JP6717421B1 - Light emitting module - Google Patents

Light emitting module Download PDF

Info

Publication number
JP6717421B1
JP6717421B1 JP2019207695A JP2019207695A JP6717421B1 JP 6717421 B1 JP6717421 B1 JP 6717421B1 JP 2019207695 A JP2019207695 A JP 2019207695A JP 2019207695 A JP2019207695 A JP 2019207695A JP 6717421 B1 JP6717421 B1 JP 6717421B1
Authority
JP
Japan
Prior art keywords
light emitting
light
recess
guide plate
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019207695A
Other languages
Japanese (ja)
Other versions
JP2020109745A (en
Inventor
広樹 由宇
広樹 由宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to TW108147818A priority Critical patent/TWI744756B/en
Priority to CN201922429334.1U priority patent/CN212303701U/en
Priority to US16/728,346 priority patent/US11073654B2/en
Priority to CN201911376463.7A priority patent/CN111384226B/en
Priority to JP2020099415A priority patent/JP7456858B2/en
Application granted granted Critical
Publication of JP6717421B1 publication Critical patent/JP6717421B1/en
Publication of JP2020109745A publication Critical patent/JP2020109745A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】薄型化が可能な発光モジュールを提供する。【解決手段】第1主面11と、第1主面の反対側の第2主面12を有する導光板10と、第2主面側に配置される光源部材20であって、主発光面と主発光面の反対側に位置する電極形成面と主発光面と電極形成面との間の側面とを有する発光素子と、発光素子の主発光面及び側面を覆う波長変換部材と、を備える複数の光源部材と、光源部材及び導光板の前記第2主面を覆う封止部材50と、を備え、導光板は第2主面に位置する複数の第1凹部121を有し、断面視において発光素子の側面の少なくとも一部が第1凹部内に位置するように配置される、発光モジュール100。【選択図】図1BPROBLEM TO BE SOLVED: To provide a light emitting module which can be made thin. A light guide plate (10) having a first main surface (11), a second main surface (12) opposite to the first main surface, and a light source member (20) arranged on the second main surface side, which is a main light emitting surface. And a light emitting element having an electrode forming surface located on the opposite side of the main light emitting surface and a side surface between the main light emitting surface and the electrode forming surface, and a wavelength conversion member covering the main light emitting surface and the side surface of the light emitting element. A plurality of light source members and a sealing member 50 that covers the light source member and the second main surface of the light guide plate are provided, and the light guide plate has a plurality of first recesses 121 located on the second main surface, and is viewed in cross section. In the light emitting module 100, the light emitting element is arranged such that at least a part of a side surface of the light emitting element is located in the first recess. [Selection diagram] Fig. 1B

Description

本開示は、発光モジュールに関する。 The present disclosure relates to a light emitting module.

発光ダイオード等の発光素子を用いた発光装置は、液晶ディスプレイのバックライトやディスプレイ等の各種の光源として広く利用されている。
例えば、特許文献1に開示される光源装置は、実装基板に実装される複数の発光素子と、複数の発光素子のそれぞれを封止する半球状のレンズ部材とその上に配置された発光素子からの光が入射される拡散部材を備える。
A light emitting device using a light emitting element such as a light emitting diode is widely used as various light sources such as a backlight of a liquid crystal display and a display.
For example, the light source device disclosed in Patent Document 1 includes a plurality of light emitting elements mounted on a mounting substrate, a hemispherical lens member that seals each of the plurality of light emitting elements, and a light emitting element arranged on the hemispherical lens member. Is provided with a diffusing member.

特開2015−32373号公報JP, 2015-32373, A

しかしながら、特許文献1のような光源装置では、実装基板と拡散板との間の距離をレンズ部材の厚みよりも大きくする必要があり、十分な薄型化が達成できない可能性がある。 However, in the light source device as in Patent Document 1, it is necessary to make the distance between the mounting substrate and the diffusion plate larger than the thickness of the lens member, and there is a possibility that sufficient thinning cannot be achieved.

そこで、本開示は、薄型化が可能な、導光板と発光素子とを備える発光モジュールを提供することを目的とする。 Therefore, it is an object of the present disclosure to provide a light emitting module including a light guide plate and a light emitting element that can be thinned.

本開示にかかる発光モジュールの製造方法は、以下の構成を備える。
第1主面と、第1主面の反対側の第2主面を有する導光板と、第2主面側に配置される光源部材であって、主発光面と主発光面の反対側に位置する電極形成面と主発光面と電極形成面との間の側面とを有する発光素子と、発光素子の主発光面及び側面を覆う波長変換部材と、を備える複数の光源部材と、光源部材及び導光板の前記第2主面を覆う封止部材と、を備え、導光板は第2主面に位置する複数の第1凹部を有し、断面視において発光素子の側面の少なくとも一部が第1凹部内に位置するように配置される、発光モジュール。
A method for manufacturing a light emitting module according to the present disclosure has the following configuration.
A light guide plate having a first main surface and a second main surface opposite to the first main surface, and a light source member arranged on the second main surface side, the main light emitting surface being opposite to the main light emitting surface. A plurality of light source members including a light emitting element having an electrode forming surface and a side surface between the main light emitting surface and the electrode forming surface, and a wavelength conversion member covering the main light emitting surface and the side surface of the light emitting element, and a light source member. And a sealing member that covers the second main surface of the light guide plate, the light guide plate has a plurality of first recesses located on the second main surface, and at least a part of a side surface of the light emitting element in a cross-sectional view. The light emitting module is arranged so as to be located in the first recess.

これにより、薄型化が可能な、導光板と発光素子とを備える発光モジュールを提供することができる。 Accordingly, it is possible to provide a light emitting module including a light guide plate and a light emitting element, which can be made thin.

実施形態1にかかる発光モジュールの一例を示す模式平面図である。FIG. 3 is a schematic plan view showing an example of a light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view of the light emitting module according to the first embodiment. 実施形態1にかかる導光板の一例を示す一部拡大模式平面図と一部拡大模式側面図である。FIG. 3 is a partially enlarged schematic plan view and a partially enlarged schematic side view showing an example of the light guide plate according to the first embodiment. 実施形態1にかかる導光板の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of the light guide plate according to the first embodiment. 実施形態1に係る発光モジュールの一例を示す一部拡大模式断面図である。3 is a partially enlarged schematic cross-sectional view showing an example of the light emitting module according to Embodiment 1. FIG. 実施形態1に係る発光モジュールの一例を示す一部拡大模式断面図である。3 is a partially enlarged schematic cross-sectional view showing an example of the light emitting module according to Embodiment 1. FIG. 実施形態1にかかる発光モジュールの光源部材の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a light source member of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの光源部材の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a light source member of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの光源部材の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a light source member of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの光源部材の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a light source member of the light emitting module according to the first embodiment. 光源部材の製造工程の一例を示す一部拡大模式断面図である。It is a partially expanded schematic cross section which shows an example of the manufacturing process of a light source member. 光源部材の製造工程の一例を示す一部拡大模式断面図である。It is a partially expanded schematic cross section which shows an example of the manufacturing process of a light source member. 光源部材の製造工程の一例を示す一部拡大模式断面図である。It is a partially expanded schematic cross section which shows an example of the manufacturing process of a light source member. 光源部材の製造工程の一例を示す一部拡大模式断面図である。It is a partially expanded schematic cross section which shows an example of the manufacturing process of a light source member. 光源部材の製造工程の一例を示す一部拡大模式断面図である。It is a partially expanded schematic cross section which shows an example of the manufacturing process of a light source member. 光源部材の製造工程の一例を示す一部拡大模式断面図である。It is a partially expanded schematic cross section which shows an example of the manufacturing process of a light source member. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式平面図である。FIG. 3 is a partially enlarged schematic plan view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式平面図である。FIG. 3 is a partially enlarged schematic plan view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態1にかかる発光モジュールの製造工程の一例を示す一部拡大模式断面図である。FIG. 3 is a partially enlarged schematic cross-sectional view showing an example of a manufacturing process of the light emitting module according to the first embodiment. 実施形態2にかかる発光モジュールの一部拡大模式断面図である。FIG. 6 is a partially enlarged schematic sectional view of a light emitting module according to a second embodiment. 図9Aの一部を拡大して示す模式断面図である。It is a schematic cross section which expands and shows a part of FIG. 9A. 実施形態2にかかる発光モジュールの光源部材の一例を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing an example of a light source member of the light emitting module according to the second embodiment. 実施形態2にかかる発光モジュールの変形例1の光源部材の模式断面図である。FIG. 9 is a schematic cross-sectional view of a light source member of Modification 1 of the light emitting module according to the second embodiment. 実施形態2にかかる発光モジュールの変形例2の光源部材の模式断面図である。FIG. 9 is a schematic cross-sectional view of a light source member of Modification 2 of the light emitting module according to the second embodiment. 実施形態2にかかる発光モジュールの変形例3の光源部材の模式断面図である。FIG. 9 is a schematic cross-sectional view of a light source member of Modification 3 of the light emitting module according to the second embodiment. 実施形態2にかかる発光モジュールにおいて変形例3の光源部材を用いたときの発光モジュールの一部拡大模式断面図である。FIG. 9 is a partially enlarged schematic cross-sectional view of a light emitting module when the light source member of Modification 3 is used in the light emitting module according to the second embodiment.

以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。また、各部材は、例えば硬化の前後において、また、切断の前後等において、状態や形状等が異なる場合であっても同じ名称を用いるものとする。 Hereinafter, the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a particular direction or position (eg, “upper”, “lower”, and other terms including those terms) are used as necessary, but the use of those terms is not allowed. The purpose is to facilitate understanding of the invention with reference to the drawings, and the technical scope of the invention is not limited by the meanings of the terms. Further, the portions having the same reference numerals appearing in a plurality of drawings indicate the same or equivalent portions or members. In addition, the same name is used for each member even when the state, shape, etc. are different before and after curing, before and after cutting, and the like.

さらに以下に示す実施形態は、本発明の技術思想を具体化するための発光モジュールを例示するものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。 Furthermore, the embodiments described below exemplify a light emitting module for embodying the technical idea of the present invention, and the present invention is not limited to the following. Further, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention thereto, unless specifically stated, and are merely exemplified. It was intended. Further, the contents described in one embodiment and example can be applied to other embodiments and examples. In addition, the sizes and positional relationships of members shown in the drawings may be exaggerated in order to clarify the explanation.

実施形態1
本実施形態1の発光モジュールの構成を主として図1A〜図1Dに示す。
図1Aは、本実施形態1にかかる発光モジュール100の模式平面図である。図1Bは、本実施形態1にかかる発光モジュール100を示す一部拡大模式断面図であり、ここでは、図1Aに示す領域Sに示すIB(IB)線における断面図を示す。図1Cは、図1Bの1つの光源部材20と第2凹部122を含む部分を拡大した図であり、図1Dは、1つの光源部材20を拡大した図である。
Embodiment 1
The structure of the light emitting module of Embodiment 1 is mainly shown in FIGS. 1A to 1D.
FIG. 1A is a schematic plan view of the light emitting module 100 according to the first embodiment. FIG. 1B is a partially enlarged schematic cross-sectional view showing the light emitting module 100 according to the first embodiment, and here, a cross-sectional view taken along the line IB (IB) shown in the region S shown in FIG. 1A is shown. FIG. 1C is an enlarged view of a portion including one light source member 20 and second recess 122 of FIG. 1B, and FIG. 1D is an enlarged view of one light source member 20.

発光モジュール100は、導光板10と、導光板10に接合された複数の光源部材20と、封止部材50と、を備える。導光板10は、光取り出し面となる第1主面11と、第1主面11と反対側の第2主面12と、を備える。導光板10は第2主面12にマトリクス状に配置される複数の第1凹部121を備えている。光源部材20は、発光素子21と波長変換部材26と、を備える。複数の光源部材20は、導光板10の第2主面12の第1凹部121の底面121aの上に、接合部材40によって接合されている。封止部材50は、光源部材20と導光板10の第2主面12と覆うように配置される。 The light emitting module 100 includes a light guide plate 10, a plurality of light source members 20 joined to the light guide plate 10, and a sealing member 50. The light guide plate 10 includes a first main surface 11 serving as a light extraction surface, and a second main surface 12 opposite to the first main surface 11. The light guide plate 10 includes a plurality of first recesses 121 arranged in a matrix on the second main surface 12. The light source member 20 includes a light emitting element 21 and a wavelength conversion member 26. The plurality of light source members 20 are joined by the joining member 40 on the bottom surface 121 a of the first recess 121 of the second main surface 12 of the light guide plate 10. The sealing member 50 is arranged so as to cover the light source member 20 and the second main surface 12 of the light guide plate 10.

光源部材20は、断面視において、発光素子21の側面21cの少なくとも一部が第1凹部121内に位置するように配置される。換言すると、光源部材20は、断面視において発光素子21の主発光面21aが、第1凹部121の周りの第2主面12より下側に位置するように配置される。 The light source member 20 is arranged such that at least a part of the side surface 21c of the light emitting element 21 is located in the first recess 121 in a cross-sectional view. In other words, the light source member 20 is arranged such that the main light emitting surface 21a of the light emitting element 21 is located below the second main surface 12 around the first recess 121 in a cross-sectional view.

発光素子21の主発光面21aから出射される光は、発光素子21の主発光面21aを覆う波長変換部材26に照射される。そして、光源部材20からの光は、発光素子21からの光と波長変換部材26からの混色光として、第1凹部121の底面121aから導光板10内に入射される。 The light emitted from the main light emitting surface 21a of the light emitting element 21 is applied to the wavelength conversion member 26 that covers the main light emitting surface 21a of the light emitting element 21. Then, the light from the light source member 20 enters the light guide plate 10 from the bottom surface 121 a of the first recess 121 as the light from the light emitting element 21 and the color-mixed light from the wavelength conversion member 26.

発光素子21の側面21cから出射される光は、発光素子21の側面21cを覆う波長変換部材26に照射される。そして、光源部材20からの光は、発光素子21からの光と波長変換部材26からの光の混色光として、第1凹部121の側面121bから導光板10内に入射される。 The light emitted from the side surface 21c of the light emitting element 21 is applied to the wavelength conversion member 26 that covers the side surface 21c of the light emitting element 21. Then, the light from the light source member 20 enters the light guide plate 10 from the side surface 121b of the first recess 121 as a mixed color light of the light from the light emitting element 21 and the light from the wavelength conversion member 26.

発光素子21の少なくとも一部が導光板10の第1凹部121内に位置することで、光源部材20から出射される光を、導光板10内において効率よく側方に広げやすくすることができる。そのため、導光板10の第1主面11の全面の輝度ムラの少ない面発光が可能な発光モジュールとすることができる。 Since at least a part of the light emitting element 21 is located in the first recess 121 of the light guide plate 10, the light emitted from the light source member 20 can be easily and efficiently spread laterally in the light guide plate 10. Therefore, it is possible to provide a light emitting module capable of surface emission with less luminance unevenness on the entire first main surface 11 of the light guide plate 10.

断面視において、発光素子21の側面21cと第1凹部121の側面121bとが対向する長さToは、発光素子21の側面21cの長さTc(主発光面21aと電極形成面21bとの距離)の20%〜100%が好ましく、50%〜100%とすることがより好ましい。 In a cross-sectional view, the length To of which the side surface 21c of the light emitting element 21 and the side surface 121b of the first recess 121 face each other is the length Tc of the side surface 21c of the light emitting element 21 (the distance between the main light emitting surface 21a and the electrode forming surface 21b). 20% to 100% is preferable, and 50% to 100% is more preferable.

また、発光素子21が、素子基板22sを備える半導体積層体22を備える場合は、断面視において、素子基板22sの側面の長さの20%〜100%が、第1凹部121の側面121bと対向することが好ましく、さらに、50%〜100%がより好ましい。 When the light emitting element 21 includes the semiconductor stacked body 22 including the element substrate 22s, 20% to 100% of the length of the side surface of the element substrate 22s faces the side surface 121b of the first recess 121 in a cross-sectional view. Is preferable, and more preferably 50% to 100%.

発光モジュールを構成する各部材について、以下に詳述する。 Each member constituting the light emitting module will be described in detail below.

[導光板10]
図2Aは、図1Aに示す導光板10の一部分である領域Sを拡大した図であり、それぞれ第1主面11、第2主面12及びIB(IB)線における断面図を示す。図2Bは、図2Aの断面図を拡大して示す断面図である。導光板10は、光源部材20からの光が入射され、面状の発光を行う透光性の板状部材である。導光板10は、光取り出し面となる第1主面11と、第1主面11と反対側の第2主面12と、を備える。第1主面11には光源部材20が配置される第1凹部121を備える。
[Light guide plate 10]
FIG. 2A is an enlarged view of a region S that is a part of the light guide plate 10 shown in FIG. 1A, and is a cross-sectional view taken along the first main surface 11, the second main surface 12, and the line IB (IB), respectively. FIG. 2B is an enlarged cross-sectional view of the cross-sectional view of FIG. 2A. The light guide plate 10 is a translucent plate-shaped member that receives light from the light source member 20 and emits light in a planar shape. The light guide plate 10 includes a first main surface 11 serving as a light extraction surface, and a second main surface 12 opposite to the first main surface 11. The first major surface 11 has a first recess 121 in which the light source member 20 is arranged.

導光板10が平面視形状が四角形の場合、平面視における大きさは、例えば、一辺が1cm〜200cm程度とすることができ、3cm〜30cm程度が好ましい。また、導光板10の厚みは0.1mm〜5mm程度とすることができ、0.5mm〜3mmが好ましい。尚、ここでの「厚み」とは、例えば、第1主面11や第2主面12に凹部や凸部等がある場合は、それらがないものと仮定した場合の厚みを指すものとする。
導光板10の平面形状は例えば、略矩形や略円形等とすることができる。
When the light guide plate 10 has a quadrangular shape in plan view, the size in plan view may be, for example, about 1 cm to 200 cm on one side, and preferably about 3 cm to 30 cm. The thickness of the light guide plate 10 can be set to about 0.1 mm to 5 mm, preferably 0.5 mm to 3 mm. It should be noted that the term "thickness" as used herein refers to the thickness when it is assumed that the first main surface 11 and the second main surface 12 have no recesses or protrusions, for example. ..
The planar shape of the light guide plate 10 may be, for example, a substantially rectangular shape or a substantially circular shape.

導光板10の材料としては、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート、ポリエステル等の熱可塑性樹脂、エポキシ、シリコーン等の熱硬化性樹脂等の樹脂材料やガラスなどの光学的に透明な材料を用いることができる。特に、熱可塑性の樹脂材料は、射出成型によって効率よく製造することができるため、好ましい。なかでも、透明性が高く、安価なポリカーボネートが好ましい。導光板10に光源部材20を接合した後に配線基板を貼りつける工程を備える場合は、半田リフローのような高温がかかる工程を省略できるため、ポリカーボネートのような熱可塑性であり耐熱性の低い材料であっても用いることができる。 As the material of the light guide plate 10, a resin material such as a thermoplastic resin such as acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate, or polyester, a thermosetting resin such as epoxy or silicone, or an optically transparent material such as glass is used. be able to. In particular, a thermoplastic resin material is preferable because it can be efficiently manufactured by injection molding. Among them, polycarbonate, which has high transparency and is inexpensive, is preferable. When the step of attaching the wiring substrate after joining the light source member 20 to the light guide plate 10 is provided, a step of applying high temperature such as solder reflow can be omitted, so that a material having thermoplasticity and low heat resistance such as polycarbonate is used. It can be used even if there is.

導光板10は単層で形成されていてもよく、複数の透光性の層が積層されて形成されていてもよい。複数の透光性の層が積層されている場合には、任意の層間に屈折率の異なる層、例えば空気の層等を設けてもよい。これにより、光をより拡散させやすくなり、輝度ムラを低減した発光モジュールとすることができる。 The light guide plate 10 may be formed as a single layer or may be formed by stacking a plurality of translucent layers. When a plurality of translucent layers are laminated, a layer having a different refractive index, such as an air layer, may be provided between arbitrary layers. As a result, the light can be more easily diffused, and a light emitting module with reduced luminance unevenness can be obtained.

(第1凹部:光源部材配置部)
導光板10は、第2主面12側に、第1凹部121を備える。第1凹部121は、光源部材20が配置される部分である。
(First concave portion: light source member arrangement portion)
The light guide plate 10 includes a first recess 121 on the second main surface 12 side. The first recess 121 is a portion in which the light source member 20 is arranged.

複数の第1凹部121は、導光板10の平面視において、二次元に配列される。好ましくは、複数の第1凹部121は、直交する二方向、つまり、x方向(横方向)およびy方向(縦方向)に沿って二次元的に配列される。図1Aに示すように、第1凹部121のx方向の配列ピッチとy方向の配列ピッチは、同じであってもよいし、異なっていてもよい。また、配列の二方向は、直交していなくてもよい。また、x方向またはy方向の配列ピッチは等間隔に限られず、不等間隔であってもよい。例えば、導光板10の中央から周辺に向かって間隔が広くなるように第1凹部121が配列されていてもよい。 The plurality of first recesses 121 are two-dimensionally arranged in a plan view of the light guide plate 10. Preferably, the plurality of first recesses 121 are two-dimensionally arranged along two orthogonal directions, that is, the x direction (horizontal direction) and the y direction (longitudinal direction). As shown in FIG. 1A, the arrangement pitch of the first recesses 121 in the x direction and the arrangement pitch in the y direction may be the same or different. Further, the two directions of the array may not be orthogonal to each other. Further, the arrangement pitch in the x direction or the y direction is not limited to equal intervals and may be unequal intervals. For example, the first recesses 121 may be arranged such that the distance from the center of the light guide plate 10 increases toward the periphery.

第1凹部121の平面視における大きさ(開口部の面積)は、光源部材20の平面視形状と略同じか、それよりも大きいことが好ましい。例えば、第1凹部121の開口部の平面視における大きさは、光源部材20の平面視における面積に対して、100%〜200%とすることができる。 The size of the first recess 121 in plan view (area of the opening) is preferably substantially the same as or larger than the shape of the light source member 20 in plan view. For example, the size of the opening of the first recess 121 in plan view can be 100% to 200% of the area of the light source member 20 in plan view.

第1凹部121の開口部の平面視形状は、例えば、略矩形、略円形とすることができる。第1凹部121の開口部の平面視形状は、第1凹部121の配列ピッチ(最も近接した2つの第1凹部121の中心(光軸)間の距離)等に応じて調整することができる。例えば、第1凹部121の配列ピッチが略均等である場合には、略円形または略正方形が好ましい。なかでも、略円形とすることで、光源部材20からの光を良好に広げることができる。 The plan view shape of the opening of the first recess 121 can be, for example, a substantially rectangular shape or a substantially circular shape. The plan view shape of the openings of the first recesses 121 can be adjusted according to the arrangement pitch of the first recesses 121 (the distance between the centers (optical axes) of the two first recesses 121 that are closest to each other), and the like. For example, when the arrangement pitches of the first recesses 121 are substantially uniform, a substantially circular shape or a substantially square shape is preferable. Above all, the light from the light source member 20 can be satisfactorily spread by making it substantially circular.

例えば、第1凹部121の開口部の平面視形状が四角形の場合であって、発光素子21が平面視において縦および横の寸法が1000μm以下程度であり、発光素子21の側面21cを覆う波長変換部材26の厚みが0.1mm〜5mm程度の場合、第1凹部121間の配列ピッチは、例えば、0.5mm〜50mm程度とすることができ、3mm〜30mm程度が好ましい。 For example, when the opening of the first recess 121 has a quadrangular shape in plan view, the light emitting element 21 has a vertical and horizontal dimension of about 1000 μm or less in plan view, and the wavelength conversion covering the side surface 21 c of the light emitting element 21 is performed. When the thickness of the member 26 is about 0.1 mm to 5 mm, the array pitch between the first recesses 121 can be set to about 0.5 mm to 50 mm, for example, and preferably about 3 mm to 30 mm.

第1凹部121の底面121aの平面視形状は、開口部の平面視形状と同じとすることが好ましい。ただし、これに限らず、第1凹部121の底面121aの平面視形状を、開口部の平面視形状と異なる形状としてもよい。また、第1凹部121の底面121aは、開口部と同じ大きさ、又は、開口部よりも小さい大きさとすることができる。 The plan view shape of the bottom surface 121a of the first recess 121 is preferably the same as the plan view shape of the opening. However, the shape of the bottom surface 121a of the first recess 121 is not limited to this, and may be different from the shape of the opening in plan view. In addition, the bottom surface 121a of the first recess 121 may have the same size as the opening or a size smaller than the opening.

第1凹部121の深さTr1、すなわち、第1凹部121の底面121aから開口部(第2主面)までの距離は、発光素子21の側面21cの少なくとも一部が第1凹部121内に位置することが可能な深さとすることが好ましい。換言すると、発光素子21の側面21cの側方に、第1凹部121の側面121bの少なくとも一部が位置することが好ましい。 The depth Tr1 of the first recess 121, that is, the distance from the bottom surface 121a of the first recess 121 to the opening (second main surface) is such that at least a part of the side surface 21c of the light emitting element 21 is located inside the first recess 121. It is preferable that the depth be such that In other words, it is preferable that at least a part of the side surface 121b of the first recess 121 is located beside the side surface 21c of the light emitting element 21.

また、第1凹部121内において、発光素子21は、主発光面21aを覆う波長変換部材26を介して第1凹部121の底面121a上に配置されている。そのため、発光素子21の側面21cが第1凹部121内に位置するためには、第1凹部121の深さTr1は、発光素子21の主発光面21aと第1凹部121の底面121aとの間の波長変換部材26の厚みよりも大きいことが好ましい。 Further, in the first recess 121, the light emitting element 21 is arranged on the bottom surface 121a of the first recess 121 via the wavelength conversion member 26 that covers the main light emitting surface 21a. Therefore, in order for the side surface 21c of the light emitting element 21 to be located in the first recess 121, the depth Tr1 of the first recess 121 is set between the main light emitting surface 21a of the light emitting element 21 and the bottom surface 121a of the first recess 121. It is preferable that the thickness is larger than the thickness of the wavelength conversion member 26.

波長変換部材26と第1凹部121の底面121aとの間に、透光性の接合部材40が配置される場合は、第1凹部121の深さTr1は、発光素子21の主発光面21aと第1凹部121の底面121aとの間の波長変換部材26の厚みと接合部材40の厚みの総和よりも大きいことが好ましい。 When the translucent joining member 40 is arranged between the wavelength conversion member 26 and the bottom surface 121a of the first recess 121, the depth Tr1 of the first recess 121 is equal to the main light emitting surface 21a of the light emitting element 21. It is preferable that the thickness of the wavelength conversion member 26 between the bottom surface 121a of the first recess 121 and the total thickness of the bonding member 40 is larger than the total thickness.

例えば、発光素子21の側面21cの長さ(主発光面21aと電極形成面21bの間の距離)が50μm〜200μm程度であり、波長変換部材26の厚み、又は、波長変換部材26の厚みと接合部材40の厚みの総和が50μm〜600μm程度の場合、第1凹部121の深さTr1は、50μm〜5000μmとすることができ、100μm〜350μmが好ましい。尚、導光板10が後述の光学機能部111を備える場合、光学機能部111と第1凹部121の間の距離は、光学機能部111と凹部121が離間している範囲で適宜設定できる。 For example, the length of the side surface 21c of the light emitting element 21 (distance between the main light emitting surface 21a and the electrode formation surface 21b) is about 50 μm to 200 μm, and the thickness of the wavelength conversion member 26 or the thickness of the wavelength conversion member 26 When the total thickness of the joining member 40 is about 50 μm to 600 μm, the depth Tr1 of the first recess 121 can be set to 50 μm to 5000 μm, preferably 100 μm to 350 μm. When the light guide plate 10 includes an optical function section 111 described below, the distance between the optical function section 111 and the first recess 121 can be appropriately set within a range in which the optical function section 111 and the recess 121 are separated from each other.

また、第1凹部121の側面121bは、第1凹部121の底面121aに対して垂直又は傾斜した面とすることができる。側面121bの傾斜角度としては、底面121aから45度〜90度とすることができる。また、第1凹部121の側面121bは、断面視において直線又は曲線とすることができる。 In addition, the side surface 121b of the first recess 121 may be a surface that is vertical or inclined with respect to the bottom surface 121a of the first recess 121. The inclination angle of the side surface 121b can be 45 degrees to 90 degrees from the bottom surface 121a. The side surface 121b of the first recess 121 can be a straight line or a curved line in a cross-sectional view.

(第2凹部:リフレクタ)
導光板10は、第2主面12に位置する第2凹部122を有することが好ましい。第2凹部122は、第1凹部121内に配置された光源部材20からの光を、第1主面11側に反射させるリフレクタとして機能させることができる。そのため、第2凹部122は、上面視において、光源部材20が配置される1つの第1凹部121を囲むように配置されることが好ましい。
(Second recess: reflector)
The light guide plate 10 preferably has a second recess 122 located on the second major surface 12. The second recess 122 can function as a reflector that reflects the light from the light source member 20 arranged in the first recess 121 toward the first main surface 11 side. Therefore, it is preferable that the second concave portion 122 is arranged so as to surround one first concave portion 121 in which the light source member 20 is arranged, in a top view.

第2凹部122を光源部材20が配置される1つの第1凹部121を囲むように配置する場合、例えば、第2凹部は導光板の第2主面を複数の領域に区分するように設けその区分された領域にそれぞれ第1凹部121を設けるようにしてもよい。この場合、上面視において、1つの第1凹部121を囲む第2凹部122の一部は、隣接する第1凹部121を囲む第2凹部122の一部を兼ねていてもよい。つまり、断面視において、第2凹部122の一部が2つの第1凹部121の間に位置し、その第2凹部122の一部が隣接する2つの第1凹部121に共有される。例えば、図2Bに示すように、第2凹部122の底部122aを中心にして右側に位置する側面122bは、右側に位置する第1凹部121に配置される光源部材からの光を反射する。同様に、第2凹部122の底面122aを中心にして左側に位置する側面122bは、左側に位置する第1凹部121に配置される光源部材からの光を反射する。 When the second concave portion 122 is arranged so as to surround one first concave portion 121 in which the light source member 20 is arranged, for example, the second concave portion is provided so as to divide the second main surface of the light guide plate into a plurality of regions. You may make it provide the 1st recessed part 121 in each divided area. In this case, in a top view, a part of the second recess 122 that surrounds one first recess 121 may also serve as a part of the second recess 122 that surrounds the adjacent first recess 121. That is, in a cross-sectional view, a part of the second recess 122 is located between the two first recesses 121, and a part of the second recess 122 is shared by the two adjacent first recesses 121. For example, as shown in FIG. 2B, the side surface 122b located on the right side of the bottom portion 122a of the second recess 122 reflects light from the light source member arranged in the first recess 121 located on the right side. Similarly, the side surface 122b located on the left side of the bottom surface 122a of the second recess 122 reflects light from the light source member arranged in the first recess 121 located on the left side.

このように、1つの第1凹部121を囲む第2凹部122が、隣接する第1凹部121を囲む第2凹部122の一部としても機能するために、第2凹部122は、図2Aに示すように、格子状の底部122aとすることができる。 In this way, the second recess 122 surrounding one first recess 121 also functions as a part of the second recess 122 surrounding the adjacent first recess 121, so that the second recess 122 is shown in FIG. 2A. As described above, the bottom portion 122a may have a lattice shape.

第2凹部122の側面122bは、断面視において直線又は曲面とすることができ、さらには、これらを組み合わせてもよい。また、第2凹部122の側面を曲面とする場合、その曲率は一定でもよく、また、位置によって任意の曲率を有することもできる。例えば、図1C等に示す第2凹部122は、第2主面12と連続する部分において、緩やかに曲率が変化する曲面の側面122bを例示している。このような第2凹部122の場合、第2凹部122と第2主面12との境界は明確に視認しにくい場合がある。 The side surface 122b of the second recess 122 may be a straight line or a curved surface in a cross-sectional view, and further, these may be combined. When the side surface of the second recess 122 is a curved surface, the curvature may be constant or may have an arbitrary curvature depending on the position. For example, the second concave portion 122 shown in FIG. 1C and the like exemplifies a curved side surface 122b in which the curvature gradually changes in a portion continuous with the second main surface 12. In the case of such a second recess 122, the boundary between the second recess 122 and the second main surface 12 may not be clearly visible.

第2凹部122内には、導光板10よりも低屈折率である低屈折率部材を配置することができる。低屈折率部材としては、例えば、空気、樹脂材料、ガラス材料を用いることができる。さらに、第2凹部122内に、光反射性部材を配置してもよい。光反射性部材としては、後述の封止部材50と同様の光反射部材を用いることができる。また、封止部材50の一部を第2凹部122内に配置することができる。 A low-refractive index member having a lower refractive index than the light guide plate 10 can be disposed in the second recess 122. As the low refractive index member, for example, air, a resin material, or a glass material can be used. Furthermore, a light-reflecting member may be arranged in the second recess 122. As the light reflecting member, the same light reflecting member as the sealing member 50 described later can be used. Further, a part of the sealing member 50 can be arranged in the second recess 122.

図1Cに示すように、第2凹部122の底部122aの深さTr2は、第1凹部121の深さTr1と同じ程度とすることができる。また、光源部材20の発光面20aの位置と同じ程度の位置に、第2凹部122の底部122aが位置するようにすることができる。 As shown in FIG. 1C, the depth Tr2 of the bottom portion 122a of the second recess 122 can be approximately the same as the depth Tr1 of the first recess 121. Further, the bottom portion 122a of the second recess 122 may be located at the same position as the light emitting surface 20a of the light source member 20.

(光学機能部)
導光板10は、第1主面11側に光学機能部111を備えていてもよい。光学機能部111は、例えば、光を導光板10の面内で広げる機能を有することができる。
(Optical function part)
The light guide plate 10 may include an optical function unit 111 on the first major surface 11 side. The optical function unit 111 can have a function of spreading light within the surface of the light guide plate 10, for example.

光学機能部111は、それぞれの第1凹部121に対応する位置、つまり、第2主面12側に配置された光源部材20と反対側の位置に設けられることが好ましい。特に、光源部材20の光軸と、光学機能部111の光軸とが略一致することが好ましい。例えば、光学機能部111の凹みが錐体又は錘台の場合は、その頂部又は中心軸が光源部材20の光軸と略一致することが好ましい。また、光学機能部111の凹みが錐体台の場合は、頂部に相当する面が、光源部材20の光軸上に位置することが好ましい。 The optical function portion 111 is preferably provided at a position corresponding to each first recess 121, that is, at a position opposite to the light source member 20 arranged on the second main surface 12 side. In particular, it is preferable that the optical axis of the light source member 20 and the optical axis of the optical function unit 111 are substantially aligned. For example, when the recess of the optical function part 111 is a cone or a frustum, it is preferable that the top part or the central axis thereof substantially coincides with the optical axis of the light source member 20. Further, when the recess of the optical function portion 111 is a truncated cone, it is preferable that the surface corresponding to the top be located on the optical axis of the light source member 20.

光学機能部111としては、第1主面11側に設けられた錐体状又は錐台体状の凹みとすることができる。具体的には、錐体状の凹みとしては、円錐や四角錐、六角錐等の多角錐形が挙げられ、錐台体状の凹みとしては、円錐台や四角錐台、六角錐台等の多角錐台形が挙げられる。光学機能部111の側面111bは、断面視において直線でもよく、曲線でもよい。 The optical function unit 111 can be a conical or frustum-shaped recess provided on the first major surface 11 side. Specifically, the cone-shaped depressions include polygonal cones such as cones, quadrangular pyramids, and hexagonal pyramids, and the truncated pyramid-shaped depressions include truncated cones, quadrangular pyramids, and hexagonal pyramids. A polygonal frustum is mentioned. The side surface 111b of the optical function part 111 may be a straight line or a curved line in a cross-sectional view.

光学機能部111の平面視における開口部の大きさは、適宜設定することができる。光学機能部111の開口部の大きさは、例えば、第1凹部121の底面121aの面積の100%〜300%とすることができる。また、光学機能部111が錐体台状の凹みの場合、底面111a(錐体台の頂部に相当する面)の平面視における大きさは、例えば、光源部材20の平面視における大きさの50%〜100%とすることができ、あるいは、第1凹部121の底面121aの面積の20%〜100%とすることができる。図1A〜図1Dに示す光学機能部111は、第1主面11において円形の開口部を備える円錐台状の凹部であり、開口の直径は光源部材20よりも大きく、さらに第1凹部121よりも大きい例を示している。 The size of the opening of the optical function unit 111 in plan view can be set appropriately. The size of the opening of the optical function unit 111 can be set to, for example, 100% to 300% of the area of the bottom surface 121a of the first recess 121. When the optical function unit 111 is a truncated cone-shaped recess, the size of the bottom surface 111a (the surface corresponding to the top of the truncated cone) in plan view is, for example, 50 times the size of the light source member 20 in plan view. % To 100%, or 20% to 100% of the area of the bottom surface 121a of the first recess 121. The optical function part 111 shown in FIGS. 1A to 1D is a truncated cone-shaped recess provided with a circular opening in the first main surface 11, the diameter of the opening is larger than that of the light source member 20, and further than the first recess 121. Also shows a large example.

光学機能部111として用いられる凹みには、図3Aに示すように、導光板10と屈折率の異なる材料(例えば空気、低屈折率部材112等)を配置することができる。また、図3Bに示すように、凹みの内面に、光源部材20からの光を反射する第1反射部材113を配置してもよい。第1反射部材113は、例えば金属や、白色の樹脂材料、DBR膜等を用いることができる。 As shown in FIG. 3A, a material having a refractive index different from that of the light guide plate 10 (for example, air, a low refractive index member 112, etc.) can be disposed in the recess used as the optical function unit 111. Further, as shown in FIG. 3B, a first reflecting member 113 that reflects light from the light source member 20 may be arranged on the inner surface of the recess. For the first reflecting member 113, for example, a metal, a white resin material, a DBR film, or the like can be used.

[光源部材]
光源部材20は、発光素子21と波長変換部材26とを備える。波長変換部材26は、発光素子21の主発光面22a及び側面22cを被覆する部材であり、主として樹脂材料と波長変換物質とを含む。
[Light source member]
The light source member 20 includes a light emitting element 21 and a wavelength conversion member 26. The wavelength conversion member 26 is a member that covers the main light emitting surface 22a and the side surface 22c of the light emitting element 21, and mainly contains a resin material and a wavelength conversion substance.

光源部材20としては、あらかじめ図4A〜図4Cに示すような、発光素子21と波長変換部材26とを備える発光装置30を光源部材20として用いることができる。あるいは、導光板10の第1凹部121内に、波長変換部材26を配置し、その波長変換部材26に発光素子21を埋め込むようにして配置することで光源部材20としてもよい。 As the light source member 20, a light emitting device 30 including a light emitting element 21 and a wavelength conversion member 26 as shown in FIGS. 4A to 4C in advance can be used as the light source member 20. Alternatively, the wavelength conversion member 26 may be arranged in the first recess 121 of the light guide plate 10, and the light emitting element 21 may be embedded in the wavelength conversion member 26 to form the light source member 20.

発光装置30としては、例えば、図4A〜図4Cに示すような構造とすることができる。いずれの発光装置も、発光素子21の主発光面21aと側面21cとを覆うように波長変換部材26が配置されている点において共通している。 The light emitting device 30 may have a structure as shown in FIGS. 4A to 4C, for example. All the light emitting devices are common in that the wavelength conversion member 26 is arranged so as to cover the main light emitting surface 21a and the side surface 21c of the light emitting element 21.

図4Aに示す発光装置30は、発光素子21の主発光面21aと側面21cとを覆う波長変換部材26を備える。この場合、発光素子21の電極形成面21bは波長変換部材26に覆われておらず、露出されている。一対の電極24の底面及び側面も露出されている。電極形成面21bは、発光モジュールの一部として組み込まれた後は、封止部材50で覆われることになるため、発光装置30の状態において外部に露出されていても問題ない。 The light emitting device 30 shown in FIG. 4A includes a wavelength conversion member 26 that covers the main light emitting surface 21a and the side surface 21c of the light emitting element 21. In this case, the electrode formation surface 21b of the light emitting element 21 is not covered with the wavelength conversion member 26 but is exposed. The bottom surfaces and side surfaces of the pair of electrodes 24 are also exposed. Since the electrode forming surface 21b is covered with the sealing member 50 after being incorporated as a part of the light emitting module, there is no problem even if it is exposed to the outside in the state of the light emitting device 30.

図4Bに示す発光装置30Aは、発光素子21の主発光面21aと側面21cに加え、電極形成面21bも覆うように波長変換部材26が配置される。一対の電極24の側面も、波長変換部材26で覆われる。さらに、一対の電極24の底面は、波長変換部材26に覆われず、第1金属膜25で覆われている。第1金属膜25は、電極24の大きさよりも大きい面積とすることができる。これにより、例えば、発光装置30Aの発光特性を検査し易くすることができる。そのため、発光モジュールの一部として発光装置を組み込む際に、発光装置の色度や輝度等を選別し易くなり、色ムラや輝度ムラの少ない発光モジュールとすることができる。 In the light emitting device 30A shown in FIG. 4B, in addition to the main light emitting surface 21a and the side surface 21c of the light emitting element 21, the wavelength conversion member 26 is arranged so as to cover the electrode forming surface 21b. The side surfaces of the pair of electrodes 24 are also covered with the wavelength conversion member 26. Further, the bottom surfaces of the pair of electrodes 24 are not covered with the wavelength conversion member 26, but are covered with the first metal film 25. The first metal film 25 can have an area larger than the size of the electrode 24. Thereby, for example, it is possible to easily inspect the light emission characteristics of the light emitting device 30A. Therefore, when the light emitting device is incorporated as a part of the light emitting module, the chromaticity, the luminance, and the like of the light emitting device can be easily selected, and the light emitting module having less color unevenness and luminance unevenness can be obtained.

図4Cに示す発光装置30Bは、発光素子21の主発光面21aと側面21cとを覆う波長変換部材26を備える。電極形成面21b及び一対の電極24の側面は、第2反射部材27で覆われる。一対の電極24の底面は、波長変換部材26及び第2反射部材27で覆われずに露出されている。そして、これらから露出された電極24の底面は、第1金属膜25で被覆されている。電極形成面21bを、第2反射部材27で被覆することで、電極24で光が吸収されることを低減することができる。さらに、電極24よりも大きい面積の第1金属膜25を用いることで、図4Bに示す発光装置30Aと同様に、発光特性の検査がし易く、色ムラや輝度ムラの少ない発光モジュールを得やすくすることができる。 The light emitting device 30B shown in FIG. 4C includes a wavelength conversion member 26 that covers the main light emitting surface 21a and the side surface 21c of the light emitting element 21. The electrode forming surface 21 b and the side surfaces of the pair of electrodes 24 are covered with the second reflecting member 27. The bottom surfaces of the pair of electrodes 24 are exposed without being covered with the wavelength conversion member 26 and the second reflection member 27. Then, the bottom surface of the electrode 24 exposed from these is covered with the first metal film 25. By covering the electrode forming surface 21b with the second reflecting member 27, it is possible to reduce light absorption by the electrode 24. Further, by using the first metal film 25 having an area larger than that of the electrode 24, it is possible to easily inspect the light emission characteristics and to easily obtain a light emitting module with less color unevenness and brightness unevenness, as in the light emitting device 30A shown in FIG. 4B. can do.

(発光素子)
発光素子21は、公知の半導体発光素子を利用することができる。本実施形態1においては、発光素子21として発光ダイオードを例示する。
(Light emitting element)
As the light emitting element 21, a known semiconductor light emitting element can be used. In the first embodiment, a light emitting diode is exemplified as the light emitting element 21.

発光素子21は、例えば、サファイア等の透光性の素子基板22sと、素子基板22sの上に積層された半導体層とを備えた半導体積層体22を備える。半導体積層体22は、発光層22aと、発光層22aを挟むn型半導体層22nおよびp型半導体層22pとを含み、n型半導体層22nおよびp型半導体層22pに、一対の電極24としてn電極24nおよびp電極24pがそれぞれ電気的に接続される。発光素子21は、例えば素子基板22sを含む主発光面22aが導光板10の第1凹部121の底面121aと対向するように配置される。 The light emitting element 21 includes, for example, a semiconductor laminated body 22 including a translucent element substrate 22s such as sapphire and a semiconductor layer laminated on the element substrate 22s. The semiconductor stacked body 22 includes a light emitting layer 22a, and an n-type semiconductor layer 22n and a p-type semiconductor layer 22p that sandwich the light-emitting layer 22a, and the n-type semiconductor layer 22n and the p-type semiconductor layer 22p have a pair of electrodes n. The electrode 24n and the p electrode 24p are electrically connected to each other. The light emitting element 21 is arranged such that the main light emitting surface 22a including the element substrate 22s faces the bottom surface 121a of the first recess 121 of the light guide plate 10.

発光素子21は、任意の波長の光を出射する素子を選択することができる。例えば、青色、緑色の光を出射する素子としては、窒化物系半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)を用いた発光素子を用いることができる。半導体積層体の材料およびその混晶度によって発光波長を種々選択することができる。用いる発光素子の組成、発光色、大きさ、個数などは、目的に応じて適宜選択すればよい。発光素子21は、波長変換部材を効率良く励起できる短波長の光を出射することが可能な窒化物半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)を備えることが好ましい。 As the light emitting element 21, an element that emits light having an arbitrary wavelength can be selected. For example, blue, as the device that emits green light, using the light emitting device using nitride semiconductor (In x Al y Ga 1- x-y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) be able to. The emission wavelength can be variously selected depending on the material of the semiconductor laminate and the mixed crystallinity thereof. The composition, emission color, size, number, and the like of the light emitting element to be used may be appropriately selected according to the purpose. Emitting element 21, capable of nitride semiconductor that emits light of short wavelength that can efficiently excite the wavelength converting member (In x Al y Ga 1- x-y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferably provided.

発光素子21の形状は、正方形、長方形等の四角形や、三角形、六角形等の多角形とすることができる。発光素子21の大きさは、例えば、平面視において縦および横の寸法が1000μm以下とすることが好ましく、より好ましくは縦および横の寸法が500μm以下であり、さらに好ましくは、縦および横の寸法が200μm以下である。このような発光素子を用いると、液晶ディスプレイ装置のローカルディミングを行った際に、高精細な映像を実現することができる。 The shape of the light emitting element 21 may be a quadrangle such as a square or a rectangle, or a polygon such as a triangle or a hexagon. The size of the light emitting element 21 is, for example, preferably 1000 μm or less in vertical and horizontal dimensions in a plan view, more preferably 500 μm or less in vertical and horizontal dimensions, and further preferably, vertical and horizontal dimensions. Is 200 μm or less. When such a light emitting element is used, a high-definition image can be realized when the liquid crystal display device is locally dimmed.

(波長変換部材)
波長変換部材26は、発光素子21から出射される光の波長を、異なる波長の光に変換する蛍光体等の波長変換物質を含む。例えば、波長変換部材26は、単層又は複数層とすることができる。
(Wavelength conversion member)
The wavelength conversion member 26 includes a wavelength conversion substance such as a phosphor that converts the wavelength of light emitted from the light emitting element 21 into light of a different wavelength. For example, the wavelength conversion member 26 can be a single layer or multiple layers.

波長変換部材26は、母材として透光性材料と、波長変換物質として粒子状の蛍光体と、を含む。 The wavelength conversion member 26 includes a translucent material as a base material and a particulate phosphor as a wavelength conversion substance.

透光性材料は、少なくとも発光素子21からの光を透過させる透光性であり、発光素子21から出射される光の60%以上を透過し、好ましくは90%以上を透過する。波長変換部材26の材料としては、エポキシ樹脂、シリコーン樹脂等の透光性の熱硬化性の樹脂材料等を用いることができる。 The translucent material has a translucent property of transmitting at least light from the light emitting element 21, and transmits 60% or more, and preferably 90% or more of light emitted from the light emitting element 21. As a material of the wavelength conversion member 26, a translucent thermosetting resin material such as an epoxy resin or a silicone resin can be used.

蛍光体としては、例えば、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb(Al,Ga)12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)が挙げられる。さらに、窒化物系蛍光体として、βサイアロン系蛍光体(例えばSi6−zAl8−z:Eu(0<z<4.2))、αサイアロン系蛍光体(例えばMz(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。一般式(I)MaMbAl:Euで表される蛍光体(ただし、上記一般式(I))中、Maは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素であり、Mbは、Li、Na及びKからなる群から選択される少なくとも1種の元素であり、x、y及びzはそれぞれ、0.5≦x≦1.5、0.5≦y≦1.2、及び3.5≦z≦4.5を満たす)、が挙げられる。さらに、SGS系蛍光体(例えばSrGa:Eu)が挙げられる。このほか、マンガン賦
活フッ化物系蛍光体(一般式(II)A[M1−aMn]で表される蛍光体(但し、上記一般式(II)中、Aは、K、Li、Na、Rb、Cs及びNH4からなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))が挙げられる。このマンガン賦活フッ化物系蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSF(KSiF:Mn))がある。
Examples of the phosphor include yttrium-aluminum-garnet-based phosphor (for example, Y 3 (Al,Ga) 5 O 12 :Ce), lutetium-aluminum-garnet-based phosphor (for example, Lu 3 (Al,Ga) 5 O). 12 :Ce), terbium aluminum garnet-based phosphor (for example, Tb 3 (Al, Ga) 5 O 12 :Ce)-based phosphor, silicate-based phosphor (for example (Ba, Sr) 2 SiO 4 :Eu), chlorosilicate phosphor (e.g. Ca 8 Mg (SiO 4) 4 Cl 2: Eu) and the like. Furthermore, as the nitride-based phosphor, a β-sialon-based phosphor (for example, Si 6-z Al z O z N 8-z :Eu (0<z<4.2)), an α-sialon-based phosphor (for example, Mz( Si,Al) 12 (O,N) 16 (where 0<z≦2, M is Li, Mg, Ca, Y, and a lanthanide element excluding La and Ce), nitrogen-containing calcium aluminosilicate (CASN or SCASN) phosphor (e.g. (Sr, Ca) AlSiN 3: . Eu) and the like general formula (I) Ma x Mb y Al 3 N z: phosphor represented by Eu (provided that the general formula ( In I)), Ma is at least one element selected from the group consisting of Ca, Sr, and Ba, and Mb is at least one element selected from the group consisting of Li, Na, and K. , X, y, and z satisfy 0.5≦x≦1.5, 0.5≦y≦1.2, and 3.5≦z≦4.5), respectively. Furthermore, an SGS-based phosphor (for example, SrGa 2 S 4 :Eu) can be mentioned. In addition, in the manganese-activated fluoride phosphor (general formula (II) A 2 [M 1 -a Mn a F 6] In the phosphor represented (however, the general formula (II), A is, K, Li is at least one selected from the group consisting of Na, Rb, Cs, and NH4, M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a is 0 <Satisfies <a<0.2)). A typical example of the manganese-activated fluoride-based phosphor is a manganese-activated potassium fluorosilicate phosphor (for example, KSF (K 2 SiF 6 :Mn)).

1つの波長変換部材に、1種類又は複数種類の蛍光体を含むことができる。複数種類の蛍光体は、混合させて用いてもよく、あるいは積層させて用いてもよい。例えば、青色系の光を出射する発光素子21を用い、蛍光体として緑色系の発光をするβサイアロン蛍光体と赤色系の発光をするKSF蛍光体等のフッ化物系蛍光体とを含むことができる。このような2種類の蛍光体を用いることで、発光モジュールの色再現範囲を広げることができる。また、蛍光体は量子ドットであってもよい。 One wavelength conversion member can include one type or a plurality of types of phosphors. Plural kinds of phosphors may be mixed and used, or may be laminated and used. For example, the light-emitting element 21 that emits blue light is used, and the phosphor includes a β-sialon phosphor that emits green light and a fluoride phosphor such as a KSF phosphor that emits red light. it can. By using such two types of phosphors, the color reproduction range of the light emitting module can be expanded. Further, the phosphor may be a quantum dot.

蛍光体は、波長変換部材の内部においてどのように配置されていてもよい。例えば、蛍光体は、波長変換部材の内部において略均一に分布していてもよく、一部に偏在してもよい。 The phosphor may be arranged in any manner inside the wavelength conversion member. For example, the phosphor may be substantially uniformly distributed inside the wavelength conversion member, or may be partially distributed.

波長変換部材は、光拡散物質を含んでいてもよい。光拡散物質としては、例えばSiO、TiO、Al、ZnO等の微粒子が挙げられる。 The wavelength conversion member may include a light diffusing substance. Examples of the light diffusing substance include fine particles such as SiO 2 , TiO 2 , Al 2 O 3 , and ZnO.

図4A〜図4Cに示す発光装置において、発光素子21の主発光面21aを覆う波長変換部材26の厚みは、30μm〜50μmとすることができる。また、発光素子21の側面21cを覆う波長変換部材26の厚みは、10μm〜1000μmとすることができる。発光素子21の主発光面21aを覆う波長変換部材26の厚みと、発光素子21の側面21cを覆う波長変換部材26の厚みは、同じとすることが好ましい。ただし、これに限らず、異なる厚みであってもよい。 In the light emitting device shown in FIGS. 4A to 4C, the thickness of the wavelength conversion member 26 that covers the main light emitting surface 21a of the light emitting element 21 can be 30 μm to 50 μm. The thickness of the wavelength conversion member 26 that covers the side surface 21c of the light emitting element 21 can be 10 μm to 1000 μm. It is preferable that the thickness of the wavelength conversion member 26 that covers the main light emitting surface 21a of the light emitting element 21 and the thickness of the wavelength conversion member 26 that covers the side surface 21c of the light emitting element 21 are the same. However, the thickness is not limited to this and may be different.

図4Bに示す発光装置30Aにおいて、発光素子21の電極形成面21bを覆う波長変換部材26の厚みは、5μm〜50μm程度とすることができる。また、発光素子21の電極形成面21bを覆う波長変換部材26の厚みを、一対の電極24の厚みと同程度とすることができる。 In the light emitting device 30A shown in FIG. 4B, the thickness of the wavelength conversion member 26 that covers the electrode forming surface 21b of the light emitting element 21 can be about 5 μm to 50 μm. In addition, the thickness of the wavelength conversion member 26 that covers the electrode forming surface 21b of the light emitting element 21 can be made approximately the same as the thickness of the pair of electrodes 24.

光源部材20として発光装置30を用いずに、導光板10の第1凹部121に波長変換部材26を配置する場合における波長変換部材26について説明する。 The wavelength conversion member 26 in the case of disposing the wavelength conversion member 26 in the first recess 121 of the light guide plate 10 without using the light emitting device 30 as the light source member 20 will be described.

図5に示すように、波長変換部材26は、発光素子21の主発光面21aと、第1凹部121の底面121aとに挟まれた領域の全てに配置されることが好ましい。さらに、波長変換部材26は、第1凹部121の底面121aの全体を覆うように配置されることが好ましい。発光素子21の側面21cと、第1凹部121の側面121bとに挟まれた領域の全てに配置されることが好ましい。 As shown in FIG. 5, the wavelength conversion member 26 is preferably arranged in the entire region sandwiched between the main light emitting surface 21 a of the light emitting element 21 and the bottom surface 121 a of the first recess 121. Furthermore, it is preferable that the wavelength conversion member 26 is arranged so as to cover the entire bottom surface 121 a of the first recess 121. It is preferably arranged in the entire area sandwiched between the side surface 21c of the light emitting element 21 and the side surface 121b of the first recess 121.

(第2反射部材)
光源部材20として、図4Cに示すような発光装置30Bを用いる場合、発光素子21の電極形成面22b及び一対の電極24の側面を覆う第2反射部材27を備える。第2反射部材27の厚みは、例えば、5μm〜200μm程度とすることができる。また、第2反射部材27は、一対の電極24の高さと同じ程度とすることができる。
(Second reflective member)
When the light emitting device 30B as shown in FIG. 4C is used as the light source member 20, a second reflecting member 27 that covers the electrode forming surface 22b of the light emitting element 21 and the side surfaces of the pair of electrodes 24 is provided. The thickness of the second reflecting member 27 can be, for example, about 5 μm to 200 μm. In addition, the second reflecting member 27 can be set to have the same height as the pair of electrodes 24.

第2反射部材27は、発光素子21から出射される光に対して60%以上の反射率を有し、好ましくは90%以上の反射率を有する。第2反射部材27の材料は、白色の顔料等を含有させた樹脂材料であることが好ましい。特に、酸化チタンを含有させたシリコーン樹脂が好ましい。 The second reflecting member 27 has a reflectance of 60% or more, preferably 90% or more, with respect to the light emitted from the light emitting element 21. The material of the second reflecting member 27 is preferably a resin material containing a white pigment or the like. In particular, a silicone resin containing titanium oxide is preferable.

(第1金属膜)
光源部材20として、図4B、図4Cに示すような発光装置30A、30Bを用いる場合、すなわち、発光素子21の電極形成面21bが波長変換部材26や第2反射部材27で被覆されている場合、発光装置30A、30Bは、一対の電極24と電気的に接続され、一対の電極24の底面をそれぞれ被覆する金属膜25を備えていてもよい。金属膜25の材料は、例えば、Cu/Ni/Auの順に積層させた積層構造とすることができる。金属膜25は、一対の電極24の側面を被覆する第2反射部材27や波長変換部材26と、電極24とを連続して覆うように配置されていてもよい。
(First metal film)
When the light emitting devices 30A and 30B as shown in FIGS. 4B and 4C are used as the light source member 20, that is, when the electrode formation surface 21b of the light emitting element 21 is covered with the wavelength conversion member 26 or the second reflection member 27. The light emitting devices 30A and 30B may include metal films 25 that are electrically connected to the pair of electrodes 24 and cover the bottom surfaces of the pair of electrodes 24, respectively. The material of the metal film 25 may have a laminated structure in which Cu/Ni/Au are laminated in this order. The metal film 25 may be arranged so as to continuously cover the electrodes 24 and the second reflection member 27 or the wavelength conversion member 26 that covers the side surfaces of the pair of electrodes 24.

[接合部材]
光源部材20として、図4A〜図4Cに示す発光装置を用いる場合、発光装置と導光板10とは、透光性の接合部材40によって接合される。接合部材40は、光源部材20である発光装置30から出射される光を導光板10に伝播させる役割を有する。接合部材40は、導光板10の第2主面12側の第1凹部121の底面121aと発光装置30との間に配置される。さらに、発光装置30と第1凹部121の側面121bとの間に配置される。さらに、接合部材40は、導光板10の第2主面12にまで延在されていてもよい。
[Joining member]
When the light emitting device shown in FIGS. 4A to 4C is used as the light source member 20, the light emitting device and the light guide plate 10 are joined by the translucent joining member 40. The joining member 40 has a role of propagating the light emitted from the light emitting device 30, which is the light source member 20, to the light guide plate 10. The joining member 40 is arranged between the light emitting device 30 and the bottom surface 121 a of the first recess 121 on the second main surface 12 side of the light guide plate 10. Further, it is arranged between the light emitting device 30 and the side surface 121b of the first recess 121. Furthermore, the joining member 40 may extend to the second major surface 12 of the light guide plate 10.

接合部材40は、透光性であり、光源部材20(発光装置30)から出射される光の60%以上を透過し、好ましくは90%以上を透過する。また、接合部材40は、導光板10の材料と同程度の屈折率を有する材料が好ましい。例えば、母材の材料として、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、または、ガラスなどの透光性材料を用いることができる。接続部材40の耐光性および成形容易性の観点からは、接合部材40の母材としてシリコーン樹脂を選択すると有益である。 The joining member 40 is translucent and transmits 60% or more of the light emitted from the light source member 20 (light emitting device 30), preferably 90% or more. Further, the joining member 40 is preferably made of a material having a refractive index similar to that of the material of the light guide plate 10. For example, as the material of the base material, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass can be used. From the viewpoint of the light resistance of the connecting member 40 and the ease of molding, it is useful to select a silicone resin as the base material of the joining member 40.

[封止部材50]
封止部材50は、複数の光源部材20と導光板10の第2主面12とを被覆する光反射性の部材である。封止部材50を光反射性部材とすることで、光源部材20からの発光を導光板10に効率よく取り入れることができる。
[Sealing member 50]
The sealing member 50 is a light-reflecting member that covers the plurality of light source members 20 and the second main surface 12 of the light guide plate 10. By using the light-reflecting member as the sealing member 50, the light emitted from the light source member 20 can be efficiently taken into the light guide plate 10.

封止部材50は、光源部材20から出射される光に対して60%以上の反射率を有し、好ましくは90%以上の反射率を有する。封止部材50の材料は、白色の顔料等を含有させた樹脂材料であることが好ましい。特に、酸化チタンを含有させたシリコーン樹脂が好ましい。これにより、導光板10の一面を被覆するために比較的大量に用いられる材料として酸化チタンのような安価な原材料を多く用いることで、発光モジュール100を安価にすることができる。 The sealing member 50 has a reflectance of 60% or more, preferably 90% or more, with respect to the light emitted from the light source member 20. The material of the sealing member 50 is preferably a resin material containing a white pigment or the like. In particular, a silicone resin containing titanium oxide is preferable. Accordingly, the light emitting module 100 can be made inexpensive by using a large amount of inexpensive raw materials such as titanium oxide as a material used in a relatively large amount to cover one surface of the light guide plate 10.

[第2金属膜]
発光モジュール100には、封止部材50の上に、複数の光源部材20の電極24と電気的に接続される第2金属膜60が設けられていてもよい。第2金属膜60は、封止部材50の上に配置されていてもよい。光源部材20として、図4B、図4Cに示すような、第1金属膜25を備える発光装置を用いる場合は、第2金属膜60は、第1金属膜25と電気的に接続するように配置してもよい。また、第1金属膜25を備える発光装置を用いる場合であっても、工程内において第1金属膜25を除去した後、電極24と接するように第2金属膜60を形成してもよい。第2金属膜60の材料は、例えば、Cu/Ni/Auの順に積層させた積層構造とすることができる。
[Second metal film]
In the light emitting module 100, the second metal film 60 electrically connected to the electrodes 24 of the plurality of light source members 20 may be provided on the sealing member 50. The second metal film 60 may be arranged on the sealing member 50. When a light emitting device including the first metal film 25 as shown in FIGS. 4B and 4C is used as the light source member 20, the second metal film 60 is arranged so as to be electrically connected to the first metal film 25. You may. Even when the light emitting device including the first metal film 25 is used, the second metal film 60 may be formed in contact with the electrode 24 after removing the first metal film 25 in the process. The material of the second metal film 60 can be, for example, a laminated structure in which Cu/Ni/Au are laminated in this order.

[配線基板]
発光モジュール100は、図1Bに示すように、配線基板70を有していてもよい。配線基板70は、絶縁性の基材71と、複数の光源部材20と電気的に接続される配線72等を備える基板である。配線基板70を備えることで、ローカルディミング等に必要な複雑な配線を容易に形成することができる。この配線基板70は、光源部材20を導光板10に接続し、封止部材50及び第2金属膜60を形成した後に、別途準備した配線基板70の配線72と、第2金属膜60とを、接合することができる。
[Wiring board]
The light emitting module 100 may include a wiring board 70 as shown in FIG. 1B. The wiring board 70 is a board including an insulating base material 71 and wirings 72 electrically connected to the plurality of light source members 20. By providing the wiring board 70, complicated wiring required for local dimming or the like can be easily formed. This wiring board 70 connects the light source member 20 to the light guide plate 10, forms the sealing member 50 and the second metal film 60, and then separately connects the wiring 72 of the wiring board 70 and the second metal film 60. , Can be joined.

配線基板70は、例えば、絶縁性の基材71に設けられた複数のビアホール内に充填された導電性部材と、基材71の両面側において導電性部材と電気的に接続された配線72と、を備える。 The wiring board 70 includes, for example, a conductive member filled in a plurality of via holes provided in an insulating base material 71, and a wiring 72 electrically connected to the conductive member on both surface sides of the base material 71. , Is provided.

配線基板70は、積層構造を有していてもよい。例えば、配線基板70として、表面に絶縁層が設けられた金属板を用いてもよい。また、配線基板70は複数のTFT(Thin−Film Transistor)を有するTFT基板であってもよい。 The wiring board 70 may have a laminated structure. For example, as the wiring board 70, a metal plate having an insulating layer on the surface may be used. The wiring board 70 may be a TFT board having a plurality of TFTs (Thin-Film Transistors).

配線基板70の基材71の材料としては、例えば、セラミックス又は樹脂を用いることができる。低コストおよび成形容易性の点から、樹脂を基材71の材料として選択してもよい。樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)、不飽和ポリエステル、ガラスエポキシ等の複合材料等を挙げることができる。また、リジッド基板であってもよく、フレキシブル基板であってもよい。 As a material of the base material 71 of the wiring board 70, for example, ceramics or resin can be used. A resin may be selected as the material of the base material 71 from the viewpoints of low cost and ease of molding. Examples of the resin include phenol resin, epoxy resin, polyimide resin, BT resin, polyphthalamide (PPA), polyethylene terephthalate (PET), unsaturated polyester, and composite materials such as glass epoxy. Further, it may be a rigid substrate or a flexible substrate.

配線72は、例えば、基材71上に設けられた導電箔(導体層)であり、複数の光源部材20と電気的に接続される。配線72の材料は、高い熱伝導性を有していることが好ましい。このような材料として、例えば銅などの導電材料が挙げられる。また、配線72は、メッキや導電性ペーストの塗布、印刷などで形成することができ、配線62の厚みは、例えば、5〜50μm程度である。 The wiring 72 is, for example, a conductive foil (conductor layer) provided on the base material 71, and is electrically connected to the plurality of light source members 20. The material of the wiring 72 preferably has high thermal conductivity. Examples of such a material include a conductive material such as copper. The wiring 72 can be formed by plating, applying a conductive paste, printing or the like, and the thickness of the wiring 62 is, for example, about 5 to 50 μm.

配線基板70は、どのような方法で導光板10等と接合されていてもよい。例えば、シート状の接着シートを、導光板10の反対側に設けられた封止部材50の表面と、配線基板70の表面との間に配置し、圧着することで、接合することができる。また、配線基板70の配線72と光源部材20との電気的接続はどのような方法で行われてもよい。例えば、ビアホール内に埋め込んだ金属である導電性部材を加圧と加熱により溶かして第2金属膜60と接合することができる。 The wiring board 70 may be joined to the light guide plate 10 and the like by any method. For example, a sheet-shaped adhesive sheet can be bonded by arranging it between the surface of the sealing member 50 provided on the opposite side of the light guide plate 10 and the surface of the wiring board 70 and pressure bonding. The electrical connection between the wiring 72 of the wiring board 70 and the light source member 20 may be performed by any method. For example, a conductive member, which is a metal embedded in the via hole, can be melted by pressurizing and heating to be bonded to the second metal film 60.

このような発光モジュールの製造方法の一例として、以下の工程を挙げることができる。
(1)発光素子と、発光素子の主発光面と側面とを覆う波長変換部材を備えた光源部材を準備する工程
(2)光取り出し面となる第1主面と、第1主面と反対側の第2主面であって、複数の凹部を備える第2主面を備える導光板を準備する工程
(3)凹部の側面と発光素子の側面とが、少なくとも対向するように、凹部の底面上に光源部材を載置する工程
(4)光源部材と第2主面を被覆する封止部材を配置する工程
The following steps can be given as an example of a method for manufacturing such a light emitting module.
(1) Step of preparing a light source member including a light emitting element and a wavelength conversion member that covers a main light emitting surface and a side surface of the light emitting element (2) A first main surface serving as a light extraction surface, and a surface opposite to the first main surface Of the light guide plate having the second main surface having the plurality of recesses which is the second main surface on the side (3) The bottom surface of the recess so that the side surface of the recess and the side surface of the light emitting element at least face each other. Step of placing light source member on top (4) Step of arranging light source member and sealing member covering second main surface

発光モジュール100の製造方法の各工程について、以下に詳述する。 Each step of the method for manufacturing the light emitting module 100 will be described in detail below.

(1)発光素子と波長変換部材とを備えた光源部材(発光装置)を準備する工程 (1) Step of preparing a light source member (light emitting device) including a light emitting element and a wavelength conversion member

光源部材20は、例えば、図6A〜図6D、図7A、図7Bに示す工程で製造することができる。まず、図6Aに示すように、複数の発光素子21を、一対の電極を下にして支持体80上に配置する。そして、発光素子21を埋めるように、波長変換部材26を形成する。波長変換部材26は、例えば、硬化前の波長変換部材26を支持体80上に配置し、スキージ81等を用いて印刷した後、硬化する方法で形成することができる。 The light source member 20 can be manufactured, for example, by the steps shown in FIGS. 6A to 6D, 7A, and 7B. First, as shown in FIG. 6A, a plurality of light emitting elements 21 are arranged on a support 80 with a pair of electrodes facing down. Then, the wavelength conversion member 26 is formed so as to fill the light emitting element 21. The wavelength conversion member 26 can be formed by, for example, arranging the wavelength conversion member 26 before curing on the support 80, printing using a squeegee 81 or the like, and then curing.

また、波長変換部材26は、図7Aに示すように、硬化前の波長変換部材26を、スプレーノズル83を用いてスプレーし、図7Bに示すように発光素子21を埋めるように形成した後、硬化する方法で形成することができる。 Further, as shown in FIG. 7A, the wavelength conversion member 26 is formed by spraying the wavelength conversion member 26 before curing using the spray nozzle 83 to fill the light emitting element 21 as shown in FIG. 7B. It can be formed by a curing method.

次に、図6Cに示すように、ダイサー等の切断刃82を用いて波長変換部材26を切断し、光源部材20となる発光装置30を得ることができる。 Next, as shown in FIG. 6C, the wavelength conversion member 26 can be cut using a cutting blade 82 such as a dicer to obtain the light emitting device 30 that becomes the light source member 20.

(2)発光面となる第1主面と、第1主面と反対側の第2主面であって、複数の凹部を備える第2主面を備える導光板を準備する工程 (2) A step of preparing a light guide plate having a first main surface to be a light emitting surface and a second main surface opposite to the first main surface and having a plurality of recesses

導光板10を準備する。図8Aに示すように、導光板10の第2主面12に開口部の形状が略四角形の第1凹部121を複数備える。さらに、第2主面12には、隣接する第1凹部121の間に、第2凹部122を備える。第2凹部122は、図2Aに示すように、上面視において第1凹部121を取り囲むように配置されている。第2主面12の反対側の第1主面11には、円錐台形の窪みである光学機能部111を備える。 The light guide plate 10 is prepared. As shown in FIG. 8A, the second main surface 12 of the light guide plate 10 is provided with a plurality of first recesses 121 each having an opening having a substantially square shape. Further, the second main surface 12 is provided with the second recess 122 between the adjacent first recesses 121. As shown in FIG. 2A, the second recess 122 is arranged so as to surround the first recess 121 in a top view. The first main surface 11 opposite to the second main surface 12 is provided with an optical function portion 111 which is a truncated cone-shaped recess.

このような導光板10は、例えば、射出成型やトランスファモールド、熱転写等で成形することにより準備することができる。また、導光板10の第1凹部121、第2凹部122や、光学機能部111は、導光板10の成形時に一括して金型で形成することができる。これにより、成形時の位置ずれを低減することができる。また、第1凹部121、第2凹部122、光学機能部111を有しない板を準備し、加工することで導光板10を準備してもよい。あるいは、第1凹部121、第2凹部122、光学機能部111を備えた導光板10を、購入して準備してもよい。 Such a light guide plate 10 can be prepared, for example, by molding by injection molding, transfer molding, thermal transfer, or the like. Further, the first recess 121, the second recess 122 of the light guide plate 10 and the optical function part 111 can be collectively formed by a mold when the light guide plate 10 is molded. This can reduce the positional deviation during molding. Alternatively, the light guide plate 10 may be prepared by preparing and processing a plate that does not have the first recess 121, the second recess 122, and the optical function part 111. Alternatively, the light guide plate 10 including the first recess 121, the second recess 122, and the optical function unit 111 may be purchased and prepared.

(3)第1凹部の側面と発光素子の側面とが、少なくとも対向するように、凹部の底面上に光源部材(発光装置)を載置する工程
次に、図8Bに示すように、第1凹部121の底面121a上に、液状の接合部材40を配置する。接合部材40は、ポッティング、転写、印刷等の方法で塗布することができる。図8Bでは、ディスペンスノズル84を用いてポッティングすることで接合部材40を配置する場合を例示している。また、接合部材40は、発光装置30側に設けてもよい。例えば、吸着コレット等の吸着部材で発光装置30をピックアップし、液状の接合部材40に発光装置30の発光面を浸漬して接合部材40を付着させる等の方法を用いてもよい。
(3) Step of placing the light source member (light emitting device) on the bottom surface of the recess so that the side surface of the first recess and the side surface of the light emitting element at least face each other. Next, as shown in FIG. The liquid bonding member 40 is arranged on the bottom surface 121 a of the recess 121. The joining member 40 can be applied by a method such as potting, transferring, or printing. FIG. 8B illustrates a case where the joining member 40 is arranged by potting using the dispense nozzle 84. The joining member 40 may be provided on the light emitting device 30 side. For example, a method may be used in which the light emitting device 30 is picked up by a suction member such as a suction collet, and the light emitting surface of the light emitting device 30 is immersed in the liquid bonding member 40 to attach the bonding member 40.

次に、図8Cに示すように、第1凹部121内の接合部材40上に、発光装置30を載置する。このとき、電極24を上にして発光装置30を載置する。このとき、発光装置30の発光素子21の側面の少なくとも一部が、第1凹部121の側面と対向するようにする。すなわち、接合部材40に発光装置30の一部を埋め込むように配置する。その後、接合部材40を硬化させることで、発光装置30と導光板10とを接合する。 Next, as shown in FIG. 8C, the light emitting device 30 is placed on the joining member 40 in the first recess 121. At this time, the light emitting device 30 is placed with the electrode 24 facing upward. At this time, at least part of the side surface of the light emitting element 21 of the light emitting device 30 faces the side surface of the first recess 121. That is, the bonding member 40 is arranged so as to embed a part of the light emitting device 30. Then, the light emitting device 30 and the light guide plate 10 are joined by hardening the joining member 40.

(4)光源部材と第2主面を被覆する封止部材を配置する工程
次に、図8Dに示すように、導光板10の第2主面12と複数の発光装置30とを被覆する封止部材50を形成する。封止部材50は、例えばトランスファモールド、ポッティング、印刷、スプレー等の方法で形成することができる。図8Dでは、ディスペンスノズル84を用いて、発光装置320の電極24も被覆するように封止部材50を厚く形成する例を示している。尚、電極24を埋めないように、換言すると、少なくとも電極24の一部が露出するように封止部材50を形成してもよい。
(4) Step of Arranging Light Source Member and Sealing Member Covering Second Main Surface Next, as shown in FIG. 8D, a seal covering the second main surface 12 of the light guide plate 10 and the plurality of light emitting devices 30. The stop member 50 is formed. The sealing member 50 can be formed by a method such as transfer molding, potting, printing or spraying. FIG. 8D shows an example in which the dispensing nozzle 84 is used to thickly form the sealing member 50 so as to also cover the electrode 24 of the light emitting device 320. The sealing member 50 may be formed so as not to fill the electrode 24, in other words, at least a part of the electrode 24 is exposed.

(5)電極が露出するまで封止部材を除去する工程
次に、図8Eに示すように、封止部材50の表面を全面にわたって除去する。これにより、図8Gに示すように、封止部材50から発光装置30の電極24を露出させる。研削の方法としては、砥石等の研削部材90を用いて封止部材50を面状に研削する方法が挙げられる。あるいは、図8Fに示すように、ブラストノズル91を用いて、硬質の粒子92を吐出して、封止部材50の一部を除去してもよい。
(5) Step of removing the sealing member until the electrodes are exposed Next, as shown in FIG. 8E, the entire surface of the sealing member 50 is removed. This exposes the electrode 24 of the light emitting device 30 from the sealing member 50, as shown in FIG. 8G. Examples of the grinding method include a method of grinding the sealing member 50 into a planar shape by using a grinding member 90 such as a grindstone. Alternatively, as shown in FIG. 8F, the blast nozzle 91 may be used to eject the hard particles 92 to remove a part of the sealing member 50.

また、発光装置30が電極24に接続される第1金属膜25を備える場合は、第1金属膜25が露出されるまで封止部材50を除去してもよい。いずれの場合も、光源部材20の発光素子21に給電することが可能な導電部材が露出されるまで、封止部材50を除去する。また、あらかじめ電極24を埋めないように封止部材50を形成する場合は、この工程を省略することができる。 When the light emitting device 30 includes the first metal film 25 connected to the electrode 24, the sealing member 50 may be removed until the first metal film 25 is exposed. In any case, the sealing member 50 is removed until the conductive member capable of supplying power to the light emitting element 21 of the light source member 20 is exposed. Further, when the sealing member 50 is formed so as not to fill the electrode 24 in advance, this step can be omitted.

(6)複数の発光素子と電気的に接続する金属膜を形成する工程
次に、図8Hに示すように、発光装置30の電極24と封止部材50上の略全面に、第2金属膜60を形成する。第2金属膜60としては、例えば、導光板10側からCu/Ni/Auの順に積層させた積層構造とすることができる。第2金属膜60の形成方法としては、スパッタ、メッキ等が挙げられ、スパッタで形成することが好ましい。
(6) Step of forming a metal film electrically connected to the plurality of light emitting elements Next, as shown in FIG. 8H, a second metal film is formed on substantially the entire surface of the electrode 24 of the light emitting device 30 and the sealing member 50. Form 60. The second metal film 60 may have a laminated structure in which Cu/Ni/Au are laminated in this order from the light guide plate 10 side, for example. Examples of the method for forming the second metal film 60 include sputtering and plating, and it is preferable to form the second metal film 60 by sputtering.

次に、図8Iに示すように、レーザ光源93からのレーザ光94を第2金属膜60に照射し、照射した部分の第2金属膜60を除去するレーザアブレーションによってパターニングする。これにより、図8Jに示すような、分離された第2金属膜60を形成する。第2金属膜60は、発光装置30の電極24と電気的に接続されている。 Next, as shown in FIG. 8I, the second metal film 60 is irradiated with laser light 94 from a laser light source 93, and patterning is performed by laser ablation for removing the irradiated second metal film 60. As a result, the separated second metal film 60 as shown in FIG. 8J is formed. The second metal film 60 is electrically connected to the electrode 24 of the light emitting device 30.

このようにして、発光モジュール100Aを得ることができる。さらに、第2金属膜60と、別途準備した配線基板70の配線72とを接着することもでき、これにより図1Bに示すような配線基板70を備えた発光モジュール100を得ることができる。 In this way, the light emitting module 100A can be obtained. Further, the second metal film 60 and the wiring 72 of the wiring board 70, which is separately prepared, can be adhered to each other, whereby the light emitting module 100 including the wiring board 70 as shown in FIG. 1B can be obtained.

複数の光源部材20は、それぞれが独立で駆動するように配線することができる。また、導光板10を複数の範囲に分割し、1つの範囲内に実装された複数の発光装置30を1つのグループとし、1つのグループ内の複数の発光装置30同士を直列又は並列に電気的に接続することで同じ回路に接続し、このような発光装置(光源部材)グループを複数備えるようにしてもよい。このようなグループ分けを行うことで、ローカルディミング可能な発光モジュールとすることができる。 The plurality of light source members 20 can be wired so that they are independently driven. In addition, the light guide plate 10 is divided into a plurality of ranges, and the plurality of light emitting devices 30 mounted in one range are set as one group, and the plurality of light emitting devices 30 in one group are electrically connected in series or in parallel. A plurality of such light emitting device (light source member) groups may be provided by connecting to the same circuit. By performing such grouping, a light emitting module capable of local dimming can be obtained.

実施形態2
次に、本発明に係る実施形態2の発光モジュール100Bについて図9A〜図9Cを参照しながら説明する。図9Aは、発光モジュール100Bの断面図であり、図9Bは、図9Aの断面図における1つの光源部材及びその近傍を拡大して示す断面図であり、図9Cは、光源部材120の構成を示す断面図である。
Embodiment 2
Next, a light emitting module 100B according to a second embodiment of the present invention will be described with reference to FIGS. 9A to 9C. 9A is a sectional view of the light emitting module 100B, FIG. 9B is an enlarged sectional view showing one light source member and its vicinity in the sectional view of FIG. 9A, and FIG. 9C shows a configuration of the light source member 120. It is sectional drawing shown.

実施形態2の発光モジュール100Bは、図9A〜図9Cに示すように、光源部材120の構成が実施形態1と異なる以外は実施形態1と同様に構成される。ここで、図9A〜図9Cにおいて、実施形態1で説明した部材と同様の部材については同様の符号を付して示し、同様の部材についての具体的な説明は省略する。
以下、実施形態2の発光モジュール100Bについて、実施形態1と異なる部分について説明する。
The light emitting module 100B of the second embodiment has the same configuration as that of the first embodiment except that the configuration of the light source member 120 is different from that of the first embodiment, as shown in FIGS. 9A to 9C. Here, in FIGS. 9A to 9C, the same members as the members described in the first embodiment are denoted by the same reference numerals, and specific description of the same members is omitted.
Hereinafter, with respect to the light emitting module 100B of the second embodiment, portions different from the first embodiment will be described.

実施形態2の発光モジュール100Bにおいて、光源部材120は、波長変換部材126の上面に設けられた光拡散導光部材127を有している。光拡散導光部材127は、光拡散物質を含む透光性部材であり、波長変換部材126の上面から出射された光を横方向に拡散して出射させる。 In the light emitting module 100B of the second embodiment, the light source member 120 has the light diffusion light guide member 127 provided on the upper surface of the wavelength conversion member 126. The light diffusion light guide member 127 is a translucent member containing a light diffusion material, and diffuses the light emitted from the upper surface of the wavelength conversion member 126 in the lateral direction and emits the light.

図9Cに示す例では、波長変換部材126の上面には第3凹部126rが形成され、光拡散導光部材127は、第3凹部126rの内部と第3凹部126rの周りの波長変換部材126の上面に設けられている。ここで、図9Cに示す例において、波長変換部材126の上面とは、第3凹部126rの内面と第3凹部126rの周りの波長変換部材126の上面を含む。また、図9C等では、第3凹部126rの大きさを発光素子21の主発光面21aと同じ大きさに描いているが、本発明はこれに限定されるものではなく、第3凹部126rの平面視形状は主発光面21aより大きくてもよいし、小さくてもよい。 In the example shown in FIG. 9C, the third concave portion 126r is formed on the upper surface of the wavelength converting member 126, and the light diffusing and guiding member 127 includes the wavelength converting member 126 inside the third concave portion 126r and around the third concave portion 126r. It is provided on the upper surface. Here, in the example illustrated in FIG. 9C, the upper surface of the wavelength conversion member 126 includes the inner surface of the third recess 126r and the upper surface of the wavelength conversion member 126 around the third recess 126r. Further, in FIG. 9C and the like, the size of the third recess 126r is drawn to be the same size as the main light emitting surface 21a of the light emitting element 21, but the present invention is not limited to this, and the size of the third recess 126r is not limited to this. The shape in plan view may be larger or smaller than that of the main light emitting surface 21a.

実施形態2の発光モジュール100Bにおいて、光拡散導光部材127は、実施形態1で説明した光学機能部111と同様、光を導光板10の面内で広げる機能を有する。光拡散導光部材127は、光拡散導光部材127の中心軸が発光素子21の主発光面の中心軸に一致するように設けられていることが好ましく、これにより光を導光板10の面内に均一に、言い換えれば当該面内において、光を特定の方向に偏ることなく広げることができる。 In the light emitting module 100B of the second embodiment, the light diffusion light guide member 127 has a function of spreading light within the plane of the light guide plate 10, similarly to the optical function section 111 described in the first embodiment. The light diffusing and guiding member 127 is preferably provided such that the central axis of the light diffusing and guiding member 127 coincides with the central axis of the main light emitting surface of the light emitting element 21. It is possible to spread the light uniformly in the inside, in other words, in the plane without being biased in a specific direction.

光拡散導光部材127は、波長変換部材126の上面から出射される光を吸収することなく出射させることが好ましく、例えば、波長変換部材126の上面から出射される光の60%以上を透過し、好ましくは90%以上を透過する。光拡散導光部材127は、上述した透光性と光拡散性を備えるために、例えば、光拡散導光部材127は、発光素子21及び波長変換部材126によって波長変換された光を、例えば、60%以上を透過し、好ましくは90%以上を透過する透光性材料により構成される母材である透光性部材に、上記光を吸収することなく反射させる光拡散物質を含有させてなる。 The light diffusion light guide member 127 preferably emits the light emitted from the upper surface of the wavelength conversion member 126 without absorbing it, and transmits, for example, 60% or more of the light emitted from the upper surface of the wavelength conversion member 126. , Preferably 90% or more. Since the light diffusing and guiding member 127 has the above-mentioned translucency and light diffusing property, for example, the light diffusing and guiding member 127 converts the light whose wavelength is converted by the light emitting element 21 and the wavelength converting member 126 into, for example, A light transmissive member, which is a base material made of a light transmissive material that transmits 60% or more, preferably 90% or more, contains a light diffusing substance that reflects the light without absorbing it. ..

透光性部材を構成する透光性材料としては、エポキシ樹脂、シリコーン樹脂等の透光性の熱硬化性の樹脂材料等を用いることができる。光拡散物質としては、例えばSiO、TiO、Al、ZnO等の微粒子が挙げられる。 As the translucent material forming the translucent member, a translucent thermosetting resin material such as an epoxy resin or a silicone resin can be used. Examples of the light diffusing substance include fine particles such as SiO 2 , TiO 2 , Al 2 O 3 , and ZnO.

光拡散導光部材127において、透光性部材に含有させる光拡散物質の割合は、発光モジュール100Bに要求される特性に基づき、光拡散物質として用いる材料の光反射性、粒径及び粒度分布、導光板10の形状等に考慮して適宜設定される。 In the light diffusing and guiding member 127, the ratio of the light diffusing substance contained in the translucent member is based on the characteristics required for the light emitting module 100B, and the light reflectivity, particle size and particle size distribution of the material used as the light diffusing substance, It is set as appropriate in consideration of the shape of the light guide plate 10.

以上のように構成される発光モジュール100Bでは、光学機能部を用いることなく、発光素子21及び波長変換部材126により波長変換された光を導光板10の面内に均一に広げることができる。
したがって、実施形態2の発光モジュール100Bによれば、光学機能部を用いることなく、導光板10の主発光面11から色むら及び輝度むらの少ない光を出射させることができる。
In the light emitting module 100B configured as described above, the light wavelength-converted by the light emitting element 21 and the wavelength conversion member 126 can be uniformly spread within the surface of the light guide plate 10 without using the optical function section.
Therefore, according to the light emitting module 100B of the second embodiment, it is possible to emit light with less color unevenness and brightness unevenness from the main light emitting surface 11 of the light guide plate 10 without using the optical function section.

また、実施形態2の発光モジュール100Bによれば、光源部材120から導光板10の面内に均一に光を広げて出射させることができるので、光学機能部を用いることなく導光板10の主発光面11から色むら及び輝度むらの少ない光を出射させることができ、薄型の面発光光源を提供することが可能になる。 Further, according to the light emitting module 100B of the second embodiment, light can be uniformly spread and emitted from the light source member 120 into the surface of the light guide plate 10, so that the main light emission of the light guide plate 10 can be performed without using the optical function section. Light with less color unevenness and brightness unevenness can be emitted from the surface 11, and a thin surface emitting light source can be provided.

また、実施形態2の発光モジュール100Bでは、光拡散導光部材127を含む光源部材120に加えてさらに、導光板10に光学機能部を設けてもよい。 In addition, in the light emitting module 100B of the second embodiment, in addition to the light source member 120 including the light diffusing light guide member 127, the light guide plate 10 may be further provided with an optical function section.

以上の実施形態2の発光モジュール100Bは、光源部材120を作製する工程において光拡散導光部材127を形成する工程を含む以外は実施形態1の発光モジュール100Aと同様の方法により製造することができる。 The light emitting module 100B of the second embodiment described above can be manufactured by the same method as that of the light emitting module 100A of the first embodiment except that the step of forming the light diffusion member 127 is included in the step of manufacturing the light source member 120. ..

実施形態2において、光源部材120は、例えば、以下のようにして作製する。
実施形態1で参照した図6Aに示すように、複数の発光素子21を、一対の電極を下にして支持体80上に配置する。
そして、発光素子21を埋めるように、未硬化の波長変換部材126を形成する。
次に、硬化前の波長変換部材126の上面のそれぞれ発光素子21に対向する位置に、例えば、金型を用いて第3凹部126rを形成する。第3凹部126rの形状を維持した状態で波長変換部材126を硬化する。
次に、光拡散物質を含む未硬化の透光性樹脂材料を、第3凹部126rをそれぞれ埋めるように硬化させた波長変換部材126の上面に形成する。
そして、透光性樹脂材料を硬化させることにより、波長変換部材126上に一体となった光反射性導光部材層を形成する。
次に、図6Cを参照しながら説明したように、ダイサー等の切断刃82を用いて切断する。以上のようにして、光源部材120を得ることができる。
In the second embodiment, the light source member 120 is manufactured as follows, for example.
As shown in FIG. 6A referred to in the first embodiment, a plurality of light emitting elements 21 are arranged on a support 80 with a pair of electrodes facing down.
Then, the uncured wavelength conversion member 126 is formed so as to fill the light emitting element 21.
Next, the third recesses 126r are formed on the upper surface of the wavelength conversion member 126 before curing, at positions facing the light emitting elements 21, respectively, using a mold, for example. The wavelength conversion member 126 is cured while maintaining the shape of the third recess 126r.
Next, an uncured translucent resin material containing a light diffusing substance is formed on the upper surface of the cured wavelength conversion member 126 so as to fill each of the third recesses 126r.
Then, the light transmissive resin material is cured to form an integrated light reflective light guide member layer on the wavelength conversion member 126.
Next, as described with reference to FIG. 6C, cutting is performed using the cutting blade 82 such as a dicer. The light source member 120 can be obtained as described above.

実施形態2の変形例1
実施形態2の発光モジュール100Bでは、図9Cに示す光源部材120を用いた例により説明した。しかしながら、実施形態2の発光モジュール100Bは、図10Aに示す光源部材120aを用いて構成してもよい。この図10Aに示す光源部材120aは、図9Cに示す第3凹部126rを備えた波長変換部材126に代えて、第3凹部126rを備えていない波長変換部材126aを含み、波長変換部材126aの平坦な上面に厚さがほぼ一定の光拡散導光部材127aを有している点が図9Cに示す光源部材120とは異なっている。
Modification 1 of Embodiment 2
The light emitting module 100B of the second embodiment has been described by using the light source member 120 shown in FIG. 9C. However, the light emitting module 100B of the second embodiment may be configured using the light source member 120a shown in FIG. 10A. The light source member 120a illustrated in FIG. 10A includes a wavelength conversion member 126a that does not include the third recess 126r in place of the wavelength conversion member 126 that includes the third recess 126r illustrated in FIG. 9C, and the wavelength conversion member 126a is flat. 9C is different from the light source member 120 shown in FIG. 9C in that it has a light diffusion light guide member 127a having a substantially constant thickness on its upper surface.

実施形態2の発光モジュール100Bは、以上のように構成された光源部材120aを用いて構成することもできる。 The light emitting module 100B of the second embodiment can also be configured by using the light source member 120a configured as above.

実施形態2の変形例2
実施形態2の発光モジュール100Bでは、図9Cに示す光源部材120を用いた例により説明した。しかしながら、実施形態2の発光モジュール100Bは、図10Bに示す光源部材120bを用いて構成してもよい。この図10Bに示す光源部材120bは、図9Cに示す第3凹部126rを備えた波長変換部材126を有している点では図9Cと同じであるが、図10Bに示す光源部材120bでは第3凹部126rの内部のみに光拡散導光部材127bが設けられている点で図9Cに示す光源部材120とは異なっている。
Modification 2 of Embodiment 2
The light emitting module 100B of the second embodiment has been described by using the light source member 120 shown in FIG. 9C. However, the light emitting module 100B of the second embodiment may be configured using the light source member 120b shown in FIG. 10B. The light source member 120b shown in FIG. 10B is the same as FIG. 9C in that it has the wavelength conversion member 126 having the third recess 126r shown in FIG. 9C, but the light source member 120b shown in FIG. It differs from the light source member 120 shown in FIG. 9C in that the light diffusion light guide member 127b is provided only inside the recess 126r.

実施形態2の発光モジュール100Bは、以上のように構成された光源部材120bを用いて構成することもできる。 The light emitting module 100B of the second embodiment can also be configured by using the light source member 120b configured as described above.

以上変形例1及び2で説明したように、光源部材において、光拡散導光部材は、波長変換部材の上面に種々の形態で形成することができる。図9C、図10A及び図10Bに例示した以外であっても、例えば、第3凹部を錐体又は錘台形状に形成して、その内部のみ又はその内部からその周りに延在するように光拡散導光部材を形成するようにしてもよい。
さらに第3凹部は、四角錐、六角錐等の多角錐形であってもよい。
As described in Modifications 1 and 2 above, in the light source member, the light diffusion light guide member can be formed in various forms on the upper surface of the wavelength conversion member. 9C, 10A, and 10B, for example, the third concave portion may be formed in a pyramid or frustum shape, and light may be formed so as to extend only inside or around the inside. You may make it form a diffusion light guide member.
Furthermore, the third recess may be a polygonal pyramid such as a quadrangular pyramid or a hexagonal pyramid.

実施形態2の変形例3
実施形態2の発光モジュール100Bは、図11Aに示す光源部材120cを用いて構成してもよい。この図11Aに示す光源部材120cは、図10Bに示す光源部材120bとは波長変換部材126cの側面が傾斜している点で異なっている。光源部材120cは、波長変換部材126cの側面が傾斜している点を除いて図10Bに示す光源部材120bと同様である。
Modification 3 of Embodiment 2
The light emitting module 100B of the second embodiment may be configured using the light source member 120c shown in FIG. 11A. The light source member 120c shown in FIG. 11A is different from the light source member 120b shown in FIG. 10B in that the side surface of the wavelength conversion member 126c is inclined. The light source member 120c is similar to the light source member 120b shown in FIG. 10B except that the side surface of the wavelength conversion member 126c is inclined.

より具体的には、発光素子21の電極形成面付近で発光素子21の側面を覆う波長変換部材126cの厚さがほぼゼロになっており、発光素子21の電極形成面から主発光面21aに向かって徐々に厚さが大きくなっている。
また、図11Bは、図11Aに示す光源部材120cを実装したときの発光モジュールの断面の一部を拡大して示す断面図である。
More specifically, the thickness of the wavelength conversion member 126c that covers the side surface of the light emitting element 21 near the electrode formation surface of the light emitting element 21 is substantially zero, and the wavelength conversion member 126c from the electrode formation surface of the light emitting element 21 to the main light emitting surface 21a. The thickness is gradually increasing toward the end.
Further, FIG. 11B is a cross-sectional view showing an enlarged part of the cross section of the light emitting module when the light source member 120c shown in FIG. 11A is mounted.

以上のように構成された変形例3の光源部材120cを含んで構成された発光モジュールは、光源部材120cにおいて波長変換部材126cの側面が傾斜していることから、光学部材120cの側面の面積が、傾斜していな場合に比して大きくすることができる。これにより、導光板10に出射される光を多くすることができ、発光モジュールの輝度を高くすることができる。 In the light emitting module configured to include the light source member 120c of Modification 3 configured as described above, since the side surface of the wavelength conversion member 126c in the light source member 120c is inclined, the area of the side surface of the optical member 120c is small. It can be increased as compared with the case where there is no inclination. Thereby, the light emitted to the light guide plate 10 can be increased, and the brightness of the light emitting module can be increased.

本実施形態の発光モジュール100及びは、1つが1つの液晶ディスプレイ装置のバックライトとして用いられてもよい。また、複数の発光モジュール100が並べられて1つの液晶ディスプレイ装置のバックライトとして用いられてもよい。 One of the light emitting modules 100 of the present embodiment may be used as a backlight of one liquid crystal display device. Further, a plurality of light emitting modules 100 may be arranged and used as a backlight of one liquid crystal display device.

1つの発光モジュール100は1つの配線基板70に接合されてもよい。また、複数の発光モジュール100が、1つの配線基板70に接合されてもよい。これにより、外部との電気的な接続端子(例えばコネクタ)を集約できる(つまり、発光モジュール1つごとに用意する必要がない)ため、液晶ディスプレイ装置の構造を簡易にすることができる。 One light emitting module 100 may be bonded to one wiring board 70. Further, the plurality of light emitting modules 100 may be joined to one wiring board 70. Thereby, the electrical connection terminals (for example, connectors) with the outside can be integrated (that is, it is not necessary to prepare each light emitting module for each), so that the structure of the liquid crystal display device can be simplified.

また、この複数の発光モジュール100が接合された1つの配線基板70を複数並べて一つの液晶ディスプレイ装置のバックライトとしてもよい。この時、例えば、複数の配線基板70をフレーム等に載置し、それぞれコネクタ等を用いて外部の電源と接続することができる。 Further, a plurality of one wiring board 70 to which the plurality of light emitting modules 100 are joined may be arranged to form a backlight of one liquid crystal display device. At this time, for example, a plurality of wiring boards 70 can be placed on a frame or the like, and each can be connected to an external power source using a connector or the like.

本開示に係る発光モジュールは、例えば、液晶ディスプレイ装置のバックライトとして利用することができる。 The light emitting module according to the present disclosure can be used, for example, as a backlight of a liquid crystal display device.

100、100B…発光モジュール
10…導光板
11…第1主面(光取り出し面)
111…光学機能部
111a…光学機能部の底面
111b…光学機能部の側面
112…低屈折率部材
113…第1反射部材
12…第2主面
121…第1凹部
121a…第1凹部の底面
121b…第1凹部の側面
122…第2凹部
122a…第2凹部の底部
122b…第2凹部の側面
20、120、120a、120b、120c…光源部材
20a…光源部材の発光面
20b…光源部材の電極形成面
20c…光源部材の側面
21…発光素子
21a…主発光面
21b…電極形成面
21c…側面
22…半導体積層体
22p…p型半導体層
22n…n型半導体層
22a…発光層
22s…素子基板
24…電極
24p…p電極
24n…n電極
25…第1金属膜
26、126、126a、126c…波長変換部材
27…第2反射部材
30、30A、30B…発光装置
40…接合部材
50…封止部材
60…第2金属膜
70…配線基板
71…基材
72…配線
80…支持体
81…スキージ
82…切断刃
83…スプレーノズル
84…ディスペンスノズル
90…研削部材
91…ブラストノズル
92…粒子
93…レーザ光源
94…レーザ光
126r…第3凹部
127、127a、127b…光拡散導光部材
100, 100B... Light emitting module 10... Light guide plate 11... 1st main surface (light extraction surface)
111... Optical function part 111a... Bottom surface of optical function part 111b... Side surface of optical function part 112... Low refractive index member 113... First reflection member 12... Second main surface 121... First recess 121a... Bottom surface 121b of first recess 121b ... Side surface of first concave portion 122... Second concave portion 122a... Bottom portion of second concave portion 122b... Side surface of second concave portion 20, 120, 120a, 120b, 120c... Light source member 20a... Light emitting surface of light source member 20b... Electrode of light source member Forming surface 20c... Side surface of light source member 21... Light emitting element 21a... Main light emitting surface 21b... Electrode forming surface 21c... Side surface 22... Semiconductor laminated body 22p... P-type semiconductor layer 22n... N-type semiconductor layer 22a... Light-emitting layer 22s... Element substrate 24... Electrode 24p... P electrode 24n... N electrode 25... 1st metal film 26, 126, 126a, 126c... Wavelength conversion member 27... 2nd reflective member 30, 30A, 30B... Light-emitting device 40... Joining member 50... Sealing Member 60... Second metal film 70... Wiring substrate 71... Base material 72... Wiring 80... Support 81... Squeegee 82... Cutting blade 83... Spray nozzle 84... Dispensing nozzle 90... Grinding member 91... Blast nozzle 92... Particle 93... Laser light source 94... Laser light 126r... Third recess 127, 127a, 127b... Light diffusion light guide member

Claims (9)

第1主面と、前記第1主面の反対側の第2主面を有する導光板と、
前記第2主面側に配置される光源部材であって、主発光面と前記主発光面の反対側に位置する電極形成面と前記主発光面と前記電極形成面との間の側面とを有する発光素子と、
前記発光素子の前記主発光面及び前記側面を覆う波長変換部材と、を備える複数の光源部材と、
前記光源部材及び前記導光板の前記第2主面を覆う封止部材と、
を備え、
前記発光素子は、前記主発光面側に素子基板を有し、
前記導光板は前記第2主面に位置する複数の第1凹部を有し、前記光源部材はそれぞれ断面視において前記素子基板の側面の20%以上が前記第1凹部内に位置するように配置される、発光モジュール。
A light guide plate having a first main surface and a second main surface opposite to the first main surface;
The light source member is disposed on the second main surface side, and includes a main light emitting surface, an electrode forming surface located on the opposite side of the main light emitting surface, and a side surface between the main light emitting surface and the electrode forming surface. A light emitting element having
A plurality of light source members including a wavelength conversion member that covers the main light emitting surface and the side surface of the light emitting element,
A sealing member that covers the second main surface of the light source member and the light guide plate;
Equipped with
The light emitting element has an element substrate on the main light emitting surface side,
The light guide plate has a plurality of first recesses located on the second main surface, and the light source members are arranged such that 20% or more of the side surfaces of the element substrate are located in the first recesses in a cross-sectional view. Light emitting module.
前記導光板は、前記第1凹部を囲む第2凹部を有し、前記第2凹部内に、前記導光板よりも屈折率の低い低屈折率部材が配置されている、請求項1に記載の発光モジュール。 The said light guide plate has a 2nd recessed part which surrounds the said 1st recessed part, and the low refractive index member whose refractive index is lower than the said light guide plate is arrange|positioned in the said 2nd recessed part. Light emitting module. 前記導光板は、前記第2主面を複数の領域に区分する第2凹部を有し、前記第1凹部はそれぞれ第2凹部により区分された領域に設けられており、前記封止部材は、前記第2凹部内にも配置されている、請求項1に記載の発光モジュール。 The light guide plate has a second recess that divides the second main surface into a plurality of regions, the first recesses are provided in the regions that are respectively divided by the second recesses, and the sealing member is The light emitting module according to claim 1, wherein the light emitting module is also arranged in the second recess. 前記導光板は、前記第1主面に位置し、前記第1凹部に対応する位置に配置される光学機能部を備える、請求項1〜請求項3のいずれか1項に記載の発光モジュール。 The light-emitting module according to claim 1, wherein the light guide plate includes an optical function section that is located on the first main surface and is located at a position corresponding to the first recess. 前記光学機能部は、第1反射部材を備える、請求項4に記載の発光モジュール。 The light emitting module according to claim 4, wherein the optical function unit includes a first reflecting member. 前記光学機能部は、前記発光素子の発光面に向かって断面積が小さくなる錐体または錘台形状の凹部である請求項4又は請求項5に記載の発光モジュール。 The light emitting module according to claim 4 or 5, wherein the optical function portion is a conical or frustum-shaped recess having a cross-sectional area that decreases toward a light emitting surface of the light emitting element. 前記光源部材は、前記主発光面上に位置する波長変換部材に設けられた光拡散導光部材を備える、請求項1〜請求項3のいずれか1項に記載の発光モジュール。 The light emitting module according to claim 1, wherein the light source member includes a light diffusion light guide member provided on a wavelength conversion member located on the main light emitting surface. 前記光拡散導光部材は、光拡散物質を含む請求項7に記載の発光モジュール。 The light emitting module according to claim 7, wherein the light diffusion light guide member includes a light diffusion material. 前記光源部材は、前記発光素子の前記電極形成面を覆う第2反射部材を備える、請求項1〜請求項8のいずれか1項に記載の発光モジュール。 9. The light emitting module according to claim 1, wherein the light source member includes a second reflecting member that covers the electrode formation surface of the light emitting element.
JP2019207695A 2018-12-28 2019-11-18 Light emitting module Active JP6717421B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW108147818A TWI744756B (en) 2018-12-28 2019-12-26 Light emitting module
CN201922429334.1U CN212303701U (en) 2018-12-28 2019-12-27 Light emitting module
US16/728,346 US11073654B2 (en) 2018-12-28 2019-12-27 Light emitting module with recesses in light guide plate
CN201911376463.7A CN111384226B (en) 2018-12-28 2019-12-27 Light emitting module
JP2020099415A JP7456858B2 (en) 2018-12-28 2020-06-08 Light Emitting Module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246836 2018-12-28
JP2018246836 2018-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020099415A Division JP7456858B2 (en) 2018-12-28 2020-06-08 Light Emitting Module

Publications (2)

Publication Number Publication Date
JP6717421B1 true JP6717421B1 (en) 2020-07-01
JP2020109745A JP2020109745A (en) 2020-07-16

Family

ID=71131604

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019207695A Active JP6717421B1 (en) 2018-12-28 2019-11-18 Light emitting module
JP2020099415A Active JP7456858B2 (en) 2018-12-28 2020-06-08 Light Emitting Module

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020099415A Active JP7456858B2 (en) 2018-12-28 2020-06-08 Light Emitting Module

Country Status (3)

Country Link
JP (2) JP6717421B1 (en)
CN (2) CN111384226B (en)
TW (1) TWI744756B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717421B1 (en) * 2018-12-28 2020-07-01 日亜化学工業株式会社 Light emitting module
CN113363367A (en) * 2020-03-06 2021-09-07 隆达电子股份有限公司 Light emitting diode structure
TWI786715B (en) 2020-07-21 2022-12-11 日商日亞化學工業股份有限公司 Light-emitting module and planar light source
JP7266175B2 (en) * 2020-07-21 2023-04-28 日亜化学工業株式会社 Light-emitting module and planar light source
JP7256946B2 (en) * 2020-08-25 2023-04-13 日亜化学工業株式会社 light emitting module
JP7174269B2 (en) * 2020-08-25 2022-11-17 日亜化学工業株式会社 light emitting module
TWI807401B (en) * 2020-08-31 2023-07-01 日商日亞化學工業股份有限公司 Method of manufacturing light emitting module
JP7484075B2 (en) 2020-08-31 2024-05-16 日亜化学工業株式会社 Manufacturing method of light emitting module
JP7239840B2 (en) 2020-08-31 2023-03-15 日亜化学工業株式会社 Method for manufacturing light emitting device
JP7311796B2 (en) * 2020-09-29 2023-07-20 日亜化学工業株式会社 Surface emitting light source and manufacturing method thereof
CN114335304A (en) 2020-09-29 2022-04-12 日亚化学工业株式会社 Surface-emitting light source and method for manufacturing same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106876B2 (en) * 2001-03-30 2008-06-25 日亜化学工業株式会社 Light emitting device
JP2004171966A (en) * 2002-11-21 2004-06-17 Matsushita Electric Ind Co Ltd Surface illumination device
US6933535B2 (en) 2003-10-31 2005-08-23 Lumileds Lighting U.S., Llc Light emitting devices with enhanced luminous efficiency
JP2007059164A (en) * 2005-08-23 2007-03-08 Fujifilm Corp Light guide plate, and planar lighting system and liquid crystal display device using the same
JP4600257B2 (en) * 2005-11-25 2010-12-15 ソニー株式会社 Light guide plate, backlight device, manufacturing method thereof, and liquid crystal display device
JP4637803B2 (en) 2006-05-12 2011-02-23 シャープ株式会社 Light guide plate and planar light emitting device including the same
JP2008305642A (en) 2007-06-06 2008-12-18 Sony Corp Light-emitting device, surface light source, and image display device
JP2009289701A (en) * 2008-05-30 2009-12-10 Sharp Corp Lighting device, plane light source device, and liquid crystal display
JP2010008837A (en) * 2008-06-30 2010-01-14 Hitachi Displays Ltd Liquid crystal display
JP2010092777A (en) * 2008-10-09 2010-04-22 Citizen Electronics Co Ltd Planar light unit and display device
US8506148B2 (en) * 2008-11-20 2013-08-13 Sharp Kabushiki Kaisha Lighting device, display device and television receiver
JP5179651B2 (en) * 2009-04-03 2013-04-10 シャープ株式会社 Lighting device, display device, and television receiver
TW201224334A (en) * 2010-12-07 2012-06-16 Ind Tech Res Inst Flexible light source module
JP5661552B2 (en) * 2010-12-24 2015-01-28 シチズンホールディングス株式会社 Semiconductor light emitting device and manufacturing method thereof
JP5535114B2 (en) * 2011-03-25 2014-07-02 株式会社東芝 Light emitting device, light emitting module, and method of manufacturing light emitting device
JP5611122B2 (en) 2011-05-27 2014-10-22 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP2014157989A (en) 2013-02-18 2014-08-28 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
TW201526292A (en) * 2013-12-17 2015-07-01 Lextar Electronics Corp Light-emitting diode package and method of manufacturing the same
TWI522695B (en) * 2014-03-06 2016-02-21 Epoch Chemtronics Corp Side light type light emitting module structure
TWI555051B (en) * 2015-07-14 2016-10-21 達方電子股份有限公司 Backlight module, and lighting keyboard
JP6217711B2 (en) * 2015-08-21 2017-10-25 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6955135B2 (en) * 2016-10-19 2021-10-27 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP2018101521A (en) * 2016-12-20 2018-06-28 オムロン株式会社 Light guiding plate, surface light source device, display device, and electronic apparatus
US10580932B2 (en) * 2016-12-21 2020-03-03 Nichia Corporation Method for manufacturing light-emitting device
JP6597657B2 (en) * 2017-01-24 2019-10-30 日亜化学工業株式会社 Light emitting device
JP6790899B2 (en) * 2017-02-17 2020-11-25 日亜化学工業株式会社 Light emitting module manufacturing method and light emitting module
US20180335559A1 (en) * 2017-05-17 2018-11-22 Seohan Litek Co., Ltd. Backlight unit and luminous flux control member for local dimming
JP6717421B1 (en) * 2018-12-28 2020-07-01 日亜化学工業株式会社 Light emitting module

Also Published As

Publication number Publication date
JP2020109745A (en) 2020-07-16
JP7456858B2 (en) 2024-03-27
CN111384226B (en) 2024-03-15
TWI744756B (en) 2021-11-01
JP2020150278A (en) 2020-09-17
CN212303701U (en) 2021-01-05
TW202037948A (en) 2020-10-16
CN111384226A (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6717421B1 (en) Light emitting module
KR102215923B1 (en) Manufacturing method for light emitting module and light emitting module
US11073654B2 (en) Light emitting module with recesses in light guide plate
JP6790899B2 (en) Light emitting module manufacturing method and light emitting module
US11616169B2 (en) Light emitting module with concave surface light guide plate
JP6912730B2 (en) Manufacturing method of light emitting module
JP7108203B2 (en) Method for manufacturing light-emitting module
JP7116331B2 (en) Light-emitting module manufacturing method and light-emitting module
US11353645B2 (en) Light-emitting module including first hole portion
KR102111200B1 (en) Manufacturing method for light emitting module and light emitting module
US11194089B2 (en) Method for manufacturing light emitting module
JP6963183B2 (en) Manufacturing method of light emitting module
JP7208470B2 (en) Light-emitting module manufacturing method and light-emitting module
US11536892B2 (en) Method for manufacturing light-emitting module
JP7111993B2 (en) Method for manufacturing light-emitting module
JP7193740B2 (en) Method for manufacturing light-emitting device and method for manufacturing light-emitting module
JP2021136119A (en) Manufacturing method of light-emitting module
JP7140987B2 (en) Light-emitting module and method for manufacturing light-emitting module
US11581460B2 (en) Light emitting module and method for manufacturing light emitting module
JP6848942B2 (en) Manufacturing method of light emitting module
JP7068594B2 (en) Light emitting module manufacturing method and light emitting module
JP2021125371A (en) Manufacturing method of light emitting module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6717421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250