[第1実施形態の距離測定装置]
図1は、第1実施形態の距離測定装置10の構成を示す構成図である。この距離測定装置10は、正弦波位相変調方式を用いて予め定めた基準位置(例えばビームスプリッタ13)から本発明の測定対象物に相当する測定光側ミラー14までの距離を測定する。この距離測定装置10は、光波生成部12と、ビームスプリッタ13と、測定光側ミラー14と、参照光側ミラー15と、シフト機構16と、検出器17と、第1ロックインアンプ18と、第2ロックインアンプ19と、コンピュータ20と、を備える。
光波生成部12は、発振器22とレーザ光源23とを備える。発振器22は、レーザ光源23に対して、以下の[数1]式で示す正弦波信号S0(t)を出射する。ここで、[数1]式中の「I0」は正弦波信号S0(t)の信号強度(振幅)であり、「ωm」は正弦波信号S0(t)の角周波数であり、「t」は時間である。
レーザ光源23は、例えば半導体レーザ光源(LD:Laser Diode)が用いられ、発振器22から入力される正弦波信号S0(t)に基づき駆動される。このレーザ光源23から出射されるレーザ光L(本発明の光波に相当)の発振波長は、LDの直接周波数変調特性により正弦波状に偏移する。このため、レーザ光Lには正弦波状の位相シフトが生じる。これにより、レーザ光源23により正弦波位相変調されたレーザ光Lが生成され、図示しない光ファイバーケーブルを介してビームスプリッタ13へ出射される。
なお、正弦波位相変調したレーザ光Lを生成する方法は、LDの直接周波数変調特性を利用する方法に限定されるものではなく、公知の電気光学素子(EO素子)による間接変調を利用してもよい。
正弦波位相変調されたレーザ光Lは、下記[数2]式で表される光周波数f(t)を有する。ここで、[数2]式中の「fc」は光周波数f(t)の中心周波数であり、「Δf」は正弦波位相変調に伴い変化する光周波数f(t)の交流成分[AC(alternating current)成分]の振幅である。また、前述の角周波数「ωm」は、光周波数f(t)の交流成分の角周波数(変調角周波数)となる。なお、換言すると、「Δf」及び「ωm」は、光周波数f(t)の[正弦波位相]変調の振幅及び角周波数である。
ビームスプリッタ13は、本発明の分割部に相当するものであり、レーザ光源23から入射されたレーザ光Lを測定光mLと参照光rLとに分割し、測定光mLを測定光側ミラー14に向けて出射(透過)すると共に、参照光rLを参照光側ミラー15に向けて反射する。また、ビームスプリッタ13は、測定光側ミラー14にて反射された測定光mLを検出器17に向けて反射すると共に、参照光側ミラー15にて反射された参照光rLを透過して検出器17に向けて出射する。
測定光側ミラー14は、ビームスプリッタ13から入射した測定光mLをビームスプリッタ13に向けて反射する。この測定光側ミラー14は、シフト機構16により、測定光側ミラー14に入射する測定光mLの経路(光路)に沿って移動(変位)される。これにより、ビームスプリッタ13と測定光側ミラー14との間の距離Dmが変更される。
シフト機構16は、測定光側ミラー14を測定光mLの経路に沿って移動させる移動機構であり、距離Dmを変更可能であればその移動方式(機構)は特に限定されず、さらに長ストロークの移動に対応した機構が用いられる。このシフト機構16は、距離測定装置10による距離測定時に、測定光側ミラー14を測定光mLの経路に沿って測定開始位置(初期位置)からユーザが所望の目標位置(停止位置)まで移動させる。そして、本実施形態では、シフト機構16により測定開始位置から目標位置まで移動された後、ビームスプリッタ13及び参照光側ミラー15の間の距離Drと、ビームスプリッタ13及び測定光側ミラー14の間の距離Dmとの経路差Dを測定する。なお、本明細書の各実施形態における「距離測定」とは、経路差Dの測定を指す。
参照光側ミラー15は、ビームスプリッタ13から参照光rLの経路に沿って距離Drだけ離れた位置に設けられており、ビームスプリッタ13から入射した参照光rLをビームスプリッタ13に向けて反射する。
なお、光の位相φ(t)の一般形は下記の[数3]式で表されるので、測定光mLの位相φm(t)及び参照光rLの位相φr(t)は下記の[数4]式で表される。ここで[数3]式及び[数4]式中の「φ0」は初期位相であり、「fm」は光周波数f(t)の交流成分の周波数(光周波数f(t)の[正弦波位相]変調の周波数)であり、「ωm=2πfm」を満たす。また、[数4]式中の「τ」は、測定光mLと参照光rLとの経路差により生じる測定光mLの時間遅れ(ビームスプリッタ13で分割された測定光mLと参照光rLとがビームスプリッタ13に戻る時間差)である。この時間遅れτは、測定光mL及び参照光rLの経路差(幾何学的距離差)をD(D=Dm−Dr)とし、測定光mL及び参照光rLに対する双方の経路の屈折率をnとし、光速をc0とした場合、τ=2×n×D/c0(以下、2nD/c0)を満たす。そして、測定光mLの光強度Emと、参照光rLの光強度Erは、それぞれ下記[数5]式で表される。ここで、下記の[数5]式において、光強度Em,ErはEm=Aexp(iφm(t))、Er=Bexp(iφr(t))で表されるが、これらの式中の振幅A,Bは以降の説明に影響しないため、省略している。
測定光側ミラー14により反射された測定光mLと、参照光側ミラー15により反射された参照光rLとはビームスプリッタ13にて合波される。これにより、測定光mLと参照光rLとの光干渉信号である干渉信号ILが、ビームスプリッタ13から図示しない光ファイバーケーブルを介して検出器17へ出射される。
検出器17は、本発明の干渉信号検出部に相当するものであり、例えばCCD(Charge Coupled Device)型又はCMOS(complementary metal oxide semiconductor)型のイメージセンサ、或いはフォトダイオード等が用いられる。検出器17は、ビームスプリッタ13から入射される干渉信号ILを検出(受光)し、この干渉信号ILを電気信号である干渉信号Sigに変換する。そして、検出器17は、検出した干渉信号Sigを、図示しない信号線を介して第1ロックインアンプ18と第2ロックインアンプ19とにそれぞれ出力する。
ここで干渉信号Sigは、干渉信号ILの強度Iを示すものであり、下記の[数6]式で表される。なお、[数6]式中の「位相φ」は下記の[数7]式を満たし、[数6]式中の「変調指数m」は下記の[数8]式を満たす。そして、[数6]式を第一種k次ベッセル関数Jk(m)により級数展開すると、この[数6]式は下記の[数9]式で表される。
第1ロックインアンプ18及び第2ロックインアンプ19は、本発明の正弦波信号検出部に相当する。第1ロックインアンプ18及び第2ロックインアンプ19は、検出器17から入力される干渉信号Sig(干渉信号ILの強度I)から、後述の第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)にそれぞれ対応する位相差90°(略90°を含む)の2相の正弦波信号S1(φ),S2(φ)を検出する。
第1ロックインアンプ18は、第1発振器25と、第1乗算器26と、図中「LPF」(Low-pass filter)で示す第1ローパスフィルタ27と、を備える。
第1発振器25は、上記[数9]式の第2項の「J2(m)cos{2ωm(t-τ/2)}」に対応する第1参照正弦波信号R1(t){下記の[数10]式参照}を、第1乗算器26へ出力する。第1乗算器26は、検出器17から入力される干渉信号Sig(強度I)と、第1発振器25から入力される第1参照正弦波信号R1(t)とを乗算し、乗算信号を第1ローパスフィルタ27へ出力する。
第1ローパスフィルタ27は、第1乗算器26から入力された乗算信号にローパスフィルタ処理を施す。これにより、干渉信号Sig(強度I)の中で第1参照正弦波信号R1(t)の周波数と等しい成分のみが直流となり、この直流成分に相当する第1正弦波信号S1(φ)が第1ローパスフィルタ27を通過する。これにより、第1ロックインアンプ18は、干渉信号Sig(強度I)から第1参照正弦波信号R1(t)に対応する周波数成分の第1正弦波信号S1(φ){下記の[数11]式参照}を検出する。
第2ロックインアンプ19は、第2発振器29と、第2乗算器30と、図中「LPF」で示す第2ローパスフィルタ31と、を備える。
第2発振器29は、上記[数9]式の第3項の「J3(m)sin{3ωm(t-τ/2)}」に対応する第2参照正弦波信号R2(t){下記の[数10]式参照}を、第2乗算器30へ出力する。第2乗算器30は、検出器17から入力される干渉信号Sig(強度I)と、第2発振器29から入力される第2参照正弦波信号R2(t)とを乗算し、乗算信号を第2ローパスフィルタ31へ出力する。第2ロックインアンプ19は、第2乗算器30から入力された乗算信号にローパスフィルタ処理を施す。これにより、第2ロックインアンプ19は、干渉信号Sig(強度I)から第2参照正弦波信号R2(t)に対応する周波数成分の第2正弦波信号S2(φ){下記の[数11]式参照}を検出する。
このように第1ロックインアンプ18及び第2ロックインアンプ19は、干渉信号Sig(強度I)から位相差90°の2相の第1正弦波信号S1(φ)及び第2正弦波信号S2(φ)[以下、2相の正弦波信号S1(φ),S2(φ)と略す]を検出して、これら2相の正弦波信号S1(φ),S2(φ)をコンピュータ20へ出力する。これら2相の正弦波信号S1(φ),S2(φ)は、位相差が90°であるので、後述の楕円形状のリサージュ波形W1(図3参照)を形成する。
なお、2相の正弦波信号S1(φ),S2(φ)は、位相差が90°、すなわち楕円形状のリサージュ波形W1(図3参照)を形成可能であれば上記[数11]式に限定はされず、この場合、検出する2相の正弦波信号S1(φ),S2(φ)に応じて第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)を変更する。
また、本実施形態では、距離測定装置10による距離測定開始時、すなわち測定光側ミラー14が移動開始前(変位開始前)の測定開始位置にある状態において、2相の正弦波信号S1(φ),S2(φ)の位相差の誤差(理想値90°からの誤差)が補正されるように、2相の正弦波信号S1(φ),S2(φ)の位相差補正を行っている。この位相差補正は、例えば、シフト機構16により測定光側ミラー14を移動させたり(距離Dmを変えたり)、或いは上記[数2]式の中心周波数fcを変えたりすることにより行われる。
なお、2相の正弦波信号S1(φ),S2(φ)にオフセット誤差が生じる場合、すなわちリサージュ波形W1(図3参照)の中心が原点からずれる場合には、2相の正弦波信号S1(φ),S2(φ)に対してオフセット補正も行われる。ここで、オフセット補正は公知技術であるため、その詳細は説明を省略する。
コンピュータ20は、発振器22と、第1ローパスフィルタ27と、第2ローパスフィルタ31とに有線又は無線接続している。このコンピュータ20は、詳しくは後述するが、第1ロックインアンプ18及び第2ロックインアンプ19から入力される2相の正弦波信号S1(φ),S2(φ)に基づき、測定光mLと参照光rLとの光学的距離差nD(図2参照)を算出する。この光学的距離差nDは、測定光mLと参照光rLとの経路差D(Dm−Dr)と、測定光mL及び参照光rLの経路の屈折率nとの積で表される。そして、コンピュータ20は、算出した光学的距離差nDに基づき、上記[数2]式中の振幅Δfを制御する。
なお、図示は省略するが、コンピュータ20により、光波生成部12とシフト機構16と検出器17と第1ロックインアンプ18と第2ロックインアンプ19とを含む距離測定装置10の全体の動作を統括制御してもよい。
[第1実施形態のコンピュータの構成]
図2は、第1実施形態のコンピュータ20の機能を示す機能ブロック図である。コンピュータ20は、各種の演算部及び処理部及び記憶部により構成された演算処理回路(不図示)を有している。図2に示すように、コンピュータ20は、演算処理回路が不図示のメモリ等から読み出した距離測定プログラム(不図示)を実行することで、信号取得部34と、補正部35と、算出部36と、情報取得部37と、振幅決定部38と、振幅制御部39として機能する。
信号取得部34は、不図示の通信インタフェースを介して、第1ロックインアンプ18及び第2ロックインアンプ19から2相の正弦波信号S1(φ),S2(φ)を取得し、取得した2相の正弦波信号S1(φ),S2(φ)を補正部35へ出力する。
図3は、補正部35による補正処理を説明するための説明図である。図3に示すように、2相の正弦波信号S1(φ),S2(φ)により形成されるリサージュ波形W1は、2相の正弦波信号S1(φ),S2(φ)の係数[J2(m)、J3(m)]の違いにより、原点を中心とする真円にはならず、原点を中心とする楕円となる。そこで、補正部35は、2相の正弦波信号S1(φ),S2(φ)に対して「所定の係数」を乗算することで、リサージュ波形W1のアスペクト比を補正、すなわち、原点を中心とする真円のリサージュ波形W2を形成するような2相の補正信号V1(φ),V2(φ)を生成する補正を行う。以下、この補正を振幅補正という。
ここで、「所定の係数」は、測定光側ミラー14が移動開始前の測定開始位置にある状態において、例えば最小二乗法等でリサージュ波形W1を楕円近似したり、或いは2相の正弦波信号S1(φ),S2(φ)の振幅比を検出したり、汎用メジャーで後述の初期経路差D0を測定して変調指数mを決定した後、係数[J2(m)、J3(m)]を計算したりするなどの公知の手法で求められる。そして、補正部35は、測定光側ミラー14の移動開始前に求めた「所定の係数」を記憶しておき、測定光側ミラー14が測定開始位置から目標位置に到達するまでの間に得られる2相の正弦波信号S1(φ),S2(φ)に対して、先に記憶した所定の係数を乗算して振幅補正を行う。補正部35により補正された2相の補正信号V1(φ),V2(φ)は、算出部36(図2参照)へ出力される。
図2に戻って、算出部36は、前述の補正部35と共に本発明の距離差算出部として機能する。算出部36は、補正部35から入力される2相の補正信号V1(φ),V2(φ)に基づき、既述の図3に示したリサージュ波形W2を描く点が、測定開始から現時点までに原点周りを回転した回転数(実数)をカウント値として計数する。このカウント値は、上記[数7]式に示した位相差φ(図3参照)の位相変化量の大きさを示す値である。
次いで、算出部36は、計数したカウント値と、既知の中心周波数fc及び光速C0とに基づき、上記[数7]式から光学的距離差nDを算出する。そして、算出部36は、算出した光学的距離差nDと、既知の屈折率nとに基づき、経路差Dを算出する。また、算出部36は、光学的距離差nDの算出結果を振幅決定部38へ出力する。
情報取得部37は、距離測定開始時、すなわち測定光側ミラー14が測定開始位置にある状態での経路差D、屈折率n、及び振幅Δfにそれぞれ相当する初期経路差D0、初期屈折率n0、及び初期振幅Δf0を取得する。また、情報取得部37は、角周波数ωm、中心周波数fc、及び距離Drを取得する。ここで、初期屈折率n0(本実施形態ではn=n0)はほぼ定数であり、初期振幅Δf0と角周波数ωmと中心周波数fcと距離Drとは設定値であるので、情報取得部37は事前にユーザにより入力された各値を取得する。
また、初期経路差D0(デッドパスともいう)は、汎用メジャーで測定した値、或いは距離測定装置10で測定した値を取得することができる。以下、距離測定装置10で初期経路差D0を測定(算出)する方法の一例を説明する。ここで、初期経路差D0は、上記[数8]式と「ωm=2πfm」とに基づき、下記[数12]式で表される。
上記[数12]式において、初期屈折率n0、初期振幅Δf0、及び角周波数ωmは定数又は設定値であるので、変調指数mを求めることにより、上記[数12]式から初期経路差D0を求めることができる。
図4は、初期経路差D0の測定処理の流れを示すフローチャートである。また、図5は、初期経路差D0の測定処理を説明するための説明図である。図4及び図5に示すように、情報取得部37は、リサージュ波形W1を形成する補正前の2相の正弦波信号S1(φ),S2(φ)を信号取得部34から取得する(ステップS1)。
次いで、情報取得部37は、2相の正弦波信号S1(φ),S2(φ)により形成される楕円のリサージュ波形W1に対して、最小二乗法による楕円近似等を行うことにより、下記の[数13]式を求める(ステップS2)。
上記[数13]式を「m」について解いた式は「m=F(x)」で表される。そして、情報取得部37は、図5中のグラフ41で示すように、F(x)に対して例えば9次多項式で多項式近似を行うことにより、変調指数mを算出する(ステップS3)。
次いで、情報取得部37は、先に取得した初期屈折率n0、初期振幅Δf0、及び角周波数ωmと、ステップS3で算出した変調指数mと、既知の光速C0と、を上記[数12]式に代入して初期経路差D0を算出する(ステップS4)。この方法によれば、変調指数mを±0.02の算出精度で算出することができ、その結果、初期経路差D0を±450μmの算出精度で算出することができる。これにより、距離測定装置10において初期経路差D0の測定結果が得られる。
図2に戻って、情報取得部37は、屈折率nと中心周波数fcとを含む各種情報を前述の算出部36へ出力する。これにより、算出部36は前述の光学的距離差nDを算出することができる。また、情報取得部37は、取得した初期経路差D0と初期屈折率n0と初期振幅Δf0と角周波数ωmとを含む各種情報を振幅決定部38へ出力する。
振幅決定部38は、前述の算出部36から入力された光学的距離差nDと、情報取得部37から入力された初期経路差D0等の各種情報とに基づき、光波生成部12にて生成されるレーザ光Lの光周波数f(t)の振幅Δf(上記[数2]式参照)を決定する。この際に振幅決定部38は、前述の変調指数mを一定に保つように振幅Δfを決定する。換言すると、変調指数mは前述の2相の正弦波信号S1(φ),S2(φ)が形成するリサージュ波形W1のアスペクト比[J2(m)/J3(m)]を決定する値であるため、振幅決定部38は、リサージュ波形W1のアスペクト比を一定に保つような振幅Δfを決定する。
具体的に、変調指数mを一定に保つ振幅Δfは、上記[数8]式に基づき、下記の[数14]式で表される。このため、振幅決定部38は、光学的距離差nDと、初期経路差D0等の各種情報と、を下記の[数14]式に代入することで、変調指数mを一定に保つ振幅Δfを決定する。そして、振幅決定部38は、振幅Δfの決定結果を振幅制御部39へ出力する。
振幅制御部39は、光波生成部12にて生成されるレーザ光Lの光周波数f(t)の振幅Δfが、振幅決定部38から入力された振幅Δfの決定結果と一致するように、発振器22から出力される正弦波信号S0(t)の角周波数ωmを制御する。例えば、光周波数f(t)の振幅Δfと、振幅Δfが実現される正弦波信号S0(t)の角周波数ωmとの対応関係を示すデータテーブル又は演算式を予め生成しておく。これにより、振幅制御部39は、データテーブル又は演算式に基づき、振幅Δfの決定結果に対応する正弦波信号S0(t)の角周波数ωmを決定して、発振器22から出力される正弦波信号S0(t)の角周波数ωmを制御することができる。
[第1実施形態の距離測定装置の作用]
次に、図6を用いて上記構成の距離測定装置10の作用について説明する。ここで図6は、第1実施形態の距離測定装置10による距離測定処理(距離測定方法)の流れを示すフローチャートである。なお、ここでは、シフト機構16により測定開始位置から目標位置まで移動された測定光側ミラー14の距離測定について説明を行う。
ユーザが距離測定装置10の各部の電源をONすると、光波生成部12において発振器22から出力される正弦波信号S0(t)に基づきレーザ光源23が駆動され、このレーザ光源23から光周波数f(t)のレーザ光Lが出射される。このレーザ光Lは、ビームスプリッタ13で測定光mLと参照光rLとに分割される。そして、測定光mLは、ビームスプリッタ13から測定光側ミラー14へ出射され、測定光側ミラー14にて反射された後にビームスプリッタ13に入射する。一方、参照光rLは、ビームスプリッタ13から参照光側ミラー15へ出射され、参照光側ミラー15にて反射された後にビームスプリッタ13に入射する。
ビームスプリッタ13に入射した測定光mLと参照光rLとの干渉信号ILは、検出器17に入射して、この検出器17にて電気信号である干渉信号Sigに変換される。この干渉信号ILは、検出器17から第1ロックインアンプ18及び第2ロックインアンプ19にそれぞれ出力される。
次いで、第1ロックインアンプ18及び第2ロックインアンプ19において、干渉信号Sig(強度I)から、第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)にそれぞれ対応する2相の正弦波信号S1(φ),S2(φ)が検出され、これら2相の正弦波信号S1(φ),S2(φ)がコンピュータ20へ出力される。以上で距離測定装置10の起動が完了する(ステップS10)。
そして、測定光側ミラー14が移動開始前の測定開始位置にある状態において、初期経路差D0(デッドパス)の測定が開始される。具体的には、汎用メジャーを用いて初期経路差D0を測定した測定結果をコンピュータ20に入力する方法、或いは既述の図4及び図5で説明した距離測定装置10による初期経路差D0の測定方法を選択する。これにより、コンピュータ20の情報取得部37が初期経路差D0を取得する(ステップS11)。
また、ユーザは、初期屈折率n0(屈折率n)、初期振幅Δf0、角周波数ωm、中心周波数fc、及び距離Drに関する情報をコンピュータ20(情報取得部37)に入力する。なお、これらの値は既知であるので事前にコンピュータ20のメモリ等に入力しておくことで、ユーザによる入力を行うまでもなく、情報取得部37はこれらの値をメモリ等から取得することができる。これにより、情報取得部37は、屈折率n及び中心周波数fcに関する各種情報を算出部36へ出力し、初期経路差D0と初期屈折率n0と初期振幅Δf0と角周波数ωmとに関する各種情報を振幅決定部38へ出力する。
次いで、ユーザがリサージュ波形W1のアスペクト比の補正開始操作を行うと、補正部35は、信号取得部34等を介して第1ロックインアンプ18及び第2ロックインアンプ19から取得した2相の正弦波信号S1(φ),S2(φ)を解析する。なお、この際に、既述のオフセット補正、及び測定光側ミラー14の移動又は中心周波数fcの変更によりリサージュ波形W1を回転させる位相差補正を、必要に応じて実行する。
そして、補正部35は、最小二乗法等でリサージュ波形W1を楕円近似することで、このリサージュ波形W1を真円に補正するための所定の係数を求めて記憶すると共に、この所定の係数を2相の正弦波信号S1(φ),S2(φ)に乗算する振幅補正を行う。これにより、リサージュ波形W1のアスペクト比が補正され、真円のリサージュ波形W2を形成する2相の補正信号V1(φ),V2(φ)が補正部35により生成される(ステップS12)。これら2相の補正信号V1(φ),V2(φ)は、補正部35から算出部36に入力され、算出部36にて光学的距離差nDの算出が開始される。以上で測定光側ミラー14の移動準備が完了する。
次いで、ユーザは、振幅Δfの制御開始操作を行う(ステップS13)。これにより、後述のステップS15からステップS20に示す振幅Δfの制御が開始される。また、ユーザは、シフト機構16に対して測定光側ミラー14の移動操作を行う。これにより、シフト機構16は、測定光側ミラー14を測定光mLの経路に沿って測定開始位置から目標位置に向けて移動させる(ステップS14)。
この際に、光波生成部12によるレーザ光Lの生成と、ビームスプリッタ13によるレーザ光Lの分割と、検出器17による干渉信号Sigの検出と、第1ロックインアンプ18及び第2ロックインアンプ19による2相の正弦波信号S1(φ),S2(φ)の検出と、を含む測定処理が実行される(ステップS15)。このステップS15の測定処理は、本発明の光波生成ステップと分割ステップと干渉信号検出ステップと正弦波信号検出ステップとに相当する。
コンピュータ20の信号取得部34は、第1ロックインアンプ18及び第2ロックインアンプ19から2相の正弦波信号S1(φ),S2(φ)を取得し、これら2相の正弦波信号S1(φ),S2(φ)を補正部35に入力する(ステップS16)。補正部35に入力された2相の正弦波信号S1(φ),S2(φ)は、補正部35において先に求めた所定の係数を乗算する振幅補正等が施される(ステップS17)。これにより、振幅補正等された2相の補正信号V1(φ),V2(φ)が補正部35から算出部36に入力される。
2相の補正信号V1(φ),V2(φ)の入力を受けた算出部36は、既述のカウント値を計数して、このカウント値と、情報取得部37から取得した中心周波数fcと、既知の光速C0とに基づき、上記[数7]式から光学的距離差nDを算出する(ステップS18、本発明の距離差算出ステップに相当)。この光学的距離差nDの算出結果は、算出部36から振幅決定部38に入力される。また、算出部36は、光学的距離差nDの算出結果と、情報取得部37から入力された屈折率nの情報に基づき、現在の経路差D(幾何学的距離差)を算出する。
光学的距離差nDの算出結果の入力を受けた振幅決定部38は、この光学的距離差nDと、先に情報取得部37から入力された初期経路差D0等の各種情報とに基づき、上記[数14]式を用いて、変調指数mを一定に保つ振幅Δfを決定する(ステップS19、本発明の振幅決定ステップに相当)。この振幅Δfの決定結果は、振幅決定部38から振幅制御部39に入力される。
振幅Δfの決定結果の入力を受けた振幅制御部39は、既述のデータテーブル又は演算式を用いて、振幅Δfの決定結果に対応する正弦波信号S0(t)の角周波数ωmを決定することで、発振器22から出力される正弦波信号S0(t)の角周波数ωmを制御する。これにより、振幅Δfが変調指数mを一定に保つように制御される(ステップS20、本発明の振幅制御ステップに相当)。
以下、測定光側ミラー14が目標位置に到達するまで、前述のステップS15からステップS20までの処理が繰り返し実行される(ステップS21でNO)。その結果、前述の振幅Δfの制御が継続して行われる。
測定光側ミラー14が目標位置に到達すると(ステップS21でYES)、シフト機構16による移動が完了して測定光側ミラー14が目標位置で停止する。そして、前述のステップS15からステップS18までの処理により、測定光側ミラー14が目標位置に停止している状態での光学的距離差nDが算出される。次いで、算出部36が、光学的距離差nDの算出結果と、情報取得部37から入力された屈折率nに関する情報とに基づき、現在の(目標位置での)経路差D(幾何学的距離差)を算出する(ステップS22)。
[第1実施形態の距離測定装置の効果]
図7は、第1実施形態の距離測定装置10の効果を説明するための説明図である。なお、図中の「J2、J3」は、リサージュ波形W1のアスペクト比[J2(m)/J3(m)]を示す値であり、「距離(m)」はシフト機構16により移動される測定光側ミラー14の移動距離である。また、図7中の比較例44及び実施例45は、fm=10MHz、Δf0=200MHz、D0=1m、n0(n)≒1、C0を真空中の光速とした条件で得られたものである。
図7の上段に示すように、振幅Δfの制御を実行しない比較例44では、測定光側ミラー14の移動に伴い、「J2及びJ3」、すなわちリサージュ波形W1のアスペクト比が変化する。このため、リサージュ波形W1を形成する2相の正弦波信号S1(φ),S2(φ)に対して、先に求めた所定の係数を乗算した場合に、真円のリサージュ波形W2を形成する2相の補正信号V1(φ),V2(φ)が得られない。このような2相の補正信号V1(φ),V2(φ)に基づき測定光側ミラー14の経路差D(幾何学的距離差)を求めたとしても測定誤差が大きくなってしまう。
また、測定光側ミラー14の移動の途中でリサージュ波形W1の半径値が小さくなる場合、すなわち2相の正弦波信号S1(φ),S2(φ)の信号強度が弱くなる場合には、経路差D(幾何学的距離差)の測定ができないおそれがある。特に、距離測定装置10による距離測定は相対測定であるため、リサージュ波形W1の半径値が一旦ゼロになる(すなわちリサージュ波形W1が一旦無くなると)、以後の測定を行うことができない。
このような比較例44に対して、図7の下段に示すように、振幅Δfの制御を実行する本実施例45では、測定光側ミラー14の移動に関係なく変調指数mが一定に保たれることで、「J2及びJ3」、すなわちリサージュ波形W1のアスペクト比が一定に保たれ、リサージュ波形W1の半径値がゼロになることはない。その結果、測定光側ミラー14の各位置で取得された2相の正弦波信号S1(φ),S2(φ)に対してそれぞれ先に求めた所定の係数を乗算すると、常に真円のリサージュ波形W2を形成する2相の補正信号V1(φ),V2(φ)が得られる。その結果、目標位置に停止後の経路差D(幾何学的距離差)を精度よく測定することができる。
[第2実施形態の距離測定装置]
次に、図8を用いて第2実施形態の距離測定装置10Aについて説明を行う。図8は、第2実施形態の距離測定装置10Aの構成を示す構成図である。上記第1実施形態の距離測定装置10では、光学的距離差nDの算出結果等に基づき光周波数f(t)の振幅Δfの制御を行うが、第2実施形態の距離測定装置10Aでは、光学的距離差nDの算出結果等に基づき第1ロックインアンプ18及び第2ロックインアンプ19による2相の正弦波信号S1(φ),S2(φ)の検出制御を行う。
図8に示すように、第2実施形態の距離測定装置10Aでは、コンピュータ20が発振器22の代わりに第1発振器25及び第2発振器29に有線又は無線接続している点を除けば、上記第1実施形態の距離測定装置10と基本的に同じ構成である。このため、上記第1実施形態と機能又は構成上同一のものについては、同一符号を付してその説明は省略する。
図9は、第2実施形態のコンピュータ20の機能を示す機能ブロック図である。図9に示すように、第2実施形態のコンピュータ20は、演算処理回路(不図示)が前述の距離測定プログラム(不図示)を実行することで、既述の信号取得部34、補正部35、及び算出部36、及び情報取得部37の他に、時間遅れ検出部50と検出制御部51として機能する。
第2実施形態の情報取得部37は、初期屈折率n0(屈折率n)及び中心周波数fc等を取得して、これらの各種情報を算出部36へ出力する。これにより、第2実施形態の算出部36は、第1実施形態と同様に上記[数7]式から光学的距離差nDを算出して、この光学的距離差nDの算出結果を時間遅れ検出部50へ出力する。また、第2実施形態の情報取得部37は、屈折率nに関する情報を時間遅れ検出部50へ出力する。
時間遅れ検出部50は、算出部36から入力される光学的距離差nDと、情報取得部37から入力される屈折率n(既知であれば入力は不要)と、既知の光速C0とに基づき、下記の[数15]式に基づき、前述の時間遅れτを算出する。そして、時間遅れ検出部50は、時間遅れτの算出結果を検出制御部51へ出力する。
検出制御部51は、時間遅れ検出部50から入力された時間遅れτの算出結果(検出結果)に基づき、第1ロックインアンプ18の第1発振器25が出力する第1参照正弦波信号R1(t)の位相と、第2ロックインアンプ19の第2発振器29が出力する第2参照正弦波信号R2(t)の位相とを補正する(上記[数10]式参照)。そして、検出制御部51は、位相補正後の第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)に基づき、第1ロックインアンプ18及び第2ロックインアンプ19に2相の正弦波信号S1(φ),S2(φ)を検出させる検出制御を行う。
[第2実施形態の距離測定装置の作用]
次に、図10を用いて上記構成の距離測定装置10Aの作用について説明する。ここで図10は、第2実施形態の距離測定装置10Aによる距離測定処理(距離測定方法)の流れを示すフローチャートである。
ステップS10からステップS12までの処理は、上記第1実施形態と基本的に同じであるので、ここでは具体的な説明を省略する。そして、ステップS12が完了すると、ユーザは、第1ロックインアンプ18及び第2ロックインアンプ19による2相の正弦波信号S1(φ),S2(φ)の検出制御を開始する制御開始操作を行う(ステップS13A)。これにより、後述のステップS15からステップS20Aに示す2相の正弦波信号S1(φ),S2(φ)の検出制御が開始される。
そして、ユーザは、上記第1実施形態と同様にシフト機構16により測定光側ミラー14を測定開始位置から目標位置に向けて移動させる(ステップS14)。
この際に、上記第1実施形態と同様にステップS15からステップS18までの処理が実行され、算出部36が現時点の測定光側ミラー14の位置に対応した光学的距離差nDを算出して時間遅れ検出部50に入力する。
光学的距離差nDの入力を受けた時間遅れ検出部50は、この光学的距離差nDと、情報取得部37から入力される屈折率nと、既知の光速C0とに基づき、上記[数15]式を用いて時間遅れτを算出(検出)し、時間遅れτの算出結果を検出制御部51に入力する(ステップS19A、本発明の時間遅れ検出ステップに相当)。
時間遅れτの算出結果の入力を受けた検出制御部51は、時間遅れτの算出結果に基づき、第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)の位相を補正し、位相補正後の第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)を第1発振器25及び第2発振器29から出力させる。これにより、第1ロックインアンプ18及び第2ロックインアンプ19が、位相補正後の第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)に基づき、干渉信号Sigから2相の正弦波信号S1(φ),S2(φ)を検出する検出制御が実行される(ステップS20A、本発明の検出制御ステップに相当)。
このような検出制御により、上記[数9]式で示す干渉信号Sig[強度I]の位相と、上記[数10]式で示す第1参照正弦波信号R1(t)及び第2参照正弦波信号R2(t)の位相との間での位相遅れが補正される。
以下、測定光側ミラー14が目標位置に到達するまで、前述のステップS15からステップS20Aまでの処理が繰り返し実行される(ステップS21でNO)。これにより、前述の検出制御が継続して行われる。
そして、測定光側ミラー14が目標位置に到達すると(ステップS21でYES)、シフト機構16による移動が完了して測定光側ミラー14が目標位置で停止する。以下、第1実施形態と同様に、ステップS15からステップS18までの処理を経て、目標位置に停止後の経路差D(幾何学的距離差)が算出部36により算出される(ステップS22)。
[第2実施形態の距離測定装置の効果]
図11は、第2実施形態の距離測定装置10Aの効果を説明するための説明図である。なお、図中の「ax、ay」は、下記の[数16]式に含まれる係数である。また、下記の[数16]式中の「x、y」は位相遅れがない理想的なリサージュ波形W1のx成分及びy成分であり、「X、Y」は位相遅れがある実際のリサージュ波形W1のX成分及びY成分である。さらに、図11中の比較例44A及び実施例45Aは、fm=10MHz、Δf0=200MHz、D0=1m、n0(n)≒1、C0=真空中の光速とした条件で得られたものである。
図11の上段に示すように、2相の正弦波信号S1(φ),S2(φ)の検出制御、すなわち、干渉信号Sigと各参照正弦波信号R1(t),R2(t)との位相遅れの補正制御を実行しない比較例44Aでは、係数ax,ayが正弦波状に変化する。このため、係数ax,ayの変化に応じて、2相の正弦波信号S1(φ),S2(φ)の信号強度が増減する。その結果、2相の正弦波信号S1(φ),S2(φ)の信号強度が弱くなり、経路差Dの測定ができなくなる場合がある。
このような比較例44Aに対して、図11の下段に示すように、2相の正弦波信号S1(φ),S2(φ)の検出制御を行う本実施例45Aでは、前述の位相遅れが補正されることにより係数ax,ayが一定に保たれる。その結果、比較例44Aのように2相の正弦波信号S1(φ),S2(φ)の信号強度が弱くなることが防止されるので、目標位置に停止後の経路差Dを確実に測定することができる。
[第3実施形態の距離測定装置]
次に、図12及び図13を用いて、第3実施形態の距離測定装置10Bについて説明を行う。上記第1実施形態では光周波数f(t)の振幅Δfの制御を行い、上記第2実施形態では2相の正弦波信号S1(φ),S2(φ)の検出制御を行う場合について説明したが、第3実施形態の距離測定装置10Bでは、振幅Δfの制御と、2相の正弦波信号S1(φ),S2(φ)の検出制御との双方を行う。
図12は、第3実施形態の距離測定装置10Bの構成を示す構成図である。図13は、第3実施形態のコンピュータ20の機能を示す機能ブロック図である。図12及び図13に示すように、距離測定装置10Bは、上記第1実施形態の距離測定装置10と第2実施形態の距離測定装置10Aとを組み合わせた装置であるため、上記各実施形態と機能又は構成上同一のものについては、同一符号を付してその説明は省略する。
第3実施形態のコンピュータ20は、発振器22と、第1発振器25及び第1ローパスフィルタ27と、第2発振器29及び第2ローパスフィルタ31と、にそれぞれ有線又は無線接続している。そして、第3実施形態のコンピュータ20は、上記各実施形態のコンピュータ20の双方の機能を有しているので、前述の光学的距離差nDの算出結果等に基づき、光周波数f(t)の振幅Δfの制御と、各参照正弦波信号R1(t),R2(t)の位相補正、すなわち2相の正弦波信号S1(φ),S2(φ)の検出制御と、を行う。
[第3実施形態の距離測定装置の作用]
図14は、第3実施形態の距離測定装置10Bによる距離測定処理(距離測定方法)の流れを示すフローチャートである。この第3実施形態の距離測定処理の流れは、既述の図6及び図10に示した上記各実施形態の開始操作(ステップS13,S13A)を組み合わせた開始操作(ステップS13B)を行う点と、第1実施形態で説明した振幅Δfの制御(ステップS19,S20)及び第2実施形態で説明した検出制御(ステップS19A,S20A)の双方を並行して行う点とを除けば、上記各実施形態の距離測定処理の流れと基本的に同じである。
[第3実施形態の距離測定装置の効果]
以上の通り、第3実施形態の距離測定装置10Bは、第1実施形態で説明した光周波数f(t)の振幅Δfの制御と、第2実施形態で説明した2相の正弦波信号S1(φ),S2(φ)の検出制御との双方を実行するので、上記各実施形態で説明した効果が全て得られる。
[第4実施形態の距離測定装置]
次に、図15を用いて本発明の第4実施形態の距離測定装置10Cについて説明を行う。図15は、第4実施形態の距離測定装置10Cの構成を示す構成図である。この距離測定装置10Cは、正弦波位相変調方式による距離測定の応用例として、いわゆる2色法による距離測定を行う。なお、上記各実施形態と機能又は構成上同一のものについては、同一符号を付してその説明は省略する。
図15に示すように、第4実施形態の距離測定装置10Cは、光波生成部12と、分配器60と、図中「SHG」(Second Harmonic Generation)で表示した高調波発生器61と、合波器62と、コリメータ63と、ビームスプリッタ13と、測定光側ミラー14と、参照光側ミラー15と、シフト機構16と、分波器64と、検出器17A,17Bと、第1ロックインアンプ18A,18Bと、第2ロックインアンプ19A,19Bと、コンピュータ20と、を備える。
分配器60(例えばカプラ)は、光波生成部12から出射されたレーザ光Lを、第1レーザ光L1と第2レーザ光L2とに分配して、第1レーザ光L1を合波器62に向けて出射し、且つ第2レーザ光L2を高調波発生器61に向けて出射する。
高調波発生器61は、分配器60から入射した第2レーザ光L2を波長変換して、第1レーザ光L1の2倍の光周波数[2×f(t)]を有する第2レーザ光L2を生成し、この第2レーザ光L2を合波器62へ出射する。
合波器62は、分配器60から入射した第1レーザ光L1と、高調波発生器61から入射した第2レーザ光L2とを合波し、合波した第1レーザ光L1及び第2レーザ光L2をコリメータ63へ出射する。
コリメータ63は、合波器62から入射した第1レーザ光L1及び第2レーザ光L2を平行光化してビームスプリッタ13へ出射する。なお、コリメータ63の代わりに放物面ミラー等を用いてもよい。
第3実施形態のビームスプリッタ13は、コリメータ63から入射した第1レーザ光L1を第1測定光mL1と第1参照光rL1とに分割すると共に、第2レーザ光L2を第2測定光mL2と第2参照光rL2とに分割する。そして、ビームスプリッタ13は、第1測定光mL1及び第2測定光mL2を測定光側ミラー14に向けて出射すると共に、第1参照光rL1及び第2参照光rL2を参照光側ミラー15に向けて出射する。
測定光側ミラー14により反射された第1測定光mL1と、参照光側ミラー15により反射された第1参照光rL1とはビームスプリッタ13にて合波され、第1測定光mL1と第1参照光rL1との第1干渉信号IL1が分波器64へ出射される。また、測定光側ミラー14により反射された第2測定光mL2と、参照光側ミラー15により反射された第2参照光rL2とについても同様にビームスプリッタ13にて合波され、第2測定光mL2と第2参照光rL2との第2干渉信号IL2が分波器64へ出射される。
分波器64(例えばダイクロイックミラー)は、第1レーザ光L1の波長域に対応する光を透過し、第2レーザ光L2の波長域に対応する光を反射する特性を有する。これにより、分波器64は、ビームスプリッタ13から入射した第1干渉信号IL1を透過し、ビームスプリッタ13から入射した第2干渉信号IL2を反射する。そして、ビームスプリッタ13を透過した第1干渉信号IL1は検出器17Aに入射し、ビームスプリッタ13にて反射された第2干渉信号IL2は検出器17Bに入射する。
検出器17A,17B(本発明の干渉信号検出部に相当)は、上記各実施形態の検出器17と同様のものである。検出器17Aは、分波器64から入射された第1干渉信号IL1を検出して、第1干渉信号Sig1を第1ロックインアンプ18Aと第2ロックインアンプ19Aとにそれぞれ出力する。一方、検出器17Bは、分波器64から入射された第2干渉信号IL2を検出して、第2干渉信号Sig2を第1ロックインアンプ18Bと第2ロックインアンプ19Bとにそれぞれ出力する。
第1ロックインアンプ18A及び第2ロックインアンプ19Aと、第1ロックインアンプ18B及び第2ロックインアンプ19Bとは、それぞれ上記各実施形態の第1ロックインアンプ18及び第2ロックインアンプ19と基本的に同じ構成を有している。
第1ロックインアンプ18A及び第2ロックインアンプ19Aは、検出器17Aより入力された第1干渉信号Sig1から、下記の[数17]式で表す位相差90°の2相の正弦波信号S1(φ1),S2(φ1)を検出する。なお、[数17]式中の位相φ1及び変調指数m1は、測定光mL1及び参照光rL1に対応する経路差(幾何学的距離差)をD1とし、測定光mL1及び参照光rL1に対する双方の経路の屈折率をn1とした場合、下記の[数18]式で表される。これら2相の正弦波信号S1(φ1),S2(φ1)は、コンピュータ20に入力される。
一方、第1ロックインアンプ18B及び第2ロックインアンプ19Bは、検出器17Bより入力された第2干渉信号Sig2から、下記の[数19]式で表す位相差90°の2相の正弦波信号S1(φ2),S2(φ2)を検出する。なお、[数19]式中の位相φ2及び変調指数m2は、測定光mL2及び参照光rL2に対応する経路差(幾何学的距離差)をD2とし、測定光mL2及び参照光rL2に対する双方の経路の屈折率をn2とした場合、下記の[数20]式で表される。これら2相の正弦波信号S1(φ2),S2(φ2)についても、コンピュータ20に入力される。
第4実施形態のコンピュータ20は、既述の発振器22と、第1ロックインアンプ18A,18Bと、第2ロックインアンプ19A,19Bと、にそれぞれ有線又は無線接続している。このコンピュータ20は、光周波数f(t)の振幅Δfの制御と、2相の正弦波信号S1(φ1),S2(φ1)の検出制御及び2相の正弦波信号S1(φ2),S2(φ2)の検出制御と、を行う。
図16は、第4実施形態のコンピュータ20の機能を示す機能ブロック図である。図16に示すように、第4実施形態のコンピュータ20は、演算処理回路(不図示)が前述の距離測定プログラム(不図示)を実行することにより、第1信号取得部34A及び第2信号取得部34Bと、第1補正部35A及び第2補正部35Bと、第1算出部36A及び第2算出部36Bと、情報取得部37と、振幅決定部38と、振幅制御部39と、時間遅れ検出部50と、検出制御部51と、第3算出部66として機能する。
第1信号取得部34Aは、第1ロックインアンプ18A及び第2ロックインアンプ19Aから2相の正弦波信号S1(φ1),S2(φ1)を取得し、取得した2相の正弦波信号S1(φ1),S2(φ1)を第1補正部35Aへ出力する。また、第2信号取得部34Bは、第1ロックインアンプ18B及び第2ロックインアンプ19Bから2相の正弦波信号S1(φ2),S2(φ2)を取得し、取得した2相の正弦波信号S1(φ2),S2(φ2)を第2補正部35Bへ出力する。
図17は、第4実施形態の第1補正部35A及び第2補正部35Bによる補正処理を説明するための説明図である。図17に示すように、第1補正部35Aは、第1信号取得部34Aから入力された2相の正弦波信号S1(φ1),S2(φ1)に対して振幅補正等を行い、第2補正部35Bは、第2信号取得部34Bから入力された2相の正弦波信号S1(φ2),S2(φ2)に対して振幅補正等を行う。
具体的に、第1補正部35Aは、楕円のリサージュ波形W1Aを形成する2相の正弦波信号S1(φ1),S2(φ1)に対して所定の係数を乗算することで、真円のリサージュ波形W2Aを形成する2相の補正信号V1(φ1),V2(φ1)を生成する。また、第2補正部35Bは、楕円のリサージュ波形W1Bを形成する2相の正弦波信号S1(φ2),S2(φ2)に対して所定の係数を乗算することで、真円のリサージュ波形W2Bを形成する2相の補正信号V1(φ2),V2(φ2)を生成する。
図16に戻って、第1補正部35Aは、生成した2相の補正信号V1(φ1),V2(φ1)を第1算出部36Aへ出力する。また、第2補正部35Bは、生成した2相の補正信号V1(φ2),V2(φ2)を第2算出部36Bへ出力する。
第1算出部36A及び第2算出部36Bは、前述の第1補正部35A及び第2補正部35Bと共に、本発明の距離差算出部として機能する。第1算出部36Aは、上記各実施形態の算出部36と同様に、第1補正部35Aから入力された2相の補正信号V1(φ1),V2(φ1)と、情報取得部37から取得した中心周波数fcと、既知の光速C0とに基づき、上記[数7]式から光学的距離差n1D1を算出する。また、第2算出部36Bは、第2補正部35Bから入力された2相の補正信号V1(φ2),V2(φ2)と、前述の中心周波数fc及び光速C0とに基づき、上記[数7]式から光学的距離差n2D2を算出する。
そして、第1算出部36Aは、算出した光学的距離差n1D1を振幅決定部38と時間遅れ検出部50と第3算出部66とにそれぞれ出力する。また、第2算出部36Bは、算出した光学的距離差n2D2を第3算出部66へ出力する。
振幅決定部38は、第1算出部36Aから入力された光学的距離差n1D1と、先に情報取得部37から入力された初期経路差D0等の各種情報とに基づき、上記第1実施形態と同様に上記[数14]式を用いて、変調指数mを一定に保つ振幅Δfを決定する。これにより、振幅制御部39は、振幅決定部38による振幅Δfの決定結果に基づき、正弦波信号S0(t)の角周波数ωmを制御することにより、光周波数f(t)の振幅Δfを制御する。
また、時間遅れ検出部50は、第1算出部36Aから入力された光学的距離差n1D1と、情報取得部37から入力される屈折率n1と、既知の光速C0とに基づき、上記第2実施形態と同様に上記[数15]式を用いて、時間遅れτを算出する。そして、検出制御部51は、時間遅れτの算出結果に基づき、第1ロックインアンプ18A,18Bの第1発振器25A,25Bと、第2ロックインアンプ19A,19Bの第2発振器29A,29Bとからそれぞれ発振される各参照正弦波信号(不図示)の位相を補正する。これにより、各ロックインアンプ18A,18B,19A,19Bにおいて、2相の正弦波信号S1(φ1),S2(φ1)の検出制御と、2相の正弦波信号S1(φ2),S2(φ2)の検出制御とが行われる。
第3算出部66は、第1算出部36Aから入力された光学的距離差n1D1と、第2算出部36Bから入力された光学的距離差n2D2とに基づき、公知の2色法原理に基づく下記の[数21]式を用いて、経路差D(幾何学的距離差)を算出する。なお、[数21]式中の「A」は定数である。
以上のように、2色法による距離測定を行う距離測定装置10Cにおいても、光周波数f(t)の振幅Δfの制御と、2相の正弦波信号S1(φ1),S2(φ1)の検出制御及び2相の正弦波信号S1(φ2),S2(φ2)の検出制御と、を行うことにより、上記各実施形態と同様の効果が得られる。
[第5実施形態の距離測定装置]
次に、図18を用いて第5実施形態の距離測定装置10Dについて説明を行う。図18は、第5実施形態の距離測定装置10Dの構成を示す構成図である。なお、距離測定装置10Dは、上記第1実施形態の距離測定装置10と基本的に同じ構成であるので、上記第1実施形態と機能又は構成上同一のものについては、同一符号を付してその説明は省略する。
上記各実施形態の光波生成部12から出射されるレーザ光Lの光周波数f(t)は、その非線形性により、下記の[数22]式に示すように、第2次高調波及び第3次高調波を有する場合がある。この場合には、レーザ光Lの2ωm及び3ωmの信号が距離測定の誤差要因となる。
そこで、第5実施形態の距離測定装置10Dでは、光周波数f(t)の第2次高調波及び第3次高調波を打ち消すように、発振器22からレーザ光源23に対して下記の[数23]式で表される正弦波信号SD(t)を適切な強度で出力させる。これにより、光周波数f(t)の第2次高調波及び第3次高調波に起因する距離測定の誤差を低減することができる。
なお、上記第2実施形態から第4実施形態の距離測定装置10A〜10Cにおいても同様に、発振器22から正弦波信号SD(t)を出力させてもよい。
[第6実施形態の距離測定装置]
次に、第6実施形態の距離測定装置(不図示)について説明を行う。例えば上記第1実施形態の距離測定装置10では、既述の図6に示したように、振幅Δfの制御開始操作(ステップS13)がなされると、測定光側ミラー14を目標位置に向けて移動させている(ステップS14)。これに対して、第6実施形態の距離測定装置では、ステップS13とステップS14との間においても、リサージュ波形W1のアスペクト比の補正を行う。
なお、第6実施形態の距離測定装置は、上記第1実施形態の距離測定装置10と基本的に同じ構成であるので、上記第1実施形態と機能又は構成上同一のものについては、同一符号を付してその説明は省略する。
図19は、第6実施形態の距離測定装置による距離測定処理(距離測定方法)、特にステップS13以降のリサージュ波形W1のアスペクト比の補正の流れを示すフローチャートである。なお、ステップS13までの処理は、既述の図6に示した第1実施形態と同じであるので、ここでは説明を省略する。
図19に示すように、振幅Δfの制御開始操作後(ステップS13)、補正部35は、2相の正弦波信号S1(φ),S2(φ)に基づき、2相の正弦波信号S1(φ),S2(φ)が形成するリサージュ波形W1を描く点が原点周りを回転した回転数(実数)を、リサージュ波形W1の回転数としてカウントする(ステップSA1)。
そして、補正部35は、リサージュ波形W1の回転数が所定回数に到達した場合(ステップSA2)、楕円近似によりリサージュ波形W1のアスペクト比を補正、すなわち2相の正弦波信号S1(φ),S2(φ)に対して楕円近似で決定した係数を乗算する(ステップSA3)。次いで、補正部35は、リサージュ波形W1の回転数のカウント値をゼロに戻すカウントリセットを行う(ステップSA4)。
以下、測定光側ミラー14が測定開始位置から目標位置に向けて移動されるまで、上記ステップSA1からステップSA4までの処理が繰り返し実行される(ステップSA5)。なお、これ以降の処理は、図6に示した上記第1実施形態と同じであるので、ここでは説明を省略する。
このように第6実施形態の距離測定装置では、ステップS13とステップS14との間においても、リサージュ波形W1のアスペクト比の補正を行うので、ステップS12におけるアスペクト比の補正が有効でない場合でも、リサージュ波形W1のアスペクト比の補正を精度よく行うことができる。
なお、上記第2実施形態から第5実施形態の距離測定装置10A〜10Dにおいても第6実施形態と同様のリサージュ波形W1のアスペクト比の補正を行ってもよい。
[その他]
上記各実施形態では、本発明の光波としてレーザ光Lを例に挙げて説明しているが、正弦波位相変調方式を用いた距離測定で使用可能な各種光波を用いてよい。
上記各実施形態では、本発明の測定対象物として測定光側ミラー14を例に挙げて説明しているが、測定光mLの少なくとも一部を反射可能な各種の測定対象物の距離測定に本発明を適用することができる。
上記各実施形態では、第1ロックインアンプ18と第2ロックインアンプ19とが別体に設けられているが、両者が一体化されていてもよい。また、本発明の正弦波信号検出部はロックインアンプに限定されるものではなく、2相の正弦波信号S1(φ),S2(φ)を検出可能であれば特に限定されない。
上記各実施形態の距離測定装置10等において、コンピュータ20は別の場所に設けられていてもよく、この場合にコンピュータ20は、インターネット等を介して、2相の正弦波信号S1(φ),S2(φ)等の取得と、振幅Δfの制御及び検出制御(又は両制御の一方)とを行う。