JP6720400B1 - 積層造形システム、積層造形方法 - Google Patents
積層造形システム、積層造形方法 Download PDFInfo
- Publication number
- JP6720400B1 JP6720400B1 JP2019205956A JP2019205956A JP6720400B1 JP 6720400 B1 JP6720400 B1 JP 6720400B1 JP 2019205956 A JP2019205956 A JP 2019205956A JP 2019205956 A JP2019205956 A JP 2019205956A JP 6720400 B1 JP6720400 B1 JP 6720400B1
- Authority
- JP
- Japan
- Prior art keywords
- gas
- chamber
- purification tower
- powder material
- gas component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 137
- 239000000654 additive Substances 0.000 title claims abstract description 105
- 230000000996 additive effect Effects 0.000 title claims abstract description 105
- 238000000746 purification Methods 0.000 claims abstract description 202
- 239000000463 material Substances 0.000 claims abstract description 177
- 239000000843 powder Substances 0.000 claims abstract description 159
- 239000012535 impurity Substances 0.000 claims abstract description 23
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 461
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 104
- 229910052760 oxygen Inorganic materials 0.000 claims description 104
- 239000001301 oxygen Substances 0.000 claims description 104
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 62
- 229910001868 water Inorganic materials 0.000 claims description 61
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 55
- 238000007670 refining Methods 0.000 claims description 42
- 229910052757 nitrogen Inorganic materials 0.000 claims description 27
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- 238000007493 shaping process Methods 0.000 claims description 13
- 238000000465 moulding Methods 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 7
- 238000003475 lamination Methods 0.000 claims description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 3
- 239000000306 component Substances 0.000 description 222
- 238000003860 storage Methods 0.000 description 33
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 238000010926 purge Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 229910000838 Al alloy Inorganic materials 0.000 description 12
- 238000011084 recovery Methods 0.000 description 12
- 239000003463 adsorbent Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000003517 fume Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229910001069 Ti alloy Inorganic materials 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/364—Conditioning of environment
- B29C64/371—Conditioning of environment using an environment other than air, e.g. inert gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/70—Recycling
- B22F10/77—Recycling of gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/70—Gas flow means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- General Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Powder Metallurgy (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
付加製造技術による積層造形装置の一例として、造形ステージ上の金属粉体をレーザー等で焼結する金属3Dプリンターが知られている。金属3Dプリンターは、焼結した金属層を造形ステージ上で順次積層し、複雑な形状の構造物を短時間で精度よく製造できる。そのため、金属3Dプリンターは、航空機産業及び医療等の先端技術分野で有望な技術として注目されている(例えば、特許文献1)。
しかし、特許文献1に記載の積層造形装置にあっては、金属粉体の材質に応じて造形室内の雰囲気中のガス成分の濃度を最適化する機能がない。加えて、金属粉体の材質に応じて造形室内のガス成分の濃度を一定に保持する機能もない。そのため、特許文献1に記載の積層造形装置では、使用する粉体材料に応じて積層造形物の品質をさらに高めることができない。
[1] シールドガスの存在下で、エネルギー線を用いて粉体材料に熱を供給して層を造形し、前記層を順次積層して積層造形物を製造する積層造形システムであって、前記層を造形し、前記層を順次積層する積層造形ユニットと、前記シールドガス中のガス成分の濃度を調整する濃度調整ユニットと、を備え、前記積層造形ユニットは、前記粉体材料に照射するエネルギー線の照射源を含む照射部と、前記シールドガスが充填されるチャンバー、及び、前記層の造形及び積層が行われる造形ステージを含む造形部と、を有し、前記濃度調整ユニットは、前記シールドガス中の不純物となる第1のガス成分を、前記粉体材料に応じて除去する精製部と、前記粉体材料に応じて選択される第2のガス成分を必要に応じて前記チャンバー内に供給する供給部と、を有する、積層造形システム。
[2] 前記チャンバー内の前記シールドガスの一部を前記精製部に供給する第1の供給ラインをさらに備え、前記精製部が、前記第1の供給ラインと接続される、下記の第1の精製塔、第2の精製塔、第3の精製塔及び第4の精製塔からなる群から選ばれる少なくとも一つ以上を含む、[1]に記載の積層造形システム。
第1の精製塔:前記シールドガスから酸素を除去する精製塔。
第2の精製塔:前記シールドガスから水分を除去する精製塔。
第3の精製塔:前記シールドガスから窒素を除去する精製塔。
第4の精製塔:前記シールドガスから水分を除去し、酸素を除去しない精製塔。
[3] 前記精製部が、下記の第1のバイパスライン、第2のバイパスライン、第3のバイパスライン及び第4のバイパスラインからなる群から選ばれる少なくとも一つ以上をさらに含む、[2]に記載の積層造形システム。
第1のバイパスライン:前記第1の供給ラインから供給される前記シールドガスを、前記第1の精製塔に供給せずに前記第1の精製塔の二次側に供給するバイパスライン。
第2のバイパスライン:前記第1の供給ラインから供給される前記シールドガスを、前記第2の精製塔に供給せずに前記第2の精製塔の二次側に供給するバイパスライン。
第3のバイパスライン:前記第1の供給ラインから供給される前記シールドガスを、前記第3の精製塔に供給せずに前記第3の精製塔の二次側に供給するバイパスライン。
第4のバイパスライン:前記第1の供給ラインから供給される前記シールドガスを、前記第4の精製塔に供給せずに前記第4の精製塔の二次側に供給するバイパスライン。
[4] 前記供給部が、水素、酸素、一酸化炭素、二酸化炭素、アンモニアからなる群から選ばれる一つ以上の前記第2のガス成分の供給源を含む、[1]〜[3]のいずれかに記載の積層造形システム。
[5] 前記精製部によって前記シールドガスから前記第1のガス成分が除去されたガスを、前記チャンバーに供給する第2の供給ラインをさらに備え、前記供給部が、前記第2の供給ライン中の前記ガスに前記第2のガス成分を必要に応じて供給する第3の供給ラインをさらに含む、[1]〜[4]のいずれかに記載の積層造形システム。
[6] シールドガスの存在下で、エネルギー線を用いて粉体材料に熱を供給して層を造形し、前記層を順次積層して積層造形物を製造する積層造形方法であって、前記層を造形し、前記層を順次積層するステップ(a)と、前記シールドガス中のガス成分の濃度を調整するステップ(b)と、を有し、前記ステップ(a)では、チャンバー内の粉体材料にエネルギー線を照射し、前記チャンバー内で前記層を造形し、造形した前記層を順次積層し、前記ステップ(b)では、前記シールドガス中の不純物となる第1のガス成分を、前記粉体材料に応じて除去し、前記粉体材料に応じて選択される第2のガス成分を必要に応じて前記チャンバー内に供給する、積層造形方法。
[7] 前記ステップ(b)で、酸素、水分及び窒素からなる群から選ばれる少なくとも一つ以上のガス成分を前記第1のガス成分として前記シールドガスから除去する、[6]に記載の積層造形方法。
[8] 前記ステップ(b)で、水素、酸素、一酸化炭素、二酸化炭素、アンモニアからなる群から選ばれる一つ以上のガス成分を前記第2のガス成分として前記チャンバー内に供給する、[6]又は[7]に記載の積層造形方法。
[9] 前記ステップ(b)で、前記粉体材料の種類に応じて前記第1のガス成分を切り替える、[6]〜[8]のいずれかに記載の積層造形方法。
[10] 前記ステップ(b)で、前記第1のガス成分が除去されたガスに前記第2のガス成分を必要に応じて供給する、[6]〜[9]のいずれかに記載の積層造形方法。
本実施形態に係る積層造形システム(以下「本積層造形システム」と記載する。)は、シールドガスの存在下で、エネルギー線を用いて粉体材料に熱を供給して層を造形し、層を順次積層して積層造形物を製造するシステムである。本積層造形システムは、積層造形ユニットと濃度調整ユニットを備える。
積層造形ユニットは、粉体材料に照射するエネルギー線の照射源を含む照射部と、チャンバー及び造形ステージを含む造形部とを有する。チャンバーにはシールドガスが充填される。シールドガスは、エネルギー線の照射の際に、粉体材料の雰囲気の周囲の酸素濃度を低減するための不活性ガスである。
本積層造形システムにおいて、エネルギー線は特に限定されない。例えば、レーザー、電子ビーム等が挙げられる。そして、造形ステージでは、エネルギー線による層の造形、及び、造形した層の積層が行われる。
積層造形ユニット10は、シールドガスの存在下でエネルギー線を用いて粉体材料に熱を供給して層を造形し、造形した層を順次積層する。濃度調整ユニット30は、シールドガス中のガス成分の濃度を調整する。フィルターユニット50は、シールドガス中のフューム、スパッタ等の固体の不純物を除去する。
電磁バルブV1、V2、V3がいずれも開状態であるとき、積層造形システム70は、チャンバー3内のシールドガスの一部を第1の供給ラインL1内に導入し、次いで、チャンバー3内の一部のシールドガスを濃度調整ユニット30に供給し、残部のシールドガスを第2の供給ラインL2を経由させてチャンバー3内に再度供給する。
積層造形システム70においては、電磁バルブV1〜V3は後述のCPU37と電気的に接続されている。各電磁バルブの開閉状態は、CPU37によって制御可能である。
照射部は、粉体材料Mに照射するエネルギー線の照射源を含む。積層造形ユニット10においては、レーザー発振器1と光学系2が積層造形ユニット10の照射部を構成する。
造形部は、シールドガスが充填されるチャンバー3、及び、層の造形及び積層が行われる造形ステージ9を含む。積層造形ユニット10においては、チャンバー3と造形室5と造形ステージ9が積層造形ユニット10の造形部を構成する。
積層造形ユニット10の照射部は、エネルギー線の照射源としてレーザー発振器1を含む。レーザー発振器1は、エネルギー線の照射源の一例である。本実施形態の他の一例では、エネルギー線の照射源は、レーザー発振器以外の形態でもよい。
レーザー発振器1は、粉体材料MにレーザーLをエネルギー線として照射する。レーザー発振器1は、造形ステージ9上の粉体材料MにレーザーLを照射できる形態であれば特に限定されない。レーザー発振器1は、光学系2を経由させてレーザーLをチャンバー3内の粉体材料Mに照射する。これにより積層造形ユニット10は、レーザーLが照射された位置の粉体材料Mを焼結又は溶融固化することができる。その結果、粉体材料Mの焼結物又は粉体材料Mの溶融固化物を含む層(以下、「造形層」と記す。)が造形される。
積層造形ユニット10は、あらかじめ設定されたデータにしたがって光学系2を制御することで、粉体材料MへのレーザーLの照射位置を制御できる。これにより、積層造形ユニット10は、任意の形状の造形層を造形できる。
これらの中でも本発明の効果が顕著に得られることを期待できることから、コバルト、ニッケル、ハフニウム、ニオブ、チタン、アルミニウム、ステンレス合金、ニッケル合金。アルミニウム合金、チタン合金が好ましい。
粉体材料Mが粒子状である場合、粉体材料Mの粒子は特に限定されないが、例えば10〜200μm程度とすることができる。
積層造形ユニット10の造形部は、チャンバー3と造形室5と造形ステージ9とを含む。チャンバー3、造形室5、造形ステージ9に加えて、貯蔵室4、回収室6、リコーター7、貯蔵ステージ8も、積層造形ユニット10の造形部の構成とみなしてもよい。
チャンバー3は、シールドガスが充填される容器である。チャンバー3には、第1の供給ラインL1の一次側の端部、第2の供給ラインL2の二次側の端部、シールドガス供給ラインL4の二次側の端部がそれぞれ接続されている。シールドガス供給ラインL4の図示略の一次側の端部は、図示略のシールドガスの供給源と接続されている。シールドガス供給ラインL4を介して、チャンバー3内の空間には、シールドガスが充填される。
加えて、チャンバー3には図示略のパージラインの端部が接続されている。図示略のパージラインは、シールドガスの充填の際(後述のステップ(c)に相当する。)に、チャンバー3内のガスをチャンバー3外に排出する。
シールドガスの組成は、通常、一定の組成成分で構成される。よって、チャンバー3内の空間にシールドガスを供給することで、必要量のエネルギーのレーザーLを粉体材料Mに安定して照射でき、一定の性質の造形層を確実に造形でき、積層造形物の品質が向上する。
加えて、チャンバー3内の空間へのシールドガスの供給により、造形層の造形及び積層の際に粉体材料Mの周囲の雰囲気中の酸素濃度をできる限り低減できる。そのため、積層造形物の機械的物性等を高め、形状の劣化を低減でき、積層造形物の品質が向上する。
積層造形ユニット10においては、チャンバー3の底面Bの下方に貯蔵室4、造形室5、回収室6が形成されている形態であるが、本実施形態の他の一例では、チャンバー3の底面Bに設けられた台座の上面に貯蔵室、造形室、回収室をそれぞれ設けてもよい。ここで当該台座は、粉体材料Mの貯蔵、供給、回収、粉体材料Mへの熱の供給による造形、造形層の積層等の操作を行うためのものである。他にも、本実施形態の他の一例では、チャンバー3内の空間とそれぞれ連通するように貯蔵室、造形室、回収室をチャンバー3外に設けてもよい。
貯蔵ステージ8は、上下動可能な可動棒8aに支持されている。可動棒8aの上下動により、貯蔵ステージ8は貯蔵室4の内壁に沿って貯蔵室4内の空間を上下方向に移動する。貯蔵ステージ8が上方向に移動することで、貯蔵ステージ8の上面に載置された粉体材料Mがチャンバー3の底面Bより上側にはみ出すことになる。積層造形ユニット10においては、チャンバー3の底面Bより上側にはみ出した分の貯蔵ステージ8上の粉体材料Mを、リコーター7の左右方向の移動によって造形ステージ9の上側に搬送する。
造形ステージ9の上側にはレーザーLが照射される粉体材料Mが載置される。通常、造形ステージ9上の粉体材料Mは、貯蔵ステージ8からリコーター7によって搬送されたものである。
ある一つの任意の形状の造形層が造形された後、可動棒9aが下方向に移動して造形ステージ9が下方向に移動すると、新たな粉体材料Mがリコーター7によって貯蔵ステージ8上から一つの任意の形状の造形層の上側に供給されて敷き詰められる。この状態で、レーザーLの照射による新たな造形層(形状は任意である。)の造形をさらに行うと、すでに造形された一つの任意の形状の造形層の上側に新たな造形層がさらに設けられる。その後、造形ステージ9がさらに下方向に移動し、新たな粉体材料Mが貯蔵ステージ8上からさらに供給される。次いで、レーザーLがさらに照射されると、新たな造形層がすでに積層された造形層の上側にさらに設けられ、積層される。このようにして、造形ステージ9上では造形層の造形及び造形層の積層が順次行われる。
造形層の造形を行った後の粉体材料は、造形ステージ9上でレーザーLの照射がされなかった部分に残った粉体材料である。造形ステージ9上でレーザーLが照射された粉体材料Mの周囲の粉体材料は、レーザーLが直接照射されていないとしても、レーザーLが照射された部位から伝導する高熱によって変質していることがある。そのため、レーザーLが照射された粉体材料Mの周囲の粉体材料を、造形層の造形を行った後の粉体材料として、回収室6に搬送する。このように回収室6は、使用後の粉体材料を回収するためのものである。
積層造形システム70においては、第1の濃度計C1、第2の濃度計C2はチャンバー3内に配置されているが、第1の濃度計C1、第2の濃度計C2は、チャンバー3内に供給される第2の供給ラインL2内のガス中の酸素濃度、水分濃度を測定可能な位置に配置されていれば特に限定されない。
精製部は、チャンバー3内のシールドガス中の不純物となる第1のガス成分を、粉体材料Mに応じて除去する。濃度調整ユニット30においては、第1の精製塔31、第2の精製塔32、第3の精製塔33、第4の精製塔34、ブロワー35、第1の接続ラインL5、第2の接続ラインL6、第3の接続ラインL7、第1のバイパスラインL8、第2のバイパスラインL9、第3のバイパスラインL10、第4のバイパスラインL11、電磁バルブV4〜V15が精製部を構成する。
供給部は、粉体材料Mに応じて選択される第2のガス成分を必要に応じてチャンバー3内に供給する。濃度調整ユニット30においては、第2のガス成分の供給源36、第3の供給ラインL12、電磁バルブV16が供給部を構成する。
制御部は、粉体材料Mに応じて第1のガス成分及び第2のガス成分の供給の有無を粉体材料Mに応じて決定する。制御部は、第2のガス成分の供給を実行すると決定した場合に、第2のガス成分を粉体材料Mに応じてさらに決定する。濃度調整ユニット30においては、CPU37が制御部を構成する。
CPU37は、第1のガス成分、第2のガス成分に関する指示内容を粉体材料Mに応じて自動的に決定できるプログラムを有してもよく、積層造形システム70の使用者が粉体材料Mに応じて第1のガス成分、第2のガス成分に関する指示内容を手動で決定できるスイッチボタンを有してもよい。
CPU37は、粉体材料Mの材質等の情報(外部シグナル)に基づいて、第2のガス成分の供給の有無を決定する。そして、CPU37は、第2のガス成分の供給を実行すると決定したときに、第2のガス成分のガス種を決定する。例えば、CPU37は、粉体材料Mの材質等の情報を外部シグナルとして与えられ、第2のガス成分の供給により積層造形物Xの品質の向上を期待できるとき、第2のガス成分の供給の実行を決定し、粉体材料Mに応じて第2のガス成分のガス種を決定する。
第2のガス成分の供給を実行する場合、CPU37は、電磁バルブV16を開状態とするよう指示する。第2のガス成分の供給を実行する場合、CPU37は、第2のガス成分を決定し、決定した第2のガス成分のガス種に関する指示信号を供給源36に送信して、第2のガス成分のガス種を供給源36に指示する。
第2のガス成分の供給を実行しない場合、CPU37は、電磁バルブV16を閉状態とするよう指示する。
積層造形システム70においては、CPU37を濃度調整ユニット30が備える構成として開示されているが、他の実施形態例においては、CPU37を積層造形システム70が備える構成とし、濃度調整ユニット30とは独立した構成としてもよい。
濃度調整ユニット30の精製部は、シールドガス中の不純物となる第1のガス成分を、粉体材料Mに応じて除去する。濃度調整ユニット30においては、CPU37によって、第1の精製塔31、第2の精製塔32、第3の精製塔33、第4の精製塔34のうち、いずれの精製塔をシールドガスの精製に使用するかを決定し、第1のガス成分が決定される。
その一例としては、粉体材料Mがステンレス合金、ニッケル合金である場合、積層造形物Xの機械的特性が優れることから、第1のガス成分は、酸素、水分の2種のガス成分の組み合わせが好ましい。
粉体材料Mがアルミニウム合金である場合、積層造形物Xの空孔が低減し、機械的特性が優れることから、第1のガス成分は、水分の1種のガス成分のみが好ましい。
粉体材料Mがチタン合金である場合、積層造形物Xの空孔が低減し、機械的特性が優れることから、第1のガス成分は、酸素、水分及び窒素の3種のガス成分の組み合わせが好ましい。
電磁バルブV4、V5がいずれも閉状態であり、電磁バルブV6が開状態であるとき、第1のバイパスラインL8は、第1の精製塔31に供給せずに、第1の供給ラインL1内のシールドガスを第1の精製塔31の二次側の第2の精製塔32に供給できる。
一方、電磁バルブV6が閉状態であり、電磁バルブV4、V5がいずれも開状態であるとき、濃度調整ユニット30は、第1の供給ラインL1内のシールドガスを第1の精製塔31に供給し、第1の精製塔31内で酸素が除去されたガスを第2の精製塔32に供給できる。
電磁バルブV7、V8がいずれも閉状態であり、電磁バルブV9が開状態であるとき、第2のバイパスラインL9は、第1の接続ラインL5内のシールドガスを第2の精製塔32に供給せずに、第2の精製塔32の二次側の第3の精製塔33に供給できる。
一方、電磁バルブV9が閉状態であり、電磁バルブV7、V8がいずれも開状態であるとき、濃度調整ユニット30は、第1の接続ラインL5内のガスを第2の精製塔32に供給でき、第2の精製塔32内で水分が除去されたガスを第3の精製塔33に供給できる。
電磁バルブV10、V11がいずれも閉状態であり、電磁バルブV12が開状態であるとき、濃度調整ユニット30は、第2の接続ラインL6内のシールドガスを第3の精製塔33に供給せずに、第3の精製塔33の二次側の第4の精製塔34に供給できる。
一方、電磁バルブV12が閉状態であり、電磁バルブV10、V11がいずれも開状態であるとき、濃度調整ユニット30は、第2の接続ラインL6内のシールドガスを第3の精製塔33に供給でき、第3の精製塔33内で窒素が除去されたガスを第4の精製塔34に供給できる。
電磁バルブV13、V14がいずれも閉状態であり、電磁バルブV15が開状態であるとき、第4のバイパスラインL11は、第3の接続ラインL7内のシールドガスを第4の精製塔34に供給せずに、第4の精製塔34の二次側の第2の供給ラインL2に供給できる。
一方、電磁バルブV15が閉状態であり、電磁バルブV13、V14がいずれも開状態であるとき、濃度調整ユニット30は、第3の接続ラインL7内のガスを第4の精製塔34に供給でき、第4の精製塔34で水分のみ除去されたガスを第2の供給ラインL2に供給できる。
濃度調整ユニット30の供給部は、粉体材料Mに応じて選択される第2のガス成分を必要に応じてチャンバー3内に供給する。濃度調整ユニット30においては、CPU37によって、第2のガス成分の供給の実行の有無を決定し、必要に応じて第2のガス成分のガス種を決定する。第2のガス成分の供給を実行する場合、第2のガス成分は、例えば、粉体材料Mの材質に応じて選択できる。
例えば、粉体材料Mがアルミニウム合金である場合、積層造形物Xの空孔が低減し、機械的特性の向上が期待できることから、第2のガス成分は酸素が好ましい。粉体材料Mがチタン系合金である場合、造形速度の向上が期待できることから、第2のガス成分はヘリウムが好ましい。
供給源36の形態は、PSA方式のガス発生装置でもよく、ガスボンベの形態でもよい。例えば、第2のガス成分が酸素である場合、供給源36としては、PSA方式の酸素発生器、酸素ボンベ等が挙げられる。第2のガス成分の供給源36は、第3の供給ラインL12を介して第2の供給ラインL2と接続されている。
以上説明した構成を備える濃度調整ユニット30の供給部は、第3の供給ラインL12、第2の供給ラインL2をこの順に経由して、第2のガス成分を必要に応じてチャンバー3内に供給する。
図1に示すように、フィルターユニット50は、フィルター51とベンチレーター52とを含む。フィルターユニット50は、ベンチレーター52によって後述のチャンバー3内のシールドガスの一部を取り出し、シールドガス中のフューム、スパッタ等の固体の不純物をフィルター51で除去する。チャンバー3内のシールドガス中のフューム、スパッタ等の固体の不純物を除去することで、積層造形物Xの品質をさらに高めることができる。
以上説明した積層造形システム70にあっては、濃度調整ユニット30を備える。濃度調整ユニット30は、シールドガス中の不純物となる第1のガス成分を、粉体材料に応じて除去する精製部を有する。そのため、粉体材料の材質等に応じてシールドガス中の不純物となるガス成分を第1の精製塔、第2の精製塔、第3の精製塔、第4の精製塔のうちから選択して除去できる。よって、チャンバー内のシールドガス中の金属造形物の製造に不要なガス成分、金属造形物の機械的特性の低下の原因となるガス成分の濃度を粉体材料に応じて低減でき、金属造形物の品質を粉体材料に応じてさらに高めることができる。
加えて、濃度調整ユニット30は、粉体材料に応じて選択される第2のガス成分を必要に応じてチャンバー内に供給する供給部を有する。そのため、粉体材料の材質等に応じて積層造形物Xの品質の向上に寄与すると期待されるガス成分をチャンバー内に供給し、その濃度を一定に保持できる。その結果、チャンバー内のシールドガス中の第2のガス成分の濃度が粉体材料に応じて最適化され、金属造形物の品質を粉体材料に応じてさらに高めることができる。
以下、図1〜3を参照しながら本実施形態例に係る積層造形方法について具体的に説明する。
本実施形態例に係る積層造形方法(以下、「本積層造形方法」と記載する。)は、シールドガスの存在下で、エネルギー線を用いて粉体材料に熱を供給して層を造形し、前記層を順次積層して積層造形物を製造する積層造形方法である。以下の説明においては、上述の積層造形システム70を用いる場合を一例として本積層造形方法について説明するが、本発明は以下の記載に限定されない。
ステップ(a):造形層を造形し、造形層を順次積層するステップ。
ステップ(b):シールドガス中のガス成分の濃度を調整するステップ。
ステップ(c):チャンバー内にシールドガスを充填することで、チャンバー内の酸素をチャンバー内からパージするステップ。
例えば、積層造形物の製造に際して、チャンバー3内のシールドガス中のガス成分の組成が積層造形物の品質を高めるためにすでに十分に最適化されている場合には、ステップ(a)から開始できる。この場合、ステップ(a)の最中にチャンバー3内のシールドガス中のガス成分の組成が変化し、第1のガス成分、第2のガス成分の濃度が目標値から変動することがある。その後、ガス成分の組成の変化によって、積層造形物の品質を高めることができなくなるおそれが生じたとき、ステップ(a)を行いながら、または、ステップ(a)を一度中止してから、ステップ(b)を開始する。
一方、積層造形物の製造に際して、チャンバー3内のシールドガス中のガス成分の組成が積層造形物の品質を高めるために十分に最適化されていない場合には、ステップ(b)から開始できる。この場合、ステップ(b)の最中にチャンバー3内のシールドガス中のガス成分の組成が変化し、第1のガス成分、第2のガス成分の濃度が目標値から変動することがある。その後、ガス成分の組成の最適化によって、積層造形物の品質を高めることができると期待できるとき、ステップ(b)を行いながら、または、ステップ(b)を一度中止してから、ステップ(a)を開始する。
本積層造形方法の一例では、まず、ステップ(c)を実施し、次いで、ステップ(b)を実施する。例えば、未使用の粉体材料Mの貯蔵室4への供給の際や積層造形物の回収の際に、チャンバー3内が大気開放される場合がある。このとき、チャンバー3内の酸素濃度が上昇するため、ステップ(c)を実施する。ただし、チャンバー3内の酸素濃度がすでに十分に低い場合には、ステップ(c)を省略できる。
ステップ(c)では、例えば、図1に示す電磁バルブV1、V2を閉状態とし、シールドガス供給ラインL4からチャンバー3内にシールドガスを供給し、図示略のパージラインを開放する。これにより、チャンバー3内のガスをシールドガスに置換し、チャンバー3内の酸素濃度を低減できる。
図2に示すようにステップ(a)では、チャンバー3内の粉体材料Mにエネルギー線としてレーザーLを照射し、チャンバー3内で造形層を造形し、造形した造形層を順次積層する。ステップ(a)の実施は、チャンバー3内のシールドガス中のガス成分の組成が、粉体材料Mに応じて積層造形物の品質を高めるために十分に最適化されているときに開始するとよい。
一つの造形層が造形された後、通常は造形ステージ9が下方向に移動する。次いで、新たな粉体材料Mが一つの造形層の上側に貯蔵ステージ8上からリコーター7によって供給されて敷き詰められる。この状態で、レーザーLの照射による新たな造形層の造形をさらに行うと、すでに造形された一つの造形層の上側に新たな造形層が設けられる。その後、造形ステージ9がさらに下方向に移動し、貯蔵ステージ8上から新たな粉体材料Mがさらに供給される。次いで、レーザーLがさらに照射されると、新たな造形層がすでに積層された造形層の上側にさらに設けられる。
このようにして、ステップ(a)では、造形ステージ9上で造形層の造形及び造形層の積層が順次行われる。
ステップ(b)では、チャンバー3内のシールドガス中の不純物となる第1のガス成分を粉体材料Mに応じて除去し、粉体材料Mに応じて選択される第2のガス成分を必要に応じてチャンバー3内に供給する。
ステップ(b)の実施は、チャンバー3内のシールドガス中のガス成分の組成が積層造形物の品質を高めるために最適化されていないときに開始するとよい。
本積層造形方法に係るステップ(b)では、CPU37によって、粉体材料Mの材質等の情報(外部シグナル)に基づいて、精製部における第1のガス成分のガス種を決定する。ステップ(b)に際しては、例えば、粉体材料Mの材質を考慮し、第1の濃度計C1、第2の濃度計C2から送信されるチャンバー3内の酸素濃度、水分濃度に基づいて、第1のガス成分を決定してもよい。
(X1):酸素の一種類のガス成分のみ。
(X2):水分の一種類のガス成分のみ。
(X3):窒素の一種類のガス成分のみ。
(X4):酸素、水分の二種類のガス成分の組み合わせ。
(X5):水分、窒素の二種類のガス成分の組み合わせ。
(X6):窒素、酸素の二種類のガス成分の組み合わせ。
(X7):酸素、水分、窒素の三種類のガス成分の組み合わせ。
ただし、これらの組み合わせ(X1)〜(X7)は、濃度調整ユニット30の精製塔の構成に基づいて想定されるものであり、本発明において第1のガス成分はこれらの組み合わせに限定されない。本発明の他の実施形態例においては、精製塔の数及び各精製塔内の吸着剤等を変更することで、第1のガス成分を適宜変更でき、これらの例示したガス成分に加えて、他のガス成分を第1のガス成分として除去してもよい。
例えば、第1のガス成分が上記の(X1)である場合、図3に示す濃度調整ユニット30において、第1の精製塔31を使用する。具体的には、電磁バルブV4、V5、V9、V12、V15を開状態とし、電磁バルブV6、V7、V8、V10、V11、V13、V14を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、酸素を第1の精製塔31で除去できる。
同様に、第1のガス成分が上記の(X2)である場合、図3に示す濃度調整ユニット30において、第2の精製塔32を使用する。具体的には、電磁バルブV6、V7、V8、V12、V15を開状態とし、電磁バルブV4、V5、V9、V10、V11、V13、V14を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、水分を第2の精製塔32で除去できる。
第1のガス成分が上記の(X3)である場合、図3に示す濃度調整ユニット30において、第3の精製塔33を使用する。具体的には、電磁バルブV6、V9、V10、V11、V15を開状態とし、電磁バルブV4、V5、V7、V8、V12、V13、V14を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、窒素を第3の精製塔33で除去できる。
第1のガス成分が上記の(X4)である場合、図3に示す濃度調整ユニット30において、第1の精製塔31と第2の精製塔32を組み合わせて使用する。具体的には、電磁バルブV4、V5、V7、V8、V12、V15を開状態とし、電磁バルブV6、V9、V10、V11、V13、V14を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、酸素、水分を第1の精製塔31、第2の精製塔32でそれぞれ除去できる。
第1のガス成分が上記の(X5)である場合、図3に示す濃度調整ユニット30において、第2の精製塔32と第3の精製塔33を組み合わせて使用する。具体的には、電磁バルブV6、V7、V8、V10、V11、V15を開状態とし、電磁バルブV4、V5、V9、V12、V13、V14を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、水分、窒素を第2の精製塔32、第3の精製塔33でそれぞれ除去できる。
第1のガス成分が上記の(X6)である場合、図3に示す濃度調整ユニット30において、第1の精製塔31と第3の精製塔33を組み合わせて使用する。具体的には、電磁バルブV4、V5、V9、V10、V11、V15を開状態とし、電磁バルブV6、V7、V8、V12、V13、V14を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、窒素、酸素を第1の精製塔31、第3の精製塔33でそれぞれ除去できる。
第1のガス成分が上記の(X7)である場合、図3に示す濃度調整ユニット30において、第1の精製塔31と第2の精製塔32と第3の精製塔33を組み合わせて使用する。具体的には、電磁バルブV4、V5、V7、V8、V10、V11、V13、V14を開状態とし、電磁バルブV6、V9、V12、V15を閉状態とする。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、酸素、水分、窒素を第1の精製塔31、第2の精製塔32、第3の精製塔33でそれぞれ除去できる。
本積層造形方法に係るステップ(b)では、CPU37によって、粉体材料Mの材質等の情報(外部シグナル)に基づいて、第2のガス成分の供給の有無を決定し、第2のガス成分のガス種を決定する。ステップ(b)に際しては、例えば、粉体材料Mの材質を考慮し、第2のガス成分を供給することで積層造形物Xの品質を高めることができると期待できるときに、第2のガス成分を第2の供給ラインL2に供給することを決定し、粉体材料Mに応じて第2のガス成分のガス種を決定する。
例えば、粉体材料Mがアルミニウム合金である場合、金属造形物の断面の空孔が低減され、金属造形物の品質のさらなる向上が可能となることから、第2のガス成分として酸素をチャンバー3内に供給することが好ましい。粉体材料Mがアルミニウム合金である場合、CPU37によって、第2のガス成分の供給が決定され、電磁バルブV16を開状態となる。加えて、CPU37によって第2のガス成分のガス種が酸素に決定され、供給源36として、酸素の供給源が選択される。
このように、本積層造形方法に係るステップ(b)では、濃度調整ユニット30の精製部で第1のガス成分が除去されたガスに第2のガス成分を必要に応じて供給できる。そのため、チャンバー3内の第2のガス成分の濃度を一定に保持することができ、粉体材料Mに応じて積層造形物の品質をさらに高めることが可能となる。
他にも、粉体材料Mがステンレス合金、ニッケル合金である場合、積層造形物Xの機械的特性が優れることから、ステップ(c)では酸素、水分を第1の精製塔31、第2の精製塔32で除去しながら、チャンバー3からパージし、ステップ(b)では、第1のガス成分として、酸素、水分の2種のガス成分の組み合わせを第1のガス成分として除去することが好ましい。
また、粉体材料Mがチタン合金である場合、積層造形物Xの空孔が低減し、機械的特性が優れることから、ステップ(c)では酸素、水分及び窒素の3種のガス成分を第1の精製塔31、第2の精製塔32、第3の精製塔33で除去しながら、これらの3種のガス成分をチャンバー3からパージし、ステップ(b)では、これらの3種のガス成分を第1のガス成分として除去することが好ましい。
このように本実施形態に係る積層造形システム70又は積層造形方法によれば、粉体材料Mに応じて、ステップ(b)における第1のガス成分、第2のガス成分の選択により、金属造形物の品質をさらに高めることができる。
以上説明した本積層造形方法にあっては、ステップ(b)を有する。ステップ(b)では、シールドガス中の不純物となる第1のガス成分を、粉体材料に応じて除去する。そのため、粉体材料の材質等に応じてシールドガス中の不純物となるガス成分を第1の精製塔、第2の精製塔、第3の精製塔、第4の精製塔のうちから選択して除去できる。よって、チャンバー内のシールドガス中の金属造形物の製造に不要なガス成分、金属造形物の機械的特性の低下の原因となるガス成分の濃度を粉体材料に応じて低減でき、金属造形物の品質を粉体材料に応じてさらに高めることができる。
加えて、本積層造形方法に係るステップ(b)では、粉体材料に応じて選択される第2のガス成分を必要に応じてチャンバー内に供給する。そのため、粉体材料の材質等に応じて積層造形物Xの品質の向上に寄与すると期待されるガス成分をチャンバー内に供給し、その濃度を一定に保持できる。その結果、チャンバー内のシールドガス中の第2のガス成分の濃度が粉体材料に応じて最適化され、金属造形物の品質を粉体材料に応じてさらに高めることができる。
例えば、本積層造形方法において、第1のガス成分として、酸素、水分をチャンバー内のシールドガスから除去することで、チャンバー3内のシールドガス中の酸素濃度、水分濃度をきわめて低濃度に短時間で調整できる。そして、必要に応じて酸素を第2のガス成分として供給源36から第3の供給ラインL12、第2の供給ラインL2を介してチャンバー3内に供給することで、酸素濃度を最適化された濃度に調整し、最適化した成分組成を維持できる。
加えて、チャンバー3内と第1の精製塔31内との間でチャンバー3内のシールドガスの一部を循環させる間は、シールドガス供給ラインL4によりシールドガスを新たにチャンバー3内に供給しなくてもよい。そのため、本実施形態によれば、相対的に少量のシールドガスの供給量で、従来大量のシールドガスをチャンバー3内に供給しなければ達成できなかったような低水準にまで酸素濃度を低減できる。また、シールドガスの供給量が大幅に減ることから、チャンバー3内の酸素濃度をきわめて短時間で低下させることができる。
例えば、上述の実施形態例においては精製塔の数が4つであるが、本発明は精製塔の数が4つである形態に限定されない。本実施形態において、精製塔の数は除去対象となる第1のガス成分の数に応じて変更可能である。
また、上述の実施形態例においては、精製部が、酸素、水分及び窒素からなる群から選ばれる少なくとも一つ以上のガス成分を除去する形態であるが、除去対象となる第1のガス成分は、これらの酸素、水分、窒素に加えて、その他のガス成分をさらに含んでもよい。そのため、他の実施形態例においては、粉体材料Mに応じて精製塔内の吸着剤、精製塔の数を変更可能である。
また、上述の実施形態例においては、濃度調整ユニットの制御部を、濃度調整ユニットの精製部及び供給部とは別個の構成として説明したが、制御部は、精製部及び供給部の各構成に含まれてもよい。また、上述の実施形態例においては、制御部が濃度調整ユニットの構成として開示されているが、他の実施形態例においては、制御部を積層造形ユニットの構成としてもよく、積層造形ユニット及び濃度調整ユニットとは別個の積層造形システムの構成としてもよい。
以下、実施例によって本発明を具体的に説明する。ただし、本発明は以下の記載によって限定されない。
図1に示す積層造形システム70において、ステップ(c)を2時間行った。具体的には、電磁バルブV3を開状態とし、電磁バルブV1、V2を閉状態とし、図示略のパージラインを開放することで、チャンバー3内のガスをシールドガスに置換した。ステップ(c)の開始後2時間が経過したとき、バルブV1、V2を開状態とし、電磁バルブV3を閉状態とし、ステップ(c)の実施を終了し、図示略のパージラインによるシールドガスの供給を停止した。次いで、ステップ(b)の実施を開始した。ステップ(b)では、図3に示す電磁バルブV4、V5、V9、V12、V15を開状態とし、電磁バルブV6、V7、V8、V10、V11、V13、V14を閉状態とした。これにより、チャンバー3内のシールドガス中から、第1のガス成分として、酸素を第1の精製塔31で除去した。その後、ステップ(b)の実施による効果を検証するために、チャンバー3内の酸素濃度の測定値の時間経過を観察した。
ステップ(c)の開始後2時間が経過したとき、ステップ(c)を終了せず、図示略のパージラインを開放し続けた以外は、実施例1と同様にしてチャンバー3内の酸素濃度の測定値の時間経過を観察した。
ステップ(c)の開始後2時間が経過したとき、電磁バルブV6、V7、V8、V12、V15を開状態とし、電磁バルブV4、V5、V9、V10、V11、V13、V14を閉状態とし、第2の精製塔32で水分を除去した以外は、実施例1と同様にステップ(c)の実施を終了し、図示略のパージラインによるシールドガスの供給を停止し、ステップ(b)の実施を開始した。その後、ステップ(b)の実施による効果を検証するために、チャンバー3内の水分濃度の測定値の時間経過を観察した。
ステップ(c)の開始後2時間が経過したとき、ステップ(c)を終了せず、図示略のパージラインを開放し続けた以外は、実施例2と同様にしてチャンバー3内の水分濃度の測定値の時間経過を観察した。
積層造形システム70において、粉体材料としてチタン合金を使用した。実施例3では、(X7):酸素、水分、窒素の三種類のガス成分の組み合わせを第1のガス成分としてステップ(b)で除去することをCPU37によって決定した。また、供給源36で第2のガス成分の供給を実行しないことをCPU37によって決定した。
まず、電磁バルブV3を開状態とし、電磁バルブV1、V2を閉状態とし、図示略のパージラインを開放することで、チャンバー3内のガスをシールドガスに置換し、ステップ(c)を2時間行った。ステップ(c)の開始後2時間が経過したとき、電磁バルブV4、V5、V7、V8、V10、V11、V15を開状態とし、電磁バルブV6、V9、V12、V13、V14、V16を閉状態とし、図示略のパージラインによるシールドガスの供給を停止した。その後、チャンバー3内のシールドガス中から、第1のガス成分として、酸素、水分、窒素を第1の精製塔31、第2の精製塔32、第3の精製塔33で除去するステップ(b)を実施しながら、ステップ(a)を実施して、ステンレス合金製の積層造形物を製造した。
ステップ(c)の開始後2時間が経過したとき、ステップ(b)を実施せずに、ステップ(a)を実施した以外は、実施例3と同様にしてステンレス合金製の積層造形物を製造した。
積層造形システム70において、粉体材料としてアルミ合金を使用した。実施例4ではX(2):水分の一種類のガス成分を第1のガス成分としてステップ(b)で除去することをCPU37によって決定した。また、供給源36で酸素の供給をするようCPU37によって決定した。
まず、電磁バルブV3を開状態とし、電磁バルブV1、V2を閉状態とし、図示略のパージラインを開放することで、チャンバー3内のガスをシールドガスに置換し、ステップ(c)を2時間行った。ステップ(c)の開始後2時間が経過したとき、電磁バルブV6、V7、V8、V12、V13、V14、V16を開状態とし、電磁バルブV4、V5、V9、V10、V11、V15を閉状態とし、図示略のパージラインによるシールドガスの供給を停止した。その後、チャンバー3内のシールドガス中から、第1のガス成分として、水分のみを第2の精製塔32、第4の精製塔34で除去し、供給源36から第2のガス成分として酸素をチャンバー3内に供給するステップ(b)を実施しながら、ステップ(a)を実施して、ステンレス合金製の積層造形物を製造した。
ステップ(c)の開始後2時間が経過したとき、ステップ(b)を実施せずに、ステップ(a)を実施した以外は、実施例4と同様にしてステンレス合金製の積層造形物を製造した。
Claims (8)
- シールドガスが充填されるチャンバー内でエネルギー線を照射する、積層造形システムであって、
前記エネルギー線を用いて粉体材料に熱を供給して層を造形し、前記層を順次積層して積層造形物とする積層造形ユニットと、
前記シールドガス中のガス成分の濃度を調整する濃度調整ユニットと、
前記チャンバー内の前記シールドガスの一部を、前記濃度調整ユニットに供給する第1の供給ラインと、
前記第1の供給ラインから前記濃度調整ユニットに供給された前記シールドガスを、前記チャンバー内に再供給する第2の供給ラインと、
を備え、
前記積層造形ユニットは、
前記エネルギー線の照射源を含む照射部と、
前記チャンバー、及び、前記層の造形及び積層が行われる造形ステージを含む造形部と、
を有し、
前記濃度調整ユニットは、
前記シールドガス中の不純物となる第1のガス成分を、前記粉体材料に応じて除去する精製部と、
前記粉体材料に応じて選択される第2のガス成分を必要に応じて前記チャンバー内に供給する供給部と、
を有し、
前記第2の供給ラインが、前記シールドガスの一部から前記第1のガス成分が前記精製部によって除去されたガスを前記チャンバー内に供給し、
前記供給部が、前記第2の供給ライン中の前記ガスに前記第2のガス成分を必要に応じて供給する第3の供給ラインをさらに含む、積層造形システム。 - 前記精製部が、前記第1の供給ラインと接続される、下記の第1の精製塔、第2の精製塔、第3の精製塔及び第4の精製塔からなる群から選ばれる少なくとも一つ以上を含む、請求項1に記載の積層造形システム。
第1の精製塔:前記シールドガスから酸素を除去する精製塔であり、当該第1の精製塔の一次側及び二次側を接続する第1のバイパスラインが設けられている精製塔。
第2の精製塔:前記シールドガスから水分を除去する精製塔であり、当該第2の精製塔の一次側及び二次側を接続する第2のバイパスラインが設けられている精製塔。
第3の精製塔:前記シールドガスから窒素を除去する精製塔であり、当該第3の精製塔の一次側及び二次側を接続する第3のバイパスラインが設けられている精製塔。
第4の精製塔:前記シールドガスから水分を除去し、酸素を除去しない精製塔であり、当該第4の精製塔の一次側及び二次側を接続する第4のバイパスラインが設けられている精製塔。 - 前記供給部が、水素、酸素、一酸化炭素、二酸化炭素、アンモニアからなる群から選ばれる一つ以上の前記第2のガス成分の供給源を含む、請求項1又は2に記載の積層造形システム。
- シールドガスの存在下で、エネルギー線を用いて粉体材料に熱を供給して層を造形し、前記層を順次積層して積層造形物を製造する積層造形方法であって、
前記層を造形し、前記層を順次積層するステップ(a)と、
前記シールドガス中のガス成分の濃度を調整するステップ(b)と、
を有し、
前記ステップ(a)では、チャンバー内の粉体材料にエネルギー線を照射し、前記チャンバー内で前記層を造形し、造形した前記層を順次積層し、
前記ステップ(b)では、前記チャンバー内のシールドガスの一部を前記チャンバー外に取り出した後、前記チャンバー外で前記シールドガス中の不純物となる第1のガス成分を前記粉体材料に応じて除去し、次いで、前記シールドガスから前記第1のガス成分が除去されたガスに、前記粉体材料に応じて選択される第2のガス成分を必要に応じて前記チャンバー外で供給した後、前記ガスを前記チャンバー内に再供給する、積層造形方法。 - 前記ステップ(b)で、酸素、水分及び窒素からなる群から選ばれる少なくとも一つ以上のガス成分を前記第1のガス成分として前記シールドガスから除去する、請求項4に記載の積層造形方法。
- 前記ステップ(b)で、水素、酸素、一酸化炭素、二酸化炭素、アンモニアからなる群から選ばれる一つ以上のガス成分を前記第2のガス成分として前記チャンバー内に供給する、請求項4又は5に記載の積層造形方法。
- 前記ステップ(b)で、前記粉体材料の種類に応じて前記第1のガス成分を切り替える、請求項4〜6のいずれか一項に記載の積層造形方法。
- 前記ステップ(b)で、前記第1のガス成分が除去されたガスに前記第2のガス成分を必要に応じて供給する、請求項4〜7のいずれか一項に記載の積層造形方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019205956A JP6720400B1 (ja) | 2019-11-14 | 2019-11-14 | 積層造形システム、積層造形方法 |
EP20888266.2A EP4059656A4 (en) | 2019-11-14 | 2020-11-13 | LAYERED FORMING SYSTEM AND LAYERED FORMING PROCESS |
US17/776,371 US20220395905A1 (en) | 2019-11-14 | 2020-11-13 | Laminating-printing system and laminating-printing method |
PCT/JP2020/042502 WO2021095871A1 (ja) | 2019-11-14 | 2020-11-13 | 積層造形システム、および積層造形方法 |
CN202080078173.9A CN114728341A (zh) | 2019-11-14 | 2020-11-13 | 层叠造型系统及层叠造型方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019205956A JP6720400B1 (ja) | 2019-11-14 | 2019-11-14 | 積層造形システム、積層造形方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6720400B1 true JP6720400B1 (ja) | 2020-07-08 |
JP2021079550A JP2021079550A (ja) | 2021-05-27 |
Family
ID=71402465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019205956A Active JP6720400B1 (ja) | 2019-11-14 | 2019-11-14 | 積層造形システム、積層造形方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220395905A1 (ja) |
EP (1) | EP4059656A4 (ja) |
JP (1) | JP6720400B1 (ja) |
CN (1) | CN114728341A (ja) |
WO (1) | WO2021095871A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101222A1 (ja) * | 2022-11-11 | 2024-05-16 | 大陽日酸株式会社 | 積層構造物の製造装置及び積層構造物の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0289116A1 (en) * | 1987-03-04 | 1988-11-02 | Westinghouse Electric Corporation | Method and device for casting powdered materials |
EP2730353B1 (en) * | 2012-11-12 | 2022-09-14 | Airbus Operations GmbH | Additive layer manufacturing method and apparatus |
JP2015202596A (ja) * | 2014-04-11 | 2015-11-16 | セイコーエプソン株式会社 | 造形材料、造形装置、及び造形材料供給機構 |
EP2992942B1 (en) * | 2014-09-03 | 2019-06-05 | SLM Solutions Group AG | Apparatus for producing 3d work pieces by additive manufacturing with an improved recycling gas circuit and related method using the same |
JP5841649B1 (ja) | 2014-10-08 | 2016-01-13 | 株式会社ソディック | 積層造形装置 |
US10675854B2 (en) * | 2015-01-16 | 2020-06-09 | Raytheon Technologies Corporation | Additive processing apparatus and method |
EP3075470A1 (de) * | 2015-03-31 | 2016-10-05 | Linde Aktiengesellschaft | Verfahren zum schichtweisen herstellen eines metallischen werkstücks durch laserunterstützte additive fertigung |
EP3147047B1 (en) * | 2015-09-25 | 2023-08-02 | SLM Solutions Group AG | Apparatus for producing a three-dimensional workpiece with improved gas flow and manufacturing method of a three-dimensional workpiece |
EP3318351B1 (de) * | 2016-11-02 | 2020-12-30 | Linde GmbH | Verfahren zur generativen fertigung eines 3-dimensionalen bauteils |
JP6912927B2 (ja) * | 2017-04-25 | 2021-08-04 | 大陽日酸株式会社 | 積層構造物の製造方法 |
FR3071179B1 (fr) * | 2017-09-18 | 2019-09-13 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Refroidissement de secours de presse isostatique a chaud |
US20190322050A1 (en) * | 2018-04-19 | 2019-10-24 | General Electric Company | Additive manufacturing system and method |
EP3560714A1 (en) * | 2018-04-26 | 2019-10-30 | Nabtesco Corporation | Modeling apparatus |
JP2019209646A (ja) * | 2018-06-07 | 2019-12-12 | ナブテスコ株式会社 | 造形装置 |
EP3628419A1 (en) * | 2018-09-25 | 2020-04-01 | Linde Aktiengesellschaft | Method and device for feeding gas to an additive manufacturing space |
-
2019
- 2019-11-14 JP JP2019205956A patent/JP6720400B1/ja active Active
-
2020
- 2020-11-13 US US17/776,371 patent/US20220395905A1/en active Pending
- 2020-11-13 WO PCT/JP2020/042502 patent/WO2021095871A1/ja unknown
- 2020-11-13 EP EP20888266.2A patent/EP4059656A4/en active Pending
- 2020-11-13 CN CN202080078173.9A patent/CN114728341A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2021079550A (ja) | 2021-05-27 |
CN114728341A (zh) | 2022-07-08 |
EP4059656A4 (en) | 2023-12-06 |
WO2021095871A1 (ja) | 2021-05-20 |
US20220395905A1 (en) | 2022-12-15 |
EP4059656A1 (en) | 2022-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6895974B2 (ja) | 反応性流体を使用する付加製造及びこれを使用して作る製品 | |
US20190054533A1 (en) | Additive manufacturing method and apparatus | |
JP6877988B2 (ja) | 酸素を含有するガス混合気を用いた金属付加製造 | |
EP2832528B1 (en) | Method and apparatus for the recovery and regeneration of metal powder in ebm applications | |
JP5863652B2 (ja) | 固体自由形状製造による溶接可能材料の物体の製造のための反応器 | |
US20130287590A1 (en) | Generatively produced turbine blade and device and method for producing same | |
US20170182594A1 (en) | Metal additive manufacturing using gas mixture including oxygen | |
JP6720400B1 (ja) | 積層造形システム、積層造形方法 | |
RU2722025C1 (ru) | Проволоки из множества материалов для аддитивного производства титановых сплавов | |
WO2020018604A1 (en) | Spatial porosity and composition control in additive manufacturing | |
WO2017194204A1 (de) | Verfahren und vorrichtung insbesondere zum generativen fertigen und kodieren eines dreidimensionalen bauteils | |
JP7169255B2 (ja) | 積層構造物の製造方法 | |
EP3599082B1 (en) | Apparatus for additively manufacturing three-dimensional objects | |
JP6078055B2 (ja) | 金属又は合金物体の生産 | |
JP6942839B2 (ja) | 3次元の物体を付加製造する方法 | |
EP3797902A1 (en) | Method and system for atmosphere in additive manufacture | |
JP7189099B2 (ja) | 金属造形物の製造方法 | |
US12059729B2 (en) | Method for manufacturing metal printed object | |
JP6934527B2 (ja) | 粉末再生方法 | |
EP3290134A1 (en) | Method for additive manufacturing | |
JPH0275996A (ja) | 金属製中性子吸収エレメント及び該エレメントの製造方法 | |
JP2021059072A (ja) | 積層造形装置、積層造形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191129 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191129 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6720400 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |