JP6729653B2 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
JP6729653B2
JP6729653B2 JP2018184730A JP2018184730A JP6729653B2 JP 6729653 B2 JP6729653 B2 JP 6729653B2 JP 2018184730 A JP2018184730 A JP 2018184730A JP 2018184730 A JP2018184730 A JP 2018184730A JP 6729653 B2 JP6729653 B2 JP 6729653B2
Authority
JP
Japan
Prior art keywords
air conditioning
control
heat exchanger
commercial power
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018184730A
Other languages
English (en)
Other versions
JP2020051730A (ja
Inventor
正倫 浮舟
正倫 浮舟
安尾 晃一
晃一 安尾
大野 正雄
正雄 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018184730A priority Critical patent/JP6729653B2/ja
Priority to EP19866743.8A priority patent/EP3839365B1/en
Priority to PCT/JP2019/037592 priority patent/WO2020067152A1/ja
Priority to CN201980063418.8A priority patent/CN112752929B/zh
Priority to ES19866743T priority patent/ES2958286T3/es
Publication of JP2020051730A publication Critical patent/JP2020051730A/ja
Application granted granted Critical
Publication of JP6729653B2 publication Critical patent/JP6729653B2/ja
Priority to US17/212,954 priority patent/US20210207834A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/875Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling heat-storage apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Description

本開示は、空調システムに関する。
特許文献1の空気調和装置は、圧縮機、室外熱交換器、室内熱交換器、伝熱管(蓄熱熱交換器)等が接続された冷媒回路を備える。伝熱管は、蓄熱槽の内部に設けられる。冷房蓄熱運転では、室内熱交換器及び伝熱管が蒸発器となり、蓄熱槽内で氷が生成される。ピークカット運転では、室内熱交換器が蒸発器となり、伝熱管が凝縮器(放熱器)となる。つまり、伝熱管で氷へ放熱した後の冷媒が、室内熱交換器の冷房に利用される。
特開2005−282993号公報
空調システムでは、システム全体の使用商用電力を抑制する抑制指令に応じて、蓄えた冷熱や温熱を利用しながら冷房や暖房を行う運転に切り換える実行することが考えられる。これにより、システム全体の使用商用電力を抑えつつ冷房や暖房を行うことができる。しかしながら、ある運転から使用商用電力を抑制する運転に切り換える際には、冷凍サイクルが定常状態に至るまでの間に時間がかかるため、使用商用電力を迅速に抑えることができないことがあった。この結果、抑制指令があった直後において、使用商用電力が所定の上限値を越えてしまう可能性があった。
同様に、空調システムでは、システム全体の使用商用電力を促進する促進指令に応じて、冷熱や温熱を蓄えながら冷房や暖房を行う運転を実行することが考えられる。これにより、システム全体の使用商用電力を促進しつつ冷房や暖房を行うことができる。しかしながら、ある運転から使用商用電力を促進する運転に切り換える際には、冷凍サイクルが定常状態に至るまでの間に時間がかかるため、使用商用電力を迅速に促進することができないことがあった。この結果、促進指令があった直後において、使用商用電力が所定の下限値を下回ってしまう可能性があった。
本開示の目的は、使用商用電力に係る指令に迅速に対応できる空調システムを提供することである。
第1の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)を備え、前記電力抑制部は、前記圧縮機(11)と、前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記圧縮機(11)を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第1制御において、前記使用商用電力を前記第1値以下としながら前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする。
第2の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)を備え、前記電力抑制部は、前記圧縮機(11)と、前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記圧縮機(11)を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第1運転の開始時に、前記使用商用電力が第2値を上回る場合に前記第1制御を行う一方、該使用商用電力が該第2値以下である場合に、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第2制御を行うことを特徴とする。
第3の態様は、第又は第の態様において、前記制御装置(5)は、前記第1制御の開始時に前記圧縮機(11)を停止させることを特徴とする。
第4の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)を備え、前記電力抑制部は、前記圧縮機(11)と、前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記圧縮機(11)を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第1制御において、前記利用側熱交換器(41)の空調能力が要求能力に至ると、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第2制御を行うことを特徴とする。
第5の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)と、前記冷媒回路(50)を含む空調ユニット(1A)とを備え、前記電力抑制部は、蓄えた電力を前記空調ユニット(1A)に供給する蓄電装置(100)と、前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記蓄電装置(100)の供給電力を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第1制御において、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする。
第6の態様は、第の態様において、前記制御装置(5)は、前記第1制御において、前記蓄電装置(100)から前記空調ユニット(1A)に供給される電力がゼロで且つ前記利用側熱交換器(41)の空調能力が要求能力であると、前記蓄電装置(100)を停止させ前記空調ユニット(1A)の運転を継続させることを特徴とする。
第1、第2、第4、第5の態様では、システム全体の使用商用電力を抑制する抑制指令に応じて第1運転が実行されると、この第1運転の開始のタイミングに同期して第1制御が行われる。第1制御では、電力抑制部(5,11,100)により、システム全体の使用商用電力が第1値以下に制御される。これにより、第1運転の開始のタイミングから、抑制指令に迅速に対応できる。
第1、第2、第4の態様の第1制御では、圧縮機(11)を制御することにより、システム全体の使用商用電力が第1値以下に抑えられる。
の態様の第1制御では、システム全体の使用商用電力を第1値以下に抑えながら利用側熱交換器(41)の空調能力が要求能力に近づくように圧縮機(11)が制御され、冷凍サイクルが定常状態に近づいていく。
の態様では、抑制指令に応じて第1運転が開始された際、使用商用電力が第2値以下であると、第1制御が行われず、第2制御が行われる。第2制御では、使用商用電力を考慮せずに利用側熱交換器(41)の空調能力を要求能力に近づける圧縮機(11)の制御が行われる。
の態様では、第1制御が開始された直後には、圧縮機(11)が停止するため、システム全体の使用商用電力を確実に低減できる。その後、第1制御により、利用側熱交換器(41)の空調能力が要求能力に近づくように圧縮機(11)が制御される。
の態様では、第1制御において利用側熱交換器(41)の空調能力が要求能力に至ると、使用商用電力を考慮しない第2制御に移行する。
の態様の第1制御では、蓄電装置(100)から空調ユニット(1A)への供給電力を制御することにより、システム全体の使用商用電力が第1値以下に抑えられる。
の態様の第1制御では、使用商用電力を考慮せず利用側熱交換器(41)の空調能力が要求能力に近づくように圧縮機(11)が制御され、冷凍サイクルが定常状態に近づいていく。この際、蓄電装置(100)は、システム全体の使用商用電力が第1値以下に抑えられるように、空調ユニット(1A)に電力を供給する。
の態様では、蓄電装置(100)から空調ユニット(1A)への供給電力がゼロであり、且つ空調能力が要求能力である場合、蓄電装置(100)が停止し、空調ユニット(1A)のみの運転が継続される。
第7の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)を備え、前記電力促進部は、前記圧縮機(11)と、前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記圧縮機(11)を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第3制御において、前記使用商用電力を前記第3値以上としながら前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする。
第8の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)を備え、前記電力促進部は、前記圧縮機(11)と、前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記圧縮機(11)を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第2運転の開始時に、前記使用商用電力が第4値を下回る場合に前記第3制御を行う一方、該使用商用電力が該第4値以上である場合に、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第4制御を行うことを特徴とする。
第9の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)を備え、前記電力促進部は、前記圧縮機(11)と、前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記圧縮機(11)を制御する制御装置(5)とを備え、前記制御装置(5)は、前記第3制御において、前記利用側熱交換器(41)の空調能力が要求能力に至ると、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第4制御を行うことを特徴とする。
第10の態様は、圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)と、前記冷媒回路(50)を含む空調ユニット(1A)を備え、前記電力促進部は、蓄えた電力を前記空調ユニット(1A)に供給する蓄電装置(100)と、前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記蓄電装置(100)に蓄える商用電力を制御する制御装置(5)とを備えていることを特徴とする。
第11の態様は、第1の態様において、前記制御装置(5)は、前記第3制御において、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする。
第12の態様は、第1の態様において、前記制御装置(5)は、前記第3制御において、前記蓄電装置(100)に供給される商用電力がゼロで且つ前記利用側熱交換器(41)の空調能力が要求能力であると、前記蓄電装置(100)を停止させ前記空調ユニット(1A)の運転を継続させることを特徴とする。
7、8、9、10の態様では、システム全体の使用商用電力を促進する促進指令に応じて第2運転が実行されると、この第2運転の開始のタイミングに同期して第3制御が行われる。第3制御では、電力促進部(5,11,100)により、システム全体の使用商用電力が第3値以上に制御される。これにより、第2運転の開始のタイミングから、促進指令に迅速に対応できる。
7、8、9の態様の第3制御では、圧縮機(11)を制御することにより、システム全体の使用商用電力が第3値以上に促進される。
の態様の第3制御では、システム全体の使用商用電力を第3値以上に促進させながら利用側熱交換器(41)の空調能力が要求能力に近づくように圧縮機(11)が制御され、冷凍サイクルが定常状態に近づいていく。
の態様では、促進指令に応じて第2運転が開始された際、使用商用電力が第3値以上であると、第3制御が行われず、第4制御が行われる。第4制御では、使用商用電力を考慮せずに利用側熱交換器(41)の空調能力を要求能力に近づける圧縮機(11)の制御が行われる。
の態様では、第3制御において利用側熱交換器(41)の空調能力が要求能力に至ると、使用商用電力を考慮しない第4制御に移行する。
第1の態様では、蓄電装置(100)に蓄電される商用電力を制御することにより、システム全体の使用商用電力が第3値以上に促進される。
第1の態様の第3制御では、使用商用電力を考慮せず利用側熱交換器(41)の空調能力が要求能力に近づくように圧縮機(11)が制御され、冷凍サイクルが定常状態に近づいていく。
第1の態様では、第3制御において、商用電源から蓄電装置(100)に供給される商用電力がゼロであり、且つ空調能力が要求能力である場合、蓄電装置(100)が停止し、空調ユニット(1A)のみの運転が継続される。
図1は、実施形態1に係る空調システムの配管系統図である。 図2は、実施形態1に係る空調システムの配管系統図において、冷房運転の冷媒の流れを表したものである。 図3は、実施形態1に係る空調システムの配管系統図において、冷房ピークシフト運転の冷媒の流れを表したものである。 図4は、実施形態1に係る空調システムの配管系統図において、冷房ピークカット運転の冷媒の流れを表したものである。 図5は、実施形態1に係る空調システムの配管系統図において、冷房/冷蓄熱運転の冷媒の流れを表したものである。 図6は、実施形態1に係る空調システムの配管系統図において、冷蓄熱運転の冷媒の流れを表したものである。 図7は、実施形態1に係る空調システムの配管系統図において、暖房運転の冷媒の流れを表したものである。 図8は、実施形態1に係る空調システムの配管系統図において、暖房ピークカット運転の冷媒の流れを表したものである。 図9は、実施形態1に係る空調システムの配管系統図において、暖房/温蓄熱運転の冷媒の流れを表したものである。 図10は、実施形態1に係る空調システムの配管系統図において、温蓄熱運転の冷媒の流れを表したものである。 図11は、各運転の冷凍サイクルを対比したモリエル線図である。 図12は、実施形態1に係る空調ユニット、コントローラ、及び商用電源の関係を示した概略の構成図である。 図13は、実施形態1の第1運転に係る空調能力、及び使用商用電力の変化を模式的に示すタイムチャートである。 図14は、実施形態1の第1運転に係るフローチャートである。 図15は、実施形態1の第2運転に係る空調能力、及び使用商用電力の変化を模式的に示すタイムチャートである。 図16は、実施形態1の第2運転に係るフローチャートである。 図17は、実施形態2に係る空調ユニット、コントローラ、及び商用電源の関係を示した概略の構成図である。 図18は、実施形態2の第1運転に係る空調能力、及び使用商用電力の変化を模式的に示すタイムチャートである。 図19は、実施形態2の第1運転に係るフローチャートである。 図20は、実施形態2の第2運転に係る空調能力、及び使用商用電力の変化を模式的に示すタイムチャートである。 図21は、実施形態2の第2運転に係るフローチャートである。
以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
《実施形態1》
実施形態1は、蓄熱媒体に熱(冷熱及び温熱)を蓄えるとともに、蓄えた熱を空調に利用する蓄熱式の空調システムである。実施形態1の空調システム(1)は、室外ユニット(10)(熱源側ユニット)と、蓄熱ユニット(20)と、複数の流路切換ユニット(30)と、複数の室内ユニット(40)(利用側ユニット)とを備え、これらを冷媒配管で接続することにより構成された冷媒回路(50)を備える。複数の室内ユニット(40)及び流路切換ユニット(30)は、室外ユニット(10)及び蓄熱ユニット(20)に対して並列に接続される。蓄熱ユニット(20)と各室内ユニット(40)の間には、流路切換ユニット(30)が接続される。空調システム(1)は、冷房運転と暖房運転が混在する運転が可能に構成され、運転を制御するコントローラ(5)を備える。なお、図1等においては、2台の室内ユニット(40)を図示し、これらと並列に接続される室内ユニットの図示は省略している。
室外ユニット(10)と蓄熱ユニット(20)は、室外側第1ガス連絡管(51)と室外側第2ガス連絡管(52)と室外側液連絡管(53)で接続される。蓄熱ユニット(20)と流路切換ユニット(30)とは、中間部第1ガス連絡管(54)と中間部第2ガス連絡管(55)と中間部液連絡管(56)とで接続される。蓄熱ユニット(20)と室内ユニット(40)とは、室内側ガス連絡管(57)と室内側液連絡管(58)とで接続される。
〈室外ユニット〉
室外ユニット(10)には、圧縮機(11)、室外熱交換器(12)、レシーバ(13)、アキュムレータ(14)、第1四路切換弁(15)、第2四路切換弁(16)、第3四路切換弁(17)、及びブリッジ回路(18)が設けられる。圧縮機(11)の吐出配管(11a)は、吐出側第1分岐管(61)と吐出側第2分岐管(62)と吐出側第3分岐管(63)に分岐する。吐出側第1分岐管(61)は、第1四路切換弁(15)の第1ポートに接続され、吐出側第2分岐管(62)は、第2四路切換弁(16)の第1ポートに接続される。吐出側第3分岐管(63)は、第3四路切換弁(17)の第1ポートに接続される。
室外熱交換器(12)は、第1室外熱交換器(12a)と第2室外熱交換器(12b)とを含んでいる。第1室外熱交換器(12a)のガス側端は第1四路切換弁(15)の第2ポートに接続され、第2室外熱交換器(12b)のガス側端は第2四路切換弁(16)の第2ポートに接続される。第1四路切換弁(15)の第3ポートには吸入側第1分岐管(64)が、第2四路切換弁(16)の第3ポートには吸入側第2分岐管(65)が、第3四路切換弁(17)の第3ポートには吸入側第3分岐管(66)が、それぞれ接続される。吸入側第1分岐管(64)と吸入側第3分岐管(66)は室外低圧管(67)の一端に接続される。圧縮機(11)の吸入配管(11b)はアキュムレータ(14)のガス流出ポート(14a)に接続され、アキュムレータ(14)の第1ガス流入ポート(14b)には室外側第1ガス管(68)の一端が接続される。室外低圧管(67)の他端は、室外側第1ガス連絡管(51)に合流する。室外側第1ガス管(68)の他端は、室外側第1ガス連絡管(51)に接続される。
第3四路切換弁(17)の第2ポートには室外側第2ガス管(69)の一端が接続される。室外側第2ガス管(69)の他端は室外側第2ガス連絡管(52)に接続される。
第1四路切換弁(15)の第4ポート、第2四路切換弁(16)の第4ポート、及び第3四路切換弁(17)の第4ポートは、それぞれ、閉鎖された閉鎖ポートである。第1四路切換弁(15)、第2四路切換弁(16)、及び第3四路切換弁(17)は、第1ポートと第2ポートが連通するとともに第3ポートと第4ポートが連通する第1状態(図1の実線の連通状態)と、第1ポートと第4ポートが連通するとともに第2ポートと第3ポートが連通する第2状態(図1の破線の連通状態)とに切換可能に構成される。図1において、第1四路切換弁(15)と第2四路切換弁(16)は第1状態を示し、第3四路切換弁(17)は第2状態を示している。
第1室外熱交換器(12a)の液側端は室外側液第1分岐管(71)に接続され、第2室外熱交換器(12b)の液側端は室外側液第2分岐管(72)に接続される。室外側液第1分岐管(71)には室外側第1膨張弁(73)(膨張機構)が接続され、室外側液第2分岐管(72)には室外側第2膨張弁(74)(膨張機構)が接続される。室外側液第1分岐管(71)と室外側液第2分岐管(72)は合流し、室外側液管(75)に接続される。室外側液管(75)は、ブリッジ回路(18)を介して室外側液連絡管(53)に接続される。
室外側液管(75)には、ブリッジ回路(18)を介して、液冷媒を貯留可能な上記レシーバ(13)が接続される。ブリッジ回路(18)は、第1接続点(18a)、第2接続点(18b)、第3接続点(18c)、及び第4接続点(18d)を有し、これらの接続点が配管接続された閉回路である。第1接続点(18a)と第2接続点(18b)との間には、第1接続点(18a)から第2接続点(18b)へ向かう方向への冷媒の流れを許容し、逆方向の冷媒の流れを禁止する第1逆止弁(19a)が設けられる。第3接続点(18c)と第2接続点(18b)との間には、第3接続点(18c)から第2接続点(18b)へ向かう方向への冷媒の流れを許容し、逆方向の冷媒の流れを禁止する第2逆止弁(19b)が設けられる。第4接続点(18d)と第3接続点(18c)との間には、第4接続点(18d)から第3接続点(18c)へ向かう方向への冷媒の流れを許容し、逆方向の冷媒の流れを禁止する第3逆止弁(19c)が設けられる。第4接続点(18d)と第1接続点(18a)との間には、第4接続点(18d)から第1接続点(18a)へ向かう方向への冷媒の流れを許容し、逆方向の冷媒の流れを禁止する第4逆止弁(19d)が設けられる。
ブリッジ回路(18)の第2接続点(18b)とレシーバ(13)の液流入ポート(13a)とは、室外流量調整弁(76)を有する液流入管(77)で接続される。レシーバ(13)の液流出ポート(13b)とブリッジ回路(18)の第4接続点(18d)とは、液流出管(79)で接続される。液流出管(79)には、レシーバ(13)から第4接続点(18d)へ向かう冷媒の流れを許容し、逆方向への冷媒の流れを禁止する室外逆止弁(78)が設けられる。レシーバ(13)のガス流出ポート(13c)は、開度調整可能なガス抜き弁(80)が設けられたガス抜き管(81)の一端が接続される。ガス抜き管(81)の他端はアキュムレータ(14)の第2ガス流入ポート(14c)に接続される。
〈蓄熱ユニット〉
蓄熱ユニット(20)は、蓄熱用熱交換器(21)と第4四路切換弁(22)と流量調整機構(23)とを有する。蓄熱用熱交換器(21)は、蓄熱媒体として例えば水が貯留された蓄熱槽(21a)と、蓄熱槽(21a)の中に設けられた複数パス(図示せず)の伝熱管(21b)とを有する。蓄熱用熱交換器(21)は、冷房時に蒸発器になるときには蓄熱槽(21a)の中の伝熱管(21b)の周りに低温冷媒で氷を生成し、逆に放熱器になるときには冷媒が氷に放熱する構成の、いわゆるスタティック型の蓄熱用熱交換器(21)である。蓄熱用熱交換器(21)は、暖房時に放熱器になるときには水を加熱して温水を生成し、蒸発器になるときには冷媒が温水から吸熱する。
蓄熱ユニット(20)は、蓄熱側第1ガス管(85)と、蓄熱側第2ガス管(86)と、蓄熱側液管(87)とを有する。蓄熱側第1ガス管(85)は、室外側第1ガス連絡管(51)と中間部第1ガス連絡管(54)とに接続される。蓄熱側第1ガス管(85)は、室外側第1ガス連絡管(51)と中間部第1ガス連絡管(54)とに接続される。蓄熱側第2ガス管(86)は、室外側第2ガス連絡管(52)と中間部第2ガス連絡管(55)とに接続される。蓄熱側液管(87)は、室外側液連絡管(53)と中間部液連絡管(56)とに接続される。
第4四路切換弁(22)の第1ポートは第1接続管(88)を介して蓄熱側第1ガス管(85)に接続される。第4四路切換弁(22)の第2ポートには第2接続管(89)の一端が接続され、第2接続管(89)の他端は蓄熱側液管(87)に接続される。第2接続管(89)には、電動弁で構成された蓄熱側第1流量調整弁(90)と、蓄熱側第1開閉弁(91)(電磁弁)と、蓄熱側液管(87)へ向かう方向の冷媒流れのみを許容する蓄熱側第1逆止弁(92)とが直列で配置される。第2接続管(89)には、蓄熱側第1流量調整弁(90)と蓄熱側第1開閉弁(91)との間に接続された蓄熱側第1分岐管(93)が蓄熱用熱交換器(21)の伝熱管(21b)のガス側端に接続される。第4四路切換弁(22)の第3ポートは第3接続管(94)を介して蓄熱側第2ガス管(86)に接続される。第4四路切換弁(22)の第4ポートは閉鎖された閉鎖ポートである。
第4四路切換弁(22)は、第1ポートと第2ポートが連通するとともに第3ポートと第4ポートが連通する第1状態(図1の実線の状態)と、第1ポートと第4ポートが連通するとともに第2ポートと第3ポートが連通する第2状態(図1の破線の状態)とに切換可能に構成される。
蓄熱側液管(87)には蓄熱側第2開閉弁(95)が設けられる。蓄熱側第2開閉弁(95)は、室外側液管(75)から中間部液連絡管(56)へ向かう冷媒の流れのみを許容するように構成される。蓄熱側液管(87)には、蓄熱側第2開閉弁(95)をバイパスする第1バイパス通路(96)が接続される。この第1バイパス通路(96)には、中間部液連絡管(56)から室外側液管(75)へ向かう冷媒の流れを許容し、逆方向への冷媒の流れを禁止する蓄熱側第2逆止弁(97)が設けられる。
蓄熱用熱交換器(21)の液側端は、蓄熱側第2分岐管(98)を介して蓄熱側液管(87)に、室外側液管(75)と蓄熱側第2開閉弁(95)との間で接続される。蓄熱側第2分岐管(98)には上記流量調整機構(23)が接続される。流量調整機構(23)は、蓄熱側第2分岐管(98)に設けられた蓄熱側流量調整弁(99a)(開度調整弁)と、蓄熱側流量調整弁(99a)(開度調整弁)をバイパスする第2バイパス通路(98a)に設けられた蓄熱側第3開閉弁(99b)(電磁弁)とを有する。
〈流路切換ユニット〉
流路切換ユニット(30)は、ガス側接続管(31)と液側接続管(32)とを有する。ガス側接続管(31)は、ガス側主管(33)と切換部第1分岐管(33a)と切換部第2分岐管(33b)とを備え、切換部第1分岐管(33a)に第1流路切換弁(34a)が、切換部第2分岐管(33b)に第2流路切換弁(34b)が設けられる。ガス側主管(33)は、一端が室内側ガス連絡管(57)に、他端が切換部第1分岐管(33a)及び切換部第2分岐管(33b)の一端にそれぞれ接続される。切換部第1分岐管(33a)の他端は上記中間部第1ガス連絡管(54)に接続され、切換部第2分岐管(33b)の他端は中間部第2ガス連絡管(55)に接続される。
第1流路切換弁(34a)及び第2流路切換弁(34b)は、各流路切換ユニット(30)において冷媒流れを許容または遮断する制御弁である。各流路切換弁(34a,34b)は、モータ駆動により開度を調整可能に構成された電動調整弁で構成され、冷媒回路(50)における室内の冷媒の流路が電気制御で切り換えられる。これらの電動調整弁の開閉状態を切り換えることによって冷媒の流れを制御し、各室内ユニット(40)において冷房運転と暖房運転が個別に切り換えられる。なお、各流路切換弁(34a,34b)には、電動調整弁の代わりに電磁開閉弁を用いてもよい。
液側接続管(32)は液側主管(35)を備え、液側主管(35)には過冷却熱交換器(36)が接続される。液側主管(35)には、中間部液連絡管(56)と過冷却熱交換器(36)との間に過冷却配管(37)の一端が接続される。過冷却配管(37)は、過冷却熱交換器(36)の中を通過し、他端が切換部第1分岐管(33a)における第1流路切換弁(34a)と中間部第1ガス連絡管(54)との間に接続される。過冷却配管(37)には、液側主管(35)と過冷却熱交換器(36)との間に流量調整弁(38)が設けられる。流量調整弁の開度を調整することによって、過冷却回路へ流れ込む冷媒の量が調整される。
〈室内ユニット〉
室内ユニット(40)は、それぞれ、室内熱交換器(41)(利用側熱交換器)と室内膨張弁(42)とを有する。室内膨張弁(42)は、開度調整可能な電子膨張弁により構成される。この室内ユニット(40)では、室内熱交換器(41)のガス側端が流路切換ユニット(30)に室内側ガス連絡管(57)で接続され、室内膨張弁(42)が流路切換ユニット(30)に室内側液連絡管(58)で接続される。
〈コントローラの概略構成〉
コントローラ(5)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。コントローラ(5)は、運転指令やセンサの検出信号に基づいて、空調システム(1)の各機器を制御する。コントローラ(5)による各機器の制御により、空調システム(1)の運転が切り換えられる。
図では1台のコントローラ(5)が各ユニットと冷媒切換器に接続された構成を示しているが、設置条件に応じてコントローラ(5)を複数に分け、各コントローラ(5)が連動した制御を行うように構成してもよい。
−運転動作−
実施形態の空調システム(1)は、冷房運転、冷房ピークシフト運転(冷房過冷却運転)、冷房ピークカット運転、冷房/冷蓄熱運転、冷蓄熱運転、暖房運転、暖房ピークカット運転、暖房/温蓄熱運転、及び温蓄熱運転を切り換えて行う。この空調システム(1)では、流路切換ユニット(30)の冷媒流れ方向の設定を切り換えることにより、複数の室内ユニット(40)において冷房運転と暖房運転が混在する運転が可能であるが、その動作の説明は省略する。
以下、各運転における冷媒回路(50)の動作を説明する。
〈冷房運転〉
図2に示す冷房運転は、蓄熱用熱交換器(21)を用いずに、室外熱交換器(12)が放熱器になり、室内熱交換器(41)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環する運転である。
この冷房運転時、室外ユニット(10)では、第1四路切換弁(15)及び第2四路切換弁(16)は第1状態に設定される。図2の状態で室外側第1膨張弁(73)及び室外側第2膨張弁(74)はいずれも全開に設定されるが、室外熱交換器(12)を1台のみで運転する場合は、室外側第1膨張弁(73)及び室外側第2膨張弁(74)の一方が閉鎖される(以下の各運転でも同様)。室外流量調整弁(76)は全開に設定される。
蓄熱ユニット(20)では、蓄熱側第2開閉弁(95)は開放され、蓄熱側流量調整弁(99a)と蓄熱側第3開閉弁(99b)は閉鎖される。
流路切換ユニット(30)では、各室内ユニット(40)で冷房運転を行うとすると、第1流路切換弁(34a)を開放し、第2流路切換弁(34b)を閉鎖し、流量調整弁が所定開度に制御される。室内ユニット(40)では、室内膨張弁(42)が所定開度に制御される。
なお、図示していないが、冷房運転を行う室内ユニット(40)と暖房運転を行う室内ユニット(40)が混在する場合は、室外ユニット(10)の第3四路切換弁(17)を第2状態に切り換えるとともに、暖房運転を行う室内ユニット(40)の室内膨張弁(42)を全開にし、第1流路切換弁(34a)を閉鎖し、第2流路切換弁(34b)を開放する。
図2の冷房運転時は、圧縮機(11)から吐出された冷媒が第1室外熱交換器(12a)及び第2室外熱交換器(12b)で放熱し、凝縮ないし冷却された冷媒がレシーバ(13)に流入する。レシーバ(13)から流出した冷媒は、蓄熱ユニット(20)の蓄熱側液管(87)を通過した後、流路切換ユニット(30)で過冷却されて室内ユニット(40)へ流入する。
室内ユニット(40)では、冷媒が室内膨張弁(42)で減圧され、室内熱交換器(41)で室内空気から吸熱して蒸発する。このとき、室内空気が冷却され、室内が冷房される。室内ユニット(40)から流出した冷媒は、流路切換ユニット(30)のガス側接続管(31)と蓄熱ユニット(20)の蓄熱側第1ガス管(85)を通り、室外ユニット(10)に戻る。冷媒は、室外ユニット(10)の室外側第1ガス管(68)からアキュムレータ(14)に流入した後、圧縮機(11)に吸入される。
冷房運転時は、冷媒回路(50)において以上の動作が連続する冷凍サイクルが行われる。図11に、通常運転と示した冷凍サイクルのP−h線図を示している。この状態では、以下に説明する冷房ピークカット運転や冷房ピークシフト運転よりも冷媒の高低圧力差が大きく、エンタルピ差は小さい。
〈冷房ピークシフト運転〉
図3に示す冷房ピークシフト運転は、蓄熱槽(21a)の中に氷が生成されている蓄熱用熱交換器(21)を過冷却熱交換器(36)として用い、室外熱交換器(12)が放熱器になり、室内熱交換器(41)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環する運転である。
この冷房ピークシフト運転時、室外ユニット(10)、流路切換ユニット(30)、及び室内ユニット(40)の各弁の制御は冷房運転時と同じである。蓄熱ユニット(20)では、蓄熱側第2開閉弁(95)が閉鎖され、蓄熱側流量調整弁(99a)と蓄熱側第3開閉弁(99b)が開放される。なお、蓄熱側第3開閉弁(99b)を開放し、蓄熱側流量調整弁(99a)を閉鎖してもよい。蓄熱側第1流量調整弁(90)は閉鎖され、蓄熱側第1開閉弁(91)は開放される。
冷房ピークシフト運転時は、圧縮機(11)から吐出された冷媒が第1室外熱交換器(12a)及び第2室外熱交換器(12b)で放熱し、凝縮ないし冷却された冷媒がレシーバ(13)に流入する。レシーバ(13)から流出した冷媒は、蓄熱ユニット(20)の蓄熱側液管(87)から蓄熱側第2分岐管(98)へ分流し、蓄熱用熱交換器(21)へ流入して過冷却される。
過冷却された冷媒は、各流路切換ユニット(30)を通って各室内ユニット(40)へ流入し、室内膨張弁(42)で減圧された後に室内熱交換器(41)で蒸発し、そのときに室内空気を冷却して室内を冷房する。室内熱交換器(41)で蒸発した冷媒は、流路切換ユニット(30)のガス側接続管(31)及び蓄熱ユニット(20)の蓄熱側第1ガス管(85)を通って室外ユニット(10)に戻る。室外ユニット(10)に戻った冷媒は、アキュムレータ(14)を介して圧縮機(11)に吸入される。
冷房ピークシフト運転時は、冷媒回路(50)において以上の動作が連続する冷凍サイクルが行われる。図11に冷房ピークシフト運転のP−h線図を示すように、この状態では、上記冷房運転よりも、冷媒の高低圧力差が小さく、蓄熱用熱交換器(21)で冷媒を過冷却しているのでエンタルピ差は大きい。高低圧力差が小さいために圧縮機(11)の入力が少なくて済み、通常の冷房運転時と比べて消費電力が抑えられるとともにCOP(成績係数)が高くなる。
〈冷房ピークカット運転〉
図4に示す冷房ピークカット運転は、蓄熱槽(21a)の中に氷が生成されている蓄熱用熱交換器(21)が放熱器になり、室内熱交換器(41)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環する運転である。この運転では室外熱交換器(12)は用いない。
この冷房ピークカット運転時、室外ユニット(10)では、第1四路切換弁(15)と第2四路切換弁(16)が第2状態に設定され,第3四路切換弁(17)が第1状態に設定される。室外側第1膨張弁(73)及び室外側第2膨張弁(74)は閉鎖される。
蓄熱ユニット(20)では、第4四路切換弁(22)が第2状態に設定され、蓄熱側第1流量調整弁(90)が開放され、蓄熱側第1開閉弁(91)が閉鎖される。蓄熱側第2開閉弁(95)と蓄熱側第3開閉弁(99b)は開放され、蓄熱側流量調整弁(99a)は閉鎖される。流路切換ユニット(30)と室内ユニット(40)の弁の制御は冷房運転や冷房ピークシフト運転と同じである。
冷房ピークカット運転時は、圧縮機(11)から吐出された冷媒が第1室外熱交換器(12a)及び第2室外熱交換器(12b)へは流れずに、第3四路切換弁(17)と第4四路切換弁(22)を通って蓄熱用熱交換器(21)へ流入して放熱する。蓄熱用熱交換器(21)で凝縮ないし冷却された冷媒は、蓄熱側第3開閉弁(99b)と蓄熱側第2開閉弁(95)を通って蓄熱ユニット(20)から流出し、各流路切換ユニット(30)を通って各室内ユニット(40)へ流入する。
冷媒は、室内膨張弁(42)で減圧された後に室内熱交換器(41)で蒸発し、そのときに室内空気を冷却して室内を冷房する。室内熱交換器(41)で蒸発した冷媒は、流路切換ユニット(30)のガス側接続管(31)及び蓄熱ユニット(20)の蓄熱側第1ガス管(85)を通って室外ユニット(10)に戻る。室外ユニット(10)に戻った冷媒は、アキュムレータ(14)を介して圧縮機(11)に吸入される。
図11に冷房ピークカット運転のP−h線図を示すように、この状態では、上記冷房運転よりも、冷媒の高低圧力差が非常に小さく、エンタルピ差が大きい。このように、冷房ピークカット運転では高圧圧力が極端に低い冷凍サイクルが行われ、高低圧力差が小さいために圧縮機(11)の入力が少なくて済み、通常の冷房運転時やピークシフト運転時と比べて消費電力が抑えられるとともにCOP(成績係数)が高くなる。
〈冷房/冷蓄熱運転〉
図5に示す冷房/冷蓄熱運転は、図2の冷房運転を行いながら、蓄熱用熱交換器(21)を蒸発器にして蓄熱槽(21a)の水を冷却し、冷蓄熱をする運転である。
この冷房/冷蓄熱運転は、蓄熱ユニット(20)において、蓄熱側流量調整弁(99a)の開度が適宜調整されるとともに蓄熱側第3開閉弁(99b)が閉鎖され、蓄熱側第1流量調整弁(90)が開放されるとともに蓄熱側第1開閉弁(91)が閉鎖される点を除いては、各弁の状態は図2の冷房運転と同じである。
冷房/冷蓄熱運転時は、圧縮機(11)から吐出された冷媒が第1室外熱交換器(12a)及び第2室外熱交換器(12b)で放熱し、凝縮ないし冷却された冷媒がレシーバ(13)に流入する。レシーバ(13)から流出した冷媒は、蓄熱ユニット(20)の蓄熱側液管(87)を通過した後、流路切換ユニット(30)で過冷却されて室内ユニット(40)へ流入する。
室内ユニット(40)では、冷媒が室内膨張弁(42)で減圧され、室内熱交換器(41)で室内空気から吸熱して蒸発する。このとき、室内空気が冷却され、室内が冷房される。室内ユニット(40)から流出した冷媒は、流路切換ユニット(30)のガス側接続管(31)と蓄熱ユニット(20)の蓄熱側第1ガス管(85)を流れる。
一方、蓄熱側液管(87)を流れる冷媒の一部は蓄熱側第2分岐管(98)に分流し、蓄熱側流量調整弁(99a)で減圧されて蓄熱用熱交換器(21)へ流入し、蒸発する。蒸発した冷媒は、第2接続管(89)及び第1接続管(88)を通って蓄熱側第1ガス管(85)の冷媒と合流する。
蓄熱側第1ガス管(85)を流れる冷媒は、室外側第1ガス連絡管(51)を通って室外ユニット(10)に戻る。冷媒は、室外ユニット(10)の室外側第1ガス管(68)からアキュムレータ(14)に流入した後、圧縮機(11)に吸入される。
〈冷蓄熱運転〉
図6に示す冷蓄熱運転は、室外熱交換器(12)を放熱器にし、蓄熱用熱交換器(21)を蒸発器にして蓄熱槽(21a)の水を冷却し、冷蓄熱をする運転である。
この冷蓄熱運転は、室外ユニット(10)の弁の制御は図5の冷房/冷蓄熱運転と同じである。蓄熱ユニット(20)では、蓄熱側第2開閉弁(95)が閉鎖され、冷媒が各流路切換ユニット(30)と各室内ユニット(40)へ流れないようにしている点を除いては、弁の制御は冷房/冷蓄熱運転と同じでよい。
冷蓄熱運転時は、圧縮機(11)から吐出された冷媒が第1室外熱交換器(12a)及び第2室外熱交換器(12b)で放熱し、凝縮ないし冷却された冷媒がレシーバ(13)に流入する。レシーバ(13)から流出した冷媒は蓄熱側第2分岐管(98)に流入し、蓄熱側流量調整弁(99a)で減圧されて蓄熱用熱交換器(21)で蒸発する。
蒸発した冷媒は、第2接続管(89)及び第1接続管(88)を通って蓄熱側第1ガス管(85)へ流入する。蓄熱側第1ガス管(85)を流れる冷媒は、室外側第1ガス連絡管(51)を通って室外ユニット(10)に戻る。冷媒は、室外ユニット(10)の室外側第1ガス管(68)からアキュムレータ(14)に流入した後、圧縮機(11)に吸入される。
〈暖房運転〉
図7に示す暖房運転は、蓄熱用熱交換器(21)を用いずに、室内熱交換器(41)が放熱器になり、室外熱交換器(12)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環する運転である。
この暖房運転時、室外ユニット(10)では、第1四路切換弁(15)及び第2四路切換弁(16)は第2状態に設定される。室外側第1膨張弁(73)及び室外側第2膨張弁(74)はいずれも所定開度に制御されるが、室外熱交換器(12)を1台のみで運転する場合は、室外側第1膨張弁(73)及び室外側第2膨張弁(74)の一方が閉鎖される(以下の各運転でも同様)。室外流量調整弁(76)は全開に設定される。
蓄熱ユニット(20)では、蓄熱側第2開閉弁(95)は閉鎖され、蓄熱側流量調整弁(99a)と蓄熱側第3開閉弁(99b)は閉鎖される。
流路切換ユニット(30)では、各室内ユニット(40)で暖房運転を行うとすると、第1流路切換弁(34a)が閉鎖され、第2流路切換弁(34b)が開放され、流量調整弁が閉鎖される。室内ユニット(40)では、室内膨張弁(42)が全開に制御される。
暖房運転時は、圧縮機(11)から吐出された冷媒が第3四路切換弁(17)から蓄熱ユニット(20)の蓄熱側第2ガス管(86)を通り、さらに流路切換ユニット(30)のガス側接続管(31)を通って室内ユニット(40)へ流入する。冷媒は室内熱交換器(41)で放熱し、凝縮ないし冷却された冷媒が室内ユニット(40)から流出して流路切換ユニット(30)の液側接続管(32)を流れ、中間部液連絡管(56)から蓄熱ユニット(20)へ流入する。冷媒は、蓄熱ユニット(20)の蓄熱側液管(87)から第1バイパス通路(96)を通り、室外側液連絡管(53)から室外ユニット(10)へ戻る。
冷媒は、液流入管(77)を通ってレシーバ(13)へ流入した後、液流出管(79)へ流出する。冷媒は、ブリッジ回路(18)を通って室外側第1膨張弁(73)及び室外側第2膨張弁(74)で減圧された後、第1室外熱交換器(12a)及び第2室外熱交換器(12b)で蒸発する。蒸発した冷媒は、室外低圧管(67)を通ってアキュムレータ(14)へ流入した後、圧縮機(11)に吸入される。
〈暖房ピークカット運転〉
図8に示す暖房ピークカット運転は、室外熱交換器(12)を用いずに、室内熱交換器(41)が放熱器になり、蓄熱用熱交換器(21)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環する運転である。
この暖房ピークカット運転時、室外ユニット(10)では、第1四路切換弁(15)及び第2四路切換弁(16)は第2状態に設定され、第3四路切換弁(17)は第1状態に設定される。室外側第1膨張弁(73)及び室外側第2膨張弁(74)は、いずれも閉鎖される。
蓄熱ユニット(20)では、蓄熱側第2開閉弁(95)は開放され、蓄熱側流量調整弁(99a)は所定開度に制御され、蓄熱側第3開閉弁(99b)は閉鎖される。流路切換ユニット(30)及び室内ユニット(40)では、弁の制御は暖房運転時と同じである。
暖房ピークカット運転時は、圧縮機(11)から吐出された冷媒が第3四路切換弁(17)から蓄熱ユニット(20)の蓄熱側第2ガス管(86)を通り、さらに流路切換ユニット(30)のガス側接続管(31)を通って室内ユニット(40)へ流入する。冷媒は室内熱交換器(41)で放熱し、凝縮ないし冷却された冷媒が室内ユニット(40)から流出して流路切換ユニット(30)の液側接続管(32)を流れ、中間部液連絡管(56)から蓄熱ユニット(20)へ流入する。
冷媒は、蓄熱ユニット(20)の蓄熱側液管(87)から第1バイパス通路(96)を通り、さらに蓄熱側第2分岐管(98)を通って蓄熱側流量調整弁(99a)で減圧され、蓄熱熱交換器において蓄熱槽(21a)の中に貯留されている水から吸熱して蒸発する。
蒸発した冷媒は、第2接続管(89)及び第1接続管(88)を通って蓄熱側第1ガス管(85)へ流入する。蓄熱側第1ガス管(85)を流れる冷媒は、室外側第1ガス連絡管(51)を通って室外ユニット(10)に戻る。冷媒は、室外ユニット(10)の室外側第1ガス管(68)からアキュムレータ(14)に流入した後、圧縮機(11)に吸入される。
〈暖房/温蓄熱運転〉
図9に示す暖房/温蓄熱運転は、室内熱交換器(41)が放熱器になり、室外熱交換器(12)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環する暖房運転を行いながら、蓄熱熱交換器において蓄熱槽(21a)の水を加熱し、温熱を蓄える運転である。
この暖房/温蓄熱運転時、室外ユニット(10)では、弁は図7の暖房運転と同様に制御される。蓄熱ユニット(20)では、蓄熱側第1流量調整弁(90)は全開に制御され、蓄熱側第1開閉弁(91)は閉鎖される。蓄熱側第2開閉弁(95)及び蓄熱側第3開閉弁(99b)は閉鎖され、蓄熱側流量調整弁(99a)が所定開度に制御される。流路切換ユニット(30)と室内ユニット(40)の弁の制御は図7の暖房運転時と同じである。
この暖房/温蓄熱運転時は、圧縮機(11)から吐出された冷媒が第3四路切換弁(17)から蓄熱ユニット(20)の蓄熱側第2ガス管(86)を通り、一部は第4四路切換弁(22)から第2接続管(89)へ分流し、残りは流路切換ユニット(30)のガス側接続管(31)を通って室内ユニット(40)へ流入する。冷媒は室内熱交換器(41)で放熱し、凝縮ないし冷却された冷媒が室内ユニット(40)から流出して流路切換ユニット(30)の液側接続管(32)を流れ、中間部液連絡管(56)から蓄熱ユニット(20)へ流入する。冷媒は、蓄熱ユニット(20)の蓄熱側液管(87)から第1バイパス通路(96)を流れる。
蓄熱側第2ガス管(86)から第4四路切換弁(22)を通って第2接続管(89)へ分流した冷媒は、蓄熱用熱交換器(21)へ流入して蓄熱槽(21a)の水へ放熱し、水を加熱して温熱が蓄えられる。蓄熱用熱交換器(21)で放熱した冷媒は、蓄熱側第2分岐管(98)を通って蓄熱側液管(87)へ流入し、第1バイパス通路(96)を流れた冷媒と蓄熱側液管(87)で合流した後、室外側液連絡管(53)から室外ユニット(10)へ流入する。
室外ユニット(10)へ流入した冷媒は、液流入管(77)を通ってレシーバ(13)へ流入した後、液流出管(79)へ流出する。冷媒は、ブリッジ回路(18)を通って室外側第1膨張弁(73)及び室外側第2膨張弁(74)を通過した後、第1室外熱交換器(12a)及び第2室外熱交換器(12b)で蒸発する。蒸発した冷媒は、室外低圧管(67)を通ってアキュムレータ(14)へ流入した後、圧縮機(11)に吸入される。
〈温蓄熱運転〉
図10に示す温蓄熱運転は、室内熱交換器(41)を使わずに、蓄熱熱交換器が放熱器になり、室外熱交換器(12)が蒸発器になる状態で、冷媒が冷媒回路(50)を循環し、蓄熱熱交換器で温熱を蓄える運転である。
温蓄熱運転時、室外ユニット(10)では、弁は図7の暖房運転と同様に制御される。蓄熱ユニット(20)では、蓄熱側第1流量調整弁(90)は全開に制御され、蓄熱側第1開閉弁(91)は閉鎖される。蓄熱側第2開閉弁(95)と蓄熱側第3開閉弁(99b)とは閉鎖され、蓄熱側流量調整弁(99a)は所定開度に制御される。流路切換ユニット(30)と室内ユニット(40)では、第1流路切換弁(34a)及び室外膨張弁の少なくとも一方が閉鎖され、室内熱交換器(41)を冷媒が流れるのが阻止される。
この温蓄熱運転時は、圧縮機(11)から吐出された冷媒が第3四路切換弁(17)から蓄熱ユニット(20)の蓄熱側第2ガス管(86)を通り、第4四路切換弁(22)から第2接続管(89)へ分流する。冷媒は、蓄熱用熱交換器(21)へ流入して蓄熱槽(21a)の水へ放熱し、水を加熱して温熱が蓄えられる。蓄熱用熱交換器(21)で放熱した冷媒は、蓄熱側第2分岐管(98)を通って蓄熱側液管(87)へ流入し、さらに室外側液連絡管(53)から室外ユニット(10)へ流入する。
室外ユニット(10)へ流入した冷媒は、液流入管(77)を通ってレシーバ(13)へ流入した後、液流出管(79)へ流出する。冷媒は、ブリッジ回路(18)を通って室外側第1膨張弁(73)及び室外側第2膨張弁(74)を通過した後、第1室外熱交換器(12a)及び第2室外熱交換器(12b)で蒸発する。蒸発した冷媒は、室外低圧管(67)を通ってアキュムレータ(14)へ流入した後、圧縮機(11)に吸入される。
〈コントローラ等の詳細〉
図12に示すように、本実施形態の空調システム(1)は、空調ユニット(1A)と、上述したコントローラ(5)とを備える。空調ユニット(1A)は、室外ユニット(10)と、蓄熱ユニット(20)と、複数の流路切換ユニット(30)と、複数の室内ユニット(40)とを含む。空調ユニット(1A)は、所定の電源ライン(L)を介して商用電源(C)に接続される。
電源ライン(L)には、空調ユニット(1A)のシステム全体の使用商用電力を検出するための電力検出部(6)が設けられる。
コントローラ(5)は、流路切換機構を制御することで、上述した複数の運転を切り換えるように構成される。流路切換機構は、冷媒回路(50)の冷媒の流路を切り換えるように構成される。具体的には、流路切換機構は、冷媒回路(50)に接続された上述の複数の弁で構成され、例えば開閉弁、四路切換弁、逆止弁、流量調節弁、膨張弁などを含む。コントローラ(5)が流路切換機構を制御することで、冷媒の流路が図2〜図10のように変更され、上述した複数の運転が切り換えられる。
上述した各運転は、冷房モード及び暖房モードにおいて実行される。冷房モードは、夏季などにおいて室内を冷房するために実行される運転を含む。具体的には、冷房モードは、冷房運転、冷房ピークシフト運転(冷房過冷却運転)、冷房ピークカット運転、冷房/冷蓄熱運転、及び冷蓄熱運転を含んでいる。暖房モードは、冬季などにおいて室内を暖房するために実行される運転を含む。具体的に、暖房モードは、上述した暖房運転、暖房ピークカット運転、暖房/温蓄熱運転、及び温蓄熱運転を含む。
コントローラ(5)には、受信部(5a)と、圧縮機制御部(5b)とが設けられる。受信部(5a)には、電力供給者などからの信号が入力される。この信号は、第1信号である抑制指令と、第2信号である促進指令とを含む。抑制指令は、空調システム(1)のシステム全体の使用商用電力を抑制することを要求する信号である。促進指令は、空調システム(1)のシステム全体の使用商用電力を促進することを要求する信号である。
コントローラ(5)は、抑制指令が受信部(5a)に入力されると、使用商用電力を抑制するための第1運転を行うように空調ユニット(1A)を制御する。第1運転は、蓄熱用熱交換器(21)を熱源としながら室内熱交換器(41)で空調を行う運転である。空調システム(1)が冷房モードである場合、第1運転は冷房ピークカット運転となる。つまり、冷房モードのある運転中において、受信部(5a)に抑制指令が入力されると、コントローラ(5)は、冷房ピークカット運転を実行するように空調ユニット(1A)を制御する。空調システム(1)が暖房モードである場合、第1運転は暖房ピークカット運転となる。つまり、暖房モードにおいて、受信部(5a)に促進指令が入力されると、コントローラ(5)は、暖房ピークカット運転を実行するように空調ユニット(1A)を制御する。
コントローラ(5)は、促進指令が受信部(5a)に入力されると、使用商用電力を促進するための第2運転を行うように空調ユニット(1A)を制御する。第2運転は、蓄熱用熱交換器(21)で蓄熱を行いながら室内熱交換器(41)で空調を行う運転である。空調システム(1)が冷房モードである場合、第2運転は冷房/冷蓄熱運転となる。つまり、冷房モードのある運転中において、受信部(5a)に促進指令が入力されると、コントローラ(5)は、冷房/冷蓄熱運転を実行するように空調ユニット(1A)を制御する。空調システム(1)が暖房モードである場合、第2運転は暖房/温蓄熱運転となる。つまり、暖房モードのある運転中において、受信部(5a)に促進指令が入力されると、コントローラ(5)は、暖房/温蓄熱運転を実行するように空調ユニット(1A)を制御する。
圧縮機制御部(5b)は、第1運転(即ち、冷房ピークカット運転や暖房ピークカット運転)の開始時において、使用商用電力を所定の目標値(第1値)以下に抑制する制御(第1制御)を行う。つまり、第1制御では、使用商用電力が第1値以下となるように圧縮機(11)が制御される。圧縮機制御部(5b)は、第2運転(即ち、冷房/冷蓄熱運転や暖房/暖蓄熱運転)の開始時において、使用商用電力を所定の目標値(第3値)以上に促進する制御(第3制御)を行う。つまり、第3制御では、使用商用電力が第3値以上となるように圧縮機(11)が制御される。
実施形態1では、圧縮機(11)及びコントローラ(5)(制御装置)が、第1運転の開始時において、システム全体の使用商用電力を第1値以下とする電力抑制部を構成している。実施形態1では、圧縮機(11)及びコントローラ(5)が、第2運転の開始時において、システム全体の使用商用電力を第3値以上とする電力促進部を構成している。
〈第1運転の課題〉
例えば冷房モードにおいて、受信部(5a)に抑制指令が入力されると、上述したように、ある運転から冷房ピークカット運転に移行する。冷房ピークカット運転では、蓄熱槽(21a)に蓄熱した冷熱が冷房に利用されるため、システム全体の使用商用電力を抑制できる。
一方、ある運転から冷房ピークカット運転に移行した直後には、冷媒の流れが切り換わるため、冷凍サイクルが定常状態に至るまでの間にある程度の時間を要する。この結果、受信部(5a)に抑制指令が入力されたにも拘わらず、使用商用電力を速やかに低減することができず、使用商用電力が目標値(目標使用商用電力ともいう)を越えてしまう可能性があった。このような期間において使用商用電力が目標値を越えてしまうと、電力供給者などの要望に応えられなくなる。この課題は、暖房ピークカット運転の開始時においても同様に生じる。加えて、この課題は、停止状態の空調ユニット(1A)が冷房ピークカット運転や暖房ピークカット運転を開始する場合にも生じうる。
特に冷房ピークカット運転の開始時には、圧縮機(11)で圧縮された後の高圧ガス冷媒が、蓄熱用熱交換器(21)へ供給される。ここで、冷房ピークカット運転の直前の他の運転において、冷媒が蓄熱用熱交換器(21)の内部に液冷媒として溜まっていると、高圧ガス冷媒によってこの液冷媒を押し出すためにかなりの時間を要する。このため、冷房ピークカット運転の冷凍サイクルが定常状態に至るまでに時間がかかり、使用商用電力の抑制の要望に十分に応えられない可能性があった。よって、冷房ピークカット運転の開始時には、このような課題が顕著となる。
〈第1運転の開始時の制御〉
本実施形態では、上記の第1運転の課題に着目し、第1運転の開始時に以下の制御を行うようにしている。この制御について、図13及び図14を参照しながら説明する。ここでは、冷房モード時における第1運転の開始時の制御について詳細に説明する。
図13に示すように、冷房運転では、室内ユニット(40)(室内熱交換器(41))において所定の空調能力(ここでは冷房能力)が得られるように空調ユニット(1A)が制御される。ここで、室内ユニット(40)の空調能力は、例えば冷房モード時の設定温度、及び室内温度(例えば吸込空気の温度)に基づいて決定される。例えば冷房運転中において、図13の時点t1に受信部(5a)に抑制指令が受信されたとする。この場合、図14のステップST1からステップST2に移行し、冷房運転から冷房ピークカット運転に切り換わる。
空調ユニット(1A)には、抑制指令を受信した場合の目標使用商用電力(第1値)が予め設定されている。この目標使用商用電力は、冷房ピークカット運転の冷凍サイクルが定常状態に至った場合には、十分に満たすことができる程度の値に設定されている。逆にいうと、抑制指令のあった直後から、単純に冷房ピークカット運転を開始した場合、冷凍サイクルが定常状態に至るまでの間、使用商用電力が目標使用商用電力を上回ってしまう可能性がある。
そこで、ステップST3において、電力検出部(6)で検出した使用商用電力が所定値(第2値)を上回る場合、ステップST4及びST5の第1制御に移行する。この所定値は、冷房ピークカット運転の目標使用商用電力(第1値)と同じであってもよいし、第1値よりも低い所定値であってもよい。一方、ステップST3において、使用商用電力が所定値(第2値)以下である場合、ステップST7に移行し、第2制御が行われる。この第2制御は、使用商用電力を考慮せず、空調能力を要求能力に近づける制御であり、例えば冷房運転の通常の制御と同じといえる。なお、ステップST3の判定を省略し、ステップST2において冷房ピークカット運転が開始されると、必ずステップST4に移行するようにしてもよい。また、ステップST3の判定後、ステップST4を省略してステップST5に移行するようにしてもよい。
第1制御が実行されると、まず、ステップST4において圧縮機制御部(5b)が圧縮機(11)を停止させる。これにより、抑制指令のタイミングに同期して、使用商用電力が大幅に低下する。従って、冷房ピークカット運転の立ち上がり時において、使用商用電力が目標使用商用電力を上回ることを確実に回避できる。
次いで、ステップST5に移行すると、使用商用電力を目標使用商用電力以下としながら、空調能力を要求能力に近づけるように圧縮機(11)が制御される。この制御は、例えば室内ユニット(40)の冷媒の蒸発温度、要求能力から定まる冷媒の目標蒸発温度、電力検出部(6)で検出した使用商用電力、目標使用商用電力などを制御パラメータとしながら、圧縮機(11)の回転数を制御することで実現できる。これにより、第1制御では、図13にも示すように、室内ユニット(40)の空調能力が徐々に要求能力に近づいていき、冷房ピークカット運転の冷凍サイクルが定常状態へと近づいていく。これにより、冷房ピークカット運転において、蓄熱(冷熱)を利用することにより削減される電力(図13のハッチングを付した領域の面積)が徐々に増大し、冷房ピークカット運転による電力抑制効果も徐々に発揮されていく。
次いで、ステップST6に移行し、空調能力が未だ要求能力に至ってない場合、ステップST8へ移行する。ステップST8において、抑制指令が解除されている場合、冷房運転に戻り、抑制指令が解除されていない場合、ステップST5の制御が継続して行われる。
その後、図13の時点t2において空調能力が要求能力に至ると、第1制御が終了し、第2制御が実行される(ステップST7)。ステップST7では、使用商用電力によらず、空調能力を要求能力に近づける制御(通常の制御)が行われる。従って、ステップST7に移行した後は、制御パラメータが少なくなり、空調ユニット(1A)の制御性が向上する。
以上のように、冷房ピークカット運転の開始時には、システム全体の使用商用電力を目標使用商用電力以下とする第1制御が実行される。この結果、冷房ピークカット運転の開始時においても、電力の抑制要求を確実に満足させることができる。
なお、詳細の説明は省略するが、第1運転である暖房ピークカット運転においても、冷房ピークカット運転と同様の制御が行われる。この結果、暖房ピークカット運転の開始時においても、電力の抑制要求を確実に満足させることができる。
〈第2運転の課題〉
例えば冷房モードにおいて、受信部(5a)に促進指令が入力されると、上述したように、ある運転から冷房/冷蓄熱運転に移行する。冷房/冷蓄熱運転では、蓄熱槽(21a)に冷熱を蓄えながら冷房が行われるため、システム全体の使用商用電力を促進できる。
一方、ある運転から冷房/冷蓄熱運転に移行した直後には、冷媒の流れが切り換わるため、冷凍サイクルが定常状態に至るまでの間にある程度の時間を要する。この結果、受信部(5a)に促進指令が入力されたにも拘わらず、使用商用電力を速やかに増大することができず、使用商用電力が目標値(目標使用商用電力ともいう)を下回ってしまう可能性があった。このような期間において使用商用電力が目標値を下回ってしまうと、電力供給者などの要望に応えられなくなる。この課題は、暖房/温蓄熱運転の開始時においても同様に生じる。加えて、この課題は、停止状態の空調ユニット(1A)が冷房/冷蓄熱運転や暖房/温蓄熱運転を開始する場合にも生じうる。
〈第2運転の開始時の制御〉
本実施形態では、上記の第2運転の課題に着目し、第2運転の開始時に以下の制御を行うようにしている。この制御について、図15及び図16を参照しながら説明する。ここでは、冷房モード時における第2運転の開始時の制御について詳細に説明する。
図15に示すように、冷房運転では、室内ユニット(40)において所定の空調能力(ここでは冷房能力)が得られるように空調ユニット(1A)が制御される。例えば冷房運転中において、図15の時点t3に受信部(5a)に促進指令が受信されたとする。この場合、図16のステップST11からステップST12に移行し、冷房運転から冷房/冷蓄熱運転に切り換わる。
空調ユニット(1A)には、促進指令を受信した場合の目標使用商用電力(第3値)が予め設定されている。この目標使用商用電力は、冷房/冷蓄熱運転の冷凍サイクルが定常状態に至った場合には、十分に満たすことができる程度の値に設定されている。逆にいうと、促進指令のあった直後から、単純に冷房/冷蓄熱運転を開始した場合、冷凍サイクルが定常状態に至るまでの間、使用商用電力が目標使用商用電力を下回ってしまう可能性がある。
そこで、ステップST13において、電力検出部(6)で検出した使用商用電力が所定値(第4値)を下回る場合、ステップST15の第3制御に移行する。この所定値は、冷房/冷蓄熱運転の目標使用商用電力(第3値)と同じであってもよいし、第3値よりも高い所定値であってもよい。一方、ステップST13において、使用商用電力が所定値(第4値)以上である場合、ステップST17に移行し、第4制御が行われる。この第4制御は、使用商用電力を考慮せず、空調能力を要求能力に近づける制御であり、例えば冷房運転の通常の制御と同じといえる。なお、ステップST13の判定を省略し、ステップST12において冷房/冷蓄熱運転が開始されると、必ずステップST15に移行するようにしてもよい。
第3制御が実行されると、使用商用電力を目標使用商用電力以上としながら、空調能力を要求能力に近づけるように圧縮機(11)が制御される。この制御は、例えば室内ユニット(40)の冷媒の蒸発温度、要求能力から定まる冷媒の目標蒸発温度、電力検出部(6)で検出した使用商用電力、目標使用商用電力などを制御パラメータとしながら、圧縮機(11)の回転数を制御することで実現できる。これにより、第3制御では、図15にも示すように、室内ユニット(40)の空調能力が徐々に要求能力に近づいていき、冷房/冷蓄熱運転の冷凍サイクルが定常状態へと近づいていく。これにより、冷房/冷蓄熱運転において、熱(冷熱)を蓄えることにより増大する電力(図15のハッチングを付した領域の面積)が徐々に増大し、冷房/冷蓄熱運転による電力促進効果も徐々に発揮されていく。
次いで、ステップST16に移行し、空調能力が未だ要求能力を越えている場合、ステップST18へ移行する。ステップST18において、促進指令が解除されている場合、冷房運転に戻り、促進指令が解除されていない場合、ステップST15の制御が継続して行われる。
その後、図15の時点t4において空調能力が要求能力に至ると、第3制御が終了し、第4制御が実行される(ステップST17)。ステップST17では、使用商用電力によらず、空調能力を要求能力に近づける制御(通常の制御)が行われる。従って、ステップST17に移行した後は、制御パラメータが少なくなり、空調ユニット(1A)の制御性が向上する。
以上のように、冷房/冷蓄熱運転の開始時には、システム全体の使用商用電力を目標使用商用電力以上とする第3制御が実行される。この結果、冷房/冷蓄熱運転の開始時においても、電力の促進要求を確実に満足させることができる。
なお、詳細の説明は省略するが、第2運転である暖房/温蓄熱運転においても、冷房/冷蓄熱運転と同様の制御が行われる。この結果、暖房/温蓄熱運転の開始時においても、電力の促進要求を確実に満足させることができる。
−実施形態1の効果−
実施形態1では、第1運転の開始のタイミングに同期して、システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部を備えている。この構成により、冷房ピークカット運転や暖房ピークカット運転の開始時において、冷凍サイクルが定常状態に至るまでの間にも使用商用電力を確実に目標使用商用電力以下に抑えることができる。よって、電力供給者などの電力の抑制要求を確実に満たすことができる。
実施形態1の電力抑制部は、圧縮機(11)と、第1制御においてシステム全体の使用商用電力が第1値以下となるように圧縮機(11)を制御するコントローラ(5)(制御装置)とを備える。この構成により、圧縮機(11)の制御によってシステム全体の使用商用電力を容易に第1値以下に抑えることができる。
実施形態1のコントローラ(5)は、第1制御において、使用商用電力を第1値以下としながら室内熱交換器(41)(利用側熱交換器)の空調能力を要求能力に近づけるように圧縮機(11)を制御する(ステップST5)。この構成により、使用商用電力が第1値を上回ることを抑制しつつ、冷凍サイクルを定常状態に近づけていくことができる。
実施形態1のコントローラ(5)は、第1運転の開始時に、使用商用電力が第2値を上回る場合に第1制御を行う一方、使用商用電力が第2値以下である場合に、使用商用電力によらず室内熱交換器(利用側熱交換器(41))の空調能力を要求能力に近づけるように圧縮機(11)を制御する第2制御を行う(ステップST7)。この構成により、第1運転が開始する際、使用商用電力が十分に低い場合には、すぐに第2制御に移行できる。第2制御は、使用商用電力を考慮しない制御であるため、空調ユニット(1A)の制御性が向上する。よって、空調能力を速やかに要求能力に収束させることができる。
実施形態1のコントローラ(5)は、第1制御の開始時に圧縮機(11)を停止する。この構成により、第1制御において、使用商用電力を確実且つ急峻に低下させることができ、使用商用電力が目標値を上回ることを一層確実に回避できる。
実施形態1のコントローラ(5)は、第1制御において、室内熱交換器(41)(利用側熱交換器)の空調能力が要求能力に至ると、使用商用電力によらず室内熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第2制御を行う。この条件により第2制御に移行させることで、使用商用電力が目標値を上回ることを回避しつつ、空調ユニット(1A)において通常の能力制御を行うことができる。
実施形態1では、第2運転の開始のタイミングに同期して、システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部を備えている。この構成により、冷房/冷蓄熱運転や暖房/温蓄熱運転の開始時において、冷凍サイクルが定常状態に至るまでの間にも使用商用電力を確実に目標使用商用電力以上とすることができる。よって、電力供給者などの電力の促進要求を確実に満たすことができる。
実施形態1の電力促進部は、圧縮機(11)と、第3制御においてシステム全体の使用商用電力が第3値以上となるように圧縮機(11)を制御するコントローラ(制御装置)とを備える。この構成により、圧縮機(11)の制御によってシステム全体の使用商用電力を容易に第3値以上に促進させることができる。
実施形態1のコントローラ(5)は、第3制御において、使用商用電力を第3値以上としながら室内熱交換器(41)(利用側熱交換器)の空調能力を要求能力に近づけるように圧縮機(11)を制御する(ステップST15)。この構成により、使用商用電力が第3値を下回ることを抑制しつつ、冷凍サイクルを定常状態に近づけていくことができる。
実施形態1のコントローラ(5)は、第2運転の開始時に、使用商用電力が第4値を下回る場合に第3制御を行う一方、使用商用電力が第4値以上である場合に、使用商用電力によらず利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第4制御を行う(ステップST17)。この構成により、第2運転が開始する際、使用商用電力が十分に高い場合には、すぐに第4制御に移行できる。第4制御は、使用商用電力を考慮しない制御であるため、空調ユニット(1A)の制御性が向上する。よって、空調能力を速やかに要求能力に収束させることができる。
実施形態1のコントローラ(5)は、第3制御において、室内熱交換器(41)(利用側熱交換器)の空調能力が要求能力に至ると、使用商用電力によらず室内熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第4制御を行う。空調能力が要求能力に至ったということは、冷凍サイクルが定常状態に至ったとみなすことができる。よって、この条件により第4制御に移行させることで、使用商用電力が目標値を下回ることを回避しつつ、空調ユニット(1A)において通常の能力制御を行うことができる。
《実施形態2》
実施形態2の空調システム(1)は、実施形態1の空調ユニット(1A)に加えて、蓄電池を含む蓄電装置(100)を備えている。つまり、実施形態2の空調システム(1)は、蓄熱の機能に加えて、商用電源(C)の電力を蓄えたり、充電した電力を空調ユニット(1A)に供給したりする蓄電の機能も有する。
図17に模式的に示すように、空調システム(1)の電源ライン(L)には、電力切換回路(7)が接続される。電力切換回路(7)は、交流電力及び直流電力を相互に変換する電力変換回路を含んでいる。電力切換回路(7)は、商用電源(C)の商用電力が空調ユニット(1A)のみに供給される状態(第1状態)と、商用電源(C)の商用電力が蓄電装置(100)のみに供給される状態(第2状態)と、商用電源(C)の商用電力が空調ユニット(1A)及び蓄電装置(100)に供給される状態(第3状態)と、商用電源(C)の商用電力、及び蓄電装置(100)に蓄えられた電力が空調ユニット(1A)に供給される状態(第4状態)とに切り換え可能に構成される。
コントローラ(5)には、受信部(5a)、圧縮機制御部(5b)、及び電力制御部(5c)が設けられる。電力制御部(5c)は、電力切換回路(7)の状態を切り換えたり、蓄電装置(100)に蓄える電力や、蓄電装置(100)から空調ユニット(1A)に供給する電力を制御したりする。
実施形態2の第1制御では、蓄電装置(100)から空調ユニット(1A)に電力が供給されることで、システム全体の使用商用電力が目標使用商用電力(第1値)以下に抑えられる。つまり、実施形態2の電力抑制部は、蓄電装置(100)と、第1制御において蓄電装置(100)の供給電力を制御するコントローラ(5)(厳密には、電力制御部(5c))によって構成される。
実施形態2の第3制御では、商用電源(C)からの商用電力を充電することで、システム全体の使用商用電力が目標使用商用電力(第3値)以上に維持される。つまり、実施形態2の電力促進部は、蓄電装置(100)と、第3制御において蓄電装置(100)に蓄電される商用電力を制御するコントローラ(5)(厳密には、電力制御部(5c))によって構成される。
〈第1運転の開始時の制御〉
実施形態2に係る第1運転の開始時の制御について、図18及び図19を参照しながら説明する。ここでは、冷房モード時における第1運転の開始時の制御について詳細に説明する。
図18に示すように、冷房運転では、室内ユニット(40)(室内熱交換器(41))において所定の空調能力(ここでは冷房能力)が得られるように空調ユニット(1A)が制御される。例えば冷房運転中において、図18の時点t5に受信部(5a)に抑制指令が受信されたとする。この場合、図19のステップST21からステップST22に移行し、冷房運転から冷房ピークカット運転に切り換わる。
次いで、ステップST23において、電力検出部(6)で検出した使用商用電力が所定値(第2値)を上回る場合、ステップST25の第1制御に移行する。この所定値は、冷房ピークカット運転の目標使用商用電力(第1値)と同じであってもよいし、第1値よりも低い所定値であってもよい。一方、ステップST23において、使用商用電力が所定値(第2値)以下である場合、ステップST27に移行し、第2制御が行われる。この第2制御は、蓄電装置(100)を停止しながら、空調能力を要求能力に近づける制御であり、例えば冷房運転の通常の制御と同じといえる。なお、ステップST23の判定を省略し、ステップST22において冷房ピークカット運転が開始されると、必ずステップST25に移行するようにしてもよい。
ステップST25において第1制御が実行されると、コントローラ(5)は、空調能力を要求能力に近づけるように圧縮機(11)を制御する。同時に、コントローラ(5)は、電力切換回路(7)を第4状態とする。これにより、空調ユニット(1A)には、商用電源(C)の商用電力と、蓄電装置(100)に蓄えられた電力との双方が供給される。ここで、コントローラ(5)は、システム全体の使用商用電力が目標使用商用電力(第1値)以下となるように、蓄電装置(100)の供給電力を制御する。つまり、第1制御では、使用商用電力を第1値以下とし且つ空調能力を要求能力に維持するために不足する電力を、蓄電装置(100)が補うことになる。これにより、図18に示すように、第1運転の開始時において、使用商用電力が目標使用商用電力を上回ることを回避できるとともに、十分な空調能力を得ることができる。
空調ユニット(1A)の冷凍サイクルが定常状態に近づくにつれて、冷房ピークカット運転による蓄熱利用の削減電力が徐々に増えていく。これに伴い、蓄電装置(100)の供給電力は徐々に減っていく。
ステップST26において、蓄電装置(100)の供給電力が0となり、且つ空調能力が要求能力以上である条件が成立すると、第1制御が終了し、第2制御が実行される(ステップST27)。ステップST26の条件が成立しない場合、ステップST28へ移行する。ステップST28において、抑制指令が解除されている場合、冷房運転に戻り、抑制指令が解除されていない場合、ステップST25の制御が継続して行われる。
例えば図18の時点t6においてステップST26の条件が成立すると、ステップST27に移行する。ステップST27では、第2制御が実行され、電力切換回路(7)が第1状態となる。つまり、第2制御では、蓄電装置(100)が停止するとともに、使用商用電力によらず、空調能力を要求能力に近づける制御(通常の制御)が行われる。従って、ステップST27に移行した後は、運転パラメータが少なくなる。また、このように、蓄電装置(100)を必要最小限の期間のみ利用することで、蓄電装置(100)の小容量化を図ることができる。
以上のように、冷房ピークカット運転の開始時には、システム全体の使用商用電力を目標使用商用電力以下とする第1制御が実行される。この結果、冷房ピークカット運転の開始時においても、電力の抑制要求を確実に満足させることができる。
なお、詳細の説明は省略するが、第1運転である暖房ピークカット運転においても、冷房ピークカット運転と同様の制御が行われる。この結果、暖房ピークカット運転の開始時においても、電力の抑制要求を確実に満足させることができる。
〈第2運転の開始時の制御〉
実施形態2に係る第2運転の開始時の制御について、図20及び図21を参照しながら説明する。ここでは、冷房モード時における第2運転の開始時の制御について詳細に説明する。
図20に示すように、冷房運転では、室内ユニット(40)(室内熱交換器(41))において所定の空調能力(ここでは冷房能力)が得られるように空調ユニット(1A)が制御される。例えば冷房運転中において、図20時点t7に受信部(5a)に促進指令が受信されたとする。この場合、図21のステップST31からステップST32に移行し、冷房運転から冷房/冷蓄熱運転に切り換わる。
次いで、ステップST33において、電力検出部(6)で検出した使用商用電力が所定値(第4値)を下回る場合、ステップST35の第3制御に移行する。この所定値は、冷房/冷蓄熱運転の目標使用商用電力(第3値)と同じであってもよいし、第3値よりも高い所定値であってもよい。一方、ステップST33において、使用商用電力が所定値(第4値)以上である場合、ステップST37に移行し、第4制御が行われる。この第4制御は、蓄電装置(100)を停止しながら、空調能力を要求能力に近づける制御であり、例えば冷房運転の通常の制御と同じといえる。なお、ステップST33の判定を省略し、ステップST32において冷房/冷蓄熱運転が開始されると、必ずステップST35に移行するようにしてもよい。
ステップST35において第3制御が実行されると、コントローラ(5)は、空調能力を要求能力に近づけるように圧縮機(11)を制御する。同時に、コントローラ(5)は、電力切換回路(7)を第3状態とする。これにより、商用電源(C)の商用電力が、空調ユニット(1A)及び蓄電装置(100)の双方に供給される。ここで、コントローラ(5)は、システム全体の使用商用電力が目標使用商用電力(第3値)以上となるように、蓄電装置(100)に蓄えられる商用電力(充電力)を制御する。つまり、第3制御では、空調能力を要求能力に維持するだけでは目標使用商用電力に対して不足してしまう使用商用電力を、蓄電装置(100)への商用電力の供給により補うことになる。これにより、図20に示すように、第2運転の開始時において、使用商用電力が目標使用商用電力を下回ることを回避できるとともに、空調能力を要求能力に維持できる。
空調ユニット(1A)の冷凍サイクルが定常状態に近づくにつれて、冷房/冷蓄熱運転の蓄熱により増大する電力が徐々に増えていく。これに伴い、蓄電装置(100)の充電力は徐々に減っていく。
ステップST36において、商用電源(C)から蓄電装置(100)へ供給される商用電力(充電力)が0となり、且つ空調能力が要求能力である条件が成立すると、第3制御が終了し、第4制御が実行される(ステップST37)。ステップST36の条件が成立しない場合、ステップST38へ移行する。ステップST38において、促進指令が解除されている場合、冷房運転に戻り、促進指令が解除されていない場合、ステップST35の制御が継続して行われる。
例えば図20の時点t8においてステップST36の条件が成立すると、ステップST37に移行する。ステップST37では、第4制御が実行され、電力切換回路(7)が第1状態となる。つまり、第4制御では、蓄電装置(100)が停止するとともに、使用商用電力によらず、空調能力を要求能力に近づける制御(通常の制御)が行われる。従って、ステップST37に移行した後は、制御パラメータが少なくなり、空調ユニット(1A)の制御性が向上する。また、このように、蓄電装置(100)を必要最小限の期間のみ利用することで、蓄電装置(100)の小容量化を図ることができる。
以上のように、冷房/冷蓄熱運転の開始時には、システム全体の使用商用電力を目標使用商用電力以上とする第3制御が実行される。この結果、冷房/冷蓄熱運転の開始時においても、電力の促進要求を確実に満足させることができる。
−実施形態2の効果−
実施形態2の電力抑制部は、蓄えた商用電力を空調ユニット(1A)に供給する蓄電装置(100)と、第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記蓄電装置(100)の供給電力を制御するコントローラ(5)(制御装置)とを備えている。この構成により、蓄電装置(100)の制御によってシステム全体の使用商用電力を確実に第1値以下に抑えることができる。第1制御において、空調ユニット(1A)の空調能力を大きく低下させる必要もない。
実施形態2のコントローラ(5)は、第1制御において、使用商用電力によらず室内熱交換器(41)(利用側熱交換器)の空調能力を要求能力に近づけるように圧縮機(11)を制御する。この構成により、第1運転の開始時において、使用商用電力の抑制要求と、空調能力の要求との双方を確実に満たすことができる。
実施形態2のコントローラ(5)は、第1制御において、蓄電装置(100)から空調ユニット(1A)に供給される電力がゼロで且つ室内熱交換器(41)(利用側熱交換器)の空調能力が要求能力であると、前記蓄電装置(100)を停止させ前記空調ユニット(1A)の運転を継続させる。蓄電装置(100)から空調ユニット(1A)への供給電力がゼロであり、且つ空調能力が要求能力であることは、第1運転の冷凍サイクルが定常状態に至っていることを意味する。従って、この条件判定により、冷凍サイクルが定常状態に至ったタイミングに合わせて蓄電装置(100)を確実に停止できる。その後には、空調ユニット(1A)のみを制御して、冷房ピークカット運転や暖房ピークカット運転を継続できるため、空調システム(1)の制御性が向上する。加えて、蓄電装置(100)から空調ユニット(1A)に供給する供給電力を必要最小限に抑えることができる。よって、蓄電装置(100)の小容量化を図ることができ、ひいては空調システム(1)の小型化を図ることができる。
実施形態2の電力促進部は、蓄えた商用電力を空調ユニット(1A)に供給する蓄電装置(100)と、第3制御において、システム全体の使用商用電力が第3値以上となるように蓄電装置(100)に蓄える商用電力を制御するコントローラ(5)(制御装置)とを備えている。この構成により、蓄電装置(100)の制御によってシステム全体の使用商用電力を確実に第3値以上とすることができる。第3制御において、空調ユニット(1A)の空調能力を大きく増大させる必要もない。
実施形態2のコントローラ(5)は、第3制御において、使用商用電力によらず室内熱交換器(41)(利用側熱交換器)の空調能力を要求能力に近づけるように圧縮機(11)を制御する。この構成により、第2運転の開始時において、使用商用電力の促進要求と、空調能力の要求との双方を確実に満たすことができる。
実施形態2のコントローラ(5)は、第3制御において、前記蓄電装置(100)に供給される商用電力がゼロで且つ前記利用側熱交換器(41)の空調能力が要求能力であると、前記蓄電装置(100)を停止させ前記空調ユニット(1A)の運転を継続させる。蓄電装置(100)の充電力がゼロであり、且つ空調能力が要求能力であることは、第2運転の冷凍サイクルが定常状態に至っていることを意味する。従って、この条件判定により、冷凍サイクルが定常状態に至ったタイミングに合わせて蓄電装置(100)を確実に停止できる。その後には、空調ユニット(1A)のみを制御して、冷房/冷蓄熱運転や暖房/温蓄熱運転を継続できるため、空調システム(1)の制御性が向上する。加えて、蓄電装置(100)から空調ユニット(1A)に供給する充電力を必要最小限に抑えることができる。よって、蓄電装置(100)の小容量化を図ることができ、ひいては空調システム(1)の小型化を図ることができる。
《その他の実施形態》
上述した空調システム(1)の蓄熱ユニット(20)は、蓄熱媒体が貯留される蓄熱槽と、蓄熱用熱交換器と、ポンプとが接続される蓄熱回路を有し、ポンプが循環する蓄熱媒体と冷媒とが蓄熱用熱交換器で熱交換する、いわゆるダイナミック式であってもよい。
蓄熱媒体は、水に限られない。蓄熱媒体は、冷却されることによって包接水和物が生成される蓄熱媒体(例えば臭化テトラnブチルアンモニウム水溶液)であってもよい。
以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
本開示は、空調システムについて有用である。
1 空調システム
1A 空調ユニット
5 コントローラ(制御装置、電力抑制部、電力促進部)
11 圧縮機(電力抑制部、電力促進部)
21 蓄熱用熱交換器
41 利用側熱交換器
50 冷媒回路
100 蓄電装置(電力抑制部、電力促進部)

Claims (12)

  1. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、
    前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)を備え、
    前記電力抑制部は、
    前記圧縮機(11)と、
    前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記圧縮機(11)を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第1制御において、前記使用商用電力を前記第1値以下としながら前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする空調システム。
  2. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、
    前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)を備え、
    前記電力抑制部は、
    前記圧縮機(11)と、
    前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記圧縮機(11)を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第1運転の開始時に、前記使用商用電力が第2値を上回る場合に前記第1制御を行う一方、該使用商用電力が該第2値以下である場合に、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第2制御を行うことを特徴とする空調システム。
  3. 請求項又はにおいて、
    前記制御装置(5)は、前記第1制御の開始時に前記圧縮機(11)を停止させることを特徴とする空調システム。
  4. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、
    前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)を備え、
    前記電力抑制部は、
    前記圧縮機(11)と、
    前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記圧縮機(11)を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第1制御において、前記利用側熱交換器(41)の空調能力が要求能力に至ると、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第2制御を行うことを特徴とする空調システム。
  5. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を抑制する抑制指令に応じて、前記蓄熱用熱交換器(21)を熱源としながら前記利用側熱交換器(41)で空調を行う第1運転を実行する空調システムであって、
    前記第1運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第1値以下に制御する第1制御を行う電力抑制部(5,11,100)と、
    前記冷媒回路(50)を含む空調ユニット(1A)とを備え、
    前記電力抑制部は、
    蓄えた電力を前記空調ユニット(1A)に供給する蓄電装置(100)と、
    前記第1制御において、システム全体の使用商用電力が前記第1値以下となるように前記蓄電装置(100)の供給電力を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第1制御において、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする空調システム。
  6. 請求項において、
    前記制御装置(5)は、前記第1制御において、前記蓄電装置(100)から前記空調ユニット(1A)に供給される電力がゼロで且つ前記利用側熱交換器(41)の空調能力が要求能力であると、前記蓄電装置(100)を停止させ前記空調ユニット(1A)の運転を継続させることを特徴とする空調システム。
  7. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、
    前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)を備え
    前記電力促進部は、
    前記圧縮機(11)と、
    前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記圧縮機(11)を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第3制御において、前記使用商用電力を前記第3値以上としながら前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする空調システム。
  8. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、
    前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)を備え、
    前記電力促進部は、
    前記圧縮機(11)と、
    前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記圧縮機(11)を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第2運転の開始時に、前記使用商用電力が第4値を下回る場合に前記第3制御を行う一方、該使用商用電力が該第4値以上である場合に、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第4制御を行うことを特徴とする空調システム。
  9. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、
    前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)を備え、
    前記電力促進部は、
    前記圧縮機(11)と、
    前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記圧縮機(11)を制御する制御装置(5)とを備え、
    前記制御装置(5)は、前記第3制御において、前記利用側熱交換器(41)の空調能力が要求能力に至ると、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように圧縮機(11)を制御する第4制御を行うことを特徴とする空調システム。
  10. 圧縮機(11)と、室内の空調を行う利用側熱交換器(41)と、蓄熱用熱交換器(21)とが接続され、冷凍サイクルを行う冷媒回路(50)を備え、
    システム全体の使用商用電力を促進する促進指令に応じて、前記蓄熱用熱交換器(21)で蓄熱を行いながら前記利用側熱交換器(41)で空調を行う第2運転を実行する空調システムであって、
    前記第2運転の開始のタイミングに同期して、前記システム全体の使用商用電力を第3値以上に制御する第3制御を行う電力促進部(5,11,100)と、
    前記冷媒回路(50)を含む空調ユニット(1A)を備え、
    前記電力促進部は、
    蓄えた電力を前記空調ユニット(1A)に供給する蓄電装置(100)と、
    前記第3制御において、システム全体の使用商用電力が前記第3値以上となるように前記蓄電装置(100)に蓄える商用電力を制御する制御装置(5)とを備えていることを特徴とする空調システム。
  11. 請求項1において、
    前記制御装置(5)は、前記第3制御において、前記使用商用電力によらず前記利用側熱交換器(41)の空調能力を要求能力に近づけるように前記圧縮機(11)を制御することを特徴とする空調システム。
  12. 請求項1において、
    前記制御装置(5)は、前記第3制御において、前記蓄電装置(100)に供給される商用電力がゼロで且つ前記利用側熱交換器(41)の空調能力が要求能力であると、前記蓄電装置(100)を停止させ前記空調ユニット(1A)の運転を継続させることを特徴とする空調システム。
JP2018184730A 2018-09-28 2018-09-28 空調システム Active JP6729653B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018184730A JP6729653B2 (ja) 2018-09-28 2018-09-28 空調システム
EP19866743.8A EP3839365B1 (en) 2018-09-28 2019-09-25 Air-conditioning system
PCT/JP2019/037592 WO2020067152A1 (ja) 2018-09-28 2019-09-25 空調システム
CN201980063418.8A CN112752929B (zh) 2018-09-28 2019-09-25 空气调节系统
ES19866743T ES2958286T3 (es) 2018-09-28 2019-09-25 Sistema de aire acondicionado
US17/212,954 US20210207834A1 (en) 2018-09-28 2021-03-25 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184730A JP6729653B2 (ja) 2018-09-28 2018-09-28 空調システム

Publications (2)

Publication Number Publication Date
JP2020051730A JP2020051730A (ja) 2020-04-02
JP6729653B2 true JP6729653B2 (ja) 2020-07-22

Family

ID=69952916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184730A Active JP6729653B2 (ja) 2018-09-28 2018-09-28 空調システム

Country Status (6)

Country Link
US (1) US20210207834A1 (ja)
EP (1) EP3839365B1 (ja)
JP (1) JP6729653B2 (ja)
CN (1) CN112752929B (ja)
ES (1) ES2958286T3 (ja)
WO (1) WO2020067152A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115843328A (zh) * 2020-06-08 2023-03-24 三菱电机株式会社 制冷循环装置
CN112984739B (zh) * 2021-04-08 2022-03-18 珠海格力电器股份有限公司 空调控制方法、空调控制装置、空调及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284582B2 (ja) * 1991-09-18 2002-05-20 株式会社日立製作所 蓄熱式空気調和装置及び空気調和装置用蓄冷熱器
JP3377846B2 (ja) * 1993-12-27 2003-02-17 東北電力株式会社 蓄熱式空気調和装置
JPH11294886A (ja) * 1998-04-14 1999-10-29 Hitachi Ltd 蓄熱槽を備えた空気調和装置
JP2005282993A (ja) 2004-03-30 2005-10-13 Mitsubishi Heavy Ind Ltd 氷蓄熱式空気調和装置および氷蓄熱式空気調和装置の蓄熱制御方法
JP2006023006A (ja) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd 冷凍設備
JP2008025879A (ja) * 2006-07-19 2008-02-07 Daikin Ind Ltd 冷凍装置の制御装置
JP2010112620A (ja) * 2008-11-06 2010-05-20 Panasonic Corp 空気調和機の制御装置
CN102753916B (zh) * 2010-02-26 2015-03-25 株式会社日立制作所 空气调节热水供给系统
WO2012002275A1 (ja) * 2010-06-30 2012-01-05 三洋電機株式会社 蓄熱式空調システムと蓄電池および蓄熱式ショーケースシステムと蓄電池の制御装置
JP6135129B2 (ja) * 2012-12-28 2017-05-31 ダイキン工業株式会社 空気調和機の制御装置および空気調和システム
JP6034211B2 (ja) * 2013-02-07 2016-11-30 株式会社東芝 運転制御装置、運転制御方法及び運転制御プログラム
MY190665A (en) * 2014-12-26 2022-05-09 Daikin Ind Ltd Thermal storage air conditioner
CN106123170B (zh) * 2016-06-24 2019-02-05 珠海格力电器股份有限公司 一种空调系统及其控制方法

Also Published As

Publication number Publication date
EP3839365A4 (en) 2022-03-02
EP3839365A1 (en) 2021-06-23
EP3839365C0 (en) 2023-08-16
CN112752929A (zh) 2021-05-04
WO2020067152A1 (ja) 2020-04-02
EP3839365B1 (en) 2023-08-16
US20210207834A1 (en) 2021-07-08
CN112752929B (zh) 2022-07-12
JP2020051730A (ja) 2020-04-02
ES2958286T3 (es) 2024-02-06

Similar Documents

Publication Publication Date Title
KR101391775B1 (ko) 히트 펌프 시스템
JP5121922B2 (ja) 空調給湯複合システム
JP5042262B2 (ja) 空調給湯複合システム
JP5642085B2 (ja) 冷凍サイクル装置及びそれに適用される情報伝達方法
JP5642278B2 (ja) 空気調和装置
JP5627606B2 (ja) ヒートポンプシステム
US20110016897A1 (en) Air conditioning-hot water supply combined system
JP5784117B2 (ja) 空気調和装置
US20130180274A1 (en) Refrigeration cycle apparatus and refrigeration cycle control method
US9140459B2 (en) Heat pump device
EP2527751A1 (en) Air conditioning-hot water supply combined system
JP6000373B2 (ja) 空気調和装置
WO2014083680A1 (ja) 空気調和装置
US20210180802A1 (en) Air-conditioning system
WO2010082324A1 (ja) 空調給湯複合システム
JP6729653B2 (ja) 空調システム
JP6635223B1 (ja) 空調システム
JP2020051727A (ja) 空調システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6729653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151