JP6725379B2 - 電装品の冷却構造 - Google Patents

電装品の冷却構造 Download PDF

Info

Publication number
JP6725379B2
JP6725379B2 JP2016181945A JP2016181945A JP6725379B2 JP 6725379 B2 JP6725379 B2 JP 6725379B2 JP 2016181945 A JP2016181945 A JP 2016181945A JP 2016181945 A JP2016181945 A JP 2016181945A JP 6725379 B2 JP6725379 B2 JP 6725379B2
Authority
JP
Japan
Prior art keywords
flow path
air
side flow
electrical component
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016181945A
Other languages
English (en)
Other versions
JP2018045963A (ja
Inventor
容士 小平
容士 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2016181945A priority Critical patent/JP6725379B2/ja
Publication of JP2018045963A publication Critical patent/JP2018045963A/ja
Application granted granted Critical
Publication of JP6725379B2 publication Critical patent/JP6725379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電装品の冷却構造に関する。
一般に、電装品の多くは使用に伴って熱を発し、中には随時の冷却を必要とするものもある。こうした電装品の一例として、ハイブリッド自動車の走行モータに用いられる車載電源装置がある。
近年、開発が進められているハイブリッド自動車では、ディーゼルエンジンのフライホイールハウジング内に超薄型の三相交流機を内蔵し、該三相交流機によりディーゼルエンジンの補佐を行うようになっている。三相交流機は、エンジンの起動時にはスタータとして作動し、車両の発進加速時にはトルクアシスト用モータとして作動し、車両の制動時には電気ブレーキとして作動するようになっている。こうして、ディーゼルエンジンの負担を軽減して燃費の向上を図ると共に、ディーゼルエンジンからの大気汚染物質の排出量を低減するようにしている。
こうしたハイブリッド自動車には、モータ駆動用の車載電源装置が搭載される。この種の車載電源装置は、一般に、多数のバッテリをバッテリパック内に収容した構造を取っているが、これらのバッテリはなるべく効率良く且つ均等に空冷する必要がある。バッテリは過熱により劣化していくが、バッテリを構成する複数のバッテリセルのうち一部が劣化した結果、バッテリセル間で性能に差が生じると、バッテリセル群全体に負担がかかって車載電源装置全体の性能の劣化が早まってしまうからである。
図4はこうした車載電源装置の一例を示しており、ここに示した例では、バッテリ(電装品)を収容したバッテリパック(筐体)1をシャシフレーム2に対しブラケット3を介して架装している。
バッテリパック1の内部には、多数のバッテリセル4aを備えてなるバッテリ4が収容されており、吸気口5から取り込んだ外気6をインテークダクト7のU字型流路を通してブロワ8に導き、該ブロワ8からバッテリ4の直下に流し込んで各バッテリセル4a間を通し上方へ抜き出すことでバッテリ4を強制的に空冷するようにしている。各バッテリセル4a間を通し上方へ抜き出た外気6は、吸気口5と反対側のバッテリパック1の側壁1aに開口された排気口9から外部へ排出される。
尚、この種の車載電源装置に関連する先行技術文献情報としては、例えば下記の特許文献1等がある。
特開2008−80930号公報
上述の如き車載電源装置では、バッテリ4を強制的に冷却するため、バッテリパック1内に外気を導入しているが、外気があまり清浄でない場合には、外気を取り入れることが内部のバッテリ4にとって望ましくないことがあり得、例えば、塩分を含んだ空気がバッテリパック1に取り込まれればバッテリ4の腐食に繋がる。そして、例えば冬場の高速道路では、路面の凍結防止のために塩化カルシウム等の融雪剤が撒かれ、空気中に塩分が含まれていることが多い。したがって、高速道路を主に走行する大型トラック等の車両に上述の如き外気取り入れ式のバッテリパック1を適用することは難しい。塩分の取り入れに対する方策として、例えば吸気口5にフィルタを取り付けるといった方策も考えられはするが、交換の手間やコストを考えるとあまり現実的ではない。こうした車載電源装置に係る問題が、ハイブリッド式の大型トラックの実用化を阻害する一因となっていた。
また、同様の問題は車載電源装置に限らず、冷却を要する種々の電装品について存在し得る。
本発明は、斯かる実情に鑑み、外気の取り入れを極力回避しながら電装品を好適に冷却し得る電装品の冷却構造を提供しようとするものである。
本発明は、複数の電装パーツを備えてなる電装品を筐体内に収容し、該筐体内の空気をファンにより前記電装品から見て上流の上流側流路へ送り込み、前記電装パーツ間に形成される電装間流路から前記電装品から見て下流の下流側流路へと抜き出して前記ファンに戻すよう構成し、前記上流側流路に流路仕切板を備えて前記上流側流路を外壁側流路と電装側流路とに分割し、前記外壁側流路にて前記筐体内の空気を前記筐体の外壁を介し外気と熱交換させた後、前記電装側流路に流すよう構成し、前記流路仕切板は、前記電装側流路の流路幅が下流へ向かうほど狭くなるよう、前記電装品に対して傾斜配置したことを特徴とする電装品の冷却構造にかかるものである。
而して、このようにすれば、外壁側流路にて外気と熱交換した後の空気を電装側流路から電装間流路に流すことで、均一に冷却された空気のみを電装間流路に流し、電装品を効果的に冷却することができる。また、電装側流路から電装間流路へ流れ込む空気の流量を均一化することができる。
また、本発明は、複数の電装パーツを備えてなる電装品を筐体内に収容し、該筐体内の空気をファンにより前記電装品から見て上流の上流側流路へ送り込み、前記電装パーツ間に形成される電装間流路から前記電装品から見て下流の下流側流路へと抜き出して前記ファンに戻すよう構成され、前記上流側流路に流路仕切板を備えて前記上流側流路を外壁側流路と電装側流路とに分割し、前記外壁側流路にて前記筐体内の空気を前記筐体の外壁を介し外気と熱交換させた後、前記電装側流路に流すよう構成され、更に、前記筐体内の空気を前記下流側流路から前記電装間流路を介して前記上流側流路へ至る逆循環の向きにも循環できるよう構成し、前記下流側流路に第二の流路仕切板を備えて前記下流側流路を第二の外壁側流路と第二の電装側流路とに分割し、前記逆循環の向きによる空気の循環時において、前記第二の外壁側流路にて前記筐体内の空気を前記筐体の外壁を介し外気と熱交換させた後、前記第二の電装側流路に流すよう構成することができ、このようにすれば、正循環時に効率良く冷却されにくい位置にある電装パーツについても逆循環により効率的に冷却することができる。また、その際、第二の外壁側流路にて外気と熱交換した後の空気を第二の電装側流路から電装間流路に流すことで、均一に冷却された空気のみを電装間流路に流し、電装品を効果的に冷却することができる。
上記電装品の冷却構造においても、前記流路仕切板は、前記電装側流路の流路幅が下流へ向かうほど狭くなるよう、前記電装品に対して傾斜配置することが好ましく、このようにすれば、電装側流路から電装間流路へ流れ込む空気の流量を均一化することができる。
本発明の電装品の冷却構造において、前記第二の流路仕切板は、前記第二の電装側流路の流路幅が逆循環時における下流へ向かうほど狭くなるよう、前記電装品に対して傾斜配置されていることが好ましく、このようにすれば、逆循環時、第二の電装側流路から電装間流路へ流れ込む空気の流量を均一化することができる。
本発明の電装品の冷却構造によれば、以下の如き種々の優れた効果を奏し得る。
(I)本発明の請求項1に記載の発明によれば、筐体内の空気を外気と熱交換させつつ循環させて電装品を冷却し、その際、均一に冷却された空気のみを電装間流路に流して電装品を冷却するので、外気の取り入れを極力回避しながら電装品を好適に冷却し得る。
(II)本発明の請求項2に記載の発明によれば、電装側流路から電装間流路へ流れ込む空気の流量を均一化し、電装パーツ間で冷却性能を均一化することができる。
(III)本発明の請求項3に記載の発明によれば、逆循環時に第二の外壁側流路にて冷却された空気のみを電装間流路に流し、電装品を効果的に冷却することができる。したがって、正循環と逆循環を切り替えることにより、電装品の冷却を一層均一化することができる。
(IV)本発明の請求項4に記載の発明によれば、逆循環時に第二の電装側流路から電装間流路へ流れ込む空気の流量を均一化し、電装パーツ間で冷却性能を均一化することができる。
本発明の電装品の冷却構造の形態の一例を示す正断面図である。 本発明の電装品の冷却構造の形態の一例を示す側断面図であり、図1のII−II矢視相当図である。 本発明の電装品の冷却構造の形態の別の一例を示す正断面図である。 従来の電装品の冷却構造の一例を示す斜視図である。
以下、本発明の実施の形態を添付図面を参照して説明する。
図1、図2は本発明の実施による電装品の冷却構造の形態の一例(第一実施例)を示すものである。本第一実施例の電装品の冷却構造は、冷却のために外気を取り入れることをせず、筐体(バッテリパック)10内の空気Aを循環させることで内部の電装品(バッテリ)11を冷却するようにしている。
本第一実施例の電装品の冷却構造は、図1、図2に示す如く、全体として略長方形状のバッテリパック10内に複数の電装パーツ(バッテリセル)11aからなるバッテリ11を収容した車載電源装置として構成される。
図1に示す如く、バッテリパック10内の所定位置にはファン12が備えられており、このファン12の動作により、バッテリパック10内で熱交換媒体としての空気Aが循環するようになっている。
バッテリセル11aは、バッテリパック10内に合計二百個が収容されており、本第一実施例の場合、車両への搭載に際するレイアウトの都合上、これら二百個のバッテリセル11aが百個ずつ、上下二段に分けて配置されている。上下二段のバッテリセル11aは、図1に示す如くバッテリパック10の長手方向(図1の左右方向)に十列配置され、また図2に示す如く、長手方向と直交する方向(図2の左右方向)に十列配置されている。図1に示す如く、バッテリパック10の長手方向におけるバッテリセル11a同士の隙間には、長手方向に直交し且つ上下方向に沿った面を有する板状の構造材20が配置されており、この構造材20同士の間にバッテリセル11aを挟み込むようにして、バッテリパック10に対してバッテリセル11aを支持するようになっている。
図2に示す如く、バッテリパック10の長手方向に直交する方向に配列したバッテリセル11a同士の間、及び両端のバッテリセル11aとバッテリパック10の側壁10cとの間の隙間は、空気Aを上下方向に通すための電装間流路13として構成されている。核バッテリセル11aはバッテリパック10の長手方向に直交する方向に互いに等間隔で配置されているので、電装間流路13同士は等間隔に配列しており、また、その流路幅も互いに等しく一定である。
ファン12は、バッテリ11の下面に向かって空気Aを送り込み、電装間流路13を抜けた空気Aをバッテリ11の上面から吸い寄せて再度バッテリ11の下面に向かって送り込むようになっている(図1参照)。すなわち、本第一実施例の場合、バッテリ11の下面とバッテリパック10の底面10aとの間の空間がバッテリ11から見て上流の上流側流路14をなし、また、バッテリ11の上面とバッテリパック10の上面10bとの間の空間がバッテリ11から見て下流の下流側流路15をなしており、空気Aは、ファン12から送り出された後、バッテリ11下面の上流側流路14から電装間流路13を通ってバッテリ11上面の下流側流路15に抜け、再度ファン12へと戻るように循環する。
上流側流路14には、該上流側流路14を上下に分割するよう、バッテリ11の下面に沿って流路仕切板16が備えられており、この流路仕切板16により、上流側流路14はバッテリ11から遠い側(バッテリパック10の外壁(底面10a)に近い側)の外壁側流路14aと、バッテリ11に近い側の電装側流路14bとに二分割されている。流路仕切板16は、上流側流路14におけるファン12の位置(図1中、右側)から、バッテリ11に関してファン12と反対側の位置(図1中、左側)まで延びており、ファン12から上流側流路14に流れる空気Aは、まず外壁側流路14aを流れて流路仕切板16のファン12から遠い側の端部へ到達した後、そこで折り返して電装側流路14bに流れ、該電装側流路14bから電装間流路13へ流れ込むようになっている。
流路仕切板16は、電装側流路14bの流路幅(すなわち、図1における上下方向の寸法)が最下流側(図1中、右側)の点Pから上流(図1中、左側)に向かい、前記最下流側の点Pからの距離と比例して直線的に増大するよう、バッテリ11に対し傾斜して配置される。すなわち、電装側流路14bは、下流側へ向かうほど流路幅が狭くなる先細りの形状となっており、これにより、電装側流路14bから各電装間流路13へ流れ込む空気Aの流量を極力均一に調整するようになっている。
バッテリパック10の底面10a及び上面10bをなす外壁は、それぞれ上流側流路14及び下流側流路15の外側の面を構成しており、バッテリパック10内の空気Aはここで外壁を介して外気と接するが、この底面10a及び上面10bは、上流側流路14と下流側流路15を流通する空気Aの熱を外部へ効率良く放出するよう、放熱板17として構成される。この放熱板17は、例えば熱伝導性の高い金属で構成されており、図2に示す如き波型の断面形状を有している。この形状により、底面10aや上面10bを平らな板状とした場合と比較して底面10a及び上面10bの面積を大きくし、底面10a及び上面10bを介して内部を流通する空気Aが外気と接する面積を大きくして熱交換の効率を向上し、効果的に空気Aを冷却するようにしている。
尚、このように放熱板17を波型の板として形成する場合、本第一実施例の車載電源装置を車両に設置する際には、波型の形状により放熱板17に形成される溝が車両の進行方向に沿うように配置することが好ましい。
次に、上記した本第一実施例の作動を説明する。
バッテリ11の動作に伴い、各バッテリセル11aには熱が発生するので、この熱を除去するためにファン12を作動させる。ファン12の作動により、上述の如く、バッテリパック10内の空気Aがファン12から上流側流路14、電装間流路13、下流側流路15、ファン12の順に循環する。
ファン12からの空気Aは、まず上流側流路14の外壁側流路14aを流れるが、ここで、空気Aはバッテリパック10の底面10aをなす外壁(放熱板17)を介して外気と熱交換する。この際、放熱板17は上述の如く波型の金属板として形成されているため、空気Aはこの放熱板17を介し広い面積で外気と接し、効率良く冷却される。ここで、放熱板17のなす溝の向きが車両の進行方向に沿っていると、放熱板17の溝に沿って外気が流れるため、バッテリパック10内の空気Aから熱を奪った外気が速やかに新しい外気と入れ替わり、常に新しい外気が放熱板17の表面を冷却することになり、熱交換の効率を保つことができる。こうして、空気Aは外壁側流路14a内を下流へ流れるに伴い効率良く冷却されていく。
空気Aは、流路仕切板16のファン12から遠い側の端部で折り返し、電装側流路14bから電装間流路13へ流れ込む。ここで、外壁側流路14aから空気Aを直接電装間流路13へ流さず、一旦折り返して電装側流路14bから電装間流路13へ流すようにしているのは、外壁側流路14aにて十分に熱交換を行った後の空気Aを全ての電装間流路13に送り込むためである。すなわち、上述の如く、空気Aは上流側流路14のうち外壁側流路14aで外気と熱交換するが、この際、空気Aを外壁側流路14aから直接電装間流路13へ流すようにすると、ファン12に近い側の電装間流路13では、未だ外壁側流路14aにて十分に熱交換をしていない状態の温度の高い空気が流入することになってしまう。そうなると、バッテリセル11a間で位置によって冷却効率にむらが生じ、バッテリ11全体を均一に冷却することができない。そこで、本第一実施例では、外壁側流路14aを通過した空気Aのみを折り返して電装側流路14bから電装間流路13へ流すことで、外壁側流路14aの全長を通過して外気と熱交換した後の空気Aのみを電装間流路13へ流し、全てのバッテリセル11aを十分に冷却された空気Aで冷却し、冷却性能の均一化を図るようにしている。
さらに、この際、電装側流路14bから各電装間流路13へ流れ込む空気Aの量は、上述の如き流路仕切板16の傾斜配置によって均一化される。以下、この傾斜配置による空気Aの流量の均一化の作用について説明する。
まず、流路仕切板16は、電装側流路14bの流路幅が、図1に示す最下流側の点Pから上流に向かい、前記最下流側の点Pからの距離と比例して直線的に増大するように配置されている。
一方、上述の如くバッテリ11は合計二百個のバッテリセル11aにより構成されており、該二百個のバッテリセル11aは、バッテリセル11aが上下に二段、バッテリパック10の長手方向に十列、さらに長手方向に直交する方向に十列並んだ形で配列されている。そして、長手方向に直交する方向に並んだバッテリセル11aの相互間に電装間流路13が形成されている。ここで、図1中、最も左側のバッテリセル11aの位置に形成される電装間流路13を電装間流路13a、その右側のバッテリセル11aの位置に形成される電装間流路13を電装間流路13bとし、以降、右側へ向かって電装間流路を13c〜13jと称することとする。
電装側流路14bを流通する空気Aは、図1中左側を上流、右側を下流として左から右へ流れ、その後、上方向に向きを変えて電装間流路13a〜13jから抜き出される。この際、電装側流路14bの流路幅は、点Pからの距離に比例するため、各電装間流路13a〜13jの入口の位置における電装側流路14bの流路幅は、右端の電装間流路13jから左端の電装間流路13aに向かって大きくなる。仮に右端の電装間流路13jの左下端の位置における電装側流路14bの流路幅をHとすると、その左の電装間流路13iの左下端の位置における電装側流路14bの流路幅は約2×H、左端の電装間流路13aの左下端の位置における電装側流路14bの流路幅は約10×Hである。
ここで、仮に流路仕切板16がバッテリ11に対して傾斜配置されておらず、電装側流路14bの流路幅が上流から下流にわたり一定であったとすると、圧力損失の関係上、該電装側流路14bへ流入する空気Aはなるべく下流側の電装間流路13へ流入しようとする。このため、電装間流路13のうち、電装側流路14bに関して上流側に位置する電装間流路13aでは流入する空気Aの量が極端に少なく、下流側に位置する電装間流路13jでは流入する空気Aの量が多くなってしまい、その結果、バッテリセル11a間で冷却性能にばらつきが発生する。そこで、本第一実施例の如く電装側流路14bを下流側へ向かうほど流路幅が狭くなる先細りの形状とすれば、下流側へ向かう空気Aが減って上流側に位置する電装間流路13にも流入しやすくなり、その結果、各電装間流路13a〜13jに流入する空気Aの量が均一化してバッテリセル11aの冷却性能に偏りが生じにくくなる。
尚、こうした電装間流路13における流量の均一化のための構成としては、ここに示したような流路仕切板16の傾斜配置以外にも種々の仕組みが考えられる。例えば、バッテリセル11a同士の配置を調整し、電装側流路14bに関して下流側に位置する電装間流路13ほど流路幅が狭くなるように構成しても、同様の作用効果が得られるものと考えられる。或いは、例えば流路仕切板16の電装側流路14b側の面における適宜位置に空気Aをバッテリ11側へ導く整流板等を設置し、電装側流路14bの比較的上流側からも空気Aが電装間流路13へ流入するよう調整することもできる。ただし、本第一実施例の如き流路仕切板16の傾斜配置による構成が、バッテリパック10全体をコンパクト化しつつ空気Aの流れの均一化を図る上で特に手軽で、且つ効果的であると考えられる。
電装間流路13に流入した空気Aは、バッテリセル11aと熱交換して該バッテリセル11aを冷却しつつ上方の下流側流路15へ抜き出され、ファン12へと戻される。バッテリセル11aと熱交換した直後の温められた空気Aは、下流側流路15を流れる間にバッテリパック10の上面10bをなす外壁を介して外気と熱交換する。この際、バッテリパック10の上面10bは底面10aと同様の放熱板17として構成されているため、ここでも空気Aは外気と効率良く熱交換し、冷却される。
こうして、本第一実施例では、ファン12から送り出された空気Aが上流側流路14の外壁側流路14aにおいて外気と効率良く熱交換した後、折り返して電装側流路14bから電装間流路13へと均一に流入してバッテリセル11aを冷却し、下流側流路15に抜き出されてここでも外気と熱交換し、ファン12へ戻されるようになっている。このような構成により、本第一実施例では、外気の導入によらずとも、バッテリパック10内の空気Aを循環させることで効率良く且つ均一にバッテリ11を冷却できる。
尚、本第一実施例では、計二百個のバッテリセル11aを上下二段に百個ずつ配列し、バッテリ11の下面とバッテリパック10の底面10aの間を上流側流路14、バッテリ11の上面とバッテリパック10の上面10bの間を下流側流路15とし、電装間流路13にて空気Aを下から上へ抜き出す構成としているが、バッテリセル11aや各流路の配置はこれに限定されない。例えば、ここに示した例とは逆に、バッテリ11の上面とバッテリパック10の上面10bの間を上流側流路とし、バッテリ11の下面とバッテリパック10の底面10aの間を下流側流路として構成することもできる。或いは、バッテリ11の一方の側面とバッテリパック10の一方の側面の間を上流側流路とし、バッテリ11の他方の側面とバッテリパック10の他方の側面の間を下流側流路とすることもできる。また、バッテリセル11aの数や配置も、バッテリパック10の大きさや形状等に合わせて変更し得る。その他、各構成要素のレイアウトは、種々の条件を考慮して適宜変更し得る。
また、本第一実施例の電装品の冷却構造は上述の如く外気の導入によらずバッテリ11を冷却する構成を採用しているが、この際、バッテリパック10は完全密封型とする必要はない。例えば、図示は省略するが、夏場の高温やバッテリ11の昇温に伴う内部の空気Aの熱膨張による圧力を逃がすための通気穴や、バッテリ11に接続するハーネスを通すための穴等を備えても良い。塩分等を含んだ外気がバッテリパック10内に侵入することをある程度防止できれば十分である。通気穴を備える場合には、該通気穴にフィルタ等を備えて異物の侵入を防止するようにしても良い。
以上のように、上記本第一実施例においては、複数の電装パーツ(バッテリセル)11aを備えてなる電装品(バッテリ)11を筐体(バッテリパック)10内に収容し、該筐体(バッテリパック)10内の空気Aをファン12により電装品(バッテリ)11から見て上流の上流側流路14へ送り込み、電装パーツ(バッテリセル)11a間に形成される電装間流路13から電装品(バッテリ)11から見て下流の下流側流路15へと抜き出してファン12に戻すよう構成し、上流側流路14に流路仕切板16を備えて上流側流路14を外壁側流路14aと電装側流路14bとに分割し、外壁側流路14aにて筐体(バッテリパック)10内の空気Aを筐体(バッテリパック)10の外壁(底面)10aを介し外気と熱交換させた後、電装側流路14bに流すよう構成している。外壁側流路14aにて外気と熱交換した後の空気Aを電装側流路14bから電装間流路13に流すことで、均一に冷却された空気のみを電装間流路13に流し、電装品(バッテリ)11を効果的に冷却することができる。
また、本第一実施例において、流路仕切板16は、電装側流路14bの流路幅が下流へ向かうほど狭くなるよう、電装品(バッテリ)11に対して傾斜配置することができ、このようにすれば、電装側流路14bから電装間流路13へ流れ込む空気Aの流量を均一化し、電装パーツ(バッテリセル)11a間で冷却性能を均一化することができる。
したがって、上記本第一実施例によれば、外気の取り入れを極力回避しながら電装品を好適に冷却し得る。
図3は本発明による電装品の冷却構造の形態の別の一例(第二実施例)を示している。本第二実施例の場合、基本的な構成は上述の第一実施例(図1、図2参照)の車載電源装置と共通しているが、空気Aを循環させるファン18が逆回転可能な逆回転ファンとして構成されている点、及び、下流側流路15にバッテリ11の向きに沿って第二の流路仕切板19が備えられ、第二の外壁側流路15aと第二の電装側流路15bとに分割されている点が異なっている。
逆回転ファン18は、上記第一実施例(図1参照)のファン12と同様、バッテリパック10内の空気Aを上流側流路14へ送り出し、電装間流路13を介して下流側流路15へ抜き出すことができるようになっている(正循環時)が、羽根を逆回転させることにより、空気Aを下流側流路15へ送り出し、電装間流路13を介して上流側流路14へ抜き出す逆循環の向きにも循環させることができるようになっている(尚、逆循環時には、バッテリ11から見て「下流側流路15」が上流側にあたり、「上流側流路14」が下流側にあたることになるが、ここでは原則として名称や符号等は変更せず、特に明記しない限り正循環時の上流・下流の関係に基づいた名称にて説明することとする)。
逆循環時における空気Aの流れを簡単に説明する(図3中には、逆循環時における流れを矢印で示している)。逆回転ファン18から送り出された空気Aは、まず下流側流路15の第二の外壁側流路15aに流入する。ここで、該第二の外壁側流路15aの一面をなすバッテリパック10の上面10bの外壁は放熱板17として構成されており、この放熱板17を介して空気Aは効率良く外気と熱交換し、冷却される。
次に、空気Aは第二の流路仕切板19の逆回転ファン18から遠い側の端部にて折り返して第二の電装側流路15bへ流入し、電装間流路13から上流側流路14の電装側流路14bへ抜き出される。ここで、第二の外壁側流路15aの全長を通過して外気と熱交換し、十分に冷却された空気Aのみを第二の電装側流路15bへ流すようにしているので、この逆循環時においてもバッテリ11を効果的に冷却することができるようになっている。
またこの際、第二の流路仕切板19は、バッテリ11に関して流路仕切板16と同様に、第二の電装側流路15bの流路幅が逆循環時における下流へ向かうほど狭くなるよう、バッテリ11に対して傾斜配置されているので、電装間流路13へ流入する空気Aの流量が均一化され、バッテリセル11aを均一且つ効率的に冷却することができる。
電装間流路13から電装側流路14bへ抜き出された空気Aは、流路仕切板16を折り返して外壁側流路14aへ流れ、逆回転ファン18へ戻される。
このように、本第二実施例では、正循環時には上流側流路14から電装間流路13、下流側流路15の向きで空気Aを流す一方、逆循環時には下流側流路15から電装間流路13、上流側流路14の向きで空気Aを流すことができるようになっている。これは、バッテリセル11aの冷却効率をさらに均一に保つための構成である。
すなわち、本第二実施例の電装品の冷却構造では、合計二百個のバッテリセル11aを上下二段に配置しており、正循環時において、空気Aは電装間流路13を下から上に向かって流れるようになっている。したがって、電装間流路13を流れる空気Aは上方へ向かうほど高温になり、上段に位置するバッテリセル11aにおいては冷却効率が下段のバッテリセル11aと比較して低く、相対的に冷却されにくくなってしまう。
そこで、逆回転ファン18の回転方向を切り替え、空気Aを逆循環させれば、空気Aは電装間流路13を上から下に向かって流れるので、上段のバッテリセル11aにおける冷却効率が下段のバッテリセル11aと比較して高くなる。よって、例えばバッテリ11の作動中、一定時間おきに正循環と逆循環を切り替えるようにすれば、長い目で見て上段のバッテリセル11aと下段のバッテリセル11bとの間で冷却効率を均一化することができる。
また、この際、上流側流路14の流路仕切板16に加え、下流側流路15にも第二の流路仕切板19を備えており、正循環時と逆循環時で流路が略対称となっている。このため、逆循環時においてもバッテリセル11aの冷却効率を均一化し、冷却効率の均一性をさらに確実に保つことができる。
尚、空気Aを逆循環させるための仕組みはどのようなものでも良く、ここに例示したような逆回転ファン18を備える以外にも、例えば互いに逆向きに動作する二基のファンを備えて動作を切り替える構成とすることもできる。
以上のように、上記本第二実施例においては、筐体(バッテリパック)10内の空気Aを下流側流路15から電装間流路13を介して上流側流路14へ至る逆循環の向きにも循環できるよう構成し、下流側流路15に第二の流路仕切板19を備えて下流側流路15を第二の外壁側流路15aと第二の電装側流路15bとに分割し、前記逆循環の向きによる空気Aの循環時において、第二の外壁側流路15aにて筐体(バッテリパック)10内の空気Aを筐体(バッテリパック)10の外壁(上面10b)を介し外気と熱交換させた後、第二の電装側流路15bに流すよう構成しているので、正循環時に効率良く冷却されにくい位置にある電装パーツ(バッテリセル)11aについても逆循環により効率的に冷却することができる。また、その際、第二の外壁側流路15aにて外気と熱交換した後の空気を第二の電装側流路15bから電装間流路13に流すことで、均一に冷却された空気のみを電装間流路13に流し、電装品(バッテリ)11を効果的に冷却することができる。したがって、正循環と逆循環を切り替えることにより電装品(バッテリ)11の冷却を一層均一化することができる。
また、本第二実施例において、第二の流路仕切板19は、第二の電装側流路15bの流路幅が逆循環時における下流へ向かうほど狭くなるよう、電装品11に対して傾斜配置されているので、逆循環時、第二の電装側流路15bから電装間流路13へ流れ込む空気Aの流量を均一化し、電装パーツ(バッテリセル)11a間で冷却性能を均一化することができる。
上記本第二実施例によっても、外気の取り入れを極力回避しながら電装品を好適に冷却し得る。
尚、本発明の電装品の冷却構造は、上述の実施例にのみ限定されるものではなく、バッテリないし車載電源装置以外の種々の電装品に関して適用し得ること等、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
10 筐体(バッテリパック)
10a 外壁(底面)
10b 外壁(上面)
11 電装品(バッテリ)
11a 電装パーツ(バッテリセル)
13 電装間流路
14 上流側流路
14a 外壁側流路
14b 電装側流路
15 下流側流路
15a 第二の外壁側流路
15b 第二の電装側流路
16 流路仕切板
17 放熱板
19 第二の流路仕切板
A 空気

Claims (4)

  1. 複数の電装パーツを備えてなる電装品を筐体内に収容し、
    該筐体内の空気をファンにより前記電装品から見て上流の上流側流路へ送り込み、前記電装パーツ間に形成される電装間流路から前記電装品から見て下流の下流側流路へと抜き出して前記ファンに戻すよう構成し、
    前記上流側流路に流路仕切板を備えて前記上流側流路を外壁側流路と電装側流路とに分割し、前記外壁側流路にて前記筐体内の空気を前記筐体の外壁を介し外気と熱交換させた後、前記電装側流路に流すよう構成し、前記流路仕切板は、前記電装側流路の流路幅が下流へ向かうほど狭くなるよう、前記電装品に対して傾斜配置したことを特徴とする電装品の冷却構造。
  2. 複数の電装パーツを備えてなる電装品を筐体内に収容し、
    該筐体内の空気をファンにより前記電装品から見て上流の上流側流路へ送り込み、前記電装パーツ間に形成される電装間流路から前記電装品から見て下流の下流側流路へと抜き出して前記ファンに戻すよう構成され、
    前記上流側流路に流路仕切板を備えて前記上流側流路を外壁側流路と電装側流路とに分割し、前記外壁側流路にて前記筐体内の空気を前記筐体の外壁を介し外気と熱交換させた後、前記電装側流路に流すよう構成され、更に、
    前記筐体内の空気を前記下流側流路から前記電装間流路を介して前記上流側流路へ至る逆循環の向きにも循環できるよう構成され、
    前記下流側流路に第二の流路仕切板を備えて前記下流側流路を第二の外壁側流路と第二の電装側流路とに分割し、前記逆循環の向きによる空気の循環時において、前記第二の外壁側流路にて前記筐体内の空気を前記筐体の外壁を介し外気と熱交換させた後、前記第二の電装側流路に流すよう構成したことを特徴とする電装品の冷却構造。
  3. 前記流路仕切板は、前記電装側流路の流路幅が下流へ向かうほど狭くなるよう、前記電装品に対して傾斜配置されていることを特徴とする請求項2に記載の電装品の冷却構造。
  4. 前記第二の流路仕切板は、前記第二の電装側流路の流路幅が逆循環時における下流へ向かうほど狭くなるよう、前記電装品に対して傾斜配置されていることを特徴とする請求項2又は3に記載の電装品の冷却構造。
JP2016181945A 2016-09-16 2016-09-16 電装品の冷却構造 Active JP6725379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016181945A JP6725379B2 (ja) 2016-09-16 2016-09-16 電装品の冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181945A JP6725379B2 (ja) 2016-09-16 2016-09-16 電装品の冷却構造

Publications (2)

Publication Number Publication Date
JP2018045963A JP2018045963A (ja) 2018-03-22
JP6725379B2 true JP6725379B2 (ja) 2020-07-15

Family

ID=61693224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181945A Active JP6725379B2 (ja) 2016-09-16 2016-09-16 電装品の冷却構造

Country Status (1)

Country Link
JP (1) JP6725379B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073255A (ja) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd 車両用の電源装置
JP2007227030A (ja) * 2006-02-21 2007-09-06 Toyota Motor Corp 電池パック
EP2631985B1 (en) * 2010-10-20 2017-12-27 LG Chem, Ltd. Battery pack having excellent cooling efficiency
JP2013175296A (ja) * 2012-02-23 2013-09-05 Toyota Industries Corp 電池用温度調節機構
JP2015011826A (ja) * 2013-06-27 2015-01-19 株式会社デンソー 電池パック
JP6382067B2 (ja) * 2014-10-27 2018-08-29 株式会社協豊製作所 電池パック

Also Published As

Publication number Publication date
JP2018045963A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
JP5381872B2 (ja) ハイブリッド車の冷却装置
JP4557738B2 (ja) 燃料電池車の冷却装置
JP6405912B2 (ja) 電池パック
JP2005349955A (ja) 蓄電機構の冷却構造
KR20120136923A (ko) 전기자동차의 배터리 냉각구조
JP2004306726A (ja) バッテリパック冷却構造
JP2005035476A (ja) 車両用冷却装置
JP2010274675A (ja) 燃料電池システム
KR101646129B1 (ko) 차량용 라디에이터
JP2012228898A (ja) 電気自動車の冷却装置
JP2005343221A (ja) 車両の冷却装置構造
JP2007186047A (ja) 車両用熱交換器
JP6725379B2 (ja) 電装品の冷却構造
US10766354B2 (en) Vehicle having cooling arrangement disposed below floor surface
JP2012241600A (ja) 冷却装置
CN113412407A (zh) 热交换器
KR101886730B1 (ko) 차량용 배터리 냉각 장치
JP5947071B2 (ja) バッテリ冷却装置
JP7207342B2 (ja) 車両用バッテリパック
JP6382788B2 (ja) 冷却装置
US20170106740A1 (en) Heat exchanger for vehicle and heat exchanging system having the same
JP6507921B2 (ja) 電池パック
KR100683215B1 (ko) 차량용 히터코어유닛
KR102629657B1 (ko) 자동차용 열 교환기 모듈
JP6643015B2 (ja) 相変化材料を有する自動車両用の熱管理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6725379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250