマシン、ゲーテッドロジック、ディスクリートハードウェア回路、および他の適切なハードウェアを含む。処理システム中の1つまたは複数のプロセッサは、ソフトウェアを実行してもよい。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、または他の名称で呼ばれるかにかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、プロシージャ、機能などを意味するように広く解釈されなければならない。
したがって、1つまたは複数の態様では、記載の機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装されてよい。ソフトウェアにおいて実装される場合、機能は、1つまたは複数の命令またはコードとして、コンピュータ可読媒体上で記憶または符号化されてよい。コンピュータ可読媒体は、コンピュータストレージ媒体を含む。ストレージ媒体は、コンピュータによってアクセスできる任意の利用可能な媒体であってよい。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROMもしくは他の光ディスク記憶装置、磁気ディスク記憶装置もしくは他の磁気記憶デバイス、または、命令もしくはデータ構造の形態の所望のプログラムコードを搬送もしくは記憶するために使用することができ、コンピュータによってアクセスすることができる、任意の他の媒体を含むことができる。本明細書において用いられるときに、ディスク(disk)およびディスク(disc)は、コンパクトディスク(CD)、レーザーディスク(登録商標)、光ディスク、デジタル多用途ディスク(DVD)、およびフロッピーディスクを含み、ディスク(disk)は通常、磁気的にデータを再生し、一方、ディスク(disc)は、レーザーで光学的にデータを再生する。上記の組合せも、コンピュータ可読媒体の範囲内に同じく含まれるものとする。
本明細書では、レガシーワイヤレス通信技術の持続時間よりも短い持続時間を有する送信時間間隔(TTI)に基づいた、より低レイテンシのワイヤレス通信技術のアップリンクフレーム構造に従って、ワイヤレスネットワークにおいて通信することに関する様々な態様について説明する。この点について、より短く、より頻繁なTTIによって、通信におけるさらなる低レイテンシが達成される。たとえば、レガシーワイヤレス通信技術が、1ミリ秒(ms)のサブフレームTTI持続時間を有するLTEである場合、本明細書において超低レイテンシ(ULL)と呼ばれる、より低レイテンシのワイヤレス通信技術は、複数シンボルレベル、シンボルレベル、またはスロットレベル持続時間(たとえば、1msのサブフレーム未満である持続時間)に基づき得る。たとえば、1シンボルTTIにわたって、ULLは、ノーマルサイクリックプレフィックス(CP)のLTEの約14分の1、拡張CPのLTEの約12分の1であるレイテンシを達成し得る。CPは、シンボルが適切に受信されたかどうかを判断することを可能にするためにシンボルに付加される、シンボル内の情報の一部分に関係し得ることは諒解されたい。ノーマルCPは、シンボルを約4.7マイクロ秒(μs)だけ延長することが可能であり、したがって、LTE通信に対して0.5msスロットにおいてシンボルは7個(1msサブフレームにおいてシンボルは14個)となる。拡張CPは、シンボルを約16.67μsだけ延長することが可能であり、したがって、LTE通信に対して0.5msスロットにおいてシンボルは6個(1msサブフレームにおいてシンボルは12個)となる。加えて、ハイブリッド自動再送/要求(HARQ)フィードバックをULLにおけるHARQプロセスの一部として送信するための時間量に関連するレイテンシが、それに応じて、LTEのHARQレイテンシと比較して同様に低減される。
一例では、ULLのフレーム構造は、(たとえば、少なくとも発展型NodeB(eNB)において)ULLが基づいているレガシーワイヤレス通信技術と共存するように設計され得る。したがって、たとえば、ULLのフレーム構造は、レガシーワイヤレス通信技術の周波数帯域内、および/またはレガシーワイヤレス通信技術におけるリソースのデータ部分内(たとえば、リソースのうちの制御データ通信用に割り当てられた部分を除く)に定義され得る。さらに、リソースのデータ部分のうちの少なくとも一部は、この点について、ULLの制御およびデータ通信に分割され得るが、これらはさらに、各々が複数のリソースブロック(RB)を備える1つまたは複数のRBグループに分割され得る。したがって、制御およびデータ領域がまた、ULL通信のRBグループにわたって定義されてもよい。ULLの制御チャネルは本明細書ではULL PUCCH(uPUCCH)と呼ばれ得るものであり、ULLのデータチャネルは本明細書ではULL PUSCH(uPUSCH)と呼ばれ得るものである。さらに、ULL基準信号(uRS)の送信用の領域がまた、レガシーワイヤレス通信技術のデータ領域内に定義され得る。加えて、UEがこの点についてULLとレガシーワイヤレス通信技術の両方をサポートしている場合、UEがULL用とレガシーワイヤレス通信技術用の衝突するリソースを割り当てられ得る1つまたは複数のTTIにおいて、ULLまたはレガシーワイヤレス通信技術通信の一方または両方を優先順位付けすることによって、衝突回避技術が利用されてもよい。
最初に図1を参照すると、図は本開示の一態様によるワイヤレス通信システム100の一例を示している。ワイヤレス通信システム100は、複数のアクセスポイント(たとえば、基地局、eNB、またはWLANアクセスポイント)105と、いくつかのユーザ機器(UE)115と、コアネットワーク130とを含む。アクセスポイント105は、ULLフレーム構造、たとえば、限定はしないが、本明細書で説明するような、フレーム構造800(図8)、フレーム構造900(図9)、フレーム構造1100(図11)などを使用してリソース許可をUE115に通信するように構成されたスケジューリングコンポーネント602を含み得、これらのフレーム構造は(たとえば、図7のタイムライン700、702に示すような)1つのシンボルのTTIを含み得る。たとえば、ULLフレーム構造は、uPUCCHとuPUSCHそれぞれの一方または両方を含み得る。同様に、UE115のうちの1つまたは複数が、ULLフレーム構造を使用して受信、復号、送信、および動作するように構成された通信コンポーネント661を含み得る。アクセスポイント105のうちのいくつかは、基地局コントローラ(図示せず)の制御によりUE115と通信し得、基地局コントローラは、様々な例では、コアネットワーク130(たとえば、ワイヤレスネットワーク)の一部であり得、またはある種のアクセスポイント105(たとえば、基地局もしくはeNB)であり得る。アクセスポイント105は、バックホールリンク132を通して、コアネットワーク130と制御情報および/またはユーザデータを通信し得る。各例では、アクセスポイント105は、バックホールリンク134を介して互いに、直接または間接的に通信することができ、バックホールリンク134は、ワイヤード通信リンクまたはワイヤレス通信リンクであり得る。ワイヤレス通信システム100は、複数のキャリア(異なる周波数の波形信号)上での動作をサポートし得る。マルチキャリア送信機は、複数のキャリア上で同時に変調信号を送信し得る。たとえば、各通信リンク125は、上述の様々な無線技術に従って変調されたマルチキャリア信号であり得る。各々の変調された信号は、異なるキャリア上で送信されてよく、制御情報(たとえば、基準信号(RS)、制御チャネルなど)、オーバーヘッド情報、データなどを搬送し得る。
いくつかの例では、ワイヤレス通信システム100の少なくとも一部分は、UE115のうちの1つまたは複数およびアクセスポイント105のうちの1つまたは複数が別の階層レイヤと比べて低減されたレイテンシを有する階層レイヤ上での送信をサポートするように構成され得る複数の階層レイヤ上で動作するように構成されてもよい。いくつかの例では、ハイブリッドUE115-aは、第1のサブフレームタイプとの第1のレイヤの送信をサポートする第1の階層レイヤと、第2のサブフレームタイプとの第2のレイヤの送信をサポートする第2の階層レイヤとの両方において、アクセスポイント105-aと通信し得る。たとえば、アクセスポイント105-aは、第1のサブフレームタイプのサブフレームと時分割二重化される第2のサブフレームタイプのサブフレームを送信し得る。
いくつかの例では、ハイブリッドUE115-aは、肯定応答(ACK)を提供することによって送信を受信したことを応答し得るか、または、たとえばHARQスキームを通じて送信に対する否定応答(NACK)を提供することによって、送信を受信したが適切に復号することが不能であることを応答し得る。第1の階層レイヤにおける送信に対するハイブリッドUE115-aからの肯定応答は、いくつかの例では、送信が受信されたサブフレームに続く所定数のサブフレームの後に提供され得る。ハイブリッドUE115-aは、第2の階層レイヤにおいて動作しているとき、いくつかの例では、送信が受信されたサブフレームと同じサブフレームにおいて受信を肯定応答し得る。ACK/NACKを送信し、再送信を受信するために必要な時間は、ラウンドトリップ時間(RTT)と呼ばれることもあり、したがって、第2のサブフレームタイプのサブフレームは、第1のサブフレームタイプのサブフレームのRTTよりも短い第2のRTTを有し得る。
他の例では、第2のレイヤUE115-bが第2の階層レイヤ上のみでアクセスポイント105-bと通信し得る。したがって、レガシーUE115は第1の階層レイヤ上でのみ通信し得るUE115の第1のクラスに属し得るが、ハイブリッドUE115-aおよび第2のレイヤUE115-bは、第2の階層レイヤ上で通信し得るUE115の第2のクラスに属し得る。アクセスポイント105-bおよびUE115-bは、第2のサブフレームタイプのサブフレームの送信を通じて、第2の階層レイヤ上で通信し得る。アクセスポイント105-bは、第2のサブフレームタイプのサブフレームを排他的に送信し得るか、または、第2のサブフレームタイプのサブフレームと時分割多重化される第1の階層レイヤ上で第1のサブフレームタイプの1つまたは複数のサブフレームを送信し得る。第2のレイヤUE115-bは、アクセスポイント105-bが第1のサブフレームタイプのサブフレームを送信する場合、第1のサブフレームタイプのそのようなサブフレームを無視してもよい。したがって、第2のレイヤUE115-bは、送信が受信されるサブフレームと同じサブフレームにおいて送信の受信を肯定応答し得る。したがって、第2のレイヤUE115-bは、第1の階層レイヤ上で動作するUE115と比較して、低減されたレイテンシで動作し得る。
アクセスポイント105は、1つまたは複数のアクセスポイントアンテナを介して、UE115とワイヤレス通信し得る。アクセスポイント105サイトの各々は、それぞれのカバレージエリア110に通信カバレージを提供し得る。いくつかの例では、アクセスポイント105は、トランシーバ基地局、無線基地局、無線トランシーバ、基本サービスセット(BSS)、拡張サービスセット(ESS)、NodeB、eNodeB、ホームNodeB、ホームeNodeB、またはその他の適切な用語で呼ばれることがある。基地局のカバレッジエリア110は、カバレッジエリアの一部分のみを構成するセクタ(図示せず)に分割され得る。ワイヤレス通信システム100は、異なるタイプのアクセスポイント(たとえば、マクロ基地局、マイクロ基地局、および/またはピコ基地局)105を含み得る。アクセスポイント105はまた、セルラー無線アクセス技術および/またはWLAN無線アクセス技術(RAT)などの異なる無線技術を利用し得る。アクセスポイント105は、同じもしくは異なるアクセスネットワークまたはオペレータの配備に関連付けられ得る。同じもしくは異なるタイプのアクセスポイント105のカバレージエリアを含む、同じもしくは異なる無線技術を利用する、および/または同じもしくは異なるアクセスネットワークに属する異なるアクセスポイント105のカバレージエリアは、重複し得る。
LTE/LTE-Aおよび/またはULL LTE通信システムでは、発展型ノードB(eNodeBまたはeNB)という用語は、一般に、アクセスポイント105を記述するために使用され得る。ワイヤレス通信システム100は、異なるタイプのアクセスポイントがその中で様々な地理的領域に対するカバレージを提供する異種LTE/LTE-A/ULL LTEネットワークであり得る。たとえば、各アクセスポイント105は、マクロセル、ピコセル、フェムトセル、および/または他のタイプのセルのための通信カバレージを提供し得る。ピコセル、フェムトセル、および/または他のタイプのセルのような小規模セルは、低電力ノードすなわちLPNを含み得る。マクロセルは、一般的に、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし、ネットワークプロバイダとのサービス契約を有するUE115による無制限のアクセスを許容し得る。小規模セルは一般に、比較的小さい地理的エリアをカバーすることになり、たとえば、ネットワークプロバイダのサービスに加入しているUE115による無制限アクセスを可能にし得、また、無制限アクセスに加えて、小規模セルとのアソシエーションを有するUE115(たとえば、限定加入者グループ(CSG:closed subscriber group)内のUE、自宅内のユーザ用のUEなど)による制限付きアクセスも提供し得る。マクロセルのためのeNBはマクロeNBと呼ばれることがある。小規模セルのためのeNBは、小規模セルeNBと呼ばれることがある。eNBは、1つまたは複数(たとえば、2つ、3つ、4つなど)のセルをサポートし得る。
コアネットワーク130は、バックホールリンク132(たとえば、S1インターフェースなど)を介してeNBまたは他のアクセスポイント105と通信し得る。また、アクセスポイント105は、たとえば、直接または非直接的にバックホールリンク134(たとえば、X2インターフェースなど)を介して、および/もしくはバックホールリンク132を介して(たとえば、コアネットワーク130を通して)間接的に互いに通信し得る。ワイヤレス通信システム100は、同期動作または非同期動作をサポートし得る。同期動作の場合、アクセスポイント105は、同様のフレームタイミングを有し得、異なるアクセスポイント105からの送信は、時間的に概ね位置合わせされ得る。非同期動作の場合、アクセスポイント105は、異なるフレームタイミングを有することがあり、異なるアクセスポイント105からの送信は、時間的に位置合わせされないことがある。さらに、第1の階層レイヤおよび第2の階層レイヤにおける送信は、アクセスポイント105の間で同期されても、同期されなくてもよい。本明細書で説明する技法は、同期動作または非同期動作のいずれかのために使用され得る。
UE115は、ワイヤレス通信システム100全体にわたって分散され、各UE115は固定でもよくモバイルでもよい。UE115はまた、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の適切な用語で呼ばれる場合がある。UE115は、セルラー電話、携帯情報端末(PDA)、ワイヤレスモデム、ワイヤレス通信デバイス、ハンドヘルドデバイス、タブレットコンピュータ、ラップトップコンピュータ、コードレス電話、腕時計または眼鏡などの着用可能なアイテム、ワイヤレスローカルループ(WLL:wireless local loop)局などであり得る。UE115は、マクロeNodeB、小規模eNodeB、リレーなどと通信することが可能であり得る。UE115はまた、セルラーアクセスネットワークもしくは他のWWANアクセスネットワーク、またはWLANアクセスネットワークなどの、異なるアクセスネットワークを介して通信することが可能であり得る。
ワイヤレス通信システム100に示される通信リンク125は、UE115からアクセスポイント105へのアップリンク(UL)送信、および/またはアクセスポイント105からUE115へのダウンリンク(DL)送信を含み得る。ダウンリンク送信は順方向リンク送信と呼ばれることもあり、アップリンク送信は逆方向リンク送信と呼ばれることもある。通信リンク125は、いくつかの例では通信リンク125において多重化され得る各階層レイヤの送信を搬送し得る。UE115は、たとえば多入力多出力(MIMO)、キャリアアグリゲーション(CA)、協調マルチポイント(CoMP)、または他の方式を通じて、複数のアクセスポイント105と協同的に通信するように構成され得る。MIMO技法は、複数のデータストリームを送信するために、アクセスポイント105上の複数のアンテナおよび/またはUE115上の複数のアンテナを使用する。キャリアアグリゲーションは、データ送信用の同じサービングセルまたは異なるサービングセル上で2つ以上のコンポーネントキャリアを利用し得る。CoMPは、UE115のための全体的な送信品質を改善するためのいくつかのアクセスポイント105による送受信の調整、ならびにネットワークおよびスペクトル利用の増加ための技法を含み得る。
前述のように、いくつかの例では、アクセスポイント105およびUE115は、マルチキャリア上で送信するためにキャリアアグリゲーションを利用してもよい。いくつかの例では、アクセスポイント105およびUE115は、第1の階層レイヤにおいて、フレーム内で、2つ以上の別々のキャリアを使用する第1のサブフレームタイプを各々が有する1つまたは複数のサブフレームを同時に送信し得る。各キャリアは、たとえば20MHzの帯域幅を有し得るが、他の帯域幅も利用され得る。ハイブリッドUE115-aおよび/または第2のレイヤUE115-bは、特定の例では、1つまたは複数の別個のキャリアの帯域幅よりも広い帯域幅を有するシングルキャリアを利用して、第2の階層レイヤにおいて1つまたは複数のサブフレームを受信および/または送信し得る。たとえば、4つの別個の20MHzキャリアが第1の階層レイヤ内でのキャリアアグリゲーションにおいて使用される場合、単一の80MHzキャリアが第2の階層レイヤにおいて使用され得る。80MHzキャリアは、4つの20MHzキャリアのうちの1つまたは複数によって使用される無線周波数スペクトルに少なくとも部分的に重複する、無線周波数スペクトルの一部分を占有し得る。いくつかの例では、第2の階層レイヤタイプのスケーラブルな帯域幅は、より拡張されたデータレートを提供するために、上記で説明したようなより短いRTTを提供する組合せ技術であり得る。
ワイヤレス通信システム100によって採用され得る種々の動作モードの各々は、周波数分割複信(FDD)または時分割複信(TDD)に従って動作し得る。いくつかの例では、種々の階層レイヤが、種々のTDDまたはFDDモードに従って動作し得る。たとえば、第1の階層レイヤはFDDに従って動作し得る一方で、第2の階層レイヤはTDDに従って動作し得る。いくつかの例では、OFDMA通信信号が、各階層レイヤのLTEダウンリンク送信のために通信リンク125において使用され得るが、シングルキャリア周波数分割多元接続(SC-FDMA)通信信号が、各階層レイヤにおけるLTEアップリンク送信のために通信リンク125において使用され得る。ワイヤレス通信システム100などのシステムにおける階層レイヤの実装、ならびに、そのようなシステムにおける通信に関係する他の特徴および機能に関するさらなる詳細について、以下の図を参照しながら下記に示す。
図2は、LTEまたはULL LTEネットワークアーキテクチャにおけるアクセスネットワーク200の例を示す図である。この例では、アクセスネットワーク200は、いくつかのセルラー領域(セル)202に分割されている。1つまたは複数の低電力クラスeNB208は、セル202の1つまたは複数と重複するセルラー領域210を有し得る。低電力クラスeNB208は、フェムトセル(たとえば、home eNB(HeNB))、ピコセル、マイクロセル、またはリモートラジオヘッド(RRH)であり得る。マクロeNB204は各々、それぞれのセル202に割り当てられ、セル202中のすべてのUE206のためにコアネットワーク130へのアクセスポイントを提供するように構成される。一態様では、eNB204は、ULLフレーム構造、たとえば、限定はしないが、フレーム構造800(図8)、フレーム構造900(図9)、フレーム構造1100(図11)などを使用してUE206にリソース許可を通信するように構成されたスケジューリングコンポーネント602を含み得、これらのフレーム構造は(たとえば、図7のタイムライン700、702に示すような)1つのシンボルのTTIを含み得る。同様に、UE206のうちの1つまたは複数が、ULLフレーム構造を使用して受信、復号、送信、および動作するように構成された通信コンポーネント661を含み得る。アクセスネットワーク200のこの例では集中型コントローラはないが、代替的な構成では集中型コントローラが使用され得る。eNB204は、無線ベアラ制御、アドミッション制御、モビリティ制御、スケジューリング、セキュリティ、およびサービングゲートウェイへの接続性を含む、すべての無線関連機能を担う。
アクセスネットワーク200によって採用される変調方式および多元接続方式は、展開されている特定の電気通信規格に応じて異なる場合がある。LTEまたはULL LTEの適用例では、周波数分割複信(FDD)と時分割複信(TDD)の両方をサポートするために、DL上ではOFDMが使用され得、UL上ではSC-FDMAが使用され得る。当業者が以下の詳細な説明から容易に理解するように、本明細書において提示される種々の概念は、LTEの適用例に適している。しかしながら、これらの概念は、他の変調および多元接続技法を採用する他の電気通信規格に容易に拡張され得る。例として、これらの概念は、エボリューションデータオプティマイズド(EV-DO)またはウルトラモバイルブロードバンド(UMB)に拡張され得る。EV-DOおよびUMBは、CDMA2000規格ファミリーの一部として第3世代パートナーシッププロジェクト2(3GPP2)によって公表されたエアインターフェース規格であり、移動局にブロードバンドインターネットアクセスを提供するためにCDMAを利用する。これらの概念はまた、広帯域CDMA(W-CDMA)、およびTD-SCDMAなどのCDMAの他の変形態を採用するユニバーサル地上波無線アクセス(UTRA)、TDMAを採用するモバイル通信用グローバルシステム(GSM(登録商標))、ならびにOFDMAを採用する発展型UTRA(E-UTRA)、IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、およびFlash-OFDMに拡張され得る。UTRA、E-UTRA、UMTS、LTE、およびGSM(登録商標)は、3GPP団体からの文書に記載されている。CDMA2000およびUMBについては、3GPP2団体による文書に記載されている。採用される実際のワイヤレス通信規格および多元接続技術は、具体的なアプリケーションおよびシステムに課される全体的な設計制約によって決まる。
eNB204は、MIMO技術をサポートする複数のアンテナを有し得る。MIMO技術の使用により、eNB204は空間領域を活用して、空間多重化、ビームフォーミング、および送信ダイバーシティをサポートすることが可能になる。同じ周波数上でデータの異なるストリームを同時に送信するために、空間多重化が使用され得る。データストリームは、データ速度を上げるために単一のUE206に、または全体的なシステム容量を増大させるために複数のUE206に送信され得る。これは、各データストリームを空間的にプリコーディングし(すなわち、振幅および位相のスケーリングを適用し)、次いで、空間的にプリコーディングされた各ストリームをDL上で複数の送信アンテナを通じて送信することによって実現される。空間的にプリコーディングされたデータストリームは、異なる空間シグネチャとともにUE206に到達し、これにより、UE206の各々は、そのUE206に向けられた1つまたは複数のデータストリームを復元することが可能になる。UL上では、各UE206は、空間的にプリコーディングされたデータストリームを送信し、これにより、eNB204は、空間的にプリコーディングされた各データストリームの源を特定することが可能になる。
空間多重化は一般に、チャネル状態が良好なときに使用される。チャネル状態がさほど好ましくないとき、伝送エネルギーを1つまたは複数の方向に集中させるために、ビームフォーミングが使用され得る。このことは、複数のアンテナを通じた送信向けにデータを空間的にプリコーディングすることによって実現され得る。セルのエッジにおいて良好なカバレージを実現するために、単一ストリームのビームフォーミング送信が、送信ダイバーシティと組合せで使用され得る。
以下の詳細な説明では、アクセスネットワークの様々な態様について、DL上でOFDMをサポートするMIMOシステムを参照しながら説明する。OFDMは、OFDMシンボル内のいくつかのサブキャリアにわたってデータを変調するスペクトル拡散技法である。サブキャリアは、正確な周波数において離間される。離間は、受信機がサブキャリアからのデータを復元することを可能にする「直交性」をもたらす。時間領域では、OFDMシンボル間干渉をなくすために、各OFDMシンボルにガードインターバル(たとえば、サイクリックプレフィックス)が追加され得る。ULは、高いピーク対平均電力比(PAPR)を補償するために、離散フーリエ変換(DFT)拡散OFDM信号の形態でSC-FDMAを使用し得る。
図3は、LTEにおけるDLフレーム構造の例を示す図300である。フレーム(10ms)は、等しいサイズの10個のサブフレームに分割され得る。各サブフレームは、2つの連続するタイムスロットを含み得る。リソースグリッドは、2つのタイムスロットを表すために使用され得、各タイムスロットは、リソース要素ブロック(本明細書ではRBとも呼ぶ)を含む。リソースグリッドは、複数のリソース要素に分割される。LTEでは、リソース要素ブロックは、周波数領域における連続する12個のサブキャリアを含み得、各OFDMシンボル中の通常のサイクリックプレフィックスの場合、時間領域における連続する7つのOFDMシンボル、すなわち84個のリソース要素を含む。拡張サイクリックプレフィックスの場合、リソース要素ブロックは、時間領域内の連続する6つのOFDMシンボルを含み、72個のリソース要素を有する。R302、304として示す、リソース要素のうちのいくつかは、DL基準信号(DL-RS)を含む。DL-RSは、(共通RSと呼ばれることもある)セル固有RS(CRS)302、およびUE固有RS(UE-RS)304を含む。UE-RS304は、対応するPDSCHのマッピング先であるリソース要素ブロック上のみで送信される。各リソース要素によって搬送されるビット数は、変調方式に依存する。したがって、UEが受信するリソース要素ブロックが多いほど、そして変調方式が高度であるほど、UEのためのデータレートは高くなる。
図4は、いくつかの例では本明細書で説明するULL LTE ULフレーム構造とともに利用され得る、LTEにおけるULフレーム構造の例を示す図400である。ULのために利用可能なリソース要素ブロックは、データセクションおよび制御セクションに区分され得る。制御セクションは、システム帯域幅の2つのエッジ部に形成され得、構成可能なサイズを有し得る。制御セクション中のリソース要素ブロックは、制御情報の送信用にUEに割り当てられ得る。データセクションは、制御セクション中に含まれないすべてのリソース要素ブロックを含み得る。ULフレーム構造により、データセクションは連続的なサブキャリアを含むことになり、これにより、単一のUEが、データセクション中の連続的なサブキャリアのすべてを割り当てられることが可能になり得る。
UEは、制御情報をeNBに送信するために、制御セクション中のリソース要素ブロック410a、410bを割り当てられ得る。UEはまた、データをeNBに送信するために、データセクション内のリソース要素ブロック420a、420bを割り当てられ得る。UEは、制御セクションの中で割り当てられたリソース要素ブロック上の物理UL制御チャネル(PUCCH)の中で、制御情報を送信し得る。UEは、データセクションの中で割り当てられたリソース要素ブロック上の物理UL共有チャネル(PUSCH)の中で、データのみ、またはデータと制御情報の両方を送信し得る。UL送信は、サブフレームの両方のスロットにまたがってよく、かつ周波数にわたってホップしてよい。
初期システムアクセスを実行し、物理ランダムアクセスチャネル(PRACH)430におけるUL同期を実現するために、リソース要素ブロックのセットが使用され得る。PRACH430は、ランダムシーケンスを搬送し、いかなるULデータ/シグナリングも搬送することができない。各ランダムアクセスプリアンブルは、連続する6個のリソース要素ブロックに対応する帯域幅を占める。開始周波数は、ネットワークによって指定される。すなわち、ランダムアクセスプリアンブルの送信は、いくつかの時間リソースおよび周波数リソースに限定される。PRACHの場合、周波数ホッピングは存在しない。PRACHの試行は、単一のサブフレーム(1ms)の中で、または少数の連続的なサブフレームのシーケンスの中で搬送され、UEは、フレーム(10ms)ごとに単一のPRACHの試行しか行うことができない。
図5は、LTEおよびULL LTEにおけるユーザプレーン用および制御プレーン用の無線プロトコルアーキテクチャの一例を示す図500である。UEおよびeNBのための無線プロトコルアーキテクチャは、レイヤ1、レイヤ2、およびレイヤ3という3つのレイヤで示される。レイヤ1(L1レイヤ)は最下位レイヤであり、様々な物理レイヤ信号処理機能を実施する。L1レイヤは、本明細書では物理レイヤ506と呼ばれる。レイヤ2(L2レイヤ)508は、物理レイヤ506の上にあり、物理レイヤ506を介したUEとeNBとの間のリンクを担当する。
ユーザプレーンでは、L2レイヤ508は、メディアアクセス制御(MAC)サブレイヤ510、無線リンク制御(RLC)サブレイヤ512、およびパケットデータコンバージェンスプロトコル(PDCP)サブレイヤ514を含み、それらはネットワーク側でeNBにおいて終端される。図示されていないが、UEは、ネットワーク側のPDNゲートウェイで終端するネットワークレイヤ(たとえば、IPレイヤ)、および接続の他端(たとえば、遠端のUE、サーバなど)で終端するアプリケーションレイヤを含む、L2レイヤ508の上のいくつかの上位レイヤを有し得る。
PDCPサブレイヤ514は、様々な無線ベアラと論理チャネルとの間の多重化を行う。PDCPサブレイヤ514はまた、無線送信のオーバーヘッドを低減するための上位レイヤのデータパケット用のヘッダ圧縮、データパケットを暗号化することによるセキュリティ、およびeNB間でのUEのためのハンドオーバのサポートを提供する。RLCサブレイヤ512は、上位レイヤのデータパケットのセグメント化および再アセンブリ、紛失したデータパケットの再送信、ならびに、ハイブリッド自動再送要求(HARQ)が原因で順序が乱れた受信を補償するためのデータパケットの並べ替えを行う。MACサブレイヤ510は、論理チャネルとトランスポートチャネルとの間の多重化を行う。MACサブレイヤ510はまた、1つのセル内の種々の無線リソース(たとえば、リソース要素ブロック)をUE間で割り振ることを担う。MACサブレイヤ510は、HARQ動作も担う。
制御プレーンでは、UEおよびeNBのための無線プロトコルアーキテクチャは、制御プレーン用のヘッダ圧縮機能がないことを除いて、物理レイヤ506およびL2レイヤ508にとって実質的に同じである。制御プレーンはまた、レイヤ3(L3レイヤ)の中に無線リソース制御(RRC)サブレイヤ516を含む。RRCサブレイヤ516は、無線リソース(すなわち、無線ベアラ)を取得すること、およびeNBとUEとの間のRRCシグナリングを使用して下位レイヤを構成することを担当する。
図6は、アクセスネットワーク中でUE650と通信しているeNB610のブロック図である。DLでは、コアネットワークからの上位レイヤパケットが、コントローラ/プロセッサ675に与えられる。コントローラ/プロセッサ675は、L2レイヤの機能性を実装する。DLでは、コントローラ/プロセッサ675は、ヘッダ圧縮、暗号化、パケットのセグメント化および並べ替え、論理チャネルとトランスポートチャネルとの間の多重化、ならびに、様々な優先順位基準に基づくUE650への無線リソース割振りを行う。コントローラ/プロセッサ675はまた、HARQ動作、紛失したパケットの再送信、およびUE650へのシグナリングを担う。
送信(TX)プロセッサ616は、L1レイヤ(すなわち、物理レイヤ)のための種々の信号処理機能を実施する。信号処理機能は、UE650における前方誤り訂正(FEC)を容易にするためのコーディングおよびインターリービング、ならびに様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、多値直交振幅変調(M-QAM))に基づく信号コンスタレーションへのマッピングを含む。次いで、コーディングおよび変調されたシンボルが、並列ストリームに分割される。次いで、各ストリームは、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域において基準信号(たとえば、パイロット)と多重化され、次いで、逆高速フーリエ変換(IFFT)を使用して合成されて、時間領域のOFDMシンボルストリームを搬送する物理チャネルを生成する。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器674からのチャネル推定値が、コーディングおよび変調方式を決定するために、ならびに空間処理のために使用され得る。チャネル推定値は、UE650によって送信された基準信号および/またはチャネル状態のフィードバックから導出され得る。次いで、各空間ストリームは、別個の送信機618TXを介して異なるアンテナ620に与えられる。各送信機618TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調する。加えて、eNB610は、ULLフレーム構造、たとえば、限定はしないが、フレーム構造800(図8)、フレーム構造900(図9)、フレーム構造1100(図11)などを使用してリソース許可をUE650に通信するように構成されたスケジューリングコンポーネント602を含み得、これらのフレーム構造は(たとえば、図7のタイムライン700、702に示すような)1つのシンボルのTTIを含み得る。スケジューリングコンポーネント602はコントローラ/プロセッサ675に結合されるものとして示されているが、スケジューリングコンポーネント602がまた他のプロセッサ(たとえば、RXプロセッサ670、TXプロセッサ616など)に結合され得ること、および/または本明細書で説明するアクションを実施するように1つまたは複数のプロセッサ616、670、675によって実装され得ることは諒解されたい。
UE650において、各受信機654RXは、それぞれのアンテナ652を介して信号を受信する。各受信機654RXは、RFキャリア上で変調されている情報を復元し、情報を受信(RX)プロセッサ656に供給する。RXプロセッサ656は、L1レイヤの様々な信号処理機能を実施する。RXプロセッサ656は、情報に関する空間処理を実行して、UE650に向けられるあらゆる空間ストリームを復元する。複数の空間ストリームがUE650に宛てられた場合、それらは、RXプロセッサ656によって単一のOFDMシンボルストリームに結合され得る。次いで、RXプロセッサ656は、高速フーリエ変換(FFT)を使用して、OFDMAシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号のサブキャリアごとに別個のOFDMシンボルストリームを備える。各サブキャリア上のシンボル、および基準信号は、eNB610によって送信された最も可能性の高い信号コンスタレーションポイントを決定することによって、復元され復調される。これらの軟判定は、チャネル推定器658によって計算されたチャネル推定値に基づき得る。次いで、軟判定は復号されデインタリーブされて、物理チャネル上でeNB610によって最初に送信されていたデータおよび制御信号が復元される。次いで、データおよび制御信号は、コントローラ/プロセッサ659に与えられる。
コントローラ/プロセッサ659はL2レイヤを実装する。コントローラ/プロセッサは、プログラムコードおよびデータを記憶するメモリ660に関連付けられ得る。メモリ660は、コンピュータ可読媒体と呼ばれ得る。ULにおいて、コントローラ/プロセッサ659は、トランスポートチャネルと論理チャネルとの間の逆多重化、パケット再構築、復号、ヘッダ圧縮解除、コアネットワークからの上位レイヤのパケットを復元するための制御信号処理を提供する。次いで、上位レイヤパケットはデータシンク662に提供され、データシンク662はL2レイヤの上のすべてのプロトコルレイヤを表す。様々な制御信号も、L3処理のためにデータシンク662に提供され得る。コントローラ/プロセッサ659はまた、HARQ動作をサポートするために、肯定応答(ACK)および/または否定応答(NACK)のプロトコルを使用した誤り検出を担う。加えて、UE650は、本明細書で説明するように、ULLフレーム構造を使用して受信、復号、送信、および動作するように構成された通信コンポーネント661を含み得る。通信コンポーネント661はコントローラ/プロセッサ659に結合されるものとして示されているが、通信コンポーネント661がまた他のプロセッサ(たとえば、RXプロセッサ656、TXプロセッサ668など)に結合され得ること、および/または本明細書で説明するアクションを実施するように1つまたは複数のプロセッサ656、659、668によって実装され得ることは諒解されたい。
ULでは、データソース667は、上位レイヤパケットをコントローラ/プロセッサ659に与えるために使用される。データソース667は、L2レイヤの上のすべてのプロトコルレイヤを代表する。eNB610によるDL送信に関して説明された機能と同様に、コントローラ/プロセッサ659は、ヘッダ圧縮、暗号化、パケットのセグメント化および再順序付け、ならびに、eNB610による無線リソース割振りに基づく論理チャネルとトランスポートチャネルとの間の多重化を提供することによって、ユーザプレーンおよび制御プレーンのためのL2レイヤを実装する。また、コントローラ/プロセッサ659は、HARQ動作、失われたパケットの再送、およびeNB610へのシグナリングも担う。
eNB610によって送信された基準信号またはフィードバックからチャネル推定器658によって導出されたチャネル推定値は、適切なコーディングおよび変調方式を選択し、空間処理を容易にするために、TXプロセッサ668によって使用され得る。TXプロセッサ668によって生成された空間ストリームは、別個の送信機654TXを介して異なるアンテナ652に供給される。各送信機654TXは、送信用のそれぞれの空間ストリームでRFキャリアを変調する。
UL送信は、UE650における受信機機能に関連して説明されたものと同様の方法で、eNB610において処理される。各受信機618RXは、それのそれぞれのアンテナ620を通じて信号を受信する。各受信機618RXは、RFキャリア上に変調されている情報を復元し、その情報をRXプロセッサ670に供給する。RXプロセッサ670は、L1レイヤを実装し得る。
コントローラ/プロセッサ675はL2レイヤを実装する。コントローラ/プロセッサ675は、プログラムコードおよびデータを記憶するメモリ676と関連付けられ得る。メモリ676は、コンピュータ可読媒体と呼ばれ得る。ULでは、コントローラ/プロセッサ675は、UE650からの上位層パケットを復元するために、トランスポートチャネルと論理チャネルとの間での逆多重化と、パケット再構築と、復号と、ヘッダ復元と、制御信号処理とを行う。コントローラ/プロセッサ675からの上位レイヤパケットは、コアネットワークに提供され得る。コントローラ/プロセッサ675はまた、HARQ動作をサポートするために、ACKおよび/またはNACKのプロトコルを使用する誤り検出を担当する。
図7は、ワイヤレス通信システムにおけるULL通信を管理するための、図において時間が左から右に流れるULLタイムライン700、702の非限定的な例を示す図である。この例では、タイムライン700、702は、サブフレームの各シンボル内にシンボル持続時間のULLフレームを含んでいる。タイムライン700、702はいずれも、ULL物理ダウンリンク制御チャネル(uPDCCH)および/または物理ダウンリンク共有チャネル(uPDSCH)のTTIを表すシンボルと、uPUCCHおよび/またはuPDSCHを含んだTTIを表すシンボルとを示している。タイムライン700において、14個のシンボル710、711などが所与のサブフレーム712(たとえば、ノーマルCP)内に示されており、またタイムライン702において、12個のシンボル720、721などが、所与のサブフレーム722(たとえば、拡張CP)内に示されている。いずれの場合も、(LTEにおけるサブフレームベースのTTIとは対照的に)シンボルベースのTTIを利用することによって、より低いレイテンシがULLにおいて達成される。他の例では、TTIが2つ以上のシンボル、サブフレームのスロット(ここでサブフレームは2つのスロットを含む)などであり得ることは諒解されたい。加えて、HARQプロセス応答時間は、ULL通信に対するTTIの持続時間に基づいて、数シンボル分(たとえば、3シンボル分、4シンボル分など)、シンボルの数セット分(たとえば、3双対シンボル分、4双対シンボル分など)、数スロット分(たとえば、3スロット分、4スロット分など)程度となり得る。図示の例では、ULL通信は、持続時間において1シンボル分であり、uPDCCH/uPDSCHはシンボル0において送られ、HARQは、サブフレーム内でシンボル4などにおいて処理され、送られる。したがって、ULL通信におけるHARQレイテンシと関連付けられる時間量は、短縮されたTTI持続時間に基づいて、同様にLTE通信における対応するHARQレイテンシ未満である。
図8は、ULL LTE(および/またはLTE)通信のための例示的なフレーム構造800を示している。たとえば、説明したように、フレーム構造800は、(たとえば、OFDM、SC-FDM、または図7におけるシンボル710、711、720、721などの同様のシンボルの)シンボル持続時間TTI、2つ以上のシンボル持続時間TTI、周波数において垂直方向に(また説明したように時間において水平方向に)表されるスロット持続時間TTIなどを表し得る。いずれの場合も、ULLのフレーム構造は、現在のLTE ULフレーム構造内に定義され得る。たとえば、フレーム構造800は、フレームの端部に(たとえば、アップリンク周波数帯域幅において)LTEのPUCCH領域802を含み、これらのPUCCH領域802は、この例ではULL LTEフレーム構造によって乱されていない。むしろ、ULLフレーム構造は、LTEにおけるPUSCH領域804内に定義される。
本例で示すように、LTE PUSCH領域806のうちの少なくとも一部は、場合によってはLTE PUSCH領域804内に維持され、uPUCCH領域808およびuPUSCH領域810もまたLTE PUSCH領域804内に含められる。この例示的なフレーム構造800では、uPUCCH領域808は同様に、ULLに使用可能であるLTE PUSCH領域804の端部にある。LTE PUSCH領域804の残りは、(たとえば、eNBまたは他のネットワークノードによるスケジューリングに基づいて)PUSCH領域806とuPUSCH領域810とに分割され得る。LTEとULLとが所与のTTI内で共存し得るように、実質的にどんなフレーム構造が採用されてもよいことは諒解されたい。さらに、本明細書でさらに説明するように、たとえば、eNBはフレーム構造800内の領域に従って1つまたは複数のUEにリソースを割り振ることができ(したがってLTEおよび/またはULL通信をサポートすることができ)、受信側のUEは、eNBによってUEに割り振られたリソースを使用することによって、フレーム構造に対していくぶんかアグノスティックとなり得る。
図9は、ULL(および/またはLTE)通信のための例示的なフレーム構造900を示している。たとえば、説明したように、フレーム構造900は、(たとえば、OFDM、SC-FDM、または図7におけるシンボル710、711、720、721などの同様のシンボルの)シンボル持続時間TTI、2つ以上のシンボル持続時間TTI、周波数において垂直方向に(また説明したように時間において水平方向に)表されるスロット持続時間TTIなどを表し得る。いずれの場合も、説明したように、ULLのフレーム構造は、現在のLTE ULフレーム構造内に定義され得る。たとえば、フレーム構造900は、フレームの端部にLTEのPUCCH領域802を含み、これらのPUCCH領域802は、この例ではULL LTEフレーム構造によって乱されていない。むしろ、ULLフレーム構造は、LTEにおけるPUSCH領域804内に定義される。
この例では、ULLに使用可能なRBは、TTI(NRB UL)-オフセット(NRB Offset)においてUL通信に利用可能な総RBとして定義され得、ここでNRB Offsetは、LTEにおけるPUCCH領域802と、ULL LTEにおけるおそらくはuPUCCH領域との組み合わされたサイズに適応するように意図され得る。ULL通信に使用可能なRBは、RBグループ902などのいくつかのRBグループにさらに分割され得るが、それらのRBグループは周波数において連続していてもよく、またRB904などのいくつかのRBを含んでもよい。この例では、14個のRBの4つのRBグループが示されている(たとえば、LTEとよく似ているが、RBは、サブフレーム持続時間の代わりに、シンボル持続時間、2つ以上のシンボル持続時間、スロット持続時間などの中で分割される)。uPUCCHおよび/またはuPUSCH通信はしたがって、RBグループ内のRBにまたがって(たとえば、フレーム構造800に従って)スケジュールされ得る。
一例では、各RBグループ902は、2、3、5などの倍数の個数のRBを含み得るが、ここで各グループは、RBの個数において等しいことも、等しくないこともあり得る。たとえば、RBグループにおけるRBの個数は、構成された開始オフセット(NRB Offset)、TTIに対して決定されたuPUSCH帯域幅などに基づき得る。特定のシステム帯域幅を達成するためのRBグループサイズの1つの具体例が以下であり得る。
加えて、たとえば、RBの個数は、特定のシンボルタイプ(たとえば、サウンディング基準信号(SRS)(本明細書では「非SRSシンボル」とも呼ぶ))については同様であり得るが、SRSを含むシンボルタイプのシンボル(本明細書では「SRSシンボル」とも呼ぶ)が、特定のSRS帯域幅と関連付けられるいくつかのRBを有し得る。たとえば、現在のLTEセル固有のSRS帯域幅では、5/10/15/20メガヘルツ(MHz)について、5MHzはSRSに対して36/32/24/20/16/12/8/4個のRBをサポートし、10MHzはSRSに対して48/40/36/32/24/20/16個のRBをサポートし、15MHzはSRSに対して72/64/60/48/40/36/32個のRBをサポートし、20MHzはセル固有のSRSに対して96/80/72/64/60/48個のRBをサポートすることになり得る。加えて、一例では、uPUSCHに対するRBおよび/またはRBグループの個数はそれに応じて、ULLにおけるSRSの帯域幅に部分的に基づいて調節され得るが、ここでuPUSCHはセル固有のSRSを含む。セル固有のSRS帯域幅が狭い(たとえば、4 RBまたは8 RB)場合、uPUSCH送信がSRSシンボルでサポートされることも、されないこともあることに留意されたい。代替的に、そのような場合、uPUSCHはサポートされ得るが、非SRSシンボル内のようにRBグループ管理に従わないこともある。たとえば、セル固有のSRS帯域幅が、100 RBのアップリンク帯域幅において16 RBである場合、uPUSCHは、16 RBのセル固有のSRS帯域幅を除外し、残りの84 RBを4つのグループに分割することによって割り当てられ得る。別の例として、セル固有のSRS帯域幅が、100 RBのアップリンク帯域幅において16 RBである場合、uPUSCHは、16 RBをグループとして使用し、残りの84 RBを3つの他のグループに分割することによって割り当てられ得る。
いずれの場合も、eNBは、上記に示したフレーム構造800および/または900を使用して、TTI内の1つまたは複数のRBグループ内の対応するRBの個数に基づいて、uPUSCHの決定された帯域幅に従って1つまたは複数のUEにリソースを割り当て得る。
図10は、ULL通信におけるRS送信のための例示的なタイムライン1000、1010を示している。タイムライン1000は、LTEサブフレーム内のシンボル持続時間であるULLフレームにおけるuPUCCH/uPUSCH 1004の送信を含む。加えて、ULL RS(uRSとも呼ばれる)送信1002が、異なるシンボルでタイムライン1000内に示されている。説明したように、所与のUEのためのuRSの送信は、uPUCCHおよび/またはuPUSCHの送信なしに起こり得ることは諒解されたい。タイムライン1000において、uRSの送信は周期的(たとえば、6個のシンボル、次いで9個のシンボルごと)であり得るが、送信は同様に非周期的であってもよい。いずれの場合も、以下でさらに説明するように、uRS送信のトリガリングは、eNBによって(たとえば、本明細書で説明するように、UEへの1つまたは複数のリソース許可においてまたは別の方式で)指定され得る。
タイムライン1010は、シンボル1012において受信されたアップリンク許可を示しており、このアップリンク許可は、シンボル1014におけるuRS送信およびシンボル1016におけるuPUSCH送信を指定し得る。uRSの送信は、この例では、アップリンク許可がuRSの送信をトリガするように非周期的であり得る(したがって、uRSはアップリンク許可を受信することに基づくものであり、必ずしも一定期間に基づくものではない)。一例では、シンボル1014におけるuRSの送信は、シンボル1016におけるuPUSCHの送信に関連付けられ得る。たとえば、シンボル1012におけるリソース許可がシンボル1016におけるuPUSCH送信およびuRSトリガを指定する場合、UEは、許可においてuRSトリガを受信することに基づいて、先行するシンボル1014においてuRSを送信することを決定し得る。この点について、たとえば、トリガは、uRSを送信するためのアップリンクリソース許可に関連するシンボルの前のシンボル数(または、より一般的にはTTI)を指定し得る。図示されていないが、uRSがトリガされない別のuPUSCH送信、たとえばシンボル1016の直後のシンボルに、同じUEがスケジュールされ得る。この場合、このuPUSCH送信は、復調については、シンボル1012におけるuRSに依拠し得る。図示されていないが、付随するuPUSCHまたはuPUCCHなしに、1つまたは複数のシンボルにおいてuRS送信をスケジュールすることも可能である。
図11は、ULL通信のための例示的なフレーム構造1100を示している。たとえば、説明したように、フレーム構造1100は、(たとえば、OFDM、SC-FDM、または同様のシンボルの)シンボル持続時間TTI、2つ以上のシンボル持続時間TTI、スロット持続時間TTIなどを表し得る。いずれの場合も、フレーム構造1100は、現在のLTE ULフレーム構造内で定義され得、フレーム構造800(図8)と同様であり得る。たとえば、フレーム構造1100は、フレームの端部にPUCCH領域802を含み、これらのPUCCH領域802は、この例ではULLフレーム構造によって乱されていない。むしろ、ULLフレーム構造は、LTEにおけるPUSCH領域804内に定義される。したがって、図示のように、PUSCH領域806は、場合によってはLTE PUSCH領域804内に維持され、uPUCCH領域808およびuPUSCH領域810も含められる。この例示的なフレーム構造1100では、uPUCCH領域808は同様に、ULLに使用可能であるLTE PUSCH領域804の端部にある。LTE PUSCH領域804の残りは、PUSCH領域806とuPUSCH領域810とに分割され得る。
加えて、uRS領域1102は、本明細書でさらに説明するように、受信したトリガに基づいてuRSを送信するために、uPUCCH領域808およびuPUSCH領域810内に定義される。さらに、この点について、uRSはuPUCCHとuPUSCHの両方のために送信され得る(たとえば、uPUCCHのためのuRSは、uPUCCHを介した通信を復調するのを支援するためのDM-RSであり得、uPUSCHのためのuRSは、uPUSCHを介した通信を復調するのを支援するためのDM-RSであり得る)。uPUCCHのためのuRSは、uPUCCH領域808のuRS領域1102に示すように、狭帯域でありかつ半静的周波数位置にあってもよく、一方で、PUSCHのためのuRSは、uPUSCH領域810内のuRS領域1102内に示すように、広帯域でありかつ潜在的に動的周波数位置にあってもよい。この点について、uRSは、uPUCCHまたはuPUSCHのものと一致する帯域幅サイズ、周波数位置、アンテナポートの数などのうちの少なくとも1つを有し得る。LTEとULLとが所与のTTI内で共存し得るように、実質的にどんなフレーム構造が採用されてもよいことは諒解されたい。さらに、本明細書でさらに説明するように、たとえば、eNBはフレーム構造1100に従ってリソースを割り振ることができ(したがってLTEおよび/またはULL通信をサポートすることができ)、受信側のUEは、eNBによって割り振られたリソースを使用することによって、フレーム構造に対していくぶんかアグノスティックとなり得る。
図12〜図18を参照すると、本明細書で説明するアクションまたは機能を実行することができる1つまたは複数の構成要素および1つまたは複数の方法に関して態様が示されている。一態様では、本明細書において使用されるときに、「構成要素」という用語は、システムを構成する部品のうちの1つとすることができ、ハードウェアまたはソフトウェアまたはそれらの何らかの組合せとすることができ、他の構成要素に分割することができる。図13〜図18において後述する動作は、特定の順序で、および/または例示的な構成要素によって実行されるものとして提示されるが、アクションの順序およびアクションを実行する構成要素は、実装形態に応じて変えられる可能性があることを理解されたい。その上、以下のアクションまたは機能は、特別にプログラムされたプロセッサ、特別にプログラムされたソフトウェアもしくはコンピュータ可読媒体を実行するプロセッサ、または説明されるアクションもしくは機能を実行することが可能なハードウェアコンポーネントおよび/もしくはソフトウェアコンポーネントの任意の他の組合せによって実行される場合があることは理解されたい。
図12は、ULLを使用してワイヤレスネットワークにおいて通信するための例示的なシステム1200を示している。システム1200は、上記の図1、図2、図6などにその例が記載されているワイヤレスネットワークにアクセスするために、eNB1204と通信するUE1202を含んでいる。UE1202は、eNB1204によってワイヤレスネットワーク(たとえば、コアネットワーク130)と通信し得る。一態様では、eNB1204およびUE1202は、構成された通信リソースを介してeNB1204からUE1202に制御および/またはデータメッセージ(たとえばシグナリング)を通信するために、ダウンリンク信号1209がeNB1204によって(たとえば、トランシーバ1256を介して)送信され、UE1202によって(たとえば、トランシーバ1206を介して)受信され得る1つまたは複数のダウンリンクチャネルを確立し得る。さらに、たとえば、eNB1204およびUE1202は、構成された通信リソースを介してUE1202からeNB1204に制御および/またはデータメッセージ(たとえばシグナリング)を通信するために、アップリンク信号1208がUE1202によって(たとえば、トランシーバ1206を介して)送信され、eNB1204によって(たとえば、トランシーバ1256を介して)受信され得る1つまたは複数のアップリンクチャネルを確立し得る。たとえば、eNB1204は、本明細書で説明したように、UE1202がULLおよび/またはLTE通信1282をeNB1204に(たとえば、関連する制御データ、基準信号などとともに)送信し得るリソースを示し得るアップリンクリソース許可1280をUE1202に通信し得る。
一態様では、UE1202は、たとえば1つまたは複数のバス1207を介して通信可能に結合され得る1つもしくは複数のプロセッサ1203および/またはメモリ1205を含み得、また、本明細書で説明したように、1つもしくは複数のeNBまたは他のネットワークノードとのULL通信を受信および送信するための通信コンポーネント661とともに動作し得るか、またはさもなければその通信コンポーネント661を実装し得、そのULL通信は、ダウンリンクまたはアップリンクULLチャネルのためのeNB1204からULLリソース許可を受信することと、ULLリソースを介して通信することとを含み得る。たとえば、通信コンポーネント661に関連する様々な動作は実装され得るか、さもなければ1つまたは複数のプロセッサ1203によって実行され得、一態様では、単一のプロセッサによって実行され得るが、他の態様では、動作のうちの異なるものが、2つ以上の異なるプロセッサの組合せによって実行され得る。たとえば、一態様では、1つまたは複数のプロセッサ1203は、モデムプロセッサ、またはベースバンドプロセッサ、またはデジタル信号プロセッサ、または特定用途向け集積回路(ASIC)、または送信プロセッサ、受信プロセッサ、またはトランシーバ1206に関連付けられたトランシーバプロセッサのうちの任意の1つもしくは任意の組合せを含んでよい。さらに、たとえば、メモリ1205は、限定はしないが、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM)、磁気記憶装置(たとえば、ハードディスク、フロッピーディスク、磁気ストリップ)、光ディスク(たとえば、コンパクトディスク(CD)、デジタル多用途ディスク(DVD))、スマートカード、フラッシュメモリデバイス(たとえば、カード、スティック、キードライブ)、レジスタ、リムーバブルディスク、ならびに、コンピュータまたは1つまたは複数のプロセッサ1203によってアクセスおよび読み取りされ得るソフトウェアおよび/またはコンピュータ可読命令を記憶するための任意の他の適切な媒体を含む非一時的コンピュータ可読媒体であってもよい。さらに、メモリ1205またはコンピュータ可読記憶媒体は、1つまたは複数のプロセッサ1203内に常駐しても、1つまたは複数のプロセッサ1203の外部にあっても、1つまたは複数のプロセッサ1203を含む複数のエンティティにわたって分散するなどしてもよい。
特に、1つまたは複数のプロセッサ1203および/またはメモリ1205は、通信コンポーネント661またはそのサブコンポーネントによって定義されたアクションまたは動作を実行し得る。たとえば、1つまたは複数のプロセッサ1203および/またはメモリ1205は、eNB1204からリソース許可を取得するために、リソース許可受信コンポーネント1210によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、リソース許可受信コンポーネント1210は、ハードウェア(たとえば、1つまたは複数のプロセッサ1203の1つまたは複数のプロセッサモジュール)、ならびに/または、本明細書で説明する特別構成のリソース許可受信および/または処理動作を実施するために、メモリ1205に記憶され、1つもしくは複数のプロセッサ1203のうちの少なくとも1つによって実行可能なコンピュータ可読コードおよび/もしくは命令を含み得る。さらに、たとえば、1つまたは複数のプロセッサ1203および/またはメモリ1205は、リソース許可に関連付けられるTTIを決定するためのTTI決定コンポーネント1212によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、TTI決定コンポーネント1212は、ハードウェア(たとえば、1つまたは複数のプロセッサ1203の1つまたは複数のプロセッサモジュール)、および/または、本明細書で説明する特別構成のTTI決定を実施するために、メモリ1205に記憶され、1つもしくは複数のプロセッサ1203のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含んでもよい。さらに、たとえば、1つもしくは複数のプロセッサ1203および/またはメモリ1205は、場合によっては、許可されたリソースを介して通信を送信するためのトランスポートブロックサイズ(TBS)、TBSスケーリング係数などを決定するためのオプションのTBS決定コンポーネント1214によって定義されるアクションまたは動作を実行し得る。一態様では、たとえば、TBS決定コンポーネント1214は、ハードウェア(たとえば、1つまたは複数のプロセッサ1203の1つまたは複数のプロセッサモジュール)、および/または、本明細書で説明する特別構成のTBS決定動作を実施するために、メモリ1205に記憶され、1つもしくは複数のプロセッサ1203のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含み得る。さらに、たとえば、1つまたは複数のプロセッサ1203および/またはメモリ1205は、場合によっては、ULL通信またはレガシーワイヤレス技術を介した通信を優先すべきかどうかを決定するためのオプションの通信優先順位付けコンポーネント1216によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、通信優先順位付けコンポーネント1216は、ハードウェア(たとえば、1つまたは複数のプロセッサ1203の1つまたは複数のプロセッサモジュール)、および/または、本明細書で説明する特別構成の通信優先順位付け動作を実施するために、メモリ1205に記憶され、1つもしくは複数のプロセッサ1203のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含み得る。さらに、たとえば、1つまたは複数のプロセッサ1203および/またはメモリ1205は、1つまたは複数のRSを送信するトリガを取得するためのオプションのRSトリガ受信コンポーネント1218によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、RSトリガ受信コンポーネント1218は、ハードウェア(たとえば、1つまたは複数のプロセッサ1203の1つまたは複数のプロセッサモジュール)、および/または、本明細書で説明する特別構成のRSトリガリング動作を実施するために、メモリ1205に記憶され、1つもしくは複数のプロセッサ1203のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含み得る。
同様に、一態様では、eNB1204は、たとえば1つまたは複数のバス1257を介して通信可能に結合され得る1つもしくは複数のプロセッサ1253および/またはメモリ1255を含んでよく、また、本明細書で説明したように、割り当てられたULLリソースを介してUE1202と通信するための1つまたは複数のスケジューリングコンポーネント602とともに動作するか、さもなければそのスケジューリングコンポーネント602を実装してもよく、UE1202と通信することは、ULLリソースに従ってUE1202および/または他のUEのためのリソース許可を提供することを含み得る。たとえば、スケジューリングコンポーネント602に関連する様々な機能は実装されるか、さもなければ1つまたは複数のプロセッサ1253によって実行されてもよく、一態様では、単一のプロセッサによって実行され得るが、上記で説明したように、他の態様では、機能のうちの異なるものが、2つ以上の異なるプロセッサの組合せによって実行され得る。一例では、1つまたは複数のプロセッサ1253および/またはメモリ1255は、UE1202の1つもしくは複数のプロセッサ1203および/またはメモリ1205に関して上記の例で説明したように構成されてもよいことを諒解されたい。
一例では、1つまたは複数のプロセッサ1253および/またはメモリ1255は、スケジューリングコンポーネント602またはそのサブコンポーネントによって定義されたアクションまたは動作を実行し得る。たとえば、1つもしくは複数のプロセッサ1253および/またはメモリ1255は、1つまたは複数のUEのULLフレーム構造に従って1つまたは複数のリソース許可を生成するためのリソース許可生成コンポーネント1220によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、リソース許可生成コンポーネント1220は、ハードウェア(たとえば、1つまたは複数のプロセッサ1253の1つまたは複数のプロセッサモジュール)、ならびに/または、本明細書で説明する特別構成のリソース許可生成動作を実施するために、メモリ1255に記憶され、1つもしくは複数のプロセッサ1253のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含み得る。さらに、たとえば、1つもしくは複数のプロセッサ1253および/またはメモリ1255は、1つまたは複数のUEからリソース許可を介して受信された通信においてチャネルまたは干渉を推定するためのオプションのチャネル/干渉推定コンポーネント1222によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、チャネル/干渉推定コンポーネント1222は、ハードウェア(たとえば、1つまたは複数のプロセッサ1253の1つまたは複数のプロセッサモジュール)、ならびに/または、本明細書で説明する特別構成のチャネルおよび/もしくは干渉推定動作を実施するために、メモリ1255に記憶され、1つもしくは複数のプロセッサ1253のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含み得る。さらに、たとえば、1つまたは複数のプロセッサ1253および/またはメモリ1255は、1つまたは複数のUEによるRS送信をトリガするためのオプションのRSトリガリングコンポーネント1224によって定義されたアクションまたは動作を実行し得る。一態様では、たとえば、RSトリガリングコンポーネント1224は、ハードウェア(たとえば、1つまたは複数のプロセッサ1253の1つまたは複数のプロセッサモジュール)、ならびに/または、本明細書で説明する特別構成のSDI要求受信動作を実施するために、メモリ1255に記憶され、1つもしくは複数のプロセッサ1253のうちの少なくとも1つによって実行可能なコンピュータ可読コードもしくは命令を含み得る。
トランシーバ1206、1256は、1つまたは複数のアンテナ、RFフロントエンド、1つまたは複数の送信機、および1つまたは複数の受信機を通じてワイヤレス信号を送信および受信するように構成されてもよいことは諒解されたい。一態様では、トランシーバ404、454は、UE1202および/またはeNB1204が特定の周波数で通信し得るように、指定された周波数で動作するように同調され得る。一態様では、関連するアップリンクまたはダウンリンク通信チャネルを介してアップリンク信号1208および/またはダウンリンク信号1209をそれぞれ通信するために、構成、通信プロトコルなどに基づいて、指定された周波数および電力レベルで動作するように、1つもしくは複数のプロセッサ1203がトランシーバ1206を構成してもよく、かつ/または1つもしくは複数のプロセッサ1253がトランシーバ1256を構成してもよい。
一態様では、トランシーバ1206、1256は、トランシーバ1206、1256を使用して送受信されるデジタルデータを処理するように、複数のバンドで(たとえば、マルチバンドマルチモードモデム(図示せず)を使用して)動作し得る。一態様では、トランシーバ1206、1256はマルチバンドであり、特定の通信プロトコルのために複数の周波数バンドをサポートするように構成され得る。一態様では、トランシーバ1206、1256は、複数の動作ネットワークおよび通信プロトコルをサポートするように構成され得る。したがって、たとえば、トランシーバ1206、1256は、指定されたモデム構成に基づいて信号の送信および/または受信を可能にしてもよい。
ULLリソースをスケジューリングする一例では、図13は、受信されたULLリソース許可に従って通信を(たとえば、UE1202によって)送信するための方法1300を示している。ブロック1302において、UEは、ワイヤレスネットワークにおいて通信するためにネットワークエンティティからアップリンクリソース許可を受信し得る。リソース許可受信コンポーネント1210(図12)は、ワイヤレスネットワークにおいて通信するためにネットワークエンティティ(たとえば、eNB1204)からアップリンクリソース許可(たとえば、アップリンクリソース許可1280)を受信し得る。説明したように、たとえば、eNBは、トランシーバ1256を介して、UE1202にアップリンクリソース許可をダウンリンク信号1209として送信し得、このアップリンクリソース許可は、トランシーバ1206によって受信され、処理のために1つまたは複数のプロセッサ1203に供給され得る。たとえば、リソース許可は、レガシーワイヤレス通信技術の持続時間(たとえば、LTEサブフレームのシンボル持続時間、2つ以上のシンボル持続時間、スロット持続時間など)よりも短い持続時間を有するTTIに対応するULLフレーム構造に従って定義され得るULLリソース許可に対応し得る。一例では、ULLリソース許可は、上記で説明したULLフレーム構造800(図8)および/または900(図9)に従って定義され得、したがってTTI内の複数のRBおよび/またはRBグループを含み得る。加えて、この点について、たとえば、リソース許可生成コンポーネント1220(図12)は、(たとえば、UE1202およびeNB1204がULLフレーム構造に基づいて動作し得るULLフレーム構造に基づいて、許可においてリソースを指定するために)ULLフレーム構造に従ってUE1202のためのリソース許可を生成してもよく、スケジューリングコンポーネント602は、トランシーバ1206を介してリソース許可受信コンポーネント1210によって受信するために、トランシーバ1256を介してUE1202にリソース許可を通信(たとえば送信)し得る。
一例では、ブロック1302においてアップリンクリソース許可を受信することは、場合によっては、ブロック1304においてネットワークエンティティから多段階リソース許可を受信し得る。リソース許可受信コンポーネント1210は、ネットワークエンティティ(たとえば、eNB1204、コアネットワーク130など)から多段階リソース許可を受信し得るが、これは、トランシーバ1206による受信のためにトランシーバ1256によって送信された複数の別個のダウンリンク信号1209において、多段階リソース許可を受信することと、UE1202の1つまたは複数のプロセッサ1203によって処理することとを含み得る。たとえば、リソース許可生成コンポーネント1220によって生成されたリソース許可は、スケジューリングコンポーネント602が通信の複数のインスタンスにおいてUE1202に許可情報を送信するように、多段階リソース許可を含み得る。たとえば、第1段階のリソース許可において、リソース許可生成コンポーネント1220は、アップリンク許可のための変調およびコーディング方式(MCS)、UE1202からのアップリンク通信のための送信電力制御(TPC)、ならびに/またはプリコーディング情報を含み得る1つまたは複数のパラメータを含み得る。スケジューリングコンポーネント602は、リソース許可受信コンポーネント1210が(たとえば、通信コンポーネント661を介して)受信し得る第1段階のリソース許可をUE1202に送信し得る。1つの特定の例では、第1段階のリソース許可は、長さにおいて10〜13ビットであり得、PDCCH、拡張PDCCH(EPDCCH)などを介してeNB1204からUE1202に送信され得る。たとえば、第1段階の許可では、アップリンクリソース許可のためのMCSは5ビットであり得、TPCは2ビットであり得、プリコーディング情報は3〜6ビットであり得る。
第2段階のリソース許可では、リソース許可生成コンポーネント1220は、UE1202が以前の通信を再送信すべきか新しい通信を再送信すべきかを示すための新規データインジケータ(NDI)、NDIが関連するHARQプロセスを示すためのHARQプロセスアイデンティティ、第1段階のリソース許可においてシグナリングされたMCSからのMCSの変化を示すためのデルタMCS、RSを送信するときに、許可されたリソース全体にわたってリソースブロックに適用されるべきサイクリックシフトを示すRSサイクリックシフト、ULL RSトリガリングインジケータ(たとえば、本明細書でさらに説明するRSトリガリングコンポーネント1224によって準備されるRS送信をトリガリングするための1つもしくは複数の条件または関連するパラメータ)、チャネルステート情報(CSI)を報告するための1つもしくは複数の条件または関連するパラメータを示す非周期的な CSIトリガ、ならびに/または許可されたリソースの指示を含み得る1つもしくは複数の付加的なパラメータを含み得る。リソース許可受信コンポーネント1210はしたがって、通信コンポーネント661を介して多段階の割り当てを受信し得、多段階の割り当て(たとえば、MCSを使用すること、TPCを適用すること、RSサイクリックシフトに従ってRSを含めること、トリガを検出したときにCSIを通信するなど)において指定されたパラメータを使用してeNB1204に通信を送信するように通信コンポーネント661を構成し得る。特定の例では、第2段階のリソース許可は、許可がダウンリンクに対するものかアップリンクに対するものかを差別化する、1ビットであるビット、1ビットであるNDI、1ビットであるデルタMCS、1ビットのRSサイクリックシフト(復調RS(DM-RS)サイクリックシフトであり得る)(たとえば、ランク1の通信に対するシンボル0と6との間またはランク2の通信のためのシンボル0/6と3/9との間のDM-RSのサイクリックシフティングを実装するかどうかを示すため)、1ビットのuRSトリガリング指示、1ビットの非周期CSトリガ、ならびに/または4ビットのリソース割振りを含んだ10ビットであり得る。
加えて、一例では、ブロック1302においてアップリンクリソース許可を受信することは、場合によっては、ブロック1306においてネットワークエンティティからTBSスケーリング指示を受信し得る。リソース許可受信コンポーネント1210は、ネットワークエンティティから(たとえば、eNB1204から)TBSスケーリング指示を受信し得る。したがって、たとえば、リソース許可生成コンポーネント1220によって生成されたリソース許可は、リソース許可においてUE1202に割り振られたRBサイズに基づいたTBSスケーリングの指示を含み得る。したがって、リソース許可受信コンポーネント1210は、TBSスケーリング指示を受信し得、TBS決定コンポーネント1214は、TBSスケーリング指示および/またはリソース許可において割り振られた帯域幅に少なくとも部分的に基づいてULLリソースを使用して通信するためのTBSサイズを決定し得る。代替または追加として、TBS決定コンポーネント1214は、1つまたは複数の他のパラメータ(たとえば、eNB1204と通信する際の測定されたスループット、uPUSCH送信のためのリソースの利用可能性など)に基づいてTBSスケーリング係数を決定し得る。たとえば、TBS決定コンポーネント1214は、付加的なリソースがuPUSCH送信に利用可能である場合(たとえば、付加的なリソースがリソースの1つまたは複数のしきい値数を達成する場合など)、より大きなスケーリング係数を選択し得る。同様に、uPUSCH送信に利用可能なリソースがより少数である場合(たとえば、より少数のリソースがリソースの1つまたは複数のしきい値数未満の場合)、より小さなスケーリング係数が選択され得る。ブロック1302においてアップリンクリソース許可を受信することはまた、アップリンクリソース許可における1つまたは複数のRBグループのサイズが決定され得る開始オフセット、割り振られた帯域幅などのリソース許可に関連する他のパラメータを受信することを含み得ることは諒解されたい。
ブロック1308において、UEは、アップリンクリソース許可に基づいてサブフレーム内のアップリンク送信のためのTTIを決定し得る。一態様では、TTIは、少なくとも1つのシンボル、1つまたは複数のシンボル、スロットなどを含む。別の態様では、TTIは、サブフレーム内の複数のシンボルのサブセットである1つまたは複数のシンボルを含む。TTI決定コンポーネント1212は、リソース許可受信コンポーネント1210によって受信されたアップリンクリソース許可に基づいて、サブフレーム内のアップリンク送信のためのTTIを決定し得る。たとえば、ULLフレーム構造800、900に関して上記で説明したように、TTIはシンボル持続時間、複数シンボル持続時間、スロット持続時間などであり得、ここでLTEサブフレームはCPに応じて12個または14個のシンボルを備える。TTI決定コンポーネント1212は、eNB1204から受信された構成、eNB1204から受信されたリソース許可内の情報(たとえば、第2段階のリソース許可における許可リソースの指示)などに少なくとも部分的に基づいて、アップリンク送信のためのTTIを決定し得る。
ブロック1310において、UEは、TTIの間にアップリンクリソース許可において指定されたリソースを介してネットワークエンティティに通信を送信し得る。たとえば、一態様では、通信コンポーネント661は、TTIの間にアップリンクリソース許可において指定されたリソースを介してネットワークエンティティ(たとえば、eNB1204)に通信(たとえば、ULL通信1282)を送信し得、ここでTTIは、説明したように、持続時間においてサブフレームよりも短くなり得る。上述のように、通信を送信することは、1つまたは複数のプロセッサ1203が、RFフロントエンドなどを介して1つまたは複数のアンテナを介して送信する信号を生成するためのトランシーバ1206にデータおよび/または関係する信号情報を提供することを含み得る。たとえば、TTIの短縮が原因で、干渉は、TTI全体にわたって(たとえば、シンボル全体にわたって)変化することがあり、したがって、ULL通信のためにTTIレベルで(たとえば、シンボルレベル、2シンボルレベル、スロットレベルなどで)干渉消去を実施することが望ましくなり得る。この点について、一例では、ブロック1310において通信を送信することにより、場合によってはブロック1312において、干渉消去を容易にするために1つまたは複数の構成されたシンボルで1つまたは複数のシンボルがパンクチャされ得る。たとえば、パンクチャすることは、送信されるべきデータからシンボルが生成されると、1つまたは複数の構成されたシンボルで1つまたは複数のシンボルを置き換えることを指し得る。通信コンポーネント661は、ネットワークエンティティ(たとえば、eNB1204)に通信を送信する際の干渉消去を容易にするために、1つまたは複数の構成されたシンボルで1つまたは複数のシンボルをパンクチャし、それによって1つまたは複数のパンクチャドシンボルを定義し得る。パンクチャされるべき1つまたは複数のシンボルは、たとえば、eNB1204が既知の位置でパンクチャされた1つまたは複数の構成されたシンボルを観測し得るように、(たとえば、既知の位置がUE1202および/またはeNB1204において構成され得る)既知の位置にあり得る。
たとえば、パンクチャドシンボルは、(たとえば、トランシーバ1206に対応するプロセッサ内の)通信コンポーネント661が送信用の信号を生成するためにシンボルにDFTを実施する前にパンクチャされる(たとえば、置き換えられる)1つまたは複数のコーディング/変調されたシンボルを含み得る。加えて、たとえば、構成されたシンボルは、UE1202およびeNB1204によって知られている値(たとえば、UE1202(および/またはeNB1204)における構成の際に記憶される、eNB1204から受信されるなど)を有するシンボルであり得る。したがって、既知の構成されたシンボルは次いで、eNBがUE1202からの送信において構成されたシンボルを識別することを可能にし得、また、シンボル、後続のシンボル、サブフレームの1つまたは複数シンボルにわたる干渉を推定するために、受信された送信とともに構成されたシンボルの既知の値を利用し得る。この点において既知の構成されたシンボルでシンボルをパンクチャすることは、UE1202からeNB1204に送信されるべき信号のSC-FDM特性を保存することになり得る。加えて、パンクチャドシンボルは、アップリンクリソース許可に対応する変調次数よりも低い変調次数を有し得る。
さらに、UE1202は、ULLおよび他のRAT(たとえば、LTEなどのレガシーワイヤレス通信技術)を使用して通信するように動作可能となり得るので、場合によってはブロック1314において、UEは、サブフレーム持続時間の第2のTTIに関係する他の通信に基づいて通信を送信し得る。一態様では、他の通信はまた、TTIを介してスケジュールされ得る。たとえば、一態様では、通信コンポーネント661は、サブフレーム持続時間の第2のTTIに関連する他の通信(たとえば、LTE通信1282)に基づいて通信(たとえば、ULL通信1282)を送信し得るが、ここで他の通信もまたTTI(たとえば、ULL TTI)にまたがってスケジュールされ得る。上述のように、説明したように通信を送信することは、1つまたは複数のプロセッサ1203が、RFフロントエンドなどを介して1つまたは複数のアンテナを介して送信する信号を生成するためのトランシーバ1206にデータおよび/または関係する信号情報を提供することを含み得る。言い換えれば、「通信」は任意のULL通信であってよいが、「他の通信」は、限定はしないが、レガシーLTE通信で定義されるTTI、他のRATにおいて他の通信に関連付けられるTTIなど、ULL TTIとは異なるTTIに関係する任意の通信であってよい。したがって、一態様では、通信コンポーネント661は、(たとえば、ULLを介した)通信のスケジュールされた同時送信と、(たとえば、LTEなどのレガシーのワイヤレス通信技術を介した)他の通信との間の潜在的な競合を、同じ時間間隔(たとえば、サブフレームまたはその一部)において処理し得る。
たとえば、ブロック1314において他の通信に基づいて通信を送信することは、場合によっては、ブロック1316において、TTIの間に通信と他の通信とを同時に送信することを含み得る。たとえば、一態様では、通信コンポーネント661は、TTIの間に通信と他の通信との両方を同時に送信し得る。このことは、1つまたは複数のプロセッサ1203が送信のためにトランシーバ1206に提供するための信号を生成することを含み得るが、ここで、その信号は、その信号に対応する同様の周波数および/または時間リソースにおいて、通信および他の通信を含み得る。たとえば、このことは、通信コンポーネント661がそれぞれのリソースを介して通信と他の通信とを送信することを含み得るが、ここで、通信および他の通信に割り当てられたRBおよび/またはRBグループは競合しない(ただし、通信と他の通信は、1つもしくは複数のサブフレームまたはその一部分において時間領域で重複し得る)。別の例では、通信コンポーネント661は、通信と他の通信とを同時に送信し得るが、ここで、他の通信は、ULL通信上の他の通信からの制御情報を含むこと(たとえば、ピギーバックすること)(たとえば、PUCCHまたはPUSCHからuPUSCH送信に制御情報をピギーバックするなど)によって制御情報を含む。
たとえば、図8および図9を参照すると、このピギーバックすることは、通信コンポーネント661が、ULL領域(たとえば、uPUSCH領域810および/またはuPUCCH領域808)においてULL通信を通信する間に、PUCCH領域802(および/またはULL通信用に構成されたフレーム構造に応じてPUSCH領域806)における他の通信のための制御情報を送信することを含み得る。PUCCH通信は、ACK/NACK、スケジューリング要求(SR)、CSIなどのアップリンク制御インジケータ(UCI)を含み得る。別の例では、しかしながら、通信コンポーネント661は、領域804における他の通信のための制御情報を送信し得る。
別の例では、ブロック1314において通信を送信することは、場合によっては、ブロック1318において、他の通信よりも通信を優先させ得る。通信優先順位付けコンポーネント1216は、TTIにおいて他の通信(たとえば、LTE通信)よりも通信(たとえば、ULL通信)を優先させ得る。たとえば、1つまたは複数のアップリンクリソース許可がeNB1204から受信される結果として、通信(たとえば、ULL通信)と他の通信(たとえば、LTE通信)が同様のリソース(たとえば、TTIが重複する)においてスケジュールされることになり、これは本明細書では衝突または衝突リソースと呼ばれる。たとえば、ULL通信は、他の通信がスケジュールされているサブフレームTTI内にシンボルがあるシンボルTTIにおいてスケジュールされ得る。
この点について、ブロック1318において通信を優先することは、通信優先順位付けコンポーネント1216が、他の通信の送信と重複するリソースにおける送信のためにULL通信を優先させること、通信優先順位付けコンポーネント1216が、サブフレームにおける後続のTTIで生じ得るULL通信を優先させる際に、TTI(たとえば、LTEサブフレーム)全体にわたって他の通信をドロップすることなどを含み得る。これにより、ULL通信を送信するために生成された信号においてシングルキャリア波形が保存され得るが、このことは、シングルキャリア信号が低いPAPRを示すためにUE1202がリンク制限されている場合に有益となり得る。他の通信よりも通信を優先させることに関係する上記の例では、通信は、ULLにおけるuPUCCH通信、uPUSCH通信、uRS通信などに関係し得、かつ/または、他の通信は、LTEにおけるPUCCH通信、PUSCH通信、SRS通信などに関係し得る。
しかしながら、ULL通信がPUCCH LTE通信よりも優先される場合、たとえば、1つまたは複数のPUCCHシンボルをドロップすることは、RBにわたる時間領域の広がりが原因で、LTEにおいて現在定義されているPUCCHフォーマット(たとえば、フォーマット1、1a、1b、2a、2b、3など)に基づいて、同じRBの他のPUCCHとの非直交性を引き起こし得る。したがって、たとえば、ULL通信を優先させることは、通信コンポーネント661が、LTEで現在定義されているPUCCHフォーマットのほかに新たに定義されたフォーマットを使用して、他の通信(たとえば、LTEにおけるPUCCH通信)を送信することを含み得るが、ここで、新たに定義されたフォーマットは、RBにわたって時間領域に広がるものではないか、またはさもなければ、時間領域の広がりにおけるギャップを許容するものである。別の例では、通信コンポーネント661は、他の通信と重複するRB内のULL通信を送信することを決定したことなどに基づいて、ULL通信を送信するために使用されるものとは異なるRB内の他の通信を送信し得る。
追加として、または代替として、たとえば、1314において他の通信に基づいて通信を送信することは、場合によっては、ブロック1320において、他の通信よりも通信を優先させ得る。通信優先順位付けコンポーネント1216は、いくつかの例では通信(たとえば、ULL通信)よりも他の通信(たとえば、LTE通信)を優先させ得る。たとえば、他の通信が、上位層のシグナリング(たとえば、eNB1204とのRRC接続に関係するシグナリングなどのRRCシグナリング)に対応する場合、通信優先順位付けコンポーネント1216は、通信と他の通信がいずれも最初にスケジュールされる(たとえば、衝突する)サブフレームまたはその一部分においてULL通信が送信されないように、他の通信を優先させ得る。
別の例では、ブロック1310において通信を送信する際、ULL内のuPUSCH通信用のリソースとuRS通信用のリソースとが衝突する可能性がある(たとえば、リソース許可受信コンポーネント1210がuRSトリガでリソース許可を受信する)。一例では、そのような衝突が存在する場合、通信コンポーネント661は、TTIの間にuRSの代わりにuPUSCHを送信し得る。別の例では、通信コンポーネント661は、TTIの間にuPUSCHとuRSとの両方を同時に送信し得る。この場合、通信コンポーネント661は、これらの2つのチャネルを送信することができ、その結果、チャネルは、TTIの間に同じ帯域幅内の異なるリソースを占有することによって同じ帯域幅を共有し得る。
別の例では、UTIにおけるuPUCCH通信用のリソースとuRS通信用のリソースとがTTIの間に衝突する可能性がある。一例では、そのような衝突が存在する場合、通信コンポーネント661は、TTIの間にuRSの代わりにuPUCCHを送信し得る。別の例では、通信コンポーネント661は、TTIの間にuPUCCHとuRSとの両方を同時に送信し得る。この場合、通信コンポーネント661は、これらの2つのチャネルを送信することができ、その結果、チャネルは、TTIの間に同じ帯域幅内の異なるリソースを占有することによって同じ帯域幅を共有し得る。
別の例では、通信コンポーネント661は、上記で説明したように、TTIにわたるチャネル推定または干渉推定を容易にするために、1つまたは複数のシンボルを変調シンボルのセットと多重化し得る。一例では、変調シンボルのセットは、eNB1204または他のネットワークエンティティに知られ得る所定の値(ゼロを含む)を有し得る。別の例では、変調シンボルのセットは、リソース許可に対応する残りのシンボルよりも、低い変調次数に基づいて変調シンボルを識別することを容易にするために、リソース許可に対応する変調次数よりも低い変調次数を有し得る。
図14は、基礎をなすレガシー通信技術の持続時間よりも短い(たとえば、LTEにおけるサブフレームよりも短い)持続時間を有するTTIに基づいて1つまたは複数のUEのためにアップリンク通信を(たとえば、eNB1204によって)スケジューリングするための例示的な方法1400を示している。ブロック1402において、eNBは、サブフレーム内の複数のシンボルのサブセットである1つまたは複数のシンボル、スロットなどを含むTTIに基づいて、UEのためのアップリンク通信をスケジューリングするために、UEのためのアップリンクリソース許可を生成し得る。たとえば、一態様では、リソース許可生成コンポーネント1220は、説明したように、サブフレーム内の複数のシンボルのサブセットである1つまたは複数のシンボルを含むTTIに基づいて、UE1202のためのアップリンク通信をスケジュールするために、UE1202のためのアップリンクリソース許可を生成し得る。たとえば、リソース許可生成コンポーネント1220は、たとえば1つのシンボル、または2つ以上のシンボル、または1つのスロットなどの持続時間を有するTTIに基づいて、ULL通信のためのアップリンクリソース許可を生成し得る。加えて、リソース許可生成コンポーネント1220は、1つまたは複数のアップリンクチャネル上における制御またはデータ送信のために割り振られたTTI内に1つまたは複数のRBグループを含むように、アップリンクリソース許可を生成し得る。一例では、ULLリソース許可は、上記で説明したULLフレーム構造800(図8)および/または900(図9)に従って定義され得る。さらに、説明したように、リソース許可生成コンポーネント1220は、TTIを介してUE1202に付与されることが可能なシステム帯域幅の量に基づいて、サイズにおいて同様である複数のRBグループを含むように、アップリンクリソース許可を生成し得る。
ブロック1404において、eNBは、UEにアップリンクリソース許可を通信し得る。たとえば、一態様では、スケジューリングコンポーネント602は、UEにアップリンクリソース許可(たとえば、アップリンクリソース許可1280)を通信し得る。説明したように、通信することは、1つまたは複数のプロセッサ1253が、RFフロントエンドなどを介して1つまたは複数のアンテナを介して送信するための信号を生成するために、トランシーバ1256にデータおよび/または関係する信号情報を提供することを含み得る。たとえば、スケジューリングコンポーネント602は、説明したように、ダウンリンク信号(たとえば、PDCCHまたはuPDCCHなど)における1つまたは複数のダウンリンクチャネルを介してアップリンクリソース許可を通信し得、その結果、説明したように、リソース許可受信コンポーネント1210は(たとえば、トランシーバ1206を介して)アップリンクリソース許可を取得し得、またアップリンクリソース許可で指示されたリソースを介して(たとえば、トランシーバ1206を介して)通信し得る。したがって、ブロック1406において、eNBは、アップリンクリソース許可に基づいてTTIの間にUEからアップリンク通信を受信し得る。スケジューリングコンポーネント602は、アップリンクリソース許可に基づいて、TTIの間にUE1202からアップリンク通信(たとえば、ULL/LTE通信1282)を受信し得る。説明したように、通信を受信することは、トランシーバ1256が(たとえば、RFフロントエンドを介して)1つまたは複数の信号を受信し、その信号を復号し、復調し、または別の方法で処理してそこからデータを取得するために、1つまたは複数のプロセッサ1253にその信号に関する情報を提供することを含み得る。
加えて、一例では、ブロック1404においてアップリンクリソース許可を通信することは、場合によっては、ブロック1408においてUEに多段階許可を通信し得る。たとえば、一態様では、リソース許可生成コンポーネント1220は、アップリンクリソース許可を多段階許可として生成し得、スケジューリングコンポーネント602は、その多段階許可をUE1202に通信し得る。したがって、たとえば、1つまたは複数のプロセッサ1253は、多段階許可を送信するための複数の信号を生成し得、トランシーバ1256は、RFフロントエンドおよび1つまたは複数のアンテナを介して複数の信号を送信し得る。説明したように、多段階許可は、アップリンク許可のためのMCS、UE1202からのアップリンク通信のためのTPC、および/もしくはプリコーディング情報などを含み得る第1段階のリソース許可、ならびに/または、NDI、デルタMCS、RSサイクリック、RSトリガリング、非周期的CSIトリガ、許可されたリソースの指示などを含み得る第2段階のリソース許可を含み得る。
加えて、一例では、ブロック1404においてアップリンクリソース許可を通信することは、場合によっては、ブロック1410において、アップリンクリソース許可に関する1つまたは複数のパラメータをUEに通信し得る。たとえば、一態様では、スケジューリングコンポーネント602は、アップリンクリソース許可に関する1つまたは複数のパラメータをUE1202に通信し得る。一例では、リソース許可生成コンポーネント1220は、1つまたは複数のパラメータを含むようにアップリンクリソース許可を生成し得る。たとえば、リソース許可生成コンポーネント1220は、1つまたは複数のアップリンクチャネル上における制御またはデータ送信のために割り振られたTTI内の1つまたは複数のRBグループのサイズを示すために、リソース許可において開始オフセットおよび/またはシステム帯域幅を指定し得る。別の例では、リソース許可生成コンポーネント1220は、アップリンクリソース許可のサイズに基づいて(たとえば、1つまたは複数のRBグループのサイズおよび/または数に基づいて)、アップリンクリソース許可においてTBSスケーリング係数を指定し得る。アップリンクリソース許可において割り振られる帯域幅は構成可能であるので、TBSスケーリング係数は、特定のTBSを達成するために割り振られた帯域幅のスケーリングを示し得る。
場合によっては、ブロック1412において、eNBは、アップリンク通信で受信された1つまたは複数の変調シンボルと、構成された変調シンボルのセットとを比較することに少なくとも部分的に基づいて、チャネル推定または干渉推定の少なくとも一方を実施し得る。たとえば、一態様では、チャネル/干渉推定コンポーネント1222は、アップリンク通信で受信された1つまたは複数の変調シンボルと、構成された変調シンボルのセットとを比較することに少なくとも部分的に基づいて、チャネル推定または干渉推定の少なくとも一方を実施し得る。上記で説明したように、UE1202は、アップリンク通信における1つまたは複数のシンボルを1つまたは複数の構成された変調シンボルでパンクチャし得るが、その変調シンボルは、UE1202およびeNB1204の各々において構成され、eNB1204からUE1202などによって構成され得、その結果、UE1202およびeNB1204はシンボル、シンボルのロケーションなどを知るようになる。この点について、たとえば、チャネル/干渉推定コンポーネント1222は、アップリンク通信のパンクチャドシンボルの既知の位置で受信されたシンボルを観測し得、また、アップリンク通信に関連付けられるチャネルおよび/または干渉を決定するために、パンクチャドシンボルを、既知の1つまたは複数の構成されたシンボルと比較し得る。加えて、パンクチャドシンボルは、検出および/またはそのより信頼性の高い送信を容易にするために、説明したように、アップリンクリソース許可のリソースを介した通信に対応する変調次数よりも低い変調次数を有し得る。
さらに、場合によっては、ブロック1414において、eNBは、第2のTTIに基づいてアップリンク通信をスケジュールするために、UEまたは1つもしくは複数の他のUEのための第2のアップリンクリソース許可を生成し得る。たとえば、一態様では、リソース許可生成コンポーネント1220は、第2のTTIに基づいてアップリンク通信をスケジュールするために、UE1202または1つもしくは複数の他のUEのための第2のアップリンクリソース許可を生成し得る。説明したように、eNB1204は、ULL通信およびいくつかの他の通信、たとえば、LTEなどの基礎をなすレガシー通信技術を使用して通信することが可能となり得る。したがって、リソース許可生成コンポーネント1220は、LTEと同様に持続時間におけるサブフレームであるTTIに基づいて、UE1202または1つもしくは複数の他のUEの第2のアップリンクリソース許可を生成し得る。この例では、eNB1204は、ULLおよびLTE通信をサポートし得る。
さらに、場合によっては、ブロック1416において、eNBは第2のアップリンクリソース許可をUEまたは1つもしくは複数の他のUEに通信し得、かつ/または、ブロック1418において、eNBは第2のTTIの間にUEまたは1つもしくは複数の他のUEから付加的なアップリンク通信を受信し得る。たとえば、一態様では、スケジューリングコンポーネント602は、トランシーバ1206によって送信された1つまたは複数のダウンリンク信号1209においてUE1202または1つもしくは複数の他のUEに第2のアップリンクリソース許可を通信し得、かつ/または、アップリンク通信がブロック1406において受信されるTTIと重複し得る第2のTTIの間に、UE1202によって送信された1つまたは複数のアップリンク信号1208において付加的なアップリンク通信を、たとえば、LTEなどの基礎をなすレガシー通信技術の他の通信を、UE1202または1つもしくは複数の他のUEから受信し得る。
図15は、受信されたトリガに基づいてRSを(たとえば、UE1202によって)送信することを決定するための例示的な方法1500を示している。ブロック1502において、UEは、ネットワークエンティティから、アップリンク制御またはデータチャネルのためのDM-RSを送信すべきかどうかのインジケータを含んだアップリンクリソース許可を受信し得る。たとえば、一態様では、リソース許可受信コンポーネント1210は、ネットワークエンティティ(たとえば、eNB1204)から、アップリンク制御またはデータチャネルのためのDM-RSを送信すべきかどうかのインジケータを含んだアップリンクリソース許可(たとえば、アップリンクリソース許可1280)を受信し得る。説明したように、たとえば、アップリンクリソース許可およびインジケータを受信することは、トランシーバ1206を介して1つまたは複数のダウンリンク信号1209においてアップリンクリソース許可およびインジケータを受信することと、アップリンクリソース許可および/またはインジケータに固有の情報を取得するために、1つまたは複数のプロセッサ1203によって信号1209を処理することとを含み得る。たとえば、DM-RSは、ULL通信について上記で説明したuRSに対応し得る。この点について、リソース許可生成コンポーネント1220は、RSトリガリングコンポーネント1224によって生成されたDM-RSを送信すべきかどうかのインジケータを含み得る、UE1202のためのリソース許可を生成し得、スケジューリングコンポーネント602は、通信コンポーネント661を介したリソース許可受信コンポーネント1210による受信のために、UE1202にリソース許可を送信し得る。
ブロック1504において、UEは、インジケータに少なくとも部分的に基づいて、少なくとも1つのTTIにおいてDM-RSを送信すべきかどうかを決定し得る。RSトリガ受信コンポーネント1218は、インジケータに少なくとも部分的に基づいて、少なくとも1つのTTIにおいてDM-RSを送信すべきかどうかを決定し得る。たとえば、インジケータが受信された場合、RSトリガ受信コンポーネント1218は、少なくとも1つのTTIにおいてDM-RS(たとえば、uRS)を送信することを決定し得る。さらに、RSトリガ受信コンポーネント1218は、上記で説明したように、多段階許可で受信され得るRSトリガに基づいてDM-RSを送信すべきTTIを決定し得る。たとえば、リソース許可は、DM-RSの送信に使用するために、TTI(たとえば、サブフレーム内のTTIインデックスまたは他の識別子)の明示的な指示、TTIの暗黙的な指示(たとえば、リソース許可が受信されたTTIに続くTTIの数の指示)などを含み得る。
場合によっては、ブロック1506において、UEは、1つまたは複数のTTIにおいてDM-RSを送信することに関係する1つまたは複数のパラメータを受信し得る。たとえば、一態様では、RSトリガ受信コンポーネント1218は、1つまたは複数のTTIでDM-RSを送信することに関係する1つまたは複数のパラメータを受信し得る。たとえば、RSトリガリングコンポーネント1224は、RRCまたは他の構成などにおいて、1つまたは複数のダウンリンク信号1209において、トランシーバ1256を介して1つまたは複数のパラメータをUE1202にシグナリング、たとえば送信し得る。別の例では、RSトリガリングコンポーネント1224は、多段階リソース許可などにおいて、1つまたは複数のパラメータをUE1202にシグナリングし得る。いずれの場合も、RSトリガ受信コンポーネント1218は、一例では、構成を受信することに基づいて1つまたは複数のパラメータを決定し得る。DM-RSを送信するための1つまたは複数のパラメータは、DM-RSの周期的送信のための1つまたは複数の周期性パラメータ、DM-RSを送信するための帯域幅、構成されたTTI(たとえば、シンボル)においてDM-RSを送信する1つまたは複数の周波数位置、複数の構成されたTTIにわたって異なる周波数位置でDM-RSを送信する際に使用するためのホッピングパターン、DM-RSを送信する際に使用するためのアンテナポートの数、DM-RSを送信する際に使用するための(たとえば、レガシーSRSシンボルに対して定義された)コムレベルなどを含み得る。別の例では、RSトリガ受信コンポーネント1218は、uPUCCHおよび/またはuPUSCH送信のために受信された同様のパラメータに基づいて1つまたは複数のパラメータを決定し得る。
周期的なuRS送信の場合、たとえば、1つまたは複数のパラメータの少なくともサブセットは、周期性(たとえば、TTIの単位の指示、ミリ秒(ms)、またはuRSが周期的に送信されるTTIを示す他のパラメータ)など、周期的RSトリガに関係し得る。1つまたは複数のパラメータはまた、uRSがサブフレーム(たとえば、N個のサブフレームごとに、Nは正の整数であり得る)内のTTIの特定のセットで送信されるような周期性を定義し得る。別の例では、1つまたは複数のパラメータは、uRSが送信されるべき帯域幅の指示(たとえば、リソースブロックの数)を含み得る。一例では、帯域幅の指示は、4つのリソースブロックの整数倍を含み得る。別の例では、1つまたは複数のパラメータは、uRSのホッピングパターンを定義することに関係し得るが、ここで、uRSを送信するために利用されるリソースは、(たとえば、パラメータに基づくかまたは別の方法で)1つのTTIにおける1つの周波数位置から別のTTIにおける別の周波数位置にホッピングし得る。したがって、たとえば、1つまたは複数のパラメータは、パターンを定義する周波数位置の指示、または1つもしくは複数のTTI間の周波数リソースの間隔の指示などを含み得る。さらに、たとえば、1つまたは複数のパラメータは、uRSを送信する際に利用するアンテナポートの数の表示を含み得る。たとえば、uRSがuPUCCH送信に関係する(そして、たとえば、図11に示すようにuPUCCH領域808で送信される)場合、アンテナポートの数は1に固定され得る。uRSがuPUSCH送信に関係する(そして、図11に示すようにuPUSCH領域810で送信される)場合、アンテナポートの数は、uPUSCH上における可能なUL MIMO動作に関連して1、2、4などになり得る。さらに、各アンテナポートは、プリコーディングされていなくてもよく、かつ/または1ポートSRSに類似していてもよい。さらに、1つまたは複数のパラメータは、各アンテナポートに対して、異なるサイクリックシフトまたはコムオフセットを割り当て得る。たとえば、周期的なuRSは、非周期的なuRSが利用できない場合にはuPUCCHおよび/またはuPUSCH復調に、あるいは利用可能な場合は非周期的なuRSと組み合わせて使用され得る。周期的なuRSはまた、特に、uRSが異なる送信において周波数ホッピングでイネーブルされる場合、アップリンクサブバンドベースのスケジューリングを支援するためにも使用され得る。周期的なuRSはまた、アップリンク電力制御、アップリンク時間/周波数トラッキングなどの点で「キープアライブな」UL動作をもたらし得る。
非周期的なuRSの場合、非周期的RSトリガは、タイミング関係(たとえば、トリガ後の3TTI)に基づいたTTI、および/または付加的に周期性に基づいたTTIのいずれかに関係するものとして定義され得る。(たとえば、TTIの単位の指示、ミリ秒(ms)、またはuRSが周期的に送信されるTTIを示す他のパラメータ)。1つまたは複数のパラメータはまた、uRSが場合によってはサブフレーム(たとえば、N個のサブフレームごとに、Nは正の整数であり得る)内のシンボルの特定のセットで送信されるような周期性を定義し得る。一例として、1つまたは複数のパラメータが、シンボルnでトリガされる非周期的なuRSを送信することに関係し、ここでnが正の整数であり得る場合、シンボルn+3は非周期的なuRS送信のためのシンボルとして構成されていないが、シンボルn+4は非周期的なuRS送信のためのシンボルとして構成されている場合、通信コンポーネント661は、代わりにシンボルn+4で非周期的なuRSを送信し得る。周期的なuRSに関して説明したように、1つまたは複数のパラメータは、uRSが送信されるべき帯域幅を含み得る。非周期的なuRSは、1度トリガされると、1回(ワンショット送信)のみ、または複数回(マルチショット送信)送信され得る。マルチショットの非周期的なuRSの場合、uRSが1つの送信における1つの周波数位置から別の送信における別の周波数位置にホッピングし得るように、ホッピングがイネーブルにされ得る(たとえば、関連するホッピングパターンパラメータが構成される)。非周期的なuRSはまた、周期的なuRSに関して同様に説明したように(たとえば、uPUCCHのための非周期的なuRSが1つのアンテナポートを使用し得、かつ/またはuPUSCHのためのuRSが1つ、2つ、4つなどのアンテナポートを使用し得るように)複数のアンテナポートで構成され得る。上記で説明したように、この例では、各アンテナポートは、プリコーディングされていなくてもよく、かつ/または1ポートSRSに類似していてもよい。さらに、1つまたは複数のパラメータは、各アンテナポートに対して、異なるサイクリックシフトまたはコムオフセットを割り当て得る。非周期的なuRSは、uPUCCHおよび/またはuPUSCH復調のために単独で、あるいは利用可能な場合に周期的なuRSと組み合わせて使用され得る。付随するuPUCCHまたはuPUSCHがある場合、uRSパラメータは一貫したものとなるか、あるいはuPUCCHまたはuPUSCHパラメータに基づき得る。たとえば、uRSは、対応するuPUSCHと同じ帯域幅、周波数ロケーション、およびアンテナポートの数を有し得る。付随するuPUCCHまたはuPUSCHがない場合、uRSパラメータは、たとえば、アップリンクリソース許可内のいくつかの動的指示に基づき得る。
いずれの場合も、場合によっては、ブロック1508において、UEは、DM-RSを送信することを決定したことに基づいて、TTIにおいてDM-RSを送信し得る。たとえば、一態様では、通信コンポーネント661は、RSトリガ受信コンポーネント1218がTTIにおいてDM-RSを送信することを決定したことに基づいて、TTIにおいてDM-RSを(たとえばULL/LTE通信1282として)送信し得る。したがって、TTIにおいてDM-RSを送信することは、場合によっては、ブロック1510において、1つまたは複数の構成されたパラメータに基づいてDM-RSを送信することを含み得る。1つまたは複数の構成されたパラメータは、説明したように、1つまたは複数のTTIにおいて周期的および/または非周期的DM-RS(たとえば、uRS)を送信するための、RSトリガ受信コンポーネント1218によって受信または決定された1つまたは複数のパラメータに対応し得る。上述したように、RSを送信することは、通信コンポーネント661が1つまたは複数のTTIにおいてDM-RSを送信することを含み得、ここで、1つまたは複数のプロセッサ1203は、(たとえば、ホッピングパターンに基づき得る指定された周波数ロケーションを使用する、指定された数のアンテナポートまたはコムレベルを使用するなど)RFフロントエンドを介して1つまたは複数のアンテナを介してトランシーバ1206によって送信するための対応する信号を生成し得る。一例では、上記のタイムライン1000、1010に示すように、通信コンポーネント661によって送信されたDM-RS(たとえば、uRS)は、1つのシンボルを占有し得る。加えて、たとえば、各DM-RSは、構成可能な帯域幅、構成可能なホッピングパターンを有することができ、そのため、DM-RSは、サブバンド、種々のコムオフセットなど(たとえば、eNB1204によって決定され、UE1202への1つまたは複数のパラメータを指定するRSトリガリングコンポーネント1224を介して制御され得る)にわたってホップし得る。さらに、各DM-RSは、プリコードされていない1つまたは複数のポートを有し得、かつ/または1つもしくは複数のポートを表すサイクリックシフトによって指示され得る。サイクリックシフトは、RSトリガリングコンポーネント1224によって構成され、UE1202に(たとえば、リソース許可の一部としてまたは別の方法で)指定され得る。
一例では、通信コンポーネント661は、eNB1204から受信された1つまたは複数のパラメータに基づいて、(たとえば、ダウンリンク制御インジケータ(DCI)で)アップリンクリソース許可を受信することによってトリガされる非周期uRSを送信し得る。たとえば、通信コンポーネント661は、タイミングが対応するuPUSCHとは異なるようにuRSを送信し得る(たとえば、図10のタイムライン1010に示すように、アップリンク許可が受信されてから3 TTIの後にuRSを送信するが、ここでuPUSCHは、アップリンク許可から4 TTIの後に送信される)。別の例では、通信コンポーネント661は、(たとえば、図10のタイムライン1000に示すように、6 TTI、次いで9 TTIの後に)uRSを送信するための明示的なTTIを識別し得る1つまたは複数のパラメータに基づいてトリガされる周期的なuRSを送信し得る。加えて、一例では、通信コンポーネント661は、図11に示すように(たとえば、uPUCCH領域808におけるuPUCCH uRSおよびuPUSCH領域810におけるuPUSCH uRS)、制御およびデータ通信にそれぞれ関連付けられる周波数位置において、制御およびデータ通信の各々のためのuRSを送信し得る。
場合によっては、ブロック1512において、UEは、リソース許可に少なくとも部分的に基づいて、DM-RSと同じかまたは異なるTTI内の制御チャネルまたはデータチャネルの少なくとも一方を送信し得る。たとえば、一態様では、通信コンポーネント661は、(たとえば、eNB1204から受信された)リソース許可に少なくとも部分的に基づいて、DM-RSと同じかまたは異なるTTI内の制御チャネルまたはデータチャネルの少なくとも一方を送信し得る。図13において同様に上記で説明したように、制御またはデータチャネルは、LTEにおけるPUCCH、PUSCH、SRSなどに対応し、また並列送信が許可されていない場合はDM-RSの送信が優先され得、したがって、この例では、ブロック1512において少なくとも1つの制御チャネルまたはデータチャネルを送信することは、DM-RSとは異なるTTIにおいて少なくとも1つの制御チャネルまたはデータチャネルを送信することを含み得る。別の例では、制御またはデータチャネルは、uPUCCHまたはuPUSCHに対応し、またuRSはそれと連携してまたは連携せずに送信され得、したがって、この例では、ブロック1512において少なくとも1つの制御チャネルまたはデータチャネルを送信することは、上記で説明したように、uRSと同じかまたは異なるTTIにおいて少なくとも1つの制御チャネルまたはデータチャネルを送信することを含み得る。
たとえば、uRSがLTEにおけるPUSCH送信と衝突する場合、uRSおよびPUSCHが送信される衝突シンボルにおいて、通信コンポーネント661が衝突シンボルにおいてPUSCH送信をドロップし得、かつ/またはPUSCHに対してすべてのTTIをドロップし得るように、uRSはUE1202によるPUSCH送信より優先され得る。同様に、通信コンポーネント661は、uRS送信と衝突するシンボルにおいてSRS送信をドロップし得る。加えて、ULL通信とLTEにおけるPUCCHとの衝突に関して上記で説明したように、uRSは一般にPUCCHよりも優先され得るが、その結果、通信コンポーネント661は衝突シンボルにおいてPUCCH送信をドロップし得、かつ/またはPUCCHに対してはTTI全体をドロップし得るが、場合によっては、衝突するシンボルにおけるuRS送信がドロップされるようにPUCCHを優先し得るようになる(たとえば、PUCCH通信がRRCレイヤ通信に対応する場合)。追加的に、衝突するULL通信とPUCCH通信に関して上記で説明したように、通信コンポーネント661が異なるRBにPUCCHを配置することが可能となるように、付加的なPUCCHフォーマットが定義され得るが、ここで、PUCCHの1つまたは複数のシンボルをドロップすることは、現在定義されているPUCCH形式に基づいて他のPUCCHとの非直交性を引き起こし得る。
図16は、UE(たとえば、UE1202)にDM-RSを送信すべきかどうかの(たとえば、eNB1204による)インジケータを通信するための例示的な方法1600を示している。ブロック1602において、eNBは、少なくとも1つのTTIにおいてアップリンク制御またはデータチャネルのためのDM-RSを送信すべきかどうかのインジケータを含むアップリンクリソース許可を生成し得る。リソース許可生成コンポーネント1220は、少なくとも1つのTTIにおいてアップリンク制御またはデータチャネルのためのDM-RSを送信すべきかどうかのインジケータを含むアップリンクリソース許可を生成し得る。たとえば、RSトリガリングコンポーネント1224は、DM-RSを送信するためのトリガを用いてリソース許可を生成することを容易にするために、リソース許可生成コンポーネント1220にDM-RS(たとえば、uRS)を送信するためのトリガを示し得る。ブロック1602において、インジケータを含むアップリンクリソース許可を生成することは、ブロック1604において、DM-RS送信に関係するアップリンクリソース許可に1つまたは複数のパラメータを含め得る。リソース許可生成コンポーネント1220は、1つまたは複数のパラメータをアップリンクリソース許可に含め得、そのパラメータはDM-RS送信に関係するものである。説明したように、1つまたは複数のパラメータは、周期的または非周期的なDM-RSを送信することに関係し得るものであり、また、UE1202がDM-RSを送信する際に利用するために、DM-RSを送信すべきTTIの明示的または暗黙的指示、サイクリックシフト、帯域幅、ホッピングパターン、1つまたは複数の周波数位置、1つまたは複数のアンテナポート、1つまたは複数コムレベルなどのうちの1つまたは複数を含み得る。
ブロック1606において、eNBは、UEにアップリンクリソース許可およびインジケータを送信し得る。スケジューリングコンポーネント602は、UEにアップリンクリソース許可(たとえば、アップリンクリソース許可1280)およびインジケータを送信し得る。たとえば、スケジューリングコンポーネント602は、RRCシグナリング、(たとえば、上記で説明したような第2段階のRSトリガとして)多段階許可などにおいて、UE1202にアップリンクリソース許可を通信し得る。説明したように、スケジューリングコンポーネント602は、信号情報を生成しその信号情報をトランシーバ1256に供給するための1つまたは複数のプロセッサ1253に、許可およびインジケータに関係するデータを提供することに基づいて、アップリンクリソース許可およびインジケータを送信し得、トランシーバ1256は、許可および/またはインジケータを示す1つまたは複数の信号を生成し、RFフロントエンドを介して1つまたは複数のアンテナを介して送信する。リソース許可受信コンポーネント1210および/またはRSトリガ受信コンポーネント1218は、説明したように、アップリンクリソース許可および/またはインジケータを受信し得る。アップリンクリソース許可は、説明したように、アップリンク制御および/またはデータを送信するための、ならびにuRSを送信するためのULL TTIに基づいてリソースを許可することに対応し得る。
場合によっては、ブロック1608において、eNBは、少なくとも1つのTTIにおいてUEから1つまたは複数のDM-RSを受信し得る。スケジューリングコンポーネント602は、少なくとも1つのTTIにおいてUE1202から1つまたは複数のDM-RSを受信し得る。一例では、スケジューリングコンポーネント602は、それに応じて、アップリンクリソース許可の対応するリソースを介して受信された通信を復調する際にDM-RSを使用し得る。ブロック1608で1つまたは複数のDM-RSを受信することは、ブロック1610において、1つまたは複数のパラメータに少なくとも部分的に基づいて(たとえば、ULL/LTE通信1282として)1つまたは複数のDM-RSを受信することを含み得る。したがって、説明したように、パラメータは、DM-RSがUE1202によって送信されるべき少なくとも1つのTTIを明示的または暗黙的に示し得、スケジューリングコンポーネント602は、その少なくとも1つのTTIにおいてDM-RSを受信し得る。同様に、スケジューリングコンポーネント602は、1つまたは複数のパラメータで指定されたコムレベルなどに従って、番号アンテナポートを介して、ホッピングパターンまたは周波数ロケーションに従って、帯域幅にわたってDM-RSを受信し得る。一例では、スケジューリングコンポーネント602は、制御およびデータ通信のための別個のuRSを受信し得、ここで、uRSそれぞれは、図11に示すように、それぞれ制御およびデータ通信に関係する周波数リソースにおいて受信され得る。
図17は、ULLにおいて(たとえば、UE1202によって)アップリンク制御データを送信するための例示的な方法1700を示している。ブロック1702において、UEは、サブフレーム内のアップリンク制御チャネル送信のためのTTIを決定し得る。一態様では、TTIは、サブフレーム内の複数のシンボルのサブセットであるシンボル、シンボル数、スロットなどを含む。TTI決定コンポーネント1212は、サブフレーム内のアップリンク制御チャネル送信のためのTTIを決定し得る。これは、説明したように、一例では、TTI持続時間、通信技術のタイプ(たとえば、ULL)などを示し得る、eNB1204からのリソース許可受信コンポーネント1210(たとえば、アップリンクリソース許可1280)によって受信されたリソース許可に基づき得る。さらに、たとえば、TTIは、説明したように、シンボル持続時間、複数シンボル持続時間、スロット持続時間などであり得る。
場合によっては、ブロック1704において、UEは、ダウンリンク制御またはデータチャネルに関連するRBグループインデックスに基づいて制御データを送信するためのリソースロケーションを決定し得る。通信コンポーネント661は、ダウンリンク制御またはデータチャネルに関連するRBグループインデックスに基づいて制御データを送信するためのリソースロケーションを決定し得る。たとえば、通信コンポーネント661は、説明したように、eNB1204からダウンリンク制御および/またはデータチャネル通信を受信し得、また受信した通信に基づいてダウンリンク制御および/またはデータチャネルの制御データを送信するためのリソースロケーションを決定し得る。たとえば、通信コンポーネント661は、ダウンリンク制御および/またはデータチャネルが受信されるRBグループインデックスと同じであるが、後続のTTIにおいては、RBグループインデックスからのオフセットであるリソースロケーション(たとえば、オフセットは、リソース許可受信コンポーネント1210によってリソース許可で受信され得る)などになるように、リソースロケーションを決定し得る。
場合によっては、ブロック1706において、UEは、アップリンク制御チャネルのためのRBの数を決定し得る。通信コンポーネント661は、アップリンク制御チャネルのためのRB数を決定し得る。たとえば、通信コンポーネント661は、eNB1204から受信されたアップリンクリソース許可に少なくとも部分的に基づいて(たとえば、リソース許可によって割り振られたリソースの指示に基づいて)、アップリンク制御チャネルのRB数を決定し得る。別の例では、通信コンポーネント661は、送信されるべき制御データのペイロードサイズを決定すること(たとえば、ペイロードのバイト数、MCS、および/またはMCSに関係付けられ得る達成可能なスループットなどを決定すること)に少なくとも部分的に基づいて、アップリンク制御チャネルのためのRB数を決定し得る。
ブロック1708において、UEは、TTIの間にアップリンク制御チャネルを介してアップリンク制御データを送信し得る。通信コンポーネント661は、TTIの間にアップリンク制御チャネルを介してアップリンク制御データを(たとえば、ULL/LTE通信1282として)送信し得る。説明したように、アップリンク制御チャネルは、TTI内に1つもしくは複数のRBまたはRBグループを含んだTTIにわたるアップリンク制御チャネルリソースを示す、受信されたリソース許可に従って送信され得る。通信コンポーネント661は、決定されたリソースロケーション(たとえば、関係するダウンリンク制御またはデータチャネルのRBグループインデックスに基づく)、決定されたRB数などにさらに基づいて制御データを追加的にスケジューリングおよび送信し得る。制御データは、以前のTTI、SRなどにおけるダウンリンクチャネルで受信されたデータに対するACK/NACKフィードバックを含む得、通信コンポーネント661は、送信のために異なるシグナリングを追加使用し得る。説明したように、アップリンク制御を送信することは、1つまたは複数のプロセッサ1203が、RFフロントエンドなどを介して1つまたは複数のアンテナを介して送信する信号を生成するためのトランシーバ1206にデータおよび/または関係する信号情報を提供することを含み得る。
たとえば、アップリンク制御データがアップリンク制御チャネルで送信されるべきSRに関係する場合、リソース許可生成コンポーネント1220は、ULL LTEでSRを送信するためのRRC構成リソース(たとえば、RBおよび/またはサイクリックシフト)を指定する、UE1202のための関連リソースを生成し得る。リソース許可受信コンポーネント1210は、リソース許可を受信し得、通信コンポーネント661は、それに従って、(たとえば、RBおよび/または対応するサイクリックシフトを使用して)構成リソースに基づいてSRをeNB1204に送信し得る。一例では、リソース許可生成コンポーネント1220によって示されたRBは、RBの明示的な指示、対応する制御またはデータチャネルのRBグループインデックスに対応するかまたはそのRBグループインデックスからオフセットするRBで開始するRBの数などを含み得る。
別の例では、UEはブロック1708において、場合によってはブロック1710において、制御データの1つまたは複数の値を示す1つまたは複数の異なるサイクリックシフトを使用して制御データを送信し得る。通信コンポーネント661は、制御データの1つまたは複数の値を示す1つまたは複数のサイクリックシフトを使用して制御データを送信し得る。たとえば、ACK/NACKのみがアップリンク制御チャネルにおいて送信される場合、リソース許可生成コンポーネント1220は、PUCCHを介して送信するための、UE1202のためのリソース許可を生成し得る。リソース許可受信コンポーネント1210は、リソース許可を受信し得、通信コンポーネント661はそれに従って、eNB1204から受信した対応するuPDCCHデータのブロックインデックスに少なくとも部分的に基づいて、PUCCHを介してeNB1204にACK/NACKを送信し得る。リソース許可生成コンポーネント1220は、通信コンポーネント661がACKおよびNACKを送信する際に利用し得る、ACKおよびNACKのための異なるサイクリックシフトを指定し得る。たとえば、サイクリックシフト0はACKのために使用され得るが、サイクリックシフト6はNACKのために使用され得る。加えて、一例では、リソース許可生成コンポーネント1220は、通信コンポーネント661がACKまたはNACKでSRを送信する際に利用し得る、(たとえば、リソース許可における)SRとACKまたはNACKとの組合せ送信のための種々のサイクリックシフトを指定し得る。たとえば、サイクリックシフト2はACKおよび正のSRのために使用され得るが、サイクリックシフト8はNACKおよび正のSRのために使用され得る。
さらに、ブロック1708において、UEはまた、場合によってはブロック1712において、RSの代わりにまたはRSとともに制御データを送信し得る。通信コンポーネント661は、RSの代わりにまたはRSとともに制御データを送信し得る。たとえば、リソース許可は、(たとえば、いつuRSを送信すべきかを決定するための)RSトリガを含み得る。uRSの送信が制御データの送信と衝突する場合、通信コンポーネント661は、前に説明したように、uRSの代わりにまたはuRSとともに制御データを送信すべきかどうかを決定し得る。たとえば、uRSがアップリンク制御チャネルuPUCCHの送信と衝突する場合、通信コンポーネント661は、uPUCCHを送信してuRSをドロップし、uRSを送信してuPUCCHをドロップし得るか(たとえば、ブロック1708でアップリンク制御データを送信することは任意である)、あるいは両方を送信し得る。たとえば、両方を送信するために、通信コンポーネント661は、SRまたはACK/NACKである場合、SRまたはACK/NACKを示すために異なるサイクリックシフトでuRSを送信することによってuPUCCHを送信し得る。SRとACK/NACKの両方がuRSとともにスケジューリングされていれば、SRはこの場合、ドロップされ得る。
加えて、一例では、ブロック1714において、UEは、アップリンク制御チャネルを介して送信するために複数のコードワードまたは複数のキャリアの少なくとも一方に対してACK/NACKをバンドルし得る。通信コンポーネント661は、アップリンク制御チャネルを介して送信するために(たとえば、MIMO通信またはキャリアアグリゲーションにおいて)複数のキャリアを介され得る複数のコードワードの少なくとも1つに対してACK/NACKをバンドルし得る。たとえば、ACK/NACKをバンドルすることは、複数のコードワードまたはキャリアに対して単一のACK/NACK値を指定することを含み得る(たとえば、すべての値がACKであればACK、少なくとも1つの値がNACKであればNACKなど)。バンドルすることはまた、ACK/NACK値の空間バンドリングを含み得る。
別の例では、ブロック1708においてアップリンク制御データを送信することは、2つ以上のコードワードおよび/または1つもしくは複数のキャリアの各々について2つ以上のACK/NACKビットとしてアップリンク制御データを送信することを含み得る。加えて、一例では、Nを整数として、N個のキャリアに対してN個のACK/NACKビットが生成され得るように、キャリア内の空間バンドリングが有効化され得る。それに対応して、uPUCCHは、複数のACK/NACK値を示すためにリソースブロック内のより多数のリソースブロックおよび/またはより可能性のあるサイクリックシフトを利用することによって、2つ以上のACK/NACKに適応するように設計され得る。ブロック1708において、2つ以上のリソースブロックがアップリンク制御データを送信するために使用される場合、あるRBによって利用されるサイクリックシフトが、別のRBのものと同じであることも、異なることもあり得る。
一例では、ブロック1708においてアップリンク制御データを送信することは、周期的なCSI報告を送信することを含まないこともある。そのような場合、通信コンポーネント661は、1msのTTIに基づいて(たとえば、LTEにおいてPUCCHを代わりに使用して)周期的なCSIを報告し得る。したがって、たとえば、ブロック1708においてアップリンク制御データを送信することは、uPUCCHを送信することを含み得るが、UE1202は、同時にまたは異なるTTIにおいてPUCCHを送信するようにさらにトリガまたは構成され得る。
別の例では、1シンボルのuPUCCHに加えて、uPUCCHは2つ以上のシンボルを占有し得る。したがって、たとえば、TTI決定コンポーネント1212は、制御データを送信するための種々のTTI(たとえば、シンボル)を決定し得る。さらに、通信コンポーネント661は、周波数ダイバーシティ利得が達成され得るように、制御データを送信するための異なるTTIにおいて異なるリソースブロックを決定し得る。一例として、通信コンポーネント661は、周波数においてミラーホッピングを使用して2シンボルのuPUCCH送信が送信され得るように、2つのTTI(たとえば2シンボル)で使用する異なるRBを決定し得る(たとえば、RBインデックスnがシンボルである場合、RBインデックスN-nが第2のシンボルで使用され得るが、ここで、NはRBの総数であり、たとえばRB数のアップリンク帯域幅に等しい)。たとえば、通信コンポーネント661は、通信コンポーネント661によって受信された2シンボルのダウンリンク送信、および/または異なる持続時間(たとえば、1シンボル)のダウンリンク送信に応答して、2シンボルuPUCCHを送信し得る。
図18は、ULLにおいてアップリンク制御データを受信するためにUEにアップリンクリソース許可を(eNB1204によって)送信するための例示的な方法1800を示している。ブロック1802において、eNBは、サブフレーム内のTTIを決定することに基づいて、UEのためのアップリンクリソース許可を生成し得る。一態様では、TTIは、サブフレーム内の複数のシンボルのサブセットであるシンボル、シンボル数、スロットなどを含む。リソース許可生成コンポーネント1220は、サブフレーム内のTTIを決定することに基づいて、UE(たとえば、UE1202)に対するアップリンクリソース許可を生成し得る。たとえば、TTIは、サブフレーム内の複数のシンボルのサブセットであるいくつかのシンボルを含むことができ、リソース許可は、一例において、TTI持続時間、通信技術のタイプ(たとえば、ULL)などを示すために生成され得る。さらに、たとえば、TTIは、説明したように、シンボル持続時間、複数シンボル持続時間、スロット持続時間などであり得る。
ブロック1804において、eNBは、UEにアップリンクリソース許可を送信し得る。スケジューリングコンポーネント602は、UE(たとえば、UE1202)にアップリンクリソース許可(たとえば、アップリンクリソース許可1280)を送信し得る。説明したように、たとえば、スケジューリングコンポーネント602は、(たとえば、シンボルまたはサブフレームよりも小さいTTIの他の持続時間を使用して)ULLにおいてダウンリンク制御チャネルを介してUEにアップリンクリソース許可を送信し得る。さらに、アップリンクリソース許可は、上述したように、アップリンク制御および/もしくはデータチャネルのためのRBグループインデックス、ならびに/または送信するためのRBグループインデックスを決定するために使用され得る他のパラメータなど、アップリンクリソースに関する1つまたは複数の態様を示し得る。説明したように、アップリンクリソース許可を送信することは、1つまたは複数のプロセッサ1253が、RFフロントエンドなどを介して1つまたは複数のアンテナを介して送信する信号を生成するためのトランシーバ1256にデータおよび/または関係する信号情報を提供することを含み得る。
場合によってはブロック1806において、eNBは、アップリンクリソース許可において示されたものに関係するリソースを介して、UEから制御データを受信し得る。スケジューリングコンポーネント602は、アップリンクリソース許可において示されたものに関係するリソースを介して、UE(たとえば、UE1202)から制御データ(たとえば、ULL/LTE通信1282)を受信し得る。たとえば、スケジューリングコンポーネント602は、アップリンクリソース許可において示されたTTIからのTTIのオフセット数であるTTI内のリソースを介して、UE1202から制御データを受信し得る。さらに、制御データのブロック1806におけるeNB受信は、場合によっては、ブロック1808において、リソースにわたる1つもしくは複数のコードワードおよび/または1つもしくは複数のキャリアに対するバンドルされた制御データを含み得る。スケジューリングコンポーネント602は、リソースにわたる1つもしくは複数のコードワードおよび/または1つもしくは複数のキャリアに対するバンドルされた制御データを受信し得る。説明したように、これは、コードワードおよび/またはキャリアに対する単一のACK/NACKインジケータを受信することを含み得る(たとえば、少なくとも1つのコードワードまたはキャリアがNACKを示す場合はNACK、そうでない場合はACK)。スケジューリングコンポーネント602はしたがって、バンドルされたフィードバックに基づいて、1つまたは複数のキャリアを介して1つまたは複数のコードワードを再送信し得る。
場合によっては、ブロック1810において、eNBは、制御データを送信するために使用されるサイクリックシフトを決定することに少なくとも部分的に基づいて、制御データの値を決定し得る。スケジューリングコンポーネント602は、制御データを送信するために使用されるサイクリックシフトを決定することに少なくとも部分的に基づいて、制御データの値を決定し得る。たとえば、スケジューリングコンポーネント602が0のサイクリックシフトを使用してACK/NACKシグナリングを観測する場合、これはACKを示し得、ここで6のサイクリックシフトはNACKを示し得る。同様に、制御データがSRおよびACK/NACKを含む場合、説明したように、異なるサイクリックシフティングが使用され得る。いずれにしても、スケジューリングコンポーネント602は、サイクリックシフティングに少なくとも部分的に基づいて制御データ値を決定し得る。
開示したプロセスにおけるステップの特定の順序または階層は、例示的な手法の例示であることを理解されたい。設計上の選好に基づいて、プロセスにおけるステップの特定の順序または階層は再構成されてもよいことを理解されたい。さらに、いくつかのステップは、組み合わせられるか、または省略される場合がある。添付の方法クレームは、種々のステップの要素を見本的な順序において提示したものであり、提示された特定の順序または階層に限定されるものではない。
上記の説明は、本明細書において説明された種々の態様を任意の当業者が実践できるようにするために提供される。これらの態様に対する種々の変更形態は、当業者に容易に明らかになり、本明細書において規定する一般原理は、他の態様に適用される場合がある。したがって、特許請求の範囲は本明細書に示された態様に限定されるものではなく、文言通りの特許請求の範囲に一致するすべての範囲を与えられるべきであり、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。別段に明記されていない限り、「いくつかの」という用語は1つまたは複数を指している。当業者にとって既知の、または後に既知となる、本明細書で説明された種々の態様の要素に対するすべての構造的および機能的均等物が、参照により本明細書に明白に組み込まれ、特許請求の範囲によって包含されることが意図される。その上、本明細書において開示されるものは、そのような開示が特許請求の範囲において明示的に列挙されているかどうかにかかわらず、公に供されることは意図されていない。「ための手段」という句を使用して要素が明確に列挙されていない限り、いかなるクレーム要素もミーンズプラスファンクションとして解釈されるべきではない。
602 スケジューリングコンポーネント
661 通信コンポーネント
802 PUCCH
806 PUSCH
808 uPUCCH
810 uPUSCH

Claims (30)

  1. ワイヤレスネットワークにおいて通信するための方法であって、
    ネットワークエンティティから、送信時間間隔(TTI)において、アップリンクチャネルを送信するためのリソース許可を受信するステップであって、前記リソース許可が、前記アップリンクチャネルを送信する前記TTIの第1のアップリンクチャネルシンボルを示し、かつ、前記リソース許可が、前記TTIの第2のシンボルにおいて、前記アップリンクチャネルのための復調基準信号(RS)を送信することを示す、ステップと、
    前記TTIの前記第1のアップリンクチャネルシンボルにおいて、前記アップリンクチャネルを送信するステップと、
    前記復調RSを送信することを示す前記リソース許可に基づいて、前記第2のシンボルにおいて、前記復調RSを送信するステップと
    を含む方法。
  2. 前記第1のアップリンクチャネルシンボルは、前記TTIにおいて、前記第2のシンボルの前に発生する、請求項1に記載の方法。
  3. 前記TTIはサブフレーム内の2つのシンボル持続時間であり、前記サブフレームは複数のシンボルを備える、請求項1に記載の方法。
  4. 前記復調RSは、前記アップリンクチャネルのものに類似する帯域幅サイズ、周波数位置、またはアンテナポートの数のうちの少なくとも1つを有する、請求項1に記載の方法。
  5. 前記リソース許可は、2つ以上の異なるTTIにおける前記復調RSの送信をトリガすることを示す、請求項1に記載の方法。
  6. 前記復調RSは、サイクリックシフト、帯域幅、周波数位置、ホッピングパターン、アンテナポートの数、またはコムレベルのうちの少なくとも1つに関連付けられる、請求項1に記載の方法。
  7. 前記リソース許可は、前記ネットワークエンティティからの前記復調RSに対する周期的なRSトリガの一部として、前記復調RSを送信することを示す、請求項1に記載の方法。
  8. 前記リソース許可は、前記ネットワークエンティティからの前記復調RSに対する非周期的なRSトリガの一部として、前記復調RSを送信することを示す、請求項1に記載の方法。
  9. 前記復調RSを送信する周期性を構成するために、前記ネットワークエンティティから無線リソース制御(RRC)通信を受信するステップをさらに含む、請求項1に記載の方法。
  10. 前記ネットワークエンティティからダウンリンク制御情報における前記リソース許可を受信するステップをさらに含む請求項1に記載の方法。
  11. 前記リソース許可で指定された前記第2のシンボルにわたってリソースにおける通信の送信よりも前記復調RSの送信を優先するステップをさらに含む、請求項1に記載の方法。
  12. 前記リソース許可は、ロングタームエボリューションにおいて、物理アップリンク制御チャネル、物理アップリンク共有チャネル、またはサウンディング基準信号のうちの1つに対応する、請求項11に記載の方法。
  13. 前記復調RSの送信を優先するステップは、前記第2のシンボルにわたって前記リソースにおける前記通信の送信をドロップするステップを含む、請求項11に記載の方法。
  14. 前記復調RSの送信を優先するステップは、前記第2のシンボルを含むサブフレームにわたって前記リソースにおける前記通信の送信をドロップするステップを含む、請求項11に記載の方法。
  15. ワイヤレスネットワークにおいて通信するための装置であって、
    トランシーバと、
    前記ワイヤレスネットワークにおいて通信するためのバスを介して前記トランシーバと通信可能に結合された少なくとも1つのプロセッサと、
    前記バスを介して前記少なくとも1つのプロセッサおよび/または前記トランシーバと通信可能に結合されたメモリと
    を備え、
    前記トランシーバは、
    ネットワークエンティティから、リソース許可を受信することを行うように動作可能であり、
    前記少なくとも1つのプロセッサおよび前記メモリは、
    前記リソース許可を処理することを行うように動作可能であり、前記リソース許可は、アップリンクチャネルを送信する送信時間間隔(TTI)の第1のアップリンクチャネルシンボルを示し、かつ、前記リソース許可は、前記TTIの第2のシンボルにおいて、前記アップリンクチャネルのための復調基準信号(RS)を送信することを示し、
    前記トランシーバは、
    前記TTIの前記第1のアップリンクチャネルシンボルにおいて、前記アップリンクチャネルを送信することと、
    前記復調RSを送信することを示す前記リソース許可に基づいて、前記第2のシンボルにおいて、前記復調RSを送信することと
    を行うようにさらに動作可能である装置。
  16. 前記第1のアップリンクチャネルシンボルは、前記TTIにおいて、前記第2のシンボルの前に発生する、請求項15に記載の装置。
  17. 前記TTIはサブフレーム内の2つのシンボル持続時間であり、前記サブフレームは複数のシンボルを備える、請求項15に記載の装置。
  18. 前記復調RSは、前記アップリンクチャネルのものに類似する帯域幅サイズ、周波数位置、またはアンテナポートの数のうちの少なくとも1つを有する、請求項15に記載の装置。
  19. 前記リソース許可は、2つ以上の異なるTTIにおける前記復調RSの送信をトリガすることを示す、請求項15に記載の装置。
  20. 前記復調RSは、サイクリックシフト、帯域幅、周波数位置、ホッピングパターン、アンテナポートの数、またはコムレベルのうちの少なくとも1つに関連付けられる、請求項15に記載の装置。
  21. 前記リソース許可は、前記ネットワークエンティティからの前記復調RSに対する周期的なRSトリガの一部として、前記復調RSを送信することを示す、請求項15に記載の装置。
  22. 前記リソース許可は、前記ネットワークエンティティからの前記復調RSに対する非周期的なRSトリガの一部として、前記復調RSを送信することを示す、請求項15に記載の装置。
  23. 前記トランシーバは、前記復調RSを送信する周期性を構成するために、前記ネットワークエンティティから無線リソース制御(RRC)通信を受信するようにさらに動作可能である、請求項15に記載の装置。
  24. 前記トランシーバは、前記ネットワークエンティティからダウンリンク制御情報において前記リソース許可を受信するようにさらに動作可能である、請求項15に記載の装置。
  25. 前記少なくとも1つのプロセッサおよび前記メモリは、前記リソース許可で指定された前記第2のシンボルにわたってリソースにおける通信の送信よりも前記復調RSの送信を優先するようにさらに動作可能である、請求項15に記載の装置。
  26. 前記リソース許可は、ロングタームエボリューションにおいて、物理アップリンク制御チャネル、物理アップリンク共有チャネル、またはサウンディング基準信号のうちの1つに対応する、請求項25に記載の装置。
  27. ワイヤレスネットワークにおいて通信するための装置であって、
    ネットワークエンティティから、送信時間間隔(TTI)において、アップリンクチャネルを送信するためのリソース許可を受信するための手段であって、前記リソース許可が、前記アップリンクチャネルを送信する前記TTIの第1のアップリンクチャネルシンボルを示し、かつ、前記リソース許可が、前記TTIの第2のシンボルにおいて、前記アップリンクチャネルのための復調基準信号(RS)を送信することを示す、手段と、
    前記TTIの前記第1のアップリンクチャネルシンボルにおいて、前記アップリンクチャネルを送信するための手段と、
    前記復調RSを送信することを示す前記リソース許可に基づいて、前記第2のシンボルにおいて、前記復調RSを送信するための手段と
    を備える装置。
  28. 前記第1のアップリンクチャネルシンボルは、前記TTIにおいて、前記第2のシンボルの前に発生する、請求項27に記載の装置。
  29. ワイヤレスネットワークにおいて通信するためのコンピュータ実行可能コードを備えるコンピュータ可読記憶媒体であって、前記コードは、
    ネットワークエンティティから、送信時間間隔(TTI)において、アップリンクチャネルを送信するためのリソース許可を受信するためのコードであって、前記リソース許可が、前記アップリンクチャネルを送信する前記TTIの第1のアップリンクチャネルシンボルを示し、かつ、前記リソース許可が、前記TTIの第2のシンボルにおいて、前記アップリンクチャネルのための復調基準信号(RS)を送信することを示す、コードと、
    前記TTIの前記第1のアップリンクチャネルシンボルにおいて、前記アップリンクチャネルを送信するためのコードと、
    前記復調RSを送信することを示す前記リソース許可に基づいて、前記第2のシンボルにおいて、前記復調RSを送信するためのコードと
    を備える非一時的コンピュータ可読記憶媒体。
  30. 前記第1のアップリンクチャネルシンボルは、前記TTIにおいて、前記第2のシンボルの前に発生する、請求項29に記載の非一時的コンピュータ可読記憶媒体。
JP2018231474A 2014-09-26 2018-12-11 超低レイテンシlteアップリンクフレーム構造 Active JP6731998B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201462056281P 2014-09-26 2014-09-26
US201462056397P 2014-09-26 2014-09-26
US201462056403P 2014-09-26 2014-09-26
US62/056,281 2014-09-26
US62/056,397 2014-09-26
US62/056,403 2014-09-26
US14/839,697 US9980257B2 (en) 2014-09-26 2015-08-28 Ultra-low latency LTE reference signal transmission
US14/839,697 2015-08-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017515933A Division JP6453452B2 (ja) 2014-09-26 2015-08-31 超低レイテンシlteアップリンクフレーム構造

Publications (2)

Publication Number Publication Date
JP2019062563A JP2019062563A (ja) 2019-04-18
JP6731998B2 true JP6731998B2 (ja) 2020-07-29

Family

ID=54150655

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017515933A Active JP6453452B2 (ja) 2014-09-26 2015-08-31 超低レイテンシlteアップリンクフレーム構造
JP2018231474A Active JP6731998B2 (ja) 2014-09-26 2018-12-11 超低レイテンシlteアップリンクフレーム構造

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017515933A Active JP6453452B2 (ja) 2014-09-26 2015-08-31 超低レイテンシlteアップリンクフレーム構造

Country Status (9)

Country Link
US (4) US9980257B2 (ja)
EP (3) EP3198761B1 (ja)
JP (2) JP6453452B2 (ja)
KR (2) KR102184016B1 (ja)
CN (2) CN106716894B (ja)
AU (2) AU2015321948B2 (ja)
BR (1) BR112017006162B1 (ja)
ES (1) ES2836287T3 (ja)
WO (1) WO2016048595A1 (ja)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980257B2 (en) 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
US9844072B2 (en) 2014-09-26 2017-12-12 Qualcomm Incorporated Ultra-low latency LTE uplink frame structure
US9955462B2 (en) 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
WO2016064039A1 (ko) * 2014-10-21 2016-04-28 엘지전자(주) 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
KR20160075995A (ko) * 2014-12-19 2016-06-30 한국전자통신연구원 물리 채널 전송 방법 및 장치
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
US9781712B2 (en) 2015-03-17 2017-10-03 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
CN114040509A (zh) * 2015-09-25 2022-02-11 三星电子株式会社 终端、基站及其通信方法
KR102123169B1 (ko) * 2015-11-03 2020-06-16 텔레폰악티에볼라겟엘엠에릭슨(펍) 업링크 스케줄링 방법 및 장치
KR102202325B1 (ko) 2015-11-04 2021-01-14 인터디지탈 패튼 홀딩스, 인크 협대역 lte 동작을 위한 방법 및 프로시저
US10868645B2 (en) * 2015-11-06 2020-12-15 Huawei Technologies Co., Ltd. Method and base station for transmitting downlink data
US20170164213A1 (en) * 2015-12-04 2017-06-08 Electronics And Telecommunications Research Institute Transmission method and apparatus in mobile communication system
CN106992847B (zh) * 2016-01-20 2021-01-26 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
CN109286481B (zh) * 2016-01-29 2019-11-19 华为技术有限公司 一种参考信号的传输方法、装置和系统
WO2017132811A1 (zh) * 2016-02-01 2017-08-10 华为技术有限公司 上行信息传输的方法、装置
US10718851B2 (en) * 2016-02-02 2020-07-21 Qualcomm Incorporated Displacement and rotation measurement for unmanned aerial vehicles
AU2017241356B2 (en) * 2016-03-30 2019-07-18 Interdigital Patent Holdings, Inc. Methods and systems for scheduling in Uu-based vehicle-to-vehicle communication
US10277367B2 (en) * 2016-04-01 2019-04-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US10420079B2 (en) * 2016-04-01 2019-09-17 Hfi Innovation Inc. Efficient control and data multiplexing in communication systems
EP3451600A4 (en) * 2016-04-27 2019-11-27 Sharp Kabushiki Kaisha DEVICE DEVICE, BASIC STATION DEVICE, COMMUNICATION METHOD AND INTEGRATED CIRCUIT
JP2019110359A (ja) 2016-04-28 2019-07-04 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP2019110360A (ja) 2016-04-28 2019-07-04 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10757687B2 (en) 2016-05-12 2020-08-25 Qualcomm Incorporated Techniques for communicating feedback in low latency wireless communications
EP3457773B1 (en) * 2016-05-12 2021-09-08 Huawei Technologies Co., Ltd. Resource indication methods and related apparatus
WO2017193399A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 一种上行控制信息的传输方法和装置
US11477766B2 (en) 2016-05-24 2022-10-18 Qualcomm Incorporated Uplink control information reporting
US11212815B2 (en) * 2016-08-10 2021-12-28 Panasonic Intellectual Property Corporation Of America Wireless communication method, apparatus and system
US10361894B2 (en) * 2016-09-21 2019-07-23 Qualcomm Incorporated Techniques for a unified demodulation reference signal pattern for various multiplexing schemes
WO2018056760A1 (ko) * 2016-09-23 2018-03-29 주식회사 케이티 짧은 전송 시간 간격의 프레임 구조에서 채널 상태 정보를 전송하는 방법 및 장치
KR102186397B1 (ko) 2016-09-23 2020-12-04 주식회사 케이티 짧은 전송 시간 간격의 프레임 구조에서 채널 상태 정보를 전송하는 방법 및 장치
JP6916872B2 (ja) * 2016-09-30 2021-08-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) スケジューリングされたuci送信方式
CN109804572B (zh) 2016-10-11 2022-08-30 瑞典爱立信有限公司 用于自适应解调参考信号的密度的方法
CN113329499A (zh) * 2016-10-17 2021-08-31 Oppo广东移动通信有限公司 信息传输方法和装置
US20180132229A1 (en) * 2016-11-04 2018-05-10 Mediatek Inc. Method And Apparatus For Multiplexing Physical Uplink Control Channels In Mobile Communications
US10447457B2 (en) 2016-11-09 2019-10-15 Qualcomm Incorporated Reference signal pattern and pilot sharing for shortened transmission time interval wireless communications
US10425205B2 (en) 2016-12-22 2019-09-24 Qualcomm Incorporated Sounding reference signal transmission in low latency wireless transmissions
CN108242985B (zh) * 2016-12-23 2022-04-12 维沃移动通信有限公司 一种参考信号配置方法、网络侧设备和用户设备
EP3550918A4 (en) 2017-01-07 2019-11-27 LG Electronics Inc. -1- METHOD FOR TRANSMITTING AN UPLINK CONTROL CHANNEL OF A TERMINAL IN A WIRELESS COMMUNICATION SYSTEM, AND DEVICE THEREOF
CN110192370B (zh) * 2017-01-09 2022-03-01 诺基亚技术有限公司 传输定时的灵活指示
US10841069B2 (en) * 2017-03-24 2020-11-17 Qualcomm Incorporated Partial subframe transmission techniques in shared radio frequency spectrum
KR20200012842A (ko) * 2017-05-03 2020-02-05 아이디에이씨 홀딩스, 인크. 업링크 제어 정보를 송신하기 위한 방법, 시스템, 및 장치
US20180323925A1 (en) * 2017-05-04 2018-11-08 Qualcomm Incorporated Transmitting reference signals based on wireless communications timeline
EP3620015B1 (en) * 2017-05-05 2023-07-05 Motorola Mobility LLC Collision handling between stti and tti transmissions
US10931484B2 (en) * 2017-05-26 2021-02-23 Qualcomm Incorporated Transmit power and frequency hopping configurations for control information transmissions
CN111148106B (zh) * 2017-05-31 2021-09-17 Oppo广东移动通信有限公司 无线通信方法和设备
US10958407B2 (en) * 2017-06-09 2021-03-23 Qualcomm Incorporated Frequency division duplexing hybrid automatic repeat request with mini-slots
US10492151B2 (en) * 2017-06-09 2019-11-26 Qualcomm Incorporated Power control in new radio systems
US11424888B2 (en) 2017-06-26 2022-08-23 Motorola Mobility Llc Demodulation reference signal configuration
BR112020001564A2 (pt) * 2017-07-28 2020-07-21 Ntt Docomo, Inc. aparelho de recepção e aparelho de transmissão
EP3667971B1 (en) * 2017-08-10 2022-10-05 LG Electronics Inc. Method for transmitting and receiving uplink control channel and device therefor
US11147077B2 (en) * 2017-08-18 2021-10-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for scheduling resources
US11503628B2 (en) * 2017-09-13 2022-11-15 Qualcomm Incorporated Communication of a reference signal count indication
US10182355B1 (en) * 2017-11-21 2019-01-15 Keysight Technologies, Inc. Methods, systems and computer readable media for testing an air interface device by simulating multi-user equipment (multi-UE) uplink virtual multiple input multiple output (MIMO)
US11153060B2 (en) 2017-12-29 2021-10-19 Comcast Cable Communications, Llc Selection of grant and CSI
CA3029227A1 (en) 2018-01-04 2019-07-04 Comcast Cable Communications, Llc Methods and systems for information reporting
US10681648B2 (en) 2018-01-10 2020-06-09 Comcast Cable Communications, Llc Power control for channel state information
PL3603254T3 (pl) * 2018-01-12 2024-03-11 Telefonaktiebolaget Lm Ericsson (Publ) Konfiguracja zasobów żądania szeregowania
CN110351017B (zh) 2018-04-04 2022-03-29 华为技术有限公司 一种通信方法、装置以及系统
CN110365456B (zh) * 2018-04-11 2022-04-29 中兴通讯股份有限公司 物理上行信道的时隙确定方法及装置
US10720981B2 (en) * 2018-05-11 2020-07-21 Qualcomm Incorporated Spatial multiplexing of a sounding reference signal (SRS) and a physical uplink shared channel (PUSCH) communication
US10992408B2 (en) * 2018-05-11 2021-04-27 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication
KR20210028699A (ko) 2018-08-10 2021-03-12 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 업링크 채널들에 대한 시간 리소스들
CA3056971A1 (en) 2018-09-27 2020-03-27 Comcast Cable Communications, Llc Power control for retransmissions
CN110972303B (zh) * 2018-09-28 2022-10-25 华为技术有限公司 通信方法、装置、设备、系统及存储介质
US10965786B2 (en) * 2018-10-31 2021-03-30 At&T Intellectual Property I, L.P. Adaptive fixed point mapping for uplink and downlink fronthaul
US11159972B2 (en) * 2018-10-31 2021-10-26 Qualcomm Incorporated Handling of radio frequency front-end group delays for round trip time estimation
US10735110B2 (en) 2018-12-07 2020-08-04 Keysight Technologies, Inc. Methods, systems, and computer readable media for testing and modeling beamforming capabilities of a device under test
CN111403899B (zh) 2018-12-27 2022-10-28 华为技术有限公司 多频天线结构
US11601946B2 (en) 2020-02-05 2023-03-07 Samsung Electronics Co., Ltd. Multi-TRP and URLLC capability signaling
US11088744B1 (en) 2020-02-07 2021-08-10 Keysight Technologies, Inc. Methods, systems, and computer readable media for 5G digital beamforming testing
US20210298064A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Supporting allocation modification during transition instance in an integrated access and backhaul network
US20220109534A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Uplink control information reporting
US11387961B2 (en) 2021-06-14 2022-07-12 Ultralogic 6G, Llc Short-form demodulation reference for improved reception in 5G and 6G
US11502893B1 (en) 2021-06-14 2022-11-15 Ultralogic 6G, Llc Short-form 5G/6G pulse-amplitude demodulation references
US11418372B1 (en) 2021-06-14 2022-08-16 Ultralogic 6G, Llc Low-complexity demodulation of 5G and 6G messages
WO2023188126A1 (ja) * 2022-03-30 2023-10-05 株式会社Nttドコモ 端末、無線通信方法及び基地局

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693553B2 (en) * 2004-06-30 2010-04-06 Avaya Inc. Intelligent ringtone service
JP4732808B2 (ja) * 2005-06-14 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ 無線パラメータ群を生成する装置
US7660229B2 (en) 2005-06-20 2010-02-09 Texas Instruments Incorporated Pilot design and channel estimation
JP4698498B2 (ja) 2006-06-19 2011-06-08 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局および通信方法
US20080200196A1 (en) * 2007-02-19 2008-08-21 Tarik Muharemovic Transmission of prioritized information in the proximity of reference signals
KR101414962B1 (ko) 2007-04-27 2014-07-07 삼성전자주식회사 무선통신 시스템에서 상향링크 채널사운딩 레퍼런스 신호의송수신 방법
CN101926112A (zh) 2007-04-30 2010-12-22 诺基亚西门子通信公司 用于zadoff-chu序列、修改的zadoff-chu序列和分块的扩频序列的协调循环移位和跳频序列
GB0708345D0 (en) * 2007-04-30 2007-06-06 Nokia Siemens Networks Oy Signalling within a communication system
CN101330372B (zh) 2007-06-22 2011-11-30 中兴通讯股份有限公司 长期演进时分双工系统中调度授权资源的指示方法
JP5080881B2 (ja) 2007-06-27 2012-11-21 ナミックス株式会社 発光ダイオードチップの封止体の製造方法
US8155100B2 (en) 2007-07-30 2012-04-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving different signal types in communication systems
US9699688B2 (en) 2007-08-02 2017-07-04 Qualcomm Incorporated Method for scheduling orthogonally over multiple hops
JP5073825B2 (ja) 2007-09-14 2012-11-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報を伝送する方法
KR20090067011A (ko) * 2007-12-20 2009-06-24 엘지전자 주식회사 무선통신 시스템에서 데이터 전송 방법
US8059524B2 (en) 2008-01-04 2011-11-15 Texas Instruments Incorporated Allocation and logical to physical mapping of scheduling request indicator channel in wireless networks
US8630240B2 (en) 2008-02-19 2014-01-14 Texas Instruments Incorporated Mapping between logical and physical uplink control resource blocks in wireless networks
US8149929B2 (en) 2008-06-17 2012-04-03 Telefonaktiebolaget L M Ericsson (Publ) Receiver and method for processing radio signals using soft pilot symbols
WO2010013961A2 (en) 2008-07-30 2010-02-04 Lg Electronics Inc. Method and apparatus of monitoring pdcch in wireless communication system
JP5276172B2 (ja) * 2008-08-14 2013-08-28 サムスン エレクトロニクス カンパニー リミテッド Ofdma通信システムにおける多重基準信号を支援する方法及び装置
CN101677463B (zh) 2008-09-18 2012-07-25 电信科学技术研究院 一种实现半持续物理资源分配的方法和装置
EP2418905A1 (en) 2009-04-10 2012-02-15 Panasonic Corporation Wireless base station apparatus, wireless terminal apparatus, frequency resource allocation method, and method of forming transmission signal
WO2010137926A2 (ko) 2009-05-29 2010-12-02 엘지전자 주식회사 중계기 백홀 상향링크에서 제어 정보의 전송 방법 및 장치
WO2011019813A2 (en) 2009-08-12 2011-02-17 Interdigital Patent Holdings, Inc. Method and apparatus for contention-based uplink data transmission
WO2011042042A1 (en) 2009-10-05 2011-04-14 Nokia Siemens Networks Oy Simultaneous transmission of control information
US9143281B2 (en) 2009-10-09 2015-09-22 Qualcomm Incorporated Blind decoding of uplink control channels
EP2326030B1 (en) 2009-11-23 2012-10-17 Lakeside Labs GmbH Apparatus and method for cooperative relaying in wireless systems using an extended channel reservation
US9240510B2 (en) 2009-12-07 2016-01-19 Electrotherm, Inc. Concentrated photovoltaic and thermal solar energy collector
US8780826B2 (en) 2010-01-12 2014-07-15 Qualcomm Incorporated Continuous CDM/FDM structure for LTE uplink data
CN102823166B (zh) 2010-02-22 2016-06-08 三星电子株式会社 对上行链路参考信号应用序列跳变和正交覆盖码
EP3544200B1 (en) * 2010-04-08 2023-09-06 LG Electronics Inc. Signal transmsission method and apparatus using codebook in wireless communication system supporting multiple antennas
JP5443317B2 (ja) 2010-04-30 2014-03-19 株式会社Nttドコモ 移動端末装置及び無線通信方法
US8942199B2 (en) 2010-05-06 2015-01-27 Panasonic Intellectual Property Corporation Of America Terminal apparatus and response signal mappiing method
WO2012018228A2 (en) 2010-08-03 2012-02-09 Samsung Electronics Co., Ltd. Transmission of uplink control signals in a communication system
KR20120015757A (ko) 2010-08-13 2012-02-22 주식회사 팬택 다중 요소 반송파 시스템에서 전력조정에 관한 정보의 전송장치 및 방법
KR101688546B1 (ko) * 2010-09-29 2016-12-21 삼성전자주식회사 Lte시스템에서 phich에 의한 역방향 mimo 재전송을 위한 송수신 방법 및 장치
US8830883B2 (en) 2010-11-16 2014-09-09 Qualcomm Incorporated Method and apparatus for improving acknowledgement/negative acknowledgement feedback
US9331826B2 (en) * 2011-04-13 2016-05-03 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
EP2511394B1 (de) 2011-04-15 2015-05-27 Siemens Aktiengesellschaft Gusseisen mit Niob und Bauteil
JP5285117B2 (ja) 2011-05-02 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
US8995385B2 (en) * 2011-08-05 2015-03-31 Samsung Electronics Co., Ltd. Apparatus and method for UE-specific demodulation reference signal scrambling
CN103095395B (zh) 2011-11-02 2017-09-22 中兴通讯股份有限公司 Pucch的资源配置方法、传输方法、装置和系统
TW201338437A (zh) 2011-12-08 2013-09-16 Interdigital Patent Holdings 在進階拓樸(AT)應用中無線傳送/接收單元(WTRUs)間直接通訊方法、裝置及系統
TWI695604B (zh) 2012-01-24 2020-06-01 美商內數位專利控股公司 無線傳輸/接收單元、在無線傳輸/接收單元中實施的方法以及網路節點
US9203559B2 (en) 2012-01-27 2015-12-01 Blackberry Limited System and method for supporting inter-band carrier aggregation with different UL/DL TDD configurations
US8971271B2 (en) 2012-01-30 2015-03-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and network nodes for scheduling transmission
EP2839707A4 (en) * 2012-04-19 2015-12-09 Ericsson Telefon Ab L M SIGNALING FOR UPLINK SURVEYS
US20150223232A1 (en) 2012-08-27 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Methods and Arrangements for Resource Allocation
US9571248B2 (en) * 2012-10-29 2017-02-14 Lg Electronics Inc. Method and apparatus for configuring a reference signal in a wireless communication system
WO2014088341A1 (ko) * 2012-12-09 2014-06-12 엘지전자 주식회사 무선 통신 시스템에서 커버리지 내부 단말과 커버리지 외부 단말 간 직접 통신을 위한 동기 획득 방법 및 이를 위한 장치
JP2016510548A (ja) * 2013-01-16 2016-04-07 インターデイジタル パテント ホールディングス インコーポレイテッド 改善されたアップリンクスペクトル効率
US9060321B2 (en) * 2013-02-26 2015-06-16 Samsung Electronics Co., Ltd. Methods and apparatus for demodulation reference signals and synchronization signals in extension carrier of LTE advanced
US9397796B2 (en) 2013-03-13 2016-07-19 Samsung Electronics Co., Ltd. Computing and transmitting channel state information in adaptively configured TDD communication systems
US20140286255A1 (en) 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
US10463471B2 (en) 2013-07-18 2019-11-05 Medos International Sarl Methods and devices for positioning and securing ligament grafts
JP6175964B2 (ja) * 2013-07-31 2017-08-09 ソニー株式会社 撮像素子、撮像装置、並びに、製造装置および方法
US20160019556A1 (en) * 2014-07-16 2016-01-21 Google Inc. Determining an aspect of a physical location based on interactions associated with the physical location
US9775151B2 (en) 2014-07-21 2017-09-26 Intel IP Corporation System and method for TDD communications
JP6789211B2 (ja) 2014-09-08 2020-11-25 インターデイジタル パテント ホールディングス インコーポレイテッド 異なる送信時間間隔(tti)持続時間により動作するシステムおよび方法
US9955462B2 (en) 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
US9844072B2 (en) 2014-09-26 2017-12-12 Qualcomm Incorporated Ultra-low latency LTE uplink frame structure
US9980257B2 (en) 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
US10122506B2 (en) 2014-12-23 2018-11-06 Qualcomm Incorporated Single TTI transmission of control data in wireless communications
AR103887A1 (es) 2015-03-09 2017-06-14 ERICSSON TELEFON AB L M (publ) Canal pucch breve en canal spucch de enlace ascendente
KR20180018504A (ko) 2015-06-17 2018-02-21 인텔 아이피 코포레이션 차세대 lte 디바이스들 및 시스템들을 위한 ack/nack 신호들
EP3323217A1 (en) 2015-07-14 2018-05-23 Telefonaktiebolaget LM Ericsson (PUBL) Reference signal in a communications network
WO2017054876A1 (en) 2015-10-01 2017-04-06 Nokia Solutions And Networks Oy Method and apparatus for determining ack/nack resources

Also Published As

Publication number Publication date
AU2015321948A1 (en) 2017-03-09
CN111262650B (zh) 2022-06-14
WO2016048595A1 (en) 2016-03-31
CN106716894B (zh) 2020-01-31
KR20170063616A (ko) 2017-06-08
US9980257B2 (en) 2018-05-22
BR112017006162B1 (pt) 2024-03-12
KR20190004842A (ko) 2019-01-14
US20220029765A1 (en) 2022-01-27
CN106716894A (zh) 2017-05-24
US20160095104A1 (en) 2016-03-31
US11088798B2 (en) 2021-08-10
EP3198761A1 (en) 2017-08-02
JP2019062563A (ja) 2019-04-18
JP6453452B2 (ja) 2019-01-16
US20180242307A1 (en) 2018-08-23
AU2015321948B2 (en) 2019-01-17
US20200008190A1 (en) 2020-01-02
CN111262650A (zh) 2020-06-09
ES2836287T3 (es) 2021-06-24
EP4213422A1 (en) 2023-07-19
KR102184016B1 (ko) 2020-11-27
JP2017529798A (ja) 2017-10-05
EP3748885B1 (en) 2023-04-19
US10660074B2 (en) 2020-05-19
US11985084B2 (en) 2024-05-14
KR101938718B1 (ko) 2019-01-15
EP3748885A1 (en) 2020-12-09
BR112017006162A2 (pt) 2018-04-10
EP3198761B1 (en) 2020-09-23
AU2018271356A1 (en) 2018-12-20
AU2018271356B2 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6731998B2 (ja) 超低レイテンシlteアップリンクフレーム構造
JP6599529B2 (ja) 超低レイテンシlte(登録商標)制御データ通信
US9844072B2 (en) Ultra-low latency LTE uplink frame structure
CN113708896B (zh) 超低延迟lte上行链路帧结构

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6731998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250