JP6730787B2 - 投影装置 - Google Patents

投影装置 Download PDF

Info

Publication number
JP6730787B2
JP6730787B2 JP2015158426A JP2015158426A JP6730787B2 JP 6730787 B2 JP6730787 B2 JP 6730787B2 JP 2015158426 A JP2015158426 A JP 2015158426A JP 2015158426 A JP2015158426 A JP 2015158426A JP 6730787 B2 JP6730787 B2 JP 6730787B2
Authority
JP
Japan
Prior art keywords
projection
image
image data
correction
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015158426A
Other languages
English (en)
Other versions
JP2017037190A (ja
Inventor
中村 大輔
大輔 中村
Original Assignee
株式会社ネイキッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ネイキッド filed Critical 株式会社ネイキッド
Priority to JP2015158426A priority Critical patent/JP6730787B2/ja
Publication of JP2017037190A publication Critical patent/JP2017037190A/ja
Application granted granted Critical
Publication of JP6730787B2 publication Critical patent/JP6730787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、投影装置、画像処理装置、画像処理プログラムおよび画像配信システムに関する。
近年、プロジェクタの技術進歩に伴って、プロジェクタを用いた映像演出がより身近なものとなりつつある。プロジェクションマッピングに代表されるプロジェクタを用いた映像演出は、種々のイベントを賑わしている。
また、プロジェクタ機器の小型化および低価格化も進んでおり、大画面で映像コンテンツを鑑賞するのみならず、インテリアの観点から家庭にプロジェクタを導入するユーザーも増えている。
このような社会情勢を鑑みて、より手軽に日常生活においてプロジェクタを利用すること(プロジェクタのパーソナル化)を念頭においた技術が種々開発・提案されている。この種の技術の一例として下記の特許文献1を例示する。
特許文献1には、既存の照明装置取付具(電球ソケット)に装着する照明機能と画像投写機能とを兼ね備えた照明装置である。これにより一つの照明装置が、照明としてもプロジェクタとしても機能する。また、照明装置取付具が備え付けられている場所は主に天井であり、比較的広い領域を照射することができるため、画像投影の位置に適している。
さらに、特許文献1の照明装置は、スクリーンではない場所(特許文献1の図4では調理台)への画像投影、ユーザーの動作(ジェスチャー)に応じて操作可能、投影面までの距離を測距して自動的に焦点距離を調整、といったユーザーフレンドリーな機能を種々備えている。
特開2013−125166号公報
特許文献1の照明装置は、上記のような利点を有している反面、既存の照明装置取付具に装着するため投影可能な位置に必ずしも投影に適した平面があるとは限らない。従って、投影面が歪な場合、または、投影面が投影部に正対していない場合には、当該照明装置は正常な映像を投影することができない。
また、特許文献1の照明装置に限らず一般的なプロジェクタであっても、投影する領域が広域であるほどその投影に適した広い平面を確保することは難しく、投影面に何らかの歪な面が含まれるケースが多くなる。
本発明は、上記の課題に鑑みなされたものであり、投影面が歪であっても観賞に堪えられる画像投影を実現する投影装置、または、当該投影装置に関する画像処理装置、画像処理プログラムおよび画像配信システムを提供するものである。
本発明によれば、発光する光源部と、複数のピクセルから構成される画像データを入力する画像入力部と、前記画像入力部に入力された前記画像データを補正して補正画像データを生成する画像補正部と、前記画像補正部によって生成された前記補正画像データから投影面に投影する投影画像を形成する投影画像形成部と、前記投影画像形成部によって形成された前記投影画像を、前記光源部が発光する光を用いて前記投影面に投影する投影部と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、を備え、前記投影画像形成部は、均一な階調値の前記ピクセルから構成される一の前記画像データからテスト投影画像を形成し、前記投影部は、前記投影画像形成部によって形成された前記テスト投影画像を前記投影面に投影し、前記光路長情報取得部は、前記テスト投影画像に定められている前記微小領域ごとに前記光路長情報を取得し、前記画像補正部は、前記テスト投影画像を前記投影面に投影している状態で当該投影面を撮像して生成されるテスト画像データを取得し、前記テスト画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて幾何補正用の第一補正パラメータを生成し、前記テスト画像データに含まれる前記ピクセルのうち最低値を示す階調値を基準として、当該テスト画像データに含まれる他の前記ピクセルの階調値を当該最低値に近づける色調補正用の第二補正パラメータを生成し、前記画像入力部に入力された他の前記画像データを補正する際に、前記第一補正パラメータを用いて幾何補正を行い前記第二補正パラメータを用いて色調補正を行って前記補正画像データを生成し、前記第二補正パラメータが、前記テスト画像データに含まれる各ピクセルの階調値を反転した値および各ピクセルの最低値を合算した値について階調値の最大値を1として規格化する関数である投影装置が提供される。
また、本発明によれば、発光する光源部の光を用いて投影画像を投影面に投影する際に、前記投影画像の元となる画像コンテンツを生成する画像処理装置であって、複数のピクセルから構成される画像データを入力する画像入力部と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記画像コンテンツを生成する画像補正部と、を備える画像処理装置が提供される。
また、本発明によれば、発光する光源部の光を用いて投影画像を投影面に投影する際に、前記投影画像の元となる画像コンテンツを生成するための画像処理をコンピュータに実行させる画像処理プログラムであって、複数のピクセルから構成される画像データを入力する画像入力処理と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得処理と、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記画像コンテンツを生成する画像補正処理と、をコンピュータに実行させる画像処理プログラムが提供される。
また、本発明によれば、発光する光源部の光を用いて投影画像を投影面に投影する投影装置に対して、前記投影画像の元となる画像コンテンツを配信する画像配信システムであって、複数のピクセルから構成される画像データを入力する画像入力部と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記画像コンテンツを生成する画像補正部と、前記画像補正部によって生成された前記画像コンテンツを、通信回線を介して配信する画像配信部と、を備える画像配信システムが提供される。
上記発明によれば、投影画像に関する光路長情報を所定の微小領域ごとに取得し、補正対象の画像データに含まれるピクセルを光路長情報に対応付けて当該画像データに幾何補正および色調補正を施す。従って、繊細な画像補正が実行され、たとえ投影面が歪であってもユーザーにとって違和感のない画像投影を実現することができる。
本発明によれば、投影面が歪であっても観賞に堪えられる画像投影を実現する投影装置、または、当該投影装置に関する画像処理装置、画像処理プログラムおよび画像配信システムが提供される。
投影装置の機能構成を示す機能ブロック図である。 投影装置の外観図である。 投影装置を用いて段差に円形の投影画像を投影した状態を示しており、(a)は斜視図、(b)は正面図である。 微小領域を割り当てた投影画像を理想平面に投影した様子を示す模式図である。 投影装置および撮像装置の設置例を示す模式図である。 投影装置の位置から図5のXYZ座標の原点を視る視点からの模式図である。 図4に示す投影画像を投影面に投影した状態を示す模式図である。(a)は投影面の正面から視た図であり、(b)は投影装置の位置から視た図である。 図4に示す投影画像の元となる画像データを補正して形成される投影画像を理想平面に投影した様子を示す模式図である。 図8に示す投影画像を投影面に投影した状態を示す模式図である。(a)は投影面の正面から視た図であり、(b)は投影装置の位置から視た図である。 投影装置が行う処理の手順を示すフローチャートである。 図4に示す投影画像を投影面に投影し、投影装置の位置から視た状態を示す模式図である。 図4に示す投影画像の元となる画像データを補正して形成される投影画像を投影面に投影し、投影装置の位置から視た状態を示す模式図である。 画像処理装置および画像配信システムの機能構成を示す機能ブロック図である。 赤の画像データをテスト投影して取得されるテスト画像データに含まれる各ピクセルの階調値(R)と、各ピクセルの位置座標との関係を示す図である。 図14で示したテスト画像データを補正するための補正パラメータを示す図である。 図14に示すテスト画像データを、補正パラメータを用いた補正によって得られる補正画像データを示す図である。
以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。
<第一実施形態の投影装置100の全体構成について>
第一実施形態の投影装置100の全体構成について、図1、図2および図4を用いて以下説明する。
図1は、投影装置100の機能構成を示す機能ブロック図である。図2は、投影装置100の外観図である。図4は、微小領域を割り当てた投影画像(テスト投影画像P1)を理想平面に投影した様子を示す模式図である。
本実施形態の投影装置100は、いわゆるプロジェクタ装置であり、画像入力部110、画像補正部120、光路長情報取得部130、光源部140、投影画像形成部150および投影部160を備える。
光源部140は、発光する機能を有している。
画像入力部110は、複数のピクセルから構成される画像データを入力する。
画像補正部120は、画像入力部110に入力された画像データを補正して補正画像データを生成する。
投影画像形成部150は、画像補正部120によって生成された補正画像データから投影面に投影する投影画像を形成する。
投影部160は、投影画像形成部150によって形成された投影画像を、光源部140が発光する光を用いて投影面に投影する。
光路長情報取得部130は、投影画像に定めた複数の微小領域ごとに基準点から投影面までの光路の距離を示す光路長情報を取得する。
なお、画像補正部120は、画像データに含まれるピクセルと微小領域とを対応付けて、ピクセルに対応付けられた微小領域の光路長情報に基づいて画像データに幾何補正および色調補正を行って補正画像データを生成することを特徴とする。
以下、投影装置100の有する各機能の説明を行う。
図2に図示しているように、投影装置100は、本体部180とベース部170とを備えており、外観がいわゆるスポットライトのような形状をしている。このような外観であることにより、投影装置100は、違和感なく既存の室内照明と置換可能となっている。
なお、ここで図示する投影装置100の形状は一例であり、本発明はこの例に限定されるものではない。
ベース部170は、電球ソケットまたはシーリング取付具(図示せず)に装着可能な給電部172を備えており、投影装置100(本体部180に含まれる各種機能)は給電部172から取得される電力によって動作する。これにより、天井面や壁面等に投影装置100を容易に設置することができ、別途の配線工事を行なわずとも投影装置100に電力を供給することができる。
また、ベース部170は、本体部180の基端部との接合箇所に回転軸174を備えており、回転軸174を中心に本体部180を回転させることによって、投影レンズ182の正面方向を自在に変えることができる。これによって、投影装置100は、投影レンズ182によって生成される投影画像を所望の方向に投射することができる。
本体部180は、投影装置100の主要な機能を有している構成要素であり、投影画像を所望の方向に投射するための投影レンズ182を備えている。
本体部180が有している主要な機能とは、図1に図示しているように、具体的には画像入力部110と画像補正部120と光路長情報取得部130と光源部140と投影画像形成部150と投影部160のことをいう。
なお、図1において、光源部140から投影画像形成部150への矢印、投影画像形成部150から投影部160の矢印、および、投影部160から投影装置100の外部(投影面)への経路を中抜きの矢印で示している。これは、これらの矢印が示す経路が、他の経路と異なり光学系の経路であることを意味している。
また、図1において、細線で示される矢印はデジタルデータの経路を意味しており、太線で示される矢印は電力経路を意味している。
光源部140は、いわゆるランプであり、投影画像の投影に用いられる光を提供する。具体的には、光源部140には高圧水銀ランプ、ハロゲンランプ、LEDランプ等が用いられる。なお、図1では光源部140は単一であるかのように図示しているが、必ずしも一つである態様に限られず、光源部140が投影装置100の内部に複数存在する態様であってもよい。
投影部160は、光源部140が発光する光を投影画像形成部150に形成された投影画像に投写し、その投写光の反射光(または透過光)を投影装置100の外部に投写する機能を有している。すなわち、投影部160は光源部140が発光した光を所望の経路に導く機能であり、具体的には、ミラー、プリズム、レンズ等から構成される。なお、本実施形態においては、投影部160を構成するレンズの一つとして投影レンズ182が含まれている。
光路長情報取得部130は、光路長情報を微小領域ごとに取得する。ここで光路長情報は、基準点から投影面までの光路の距離をいう。基準点は光源部140から投影面までのいずれかの位置に定めればよい。本実施形態においては、投影部160に含まれる投影レンズの位置を基準点として説明する。
光路長情報取得部130が光路長情報を取得する態様は種々の態様を採りうる。例えば、基準点に測距センサ(図示せず)を設置し、当該測距センサから投影面上の各点までの距離を光路長情報として用いてもよい。また、任意の位置に測距センサを設置し、当該位置から投影面上の各点までの距離を測距した後に、その測距結果と基準点の位置とに基づいて光路長情報を演算する演算装置(図示せず)から取得してもよい。後者の態様は、本実施形態のように、基準点を既存の物体(投影レンズ182)の位置として取り扱うため、当該位置に測距センサが設置できない場合に好適である。
なお、ここで述べた測距センサは、赤外線センサを用いたものであってもよく、音響センサを用いたものであってもよく、これらを組み合わせたものであってもよい。
また、ここで述べた測距センサおよび演算装置は、投影装置100の内部に包含されてもよく、投影装置100の外部機器であってもよい。
画像入力部110は、デジタル方式の画像データを入力し、画像補正部120または投影画像形成部150に当該画像データを供給する機能を有している。当該画像データの入力先は、投影装置100の外部装置であってもよいし、または、投影装置100内の記憶領域(図示せず)であってもよい。
また、画像入力部110による画像データの入力は、画像入力部110が主体的に画像データを取得する(読み出す)方式であってよいし、他の装置が出力した画像データを受動的に受け付ける方式であってもよい。
画像入力部110への画像データの入力先が他の装置である場合、その経路は有線通信であってもよく、無線通信であってもよい。
投影画像形成部150は、画像入力部110から供給された画像データ、または、画像補正部120によって生成された補正画像データを元に投影画像を形成する機能を有している。すなわち、投影画像形成部150は、コンピュータによって処理される画像データを、光学系の画像に変換する機能である。
より具体的には、投影装置100が液晶ディスプレイ方式のプロジェクタ装置であれば、投影画像形成部150は液晶パネルを含む。また、投影装置100がDLP(登録商標)方式のプロジェクタ装置であれば、投影画像形成部150はデジタルミラーデバイスを含む。なお、DLP(登録商標)とはDigital Light Processingの略である。
画像補正部120は、画像入力部110に入力された画像データを補正して補正画像データ(画像コンテンツ)を生成し、生成した補正画像データを投影画像形成部150に供給する機能である。画像補正部120は、ROM(図示せず)等の記憶領域に格納されている画像処理プログラムをCPU(図示せず)が実行することによって実現される。
前段で述べた画像処理プログラムについて、詳細に説明すると以下のようになる。
当該画像処理プログラムは、発光する光源部140の光を用いて投影画像を投影面に投影する際に、投影画像の元となる画像コンテンツを生成するための画像処理をCPU(コンピュータ)に実行させるものである。
当該画像処理プログラムは、画像入力処理と、光路長情報取得処理と、画像補正処理と、が含まれる。画像入力処理では、複数のピクセルから構成される画像データを入力する。光路長情報取得処理では、投影画像に定めた複数の微小領域ごとに基準点から投影面までの光路の距離を示す光路長情報を取得する。画像補正処理では、画像データに含まれるピクセルと微小領域とを対応付けて、ピクセルに対応付けられた微小領域の光路長情報に基づいて画像データに幾何補正および色調補正を行って画像コンテンツを生成する。
ここで幾何補正とは、補正対象となるピクセルの位置座標を、その前後で変動させる処理をいう。具体的には、幾何補正には、ピクセルの移動、拡大、縮小、反転、せん断、回転等が含まれる。
また、ここで色調補正とは、補正対象となるピクセルの色について所定の表色系で定量的に示される値(階調値)を、その前後で変動させる処理をいう。具体的には、色調補正には、いわゆる明度補正、コントラスト補正、輝度補正、ガンマ補正等が含まれる。
なお、本実施形態では「所定の表色系」として、代表的な加法混合のカラーモデルであるRGB(R:赤、G:緑、B:青)を用いて説明する。一つのピクセルに対して24ビットの色情報が含まれ、各色相(R、G、B)に8ビットずつ割り当てられ、256段階の階調値によって表現されるものとする。
ここでRGBは表色系の一例であり、その他のカラーモデルを表色系とする態様であってもよい。
ここでピクセルとは、コンピュータで画像データを扱うとき、色情報を持つ最小単位をいう。また、以下の説明に用いるドットとは、投影画像形成部150に形成される投影画像における描画表現の最小単位をいう。
ピクセルが情報の最小単位であるのに対して、ドットはデバイスの物理的な最小単位を示す点においてピクセルと異なる。
微小領域とは、一または複数のドットから構成される投影画像上の領域をいう。図4では投影画像を8×6の正方形マスに分割しており、その矩形マスのそれぞれが微小領域である。従って、仮に投影画像が1280×960の解像度である場合、微小領域は160×160=25600個のドットから構成されている。
なお、図2は理解しやすいように少ない数の微小領域を設定したが、実際にはより多数の微小領域を投影画像に設定することが好ましい。投影画像に設定される微小領域の数は、光路長情報取得部130によって取得される光路長情報の精度に主に依存して決定される。光路長情報が十分に高水準の精度を維持できるならば、一つのドットが一つの微小領域である態様であってもよい。すなわち、仮に投影画像が1280×960の解像度である場合は1280×960=1228800個の微小領域を設定してもよい。
また、図4に示す投影画像に含まれる各微小領域の輪郭は着色されており、当該投影画像を投影面に投影した状態を撮像して生成される画像データに対して解析処理を行うことによって、微小領域の輪郭が判別できるようになっている。
図4に示すように、本実施形態においては投影画像をメッシュ状に分割し、分割された複数のメッシュのそれぞれを微小領域として設定している。そして、投影画像に含まれる全てのドットがいずれかの微小領域に内包される態様としているが、必ずしもこれに限定する必要はなく、投影画像に含まれる一部のドットがいずれの微小領域にも含まれない態様を採ってもよい。
また、本実施形態において微小領域の形状は正方形として説明するが、必ずしもこの態様に限らず、長方形やひし形、矩形以外の多角形、円形等を、種々の形状を採りうる。
また、図4においては、一の投影画像に対して全ての微小領域が同一の形状・大きさであるように図示したが、それぞれの微小領域が異なる形状・大きさである態様であってもよい。
画像入力部110に入力された画像データのピクセルと投影画像の微小領域との対応付けについて、画像補正部120は以下のように処理する。
画像入力部110で入力された画像データのピクセル数と、投影画像形成部150で形成される投影画像のドット数と、が一致するのであれば、画像補正部120は、位置座標が一致するピクセルとドットを一対一で対応付け、対応付けたドットを包含する微小領域と当該ドットに対応付けられたピクセルとを対応付ける。
また、画像入力部110で入力された画像データのピクセル数と、投影画像形成部150で形成される投影画像のドット数と、が一致しないのであれば、当該画像データを拡大または縮小して画像データのピクセル数と投影画像のドット数とを一致させた後に、上述の処理を行う。
<画像補正部120による幾何補正および色調補正の原理>
画像補正部120による幾何補正および色調補正の原理について図3を用いて説明する。図3は、投影装置100を用いて段差70に円形の投影画像80を投影した状態を示す模式図しており、(a)は斜視図、(b)は正面図である。なお、ここでは便宜的に投影装置100を図示していない。
図3(a)に示すとおり、近位面71には投影画像80の一部である左半円81が投影されている。遠位面73には投影画像80の一部である右半円83が投影されている。段差面72には投影画像80の一部である台形82が投影されている。
投影画像80は光源(投影装置100)から投影面までの距離に比例して大きくなるため、段差70に投影画像80を投影したとき、左半円81の方が右半円83より大きくなる。そして、台形82は近位面71から遠位面73に近づくにつれて広がるテーパー形状になっている。
また、光源から離れるほど色調は薄まって暗くなり、近いほど色調は濃くなって明るくなるため、右半円83の色調は左半円81より薄暗くなる。
ここで光源から近位面71までの距離をL、光源から遠位面73までの距離をL+dで表すとき、左半円81の径R1と右半円83の径R2の比率は、式(1)のように表すことができる。
Figure 0006730787
図3(b)に示すとおり、正面から視ると、左半円81と右半円83の形状および色調が不連続となっており、投影画像80が本来は一体であるとは認識しがたい。
ここで、投影画像80の元となる画像データの形状を補正し、近位面71に投影される左半円81の部分を予め拡大して色調を暗くする補正、または、遠位面73に投影される右半円83の部分を予め縮小して色調を明るくする補正、のいずれか少なくとも一方を行う。これにより、投影画像80を正面から視ると純粋な円形であるように観測者に認識させうる。
前段で述べた原理で画像補正部120は、画像入力部110に入力された画像データを補正し、投影面が歪であっても観賞に堪えられる画像投影を実現することができる。
具体的には、画像補正部120は、補正処理の基準となる基準距離を定め、補正対象となるピクセルに対応付けられた微小領域の光路長情報が基準距離より小さいとき、幾何補正として当該ピクセルによって形成される集合部分を拡大し、かつ、色調補正として当該ピクセルの階調値を小さくする。また、画像補正部120は、補正対象となるピクセルに対応付けられた微小領域の光路長情報が基準距離より大きいとき、幾何補正として当該ピクセルによって形成される集合部分を縮小し、かつ、色調補正として当該ピクセルの階調値を大きくする。
ここで基準距離として、予め定めた一定の距離であってもよいし、投影装置100から所定の位置(例えば、投影面の一部)までの距離であってもよい。
ここで、画像補正部120が幾何補正を行うとき、補正対象となるピクセルによって形成される集合部分の拡大率が、基準距離に対する当該ピクセルに対応付けられた微小領域の光路長情報が示す距離の比率と負の相関にあることが好ましい。
例えば、右半円83を縮小して左半円81に合わせる場合、右半円83の径R2を径R1に補正するので、その比率は式(1)の右辺の逆数と等しくなる。
なお、画像補正部120による幾何補正については、以下で述べる実施例に基づいて詳述する。
また、画像補正部120が色調補正を行うとき、補正対象となるピクセルの階調値の変化率が、基準距離に対する当該ピクセルに対応付けられた微小領域の光路長情報が示す距離の比率と正の相関にあることが好ましい。
なお、画像補正部120による色調補正についても、以下で述べる実施例に基づいて詳述する。
<投影装置100による画像投影の第一の実施例>
続いて、投影装置100による画像投影の実施例に基づいてより具体的に説明する。この説明では、図4〜図9を用いる。
図4は、微小領域を割り当てた投影画像(テスト投影画像P1)を理想平面に投影した様子を示す模式図である。
図5は、投影装置100および撮像装置200の設置例を示す模式図である。なお、図5の視点は壁面40を正面としている。
図6は、投影装置100の位置から図5のXYZ座標の原点を視る視点からの模式図である。
図7は、図4に示す投影画像を投影面に投影した状態を示す図である。(a)は投影面の正面から視た図であり、(b)は投影装置100の位置から視た状態を示す図である。
図8は、図4に示す投影画像(テスト投影画像P1)の元となる画像データを補正して形成される投影画像P2を理想平面に投影した様子を示す模式図である。
図9は、図8に示す投影画像P2を投影面に投影した状態を示す図である。(a)は投影面の正面から視た図であり、(b)は投影装置100の位置から視た状態を示す図である。
図10は、投影装置100が行う処理の手順を示すフローチャートである。
ここでは、図5に示すように、投影装置100を天井面10に設置し、投影装置100から壁面30に投影画像を投影する事例について説明する。
壁面30に当接するようにソファ50が設置されており、図7や図9に示すように、投影装置100によって生成された投影画像は、壁面30とソファ50に跨がるように投影される。
また、投影装置100の直下であって、ソファ50および壁面30の正面である位置に、撮像装置200と三脚210が設置されている。撮像装置200は、投影装置100によって生成された投影画像を、ソファ50および壁面30の正面から撮像することができる。なお、三脚210は床面20から撮像装置200の高さを調整し、調整した高さで撮像装置200の撮像位置を固定するために設置している。
図6に示している床面20と壁面30と壁面40とは互いに直交しており、その直交点をXYZ座標の原点としたとき、床面20はZX平面、壁面30はYZ平面、壁面40はXY平面、として扱うことができる。以下の説明において述べる方向については、このXYZ座標を基準として説明する。
以下、図10のフローチャートを用いて、投影装置100による処理手順を説明する。
まず、画像入力部110は、テスト投影用の画像データを入力する(ステップS102)。
投影画像形成部150は、画像入力部110に入力されたテスト投影用の画像データ(一の画像データ)からテスト投影画像P1を形成する(ステップS103)。
投影部160は、投影画像形成部150によって形成されたテスト投影画像P1を投影面(壁面30およびソファ50)に投影する(ステップS104)。
画像補正部120は、投影部160がテスト投影画像P1を投影面に投影している状態で、当該投影面を撮像して生成されるテスト画像データを取得する(ステップS105)。
光路長情報取得部130は、テスト画像データに設定されている微小領域ごとに光路長情報を取得する(ステップS106)。
投影装置100は、所望のテスト画像データが揃うまでテスト投影を継続し(ステップS107のNO)、ステップS102からステップS106の処理を繰り返す。また、投影装置100は、所望のテスト画像データが揃ったときテスト投影を終了する(ステップS107のYES)。そして、画像補正部120は、ステップS105で取得されたテスト画像データと、ステップS106で光路長情報取得部130よって取得された光路長情報と、に基づいて幾何補正および色調補正に用いる補正パラメータを生成する(ステップS108)。
ステップS108で補正パラメータを生成した後に、画像入力部110がテスト投影用の画像データとは異なる他の画像データを入力したとき(ステップS109)、画像入力部110に入力された他の画像データを補正する際に、生成された補正パラメータを用いて幾何補正(ステップS110)および色調補正(ステップS111)を行う。
ステップS110とステップS111による補正処理で生成された補正画像データを元にして、投影画像形成部150は投影面に投影する投影画像を生成し(ステップS112)、生成された投影画像を投影部160は投影面に投影する(ステップS113)。
投影装置100による画像投影が継続している間は(ステップS114のNO)、ステップS109からステップS113までの処理を繰り返して、連続的に投影面に投影画像を投影する。すなわち、投影装置100は動画投影を行うことができる。そして、投影装置100による投影が終了するとき(ステップS114のYES)、上記の一連のフローは終了する。
上記のように、テスト投影を事前に行って補正パラメータを生成し、補正パラメータを生成した後は、それを反復的に用いることによって、その都度補正パラメータを生成しなくとも持続的に投影画像を投影面に投影することができる。これにより、補正処理の処理負荷が軽減される。
なお、上記で説明した図10の処理手順は、その記載の順番は複数の処理を実行する順番やタイミングを限定するものではない。例えば、その複数の処理の順番は内容的に支障のない範囲で変更することができ、また複数の処理の実行タイミングの一部または全部が互いに重複していてもよい。
以下、上記の処理手順に含まれる各処理について、より詳細に説明する。
ステップS102で入力し、ステップS103で処理されるテスト投影用の画像データとは、理想平面に投影すれば図4に示す投影画像となる画像データであり、所定数の矩形マス(メッシュ)に分割されている。また、上述したように、各矩形マスが微小領域として設定されている。
テスト投影用の画像データは、投影装置100が備えている記憶装置(図示せず)に予め格納されていることが好ましい。なぜならば、自前でテスト投影用の画像データを保有していることで、画一的なテスト投影を容易に実行することができ、補正処理の精度を一定の水準で保つことができるからである。
ステップS104で投影されるテスト投影画像P1は、各視点から視ると図7に示すようになる。図7(a)は投影面の正面から、すなわち撮像装置200から視たテスト投影画像P1である。図7(b)は投影装置100から視たテスト投影画像P1である。なお、図7における斜線部分(微小領域P11から微小領域P16)は、説明に該当する微小領域を示すために斜線を引くものであり、実際の見た目がそのようになっている必要はない。
図7で図示しているように、テスト投影画像P1は全体として、天井面10に近い側(Y軸の正方向側)が狭く、かつ、床面20に近い側(Y軸の負方向側)が広い台形状の画像となる。
ここで、テスト投影画像P1において、投影軸と交差する位置を交差点B1とする。ここで投影軸とは、投影レンズ182の光軸のことである。図4および図7では交差点B1をテスト投影画像P1の中央に示す。
ソファ50の背もたれ部分で壁面30と略並行な面52に投影される微小領域P11(交差点B1を基準として左に1列目、下に2行目)は、壁面30に投影されている同じ行の微小領域P12(交差点B1を基準として左に4列目、下に2行目)よりも投影装置100に近接しているので、微小領域P12よりも小さくなる。
なお、微小領域P11および微小領域P12は、Y軸の正方向から負方向へと拡大する台形状となる。
上記の面52およびソファ50の背もたれ部分で床面20と略並行な面51に跨がって投影される微小領域P13(交差点B1を基準として左に1列目、下に1行目)は、面51と面52に跨がっているので、壁面30に投影されている同じ行の微小領域P14(交差点B1を基準として右に4列目、下に1行目)よりも正面から視ると小さくなる。
より詳細には、微小領域P13のうち面52に投影されている部分領域P132の下辺と微小領域P14の下辺とを比べると、部分領域P132の方が小さく、また、部分領域P132の方が高い位置(Y軸の正方向側)にある。
一方で、微小領域P13のうち面51に投影されている部分領域P131の上辺と微小領域P14の上辺とを比べると、その寸法は略等しい。より正確には、部分領域P131の上辺の方が、投影装置100に対してやや近いので、微小領域P14の上辺よりやや小さい。
なお、部分領域P131は、X軸の正方向から負方向へと拡大する台形状となる。また、部分領域P132は、Y軸の正方向から負方向へと拡大する台形状となる。また、微小領域P14は、Y軸の正方向から負方向へと拡大する台形状となる。
ソファ50の腰掛け部分で床面20と略平行な面53に投影される微小領域P15(交差点B1を基準として右に1列目、下に3行目)は、投影装置100(投影レンズ182)から微小領域P15への入射線と面53とがなす角度が45度であることを前提とすれば、壁面30に投影されている同じ行の微小領域P16(交差点B1を基準として右に4列目、下に3行目)と略同じ大きさとなる。また、当該角度が45度より鋭角である場合には、微小領域P15は微小領域P16より大きくなる。また、当該角度が45度より鈍角である場合には、微小領域P15は微小領域P16より小さくなる。ただし、微小領域P15は面53に投影されるので、壁面30およびソファ50の正面から見えない。
なお、微小領域P15は、X軸の正方向から負方向へと拡大する台形状となる。また、微小領域P16は、Y軸の正方向から負方向へと拡大する台形状となる。
壁面30に投影される微小領域P17(交差点B1を基準として左に1列目、上に3行目)は、テスト投影画像P1の中で最も投影装置100に近い微小領域である。微小領域P17は、他の微小領域と比べて投影装置100に近接しているため、他の領域より小さい。
なお、微小領域P17は、Y軸の正方向から負方向へと拡大する台形状となる。
ステップS106において、光路長情報取得部130は、光路長情報を微小領域の頂点ごとに取得することがより好ましい。すなわち、図4に示すように、微小領域が矩形である場合には、一つの微小領域に四つの光路長情報を対応付けることになる。これにより、より精密な画像補正が可能となる。
ステップS107の判定について、具体的には、所望のテスト画像データが揃うか否かによって判定する。当該判定は、投影装置100が自律的に判定する手段を備えていてもよいし、投影装置100の利用者が任意に行ってもよい。
ここで所望のテスト画像データとは、具体的には、画像入力部110に入力される画像データの各色調(赤色(R)、緑色(G)、青色(B))のうち一つのみが最大値で、残りの二つが最小値に設定されたテスト用画像データを投影したときに得られる三種類のテスト画像データと、全ての色調が最大値に設定された(白色の)テスト用画像データを投影したときに得られるテスト画像データと、全ての色調が最小値に設定された(黒色の)テスト用画像データを投影したときに得られるテスト画像データと、をいう。
上記の五種類のテスト画像データのうち全てを揃えなくとも補正処理は可能であるが、特に色調補正(ステップS111)を高精度に行うためには、五種類が揃っていることが好ましい。
ステップS108で生成される補正パラメータは、ステップS110の幾何補正およびステップS111の色調補正に用いられる。
以下、本実施形態の画像補正部120が幾何補正に用いる補正パラメータC1について説明する。
まず、画像補正部120は、ステップS105で取得されるテスト画像データのいずれかを選択する。ここで選択するテスト画像データの種別は特に限定されないが、各微小領域の輪郭が画像処理によって解析可能な程度に明瞭に撮像されているテスト画像データを選択することが好ましい。
画像補正部120は、交差点B1を座標の中心とし、ステップS106で取得した光路長情報とテスト画像データに撮像されている各微小領域の頂点の位置座標を決定する。この決定に関して、光路長情報も加味しているので、テスト画像データに撮像されていない微小領域(例えば、図7における微小領域P15)についても位置座標を決定することができる。
画像補正部120は、以上の処理によって得られた交差点および各微小領域の頂点の位置座標に基づいて、補正後のテスト画像データを投影面に投影した場合に以下の条件を満たす微小領域が可能な限り多くなるように、各微小領域の頂点の補正後の位置座標を決定する。
(i)各微小領域が等しい大きさの正方形(本来の微小領域の形状)に近似させる
(ii)同じ行を構成している各微小領域を補正して投影面に投影したとき、それぞれの縦方向(図7においてはY軸方向)の位置座標を近似させる
(iii)同じ列を構成している各微小領域を補正して投影面に投影したとき、それぞれの横方向(図7においてはZ軸方向)の位置座標が近似する
ここで縦方向および横方向とは、補正対象の画像データを理想平面に投影画像した場合における概念であって、必ずしも現実空間の座標軸で示される方向と一致するものではない。
以上の処理で得られるテスト画像データの補正後の位置座標を、画像補正部120は補正パラメータC1として生成する。当然ながら、画像補正部120によって生成される補正パラメータC1には、交差点B2の位置座標も含まれる。
前段で述べた幾何補正のパラメータを用いたステップS110の幾何補正によって形成される投影画像P2を図8に示す。また、図8の投影画像P2を、投影面(壁面30およびソファ50)に投影した様子を図9に示す。
図8に示すように、投影画像P2は全体として上側が広く、下側が小さい略台形状の画像となる。すなわち、図7で図示したテスト投影画像P1とは狭い側と広い側とが逆転している。
また、交差点B2を中心としており、各微小領域は全体的に交差点B2に寄せるように縮小されているため、投影画像P2の輪郭近傍には微小領域が割り当てられていない部分が存在する。
図8の投影画像P2を壁面30およびソファ50に投影すると、図9で示すように、全体としては天井面10に近い側(Y軸の正方向側)が狭く、かつ、床面20に近い側(Y軸の負方向側)が広い台形状の画像となる点では、補正前のテスト投影画像P1と同様であるが、微小領域が割り当てられている部分については概ね矩形状になっている。
壁面30と略並行な面52に投影される微小領域P21(投影画像P2の右下隅を基準として左に5列目、上に2行目)は、壁面30に投影されている同じ行の微小領域P12(交差点B1を基準として左に8列目、上に2行目)よりも投影装置100に近接しているので、微小領域P12よりも小さくなる。
なお、微小領域P11および微小領域P12は、Y軸の正方向から負方向へと拡大する台形状となる。
面52に投影される微小領域P21(交差点B2を基準として左に1列目、下に2行目)は、壁面30に投影されている同じ行の微小領域P22(交差点B2を基準として左に4列目、下に2行目)よりも投影装置100に近接しているが、共に略等しい大きさの正方形になっている。
また、微小領域P21は、壁面30に投影されている同じ列の微小領域P27(交差点B2を基準として左に1列目、上に3行目)よりも投影装置100に遠方に位置しているが、共に略等しい大きさの正方形になっている。
面51および面52に跨がって投影される微小領域P23(交差点B2を基準として左に1列目、下に1行目)は、面51と面52に跨がっているが、壁面30に投影されている同じ行の微小領域P24(交差点B1を基準として右に4列目、下に1行目)と略等しい大きさになっている。
より詳細には、微小領域P23のうち面52に投影されている部分領域P232の下辺と微小領域P14の下辺とを比べると、その寸法は略等しく、かつ、略同じ高さになっている(Y軸方向の位置座標が近似している)。
また、微小領域P23のうち面51に投影されている部分領域P231の上辺と微小領域P14の上辺とを比べても、その寸法は略等しく、かつ、略同じ高さになっている(Y軸方向の位置座標が近似している)。
ただし、部分領域P232の上辺、すなわち部分領域P231の下辺は、上記の各辺より小さくなっているため、微小領域P23は正方形にはなっていない。
面53に投影される微小領域P15(交差点B2を基準として右に1列目、下に3行目)は、投影装置100(投影レンズ182)から微小領域P25への入射線と面53とがなす角度が45度であることを前提とすれば、壁面30に投影されている同じ行の微小領域P26(交差点B2を基準として右に4列目、下に3行目)と略同じ大きさの正方形となる。
続いて、本実施形態の画像補正部120が色調補正に用いる補正パラメータC2について説明する。本実施形態の画像補正部120は二通りの色調補正を実行することができ、それぞれについて以下で説明する。
ステップS102において、画像入力部110は、均一な階調値のピクセルから構成されるテスト投影用の画像データ(一の画像データ)を入力する。
ステップS103において、投影画像形成部150は、入力されたテスト投影用の画像データからテスト投影画像を形成する。
ステップS104において、投影部160は、テスト投影画像を投影面に投影し、撮像装置200を用いて当該投影面を撮像する。
ステップS105において、画像補正部120は、当該テスト投影画像が投影されている投影面を撮像して生成されるテスト画像データを取得する。
ステップS106において、光路長情報取得部130は、テスト画像データに対して予め設定されている微小領域ごとに光路長情報を取得する。
ステップS107の判定は、赤、緑、青、白、黒の五種類のテスト投影用の画像データを用いてテスト投影し、それぞれについてテスト画像データを取得するまで否定される。
すなわち、ステップS104では、上記の五種類のテスト撮影用の画像データそれぞれに基づいてテスト投影画像を投影面に投影し、それぞれについて当該投影面を撮像することが好ましい。
このように処理することによって、各色相について精度の高い色調補正が可能となる。
なお、赤の画像データとは、Rの階調値が最大(255)を示し、かつ、GとBの階調値が最小(0)を示す画像データである。
緑の画像データとは、Gの階調値が最大(255)を示し、かつ、RとBの階調値が最小(0)を示す画像データである。
青の画像データとは、Bの階調値が最大(255)を示し、かつ、GとRの階調値が最小(0)を示す画像データである。
白の画像データとは、RとGとBの階調値が共に最大(255)を示す画像データである。
黒の画像データとは、RとGとBの階調値が共に最小(0)を示す画像データである。
図14は、赤の画像データをテスト投影して取得されるテスト画像データに含まれる各ピクセルの階調値(R)と、各ピクセルの位置座標との関係を示す図である。なお、図14は、説明のために模擬的に示すものであって、各値は必ずしも正確なものではない。
図14に示すように、テスト投影の元となった画像データにおいてはRの階調値が最大(255)であるにも関わらず、そのテスト投影の投影面を撮像して取得されるテスト画像データに含まれるRの階調値は255になるとは限らず、かつ位置座標ごとにピクセルの階調値が異なる。
これは、投影面に光の一部が吸収されるので、その投影面の位置座標ごとに反射光の強弱が異なることに起因するものである。
ステップS108において、画像補正部120は、取得されたテスト画像データに含まれるピクセルのいずれかを導出し、導出されたピクセルの階調値を基準として、当該テスト画像データに含まれる他のピクセルの階調値を基準に近づける補正パラメータC2(または補正パラメータC3)を生成する。
その後繰り返し実行されうるステップS111においては、ステップS108で生成された補正パラメータC2(または補正パラメータC3)を用いて色調補正を行う。
図15は、図14で示したテスト画像データを補正するための補正パラメータC2または補正パラメータC3を示す図である。
補正パラメータC2は、以下の(2)式で表される値の集合体である。ここでMは、テスト画像データに含まれる各ピクセルの階調値である。また、Iminは、テスト画像データに含まれるピクセルの階調値の中で最も低い値(最低値)である。
Figure 0006730787
式(2)は、最低値Iminを示すピクセルの階調値を基準として、そのテスト画像データに含まれる他のピクセルの階調値を最低値Iminに近づける関数の一例である。
より詳細には、式(2)は、各ピクセルの階調値Mを反転した値(255−M)と、最低値Iminと合算し、その合算値について階調値の最大値(255)を1として規格化する関数である。
次に、補正パラメータC3は、以下の(3)式で表される値の集合体である。ここで、Imaxは、テスト画像データに含まれるピクセルの階調値の中で最も高い値(最高値)である。
Figure 0006730787
式(3)は、最低値Iminを示すピクセルの階調値を下限とし、最高値Imaxおよび最低値Iminの間の値、例えば中間値(Imax+Imin/2)を上限とするように、図14に示す各階調値をならす関数の一例である。
換言すれば、式(3)は、最低値Iminを示すピクセルの階調値を基準として、そのテスト画像データに含まれる他のピクセルの階調値のばらつきを低減させる関数であり、他のピクセルの階調値を最低値Iminに近づける関数の一例といってもよい。
図15に示すように、補正パラメータC2または補正パラメータC3における各値の大小関係は、図14に示すテスト画像データにおける各階調値の大小関係の逆になる。これは、式(2)および式(3)にテスト画像データの反転処理(255−M)が含まれていることに起因する。
図16は、図14に示すテスト画像データを、補正パラメータC2または補正パラメータC3を用いた補正によって得られる補正画像データD2、D3を示す図である。補正画像データD2は、図14に示すテスト画像データを、補正パラメータC2を用いて補正して得られるものである。また、補正画像データD3は、図14に示すテスト画像データを、補正パラメータC3を用いて補正して得られるものである。
図16に示すとおり、補正画像データD2は概ね一定の階調値になり、これはテスト画像データに含まれる階調値の最低値Iminに略等しい。
また、図14と図16とを比較すればわかるように、補正画像データD3における各階調値のばらつきは、図14に示すテスト画像データにおける各階調値のばらつきより低減しており、概ね半分になっている。
なお、上記に挙げた実施例のように、本発明の色調補正に用いる補正パラメータ(例えば補正パラメータC2や補正パラメータC3)の生成の基準となるピクセルは、テスト画像データにおける階調値の中でも低いもの(最低値Iminを示すピクセル)を用いることが好ましい。
階調値が最大である画像を投影し、その反射光を撮像して得られる階調値がその位置座標において最低値Iminを示す位置座標に対する色調補正において発色可能な限度はその最低値Iminであり、それ以上の発色(階調値)は望めない。従って他の位置座標における階調値を最低値Imin合わせるのが妥当だからである。
画像補正部120によってテスト画像データから導出されるピクセル(補正パラメータの生成における基準)は、そのテスト画像データの全部を解析して、そのうち階調値が最低値を示すピクセルを導出する方式でも構わないが、より好ましくは以下の方式を用いるとよい。
例えば、画像補正部120は、光路長情報取得部130によって取得された光路長情報のうち最大の距離を示す光路長情報を示す微小領域に対応しているピクセルを基準として導出してもよい。
上記のように、光路長が長くなるほど、その微小領域における発色は暗くなりやすい。従って、最大の距離を示す微小領域に対応しているピクセルの中に、そのテスト画像データにおける最低値Iminを示すピクセルが含まれる蓋然性が高い。従って、画像補正部120による解析範囲をその微小領域に限定すれば、より軽負荷で補正パラメータ生成の基準を定めることができる。
上記のような原理に基づく色調補正を、赤(R)だけではなく、緑(G)、青(G)のそれぞれについて行うことで、投影面自体の色や投影部160からの距離に起因してばらつく投影画像の色調を、より滑らかにすることができる。
また、白や黒についても三原色と同様に補正パラメータを生成することによって、白い投影画像をより白らしく発色させ、黒い投影画像をより黒らしく発色させる補正処理が可能となる。
すなわち、上記の色調補正を実行することによって、投影画像の観測者から見て違和感の少ない投影画像を実現することができる。
なお、上記の実施例では、赤、緑、青、白、黒の五種類のテスト投影用の画像データを投影した状態で撮像した画像データをテスト画像データとして扱う例を述べたが、他の画像データ、例えば自然光で投影面を照らして撮像される画像データ等もテスト画像データとして用いてもよい。
また、上記の実施例では、式(2)や式(3)を用いて補正パラメータを生成するように説明したが、上記の原理に基づく一例であって、本発明の実施をこれに限定する必要はない。
<投影装置100による画像投影の第二の実施例>
続いて、これまで説明した実施例とは異なる第二の実施例に基づいて、投影装置100を具体的に説明する。この説明では、図4から図6、図10から図12を用いる。
図4は、微小領域を割り当てた投影画像(テスト投影画像P1)を理想平面に投影した様子を示す模式図である。
図5は、投影装置100および撮像装置200の設置例を示す模式図である。
図6は、投影装置100の位置から図5のXYZ座標の原点を視る視点からの模式図である。
図10は、投影装置100が行う処理の手順を示すフローチャートである。
図11は、図4に示す投影画像(テスト投影画像P1)を投影面(床面20と壁面30と壁面40)に投影し、投影装置100の位置から視た状態を示す図である。
図12は、図4に示す投影画像の元となる画像データを補正して形成される投影画像P3を投影面(床面20と壁面30と壁面40)に投影し、投影装置100の位置から視た状態を示す図である。
本実施例では、第一の実施例における投影装置100の配置は変えず、投影面を変更している。具体的には、投影装置100は、図4に示すテスト投影画像P1を、図5および図6に示している床面20と壁面30と壁面40との三面に跨がるように投影している。
図11に図示しているように、テスト投影画像P1は、三面に跨がって投影されているので、投影装置100の位置からは各面の境目で歪んでいるように見える。
微小領域P31のように、複数の面(図11においては壁面30と壁面40)に跨がって投影され、複数の部分領域(図11においては部分領域P311と部分領域P312)に分かれている微小領域は、本来の形状(正方形)とはかけ離れた形状に変形している。
前段のように投影されているテスト投影画像P1を、図10を用いて説明した処理手順で補正し、形成される投影画像P3を床面20と壁面30と壁面40との三面に跨がるように投影させると、図12のようになる。
図12で図示しているように、投影画像P3を三面に跨がるように投影させても各面において矩形状に見える。なお、図12の視点からは各面に対して正面を向いていないので、各微小領域が縦方向に縮小した矩形に見えるが、正面から見れば略正方形になっている。
また、図12に図示される各微小領域は、床面20と壁面30と壁面40(XYZ軸の原点)に近接側が大きく、遠方側が小さく図示されているが、これは図12を遠近法によって図示したことに起因するものであり、実際には各微小領域は略等しい大きさになっている。
補正前の投影(図11に示す投影)においては、壁面30と壁面40とに跨がっていた微小領域P31に対応する微小領域P41の配置は、画像補正部120による補正処理によって交差点B3に寄せられる。従って、微小領域P41は、補正後の投影(図12に示す投影)において床面20と壁面30とに跨がる位置に移動する。また、微小領域P41は、壁面30に投影されている部分領域P411と、床面20に投影されている部分領域P412とに分かれている。部分領域P411と部分領域P412とは単体で見れば台形状や三角形状であるが、微小領域P41は全体としては略正方形になっている。
本実施例について、これまで幾何補正について説明した。当然ながら、投影装置100入力された画像データに対して色調補正も行うが、第一の実施例で説明した内容に相当するものであり、本実施例での説明は省略する。
以上のように、複数の面に跨がる投影面に投影画像を投影した場合であっても、また、各面に投影装置100(投影レンズ182)が正対していない場合であっても、投影装置100は観賞に堪えうる投影画像を投影することができる。
以上、説明したように、本実施形態の投影装置100は、投影画像の元となる画像データを投影面に合わせて適切に幾何補正および色調補正を行うことができる。従って、たとえ投影面が歪な形状であっても、投影面が複数面に跨がる場合であっても、投影装置100が投影面に正対していない場合であっても、投影装置100は観賞に堪えられる画像投影を実現することができる。
また、投影装置100の外観は、いわゆるスポットライトに類似する形状になっており、ベース部170(給電部172)が既存の電球ソケットやシーリング取付具に装着可能に形成されているので、既存設備と違和感なく置き換えることができる。
上記のような二つの特徴点を有しているので、投影装置100は利用環境に合わせて画像コンテンツ(静止画・動画)を投影することができる。
例えば、室内で投影装置100を利用する場合、室内の壁面や家具の天面に、朝食時は湖畔や海岸など気分を爽やかにするような画像コンテンツを投影し、夕飯時はレストランやバーなど落ち着いた雰囲気を醸し出す画像コンテンツを投影し、入浴中は露天風呂を連想させるような画像コンテンツを投影するような利用方法もある。
また、特に画像コンテンツの投影を必要としない場合であっても、光源部140の光を直接、または、白色の投影画像を投影することによって、照明と兼用することも可能である。
一方、屋外で利用する場合には、壁面や地面に、看板やポスターに代わる映像広告を投影することもできる。通常の街頭広告と違って撤去作業および設置作業は、画像入力部110から入力する画像データの差し替えによって実現できるので、これらの作業にかかる経済コストおよび時間コストを削減することができる。
また、本発明の投影装置100による映像広告であれば、内容の差し替えに限らず、一時的に投影を停止することも容易である。従って、例えば、屋外収録を行っている最中に企業広告が収録画像に入り込まないように、当該企業広告の投影を停止するといった対応も容易となる。
<投影装置100と同様の機能を備えた変形例>
これまで投影装置100について説明してきたが、以下においては投影装置100に備えられる各種機能に相当する機能を含んでいる画像処理装置500および画像配信システム1000について、図13を用いて説明する。
図13は、画像処理装置500および画像配信システム1000の機能構成を示す機能ブロック図である。
画像配信システム1000に含まれる各構成要素について説明する。
画像配信システム1000は、発光する光源部610の光を用いて投影画像を投影面に投影する投影装置600に対して、投影画像の元となる画像コンテンツを配信するシステムである。
画像処理装置500は、発光する光源部610の光を用いて投影画像を投影面に投影する際に、投影画像の元となる画像コンテンツを生成する装置であって、画像入力部510と光路長情報取得部530と画像補正部520と画像配信部540とを有している。
画像入力部510は、複数のピクセルから構成される画像データを入力する。
光路長情報取得部530は、投影画像に定めた複数の微小領域ごとに基準点から投影面までの光路の距離を示す光路長情報を取得する。
画像補正部520は、画像データに含まれるピクセルと微小領域とを対応付けて、ピクセルに対応付けられた微小領域の光路長情報に基づいて画像データに幾何補正および色調補正を行って画像コンテンツを生成する。
画像配信部540は、画像補正部520によって生成された画像コンテンツを、通信回線700を介して配信する。
前段で説明した画像入力部510と画像補正部520と光路長情報取得部530とは、前述した実施例における画像入力部110と画像補正部120と光路長情報取得部130とに相当する機能であり、同様の処理を行うことができる。ここで同様の処理とは、図10で説明したフローチャートに含まれる各フローと同等の処理をいう。
通信回線700は、インターネット、電話通信網(携帯電話通信網を含む)、LAN(Local Area Network)等の種々のコンピュータネットワーク又はその組合せで構成することができる。また、各構成要素とネットワークとの通信接続は、有線通信であってもよいし、無線通信であってもよい。
さらに、画像配信システム1000は、統括制御部400と投影装置600と撮像装置800と測距センサ900とを備えている。
統括制御部400は、本変形例の投影装置600と撮像装置800と測距センサ900とを統括的に制御する情報処理装置である。統括制御部400は、撮像装置800と測距センサ900とから所望の環境情報(例えば、上記の実施例で説明した光路長情報、テスト画像データ等)を取得し、取得した環境情報を画像処理装置500に提供する。また、統括制御部400は、画像処理装置500による補正処理で生成された画像コンテンツの配信を受け付け、受け付けた画像コンテンツを投影装置600に提供し、当該画像コンテンツに基づいて投影画像を行わせる。
本変形例の統括制御部400は、画像配信システム1000に特化した専用の情報処理装置であってもよいし、汎用のコンピュータ装置にアプリケーションソフトをインストールすることによって実現される情報処理装置であってもよい。なお、汎用のコンピュータ装置とは、いわゆるパーソナルコンピュータ、スマートフォン、タブレット端末等が挙げられる。
本変形例の撮像装置800と測距センサ900は、前述した実施例における撮像装置200および測距センサ(図示せず)に相当する構成要素であり、同様の処理を行うことができる。すなわち、撮像装置800は投影面にテスト撮影された状態で撮像される種々の画像データ(テスト画像データ)を生成することができる。また、測距センサ900は投影画像に定められた微小領域ごとに、基準点から投影面までの距離を示す光路長情報を取得することができる。
本変形例の投影装置600は、いわゆるプロジェクタ装置である。投影装置600は、光源部610と投影画像形成部620と投影部630を備えている。これらの機能は、前述した実施例における光源部140と投影画像形成部150と投影部160とに相当する機能であり、同様の処理を行うことができる。
なお、図13においては統括制御部400と投影装置600と撮像装置800と測距センサ900とは、別の構成要素として記載しているが、これらのうち二つ以上が一体となっていてもよい。例えば、統括制御部400が汎用的なスマートフォンであれば、当該スマートフォンに搭載されているカメラ機能を撮像装置800として利用することも可能であり、統括制御部400と撮像装置800とが一体になっているともいえる。
以上で説明したように、画像配信システム1000は、投影装置600の周囲環境を示す情報(例えば、上記の実施例で説明した光路長情報、テスト画像データ等)を、通信回線700を介して取得する。また、画像配信システム1000は、画像処理装置500(画像補正部520)で補正処理を行って画像コンテンツを生成し、生成した画像コンテンツを投影装置600に配信することができる。
通信回線700がインターネットである場合には、画像配信システム1000は利用者側から提供された種々の環境情報に基づいて画像コンテンツを生成して配信するウェブサービスということもできる。
ここまで実施例および変形例を示して本発明を説明したが、これらの例に本発明は限られない。また、本発明の各種の構成要素は、個々に独立した存在である必要はなく、複数の構成要素が単一の構成要素として構成されていること、一つの構成要素が複数の構成要素に分割されて形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。
また、上述した各種の構成要素は、必ずしも必須の構成要素ではなく、本発明の効果を阻害しない程度に省いても構わないし、同等に機能又は作用する他の構成要素に代えてもよい。
例えば、投影装置100は、テスト画像データを撮像する位置(視点)を一箇所として説明したが、複数箇所から撮像しても構わない。
これにより、微小領域P15のように、一部の視点からは撮像されない微小領域も撮像することが可能となり、幾何補正および色調補正に加味することができる。
また、上記の実施例の投影装置100は、投影画像の観測者の視点から投影面までの光路の距離を示す視点情報を、光路長情報に対応付けて取得する視点情報取得部を備えてもよい。この場合、画像補正部120は、画像データに含まれるピクセルに対応付けられた微小領域の光路長情報および当該光路長情報に対応付けられた視点情報に基づいて画像データに幾何補正および色調補正を行って補正画像データを生成することができる。従って、より高精度な幾何補正および色調補正を実現することができる。
また、上記の実施例の投影装置100において、図10に示すとおり、補正パラメータの生成(ステップS108)を一度の処理で済ませる実施例で説明したが、これに限られない。例えば、幾何補正用の補正パラメータC1と、色調補正用の補正パラメータC2、C3、C4と、を分けて生成してもよい。より詳細に言えば、まず、一度目のテスト投影(ステップS102からステップS107の一連の処理)で補正パラメータC1を生成する。次に、生成された補正パラメータC1を用いて幾何補正を行ったテスト用投影画像を用いて二度目のテスト投影を行い、当該テスト投影で補正パラメータC2、C3、C4を生成する。
このように補正パラメータを生成することにより、幾何補正後の投影位置に基づいて色調補正用の補正パラメータC2、C3、C4を生成することができ、より色調補正の精度を向上させうる。
画像配信システム1000において、画像処理装置500にのみ光路長情報取得部530が備えられる態様を説明したが、光路長情報取得部530の一部処理を統括制御部400に行わせてもよい。
例えば、図10のフローチャートにおけるステップS108で生成される補正パラメータC1、C2、C3、C4に相当する補正パラメータを生成する処理を画像処理装置500で行い、当該補正パラメータを用いて画像データを補正する処理は統括制御部400で行ってもよい。
このような構成にすることにより統括制御部400に内蔵されている画像データ、または、統括制御部400に入力される画像データを用いて投影装置600は画像投影を行うことができる。利用者としては比較的自由に補正対象となる画像データを選択することができ、利用者の利便性が向上する。
また、画像配信システム1000において、画像処理装置500と統括制御部400とが別の装置であって、通信回線700を介して通信接続する態様で説明したが、統括制御部400と画像処理装置500とは一体の装置であってもよい。
すなわち、投影装置600に付属する装置が上記の画像コンテンツを生成し、投影装置600はその画像コンテンツを投影してもよい。
本実施形態は以下の技術思想を包含する。
(1)発光する光源部と、複数のピクセルから構成される画像データを入力する画像入力部と、前記画像入力部に入力された前記画像データを補正して補正画像データを生成する画像補正部と、前記画像補正部によって生成された前記補正画像データから投影面に投影する投影画像を形成する投影画像形成部と、前記投影画像形成部によって形成された前記投影画像を、前記光源部が発光する光を用いて前記投影面に投影する投影部と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、を備え、前記画像補正部は、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記補正画像データを生成する投影装置。
(2)前記画像補正部は、補正処理の基準となる基準距離を定め、補正対象となる前記ピクセルに対応付けられた前記微小領域の前記光路長情報が前記基準距離より小さいとき、前記幾何補正として当該ピクセルによって形成される集合部分を拡大し、かつ、前記色調補正として当該ピクセルの階調値を小さくし、補正対象となる前記ピクセルに対応付けられた前記微小領域の前記光路長情報が前記基準距離より大きいとき、前記幾何補正として当該ピクセルによって形成される集合部分を縮小し、かつ、前記色調補正として当該ピクセルの階調値を大きくする(1)に記載の投影装置。
(3)前記画像補正部が前記幾何補正を行うとき、補正対象となる前記ピクセルによって形成される集合部分の拡大率が、前記基準距離に対する当該ピクセルに対応付けられた前記微小領域の前記光路長情報が示す距離の比率と負の相関にある(2)に記載の投影装置。
(4)前記画像補正部が前記色調補正を行うとき、補正対象となる前記ピクセルの階調値の変化率が、前記基準距離に対する当該ピクセルに対応付けられた前記微小領域の前記光路長情報が示す距離の比率と正の相関にある(2)または(3)に記載の投影装置。
(5)前記投影画像形成部は、前記画像入力部に入力された一の前記画像データからテスト投影画像を形成し、前記投影部は、前記投影画像形成部によって形成された前記テスト投影画像を前記投影面に投影し、前記画像補正部は、前記テスト投影画像を前記投影面に投影している状態で当該投影面を撮像して生成されるテスト画像データを取得し、前記光路長情報取得部は、前記テスト投影画像に設定されている前記微小領域ごとに前記光路長情報を取得し、前記画像補正部は、取得された前記テスト画像データと、前記光路長情報取得部よって取得された前記光路長情報と、に基づいて前記幾何補正および前記色調補正に用いる補正パラメータを生成し、前記画像入力部に入力された他の前記画像データを補正する際に、生成された前記補正パラメータを用いて前記幾何補正および前記色調補正を行う(1)から(4)のいずれか一つに記載の投影装置。
(6)前記投影画像形成部は、均一な階調値の前記ピクセルから構成される前記一の画像データから前記テスト投影画像を形成し、前記画像補正部は、当該テスト投影画像が投影されている投影面を撮像して生成される前記テスト画像データを取得し、取得された前記テスト画像データに含まれる前記ピクセルのいずれかを基準として導出し、導出された前記ピクセルの階調値に、当該テスト画像データに含まれる他の前記ピクセルの階調値を近づける前記補正パラメータを生成し、前記補正パラメータを用いて前記色調補正を行う(5)に記載の投影装置。
(7)前記画像補正部は、前記光路長情報取得部によって取得された前記光路長情報のうち最大の距離を示す前記光路長情報を示す前記微小領域に対応している前記ピクセルを基準として導出する(6)に記載の投影装置。
(8)前記投影画像の観測者の視点から前記投影面までの光路の距離を示す視点情報を、前記光路長情報に対応付けて取得する視点情報取得部を備え、前記画像補正部は、前記画像データに含まれる前記ピクセルに対応付けられた前記微小領域の前記光路長情報および当該光路長情報に対応付けられた前記視点情報に基づいて前記画像データに前記幾何補正および前記色調補正を行って前記補正画像データを生成する(1)から(7)のいずれか一つに記載の投影装置。
(9)電球ソケットまたはシーリング取付具に装着可能な給電部を備え、前記給電部から取得される電力によって動作する(1)から(8)のいずれか一つに記載の投影装置。
(10)発光する光源部の光を用いて投影画像を投影面に投影する際に、前記投影画像の元となる画像コンテンツを生成する画像処理装置であって、複数のピクセルから構成される画像データを入力する画像入力部と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記画像コンテンツを生成する画像補正部と、を備える画像処理装置。
(11)発光する光源部の光を用いて投影画像を投影面に投影する際に、前記投影画像の元となる画像コンテンツを生成するための画像処理をコンピュータに実行させる画像処理プログラムであって、複数のピクセルから構成される画像データを入力する画像入力処理と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得処理と、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記画像コンテンツを生成する画像補正処理と、をコンピュータに実行させる画像処理プログラム。
(12)発光する光源部の光を用いて投影画像を投影面に投影する投影装置に対して、前記投影画像の元となる画像コンテンツを配信する画像配信システムであって、複数のピクセルから構成される画像データを入力する画像入力部と、前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、前記画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて前記画像データに幾何補正および色調補正を行って前記画像コンテンツを生成する画像補正部と、前記画像補正部によって生成された前記画像コンテンツを、通信回線を介して配信する画像配信部と、を備える画像配信システム。
100 投影装置
110 画像入力部
120 画像補正部
130 光路長情報取得部
140 光源部
150 投影画像形成部
160 投影部
170 ベース部
172 給電部
174 回転軸
180 本体部
182 投影レンズ
200 撮像装置
210 三脚
400 統括制御部
500 画像処理装置
510 画像入力部
520 画像補正部
530 光路長情報取得部
540 画像配信部
600 投影装置
610 光源部
620 投影画像形成部
630 投影部
700 通信回線
800 撮像装置
900 測距センサ
1000 画像配信システム
P1 テスト投影画像
P2、P3 投影画像
D2、D3 補正画像データ
B1、B2、B3 交差点
P11〜P17、P21〜P27、P31、P41 微小領域
P131、P132、P231、P232、P311、P312、P411、P412 部分領域
10 天井面
20 床面
30 壁面
40 壁面
50 ソファ
51、52、53 面
70 段差
71 近位面
72 段差面
73 遠位面
80 投影画像
81 左半円
82 台形
83 右半円

Claims (5)

  1. 発光する光源部と、
    複数のピクセルから構成される画像データを入力する画像入力部と、
    前記画像入力部に入力された前記画像データを補正して補正画像データを生成する画像補正部と、
    前記画像補正部によって生成された前記補正画像データから投影面に投影する投影画像を形成する投影画像形成部と、
    前記投影画像形成部によって形成された前記投影画像を、前記光源部が発光する光を用いて前記投影面に投影する投影部と、
    前記投影画像に定めた複数の微小領域ごとに基準点から前記投影面までの光路の距離を示す光路長情報を取得する光路長情報取得部と、を備え、
    前記投影画像形成部は、均一な階調値の前記ピクセルから構成される一の前記画像データからテスト投影画像を形成し、
    前記投影部は、前記投影画像形成部によって形成された前記テスト投影画像を前記投影面に投影し、
    前記光路長情報取得部は、前記テスト投影画像に定められている前記微小領域ごとに前記光路長情報を取得し、
    前記画像補正部は、
    前記テスト投影画像を前記投影面に投影している状態で当該投影面を撮像して生成されるテスト画像データを取得し、
    前記テスト画像データに含まれる前記ピクセルと前記微小領域とを対応付けて、前記ピクセルに対応付けられた前記微小領域の前記光路長情報に基づいて幾何補正用の第一補正パラメータを生成し、
    前記テスト画像データに含まれる前記ピクセルのうち最低値を示す階調値を基準として、当該テスト画像データに含まれる他の前記ピクセルの階調値を当該最低値に近づける色調補正用の第二補正パラメータを生成し、
    前記画像入力部に入力された他の前記画像データを補正する際に、前記第一補正パラメータを用いて幾何補正を行い前記第二補正パラメータを用いて色調補正を行って前記補正画像データを生成し、
    前記第二補正パラメータが、前記テスト画像データに含まれる各ピクセルの階調値を反転した値および各ピクセルの最低値を合算した値について階調値の最大値を1として規格化する関数である投影装置。
  2. 前記画像補正部は、
    補正処理の基準となる基準距離を定め、
    補正対象となる前記ピクセルに対応付けられた前記微小領域の前記光路長情報が前記基準距離より小さいとき、前記幾何補正として当該ピクセルによって形成される集合部分を拡大する請求項1に記載の投影装置。
  3. 前記画像補正部が前記幾何補正を行うとき、補正対象となる前記ピクセルによって形成される集合部分の拡大率が、前記基準距離に対する当該ピクセルに対応付けられた前記微小領域の前記光路長情報が示す距離の比率と負の相関にある請求項2に記載の投影装置。
  4. 前記投影画像の観測者の視点から前記投影面までの光路の距離を示す視点情報を、前記光路長情報に対応付けて取得する視点情報取得部を備え、
    前記画像補正部は、前記画像データに含まれる前記ピクセルに対応付けられた前記微小領域の前記光路長情報および当該光路長情報に対応付けられた前記視点情報に基づいて前記画像データに前記幾何補正および前記色調補正を行って前記補正画像データを生成する請求項1から3のいずれか一項に記載の投影装置。
  5. 電球ソケットまたはシーリング取付具に装着可能な給電部を備え、
    前記給電部から取得される電力によって動作する請求項1から4のいずれか一項に記載の投影装置。
JP2015158426A 2015-08-10 2015-08-10 投影装置 Active JP6730787B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158426A JP6730787B2 (ja) 2015-08-10 2015-08-10 投影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158426A JP6730787B2 (ja) 2015-08-10 2015-08-10 投影装置

Publications (2)

Publication Number Publication Date
JP2017037190A JP2017037190A (ja) 2017-02-16
JP6730787B2 true JP6730787B2 (ja) 2020-07-29

Family

ID=58049350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158426A Active JP6730787B2 (ja) 2015-08-10 2015-08-10 投影装置

Country Status (1)

Country Link
JP (1) JP6730787B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460088B2 (ja) * 2016-12-14 2019-01-30 カシオ計算機株式会社 投影装置、投影方法及びプログラム
JP2019047312A (ja) * 2017-09-01 2019-03-22 セイコーエプソン株式会社 画像投写システム及びその制御方法
KR102355776B1 (ko) * 2020-04-23 2022-01-27 한국광기술원 프로젝터 색보정 장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085586A (ja) * 2001-06-27 2003-03-20 Namco Ltd 画像表示装置、画像表示方法、情報記憶媒体および画像表示プログラム
JP2004013043A (ja) * 2002-06-11 2004-01-15 Nec Viewtechnology Ltd プロジェクタ取付装置
JP2005099588A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 投写型映像表示システム及びコネクタ装置
JP3880582B2 (ja) * 2004-02-13 2007-02-14 Necビューテクノロジー株式会社 複数のカメラを備えたプロジェクタ
JP2005227640A (ja) * 2004-02-16 2005-08-25 Casio Comput Co Ltd 投影装置、測距処理方法及びプログラム
JP2005277743A (ja) * 2004-03-24 2005-10-06 Seiko Epson Corp プロジェクタ
JP2008294961A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 映像表示装置
JP6225420B2 (ja) * 2012-12-19 2017-11-08 セイコーエプソン株式会社 プロジェクター及びその制御方法
KR20150080678A (ko) * 2014-01-02 2015-07-10 한국전자통신연구원 사용자 및 환경 인지 기능이 부가된 영상투영장치에 대한 영상 보정장치 및 방법
JP6550688B2 (ja) * 2014-01-22 2019-07-31 株式会社リコー 投影装置

Also Published As

Publication number Publication date
JP2017037190A (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5170154B2 (ja) 形状計測装置およびキャリブレーション方法
CN107771313B (zh) 颜色提取器
JP4379532B2 (ja) 照明装置
JP6730787B2 (ja) 投影装置
KR20130043300A (ko) 프로젝터를 통해 투사되는 영상을 보정하기 위한 장치 및 방법
JP2008187362A (ja) プロジェクタおよび投写画像調整方法
US10055065B2 (en) Display system, projector, and control method for display system
JP2009117351A (ja) 照明装置
JP6624541B2 (ja) 光投影装置及びそれを用いた照明装置
JP2016161882A (ja) 光投影装置
US11983381B2 (en) Display method, display system, and non-transitory computer-readable storage medium storing program
US20230308600A1 (en) Display method, display system, and non-transitory computer-readable storage medium storing program
JP4746178B2 (ja) 大画面用画像表示装置の位置調整方法
Zoido et al. Optimized methods for multi-projector display correction
JP2017514185A (ja) 着用型投影装置及び投影方法
JP6106969B2 (ja) 投影装置、ポインタ装置及び投影システム
CN106791736B (zh) 一种梯形校正方法和投影机
JP4627590B2 (ja) 曲面スクリーン
JP4746177B2 (ja) 大画面用画像表示装置の位置調整装置
JP2015133220A (ja) 制御装置及び照明システム
KR101488647B1 (ko) 모바일 단말의 가상 조명 동작방법 및 장치
CN109326242B (zh) 一种灰度调制方法及计算机可读存储介质
JP4925369B2 (ja) 照明装置
JP6642032B2 (ja) プロジェクター及びプロジェクターの制御方法
JP4279446B2 (ja) 立体角表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6730787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250