JP6703777B2 - 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム - Google Patents

発電計画策定装置、発電計画策定方法、および発電計画策定プログラム Download PDF

Info

Publication number
JP6703777B2
JP6703777B2 JP2016205457A JP2016205457A JP6703777B2 JP 6703777 B2 JP6703777 B2 JP 6703777B2 JP 2016205457 A JP2016205457 A JP 2016205457A JP 2016205457 A JP2016205457 A JP 2016205457A JP 6703777 B2 JP6703777 B2 JP 6703777B2
Authority
JP
Japan
Prior art keywords
power generation
unit
generation plan
plan
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016205457A
Other languages
English (en)
Other versions
JP2018067155A (ja
Inventor
あゆみ 須藤
あゆみ 須藤
経夫 渡邉
経夫 渡邉
仁 村田
仁 村田
圭子 大谷
圭子 大谷
琢史 吉田
琢史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016205457A priority Critical patent/JP6703777B2/ja
Priority to TW106133579A priority patent/TWI665570B/zh
Priority to AU2017239491A priority patent/AU2017239491B2/en
Publication of JP2018067155A publication Critical patent/JP2018067155A/ja
Application granted granted Critical
Publication of JP6703777B2 publication Critical patent/JP6703777B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明の実施形態は、発電計画策定装置、発電計画策定方法、および発電計画策定プログラムに関する。
発電ユニットには、天候等の自然環境によって性能が変わるものと変わらないものとがある。
例えば、汽力発電や原子力発電の発電ユニットは、自然環境の影響をそれほど受けずに安定した発電を行うことが可能であり、その最大出力は自然環境によってほとんど変化しない。
これに対し、ガスタービンと蒸気タービンとを組み合わせたコンバインドサイクル発電の発電ユニットでは、その最大出力が気温により変化する。具体的には、気温が上昇すると大気の密度が下がり、ガスタービン用の燃焼器への酸素の取り込み量が減少するため、それに見合う燃焼器への燃料の投入量が減少し、ガスタービン用の発電機の最大出力が減少する。一般に、気温が5℃から40℃に上昇すると、ガスタービン用の発電機の最大出力が20〜30%程度小さくなる。また、蒸気タービンは、蒸気を水に戻すための復水器を備えているが、蒸気の冷却用の海水の温度により復水器の性能が変わるため、蒸気タービンの効率が海水の温度により変化する。
また、太陽光発電の発電ユニットでは、天空の雲濃度や日射強度により太陽光の入射エネルギーが変化することで、発電電力量が変化する。さらに、風力発電の発電ユニットでは、風の強さにより発電電力量が変化する。なお、風力が強いほど風力発電の発電電力量は増加するが、風力が規定値を超えると安全のために発電が停止される。また、水力発電の発電ユニットでは、河川の水量により発電電力量が変化する。
このように、発電の種類によっては、発電ユニットの性能(発電能力)が天候等の自然環境によって変化してしまう。
また、発電ユニットには、1台で大容量の発電能力を持つものから、1台では小容量の発電能力しか持たないものまで、多様な規模のものがある。小容量の発電能力の発電ユニットに関しては、複数の発電ユニットを集めて1群の発電ユニットとして制御する場合がある。このように、複数の発電ユニットを群として制御することを、GLC(Group Load Control)と呼ぶ。発電ユニットの規模によっては、群を単位として発電量、発電指令、発電計画を決定する場合がある。
例えば、復水器の冷却用に海水を使用する発電ユニットに関しては、海に排出される温海水が漁場に与える影響を考慮して、発電所と漁業者との間で温海水の合計排出量の上限を制限する契約が結ばれることがある。この場合、温海水の排出量が発電出力に比例することから、この発電所内の発電ユニットの瞬時的合計出力のほかに、1日の積算合計出力や1ケ月の積算合計出力が制限されることになる。そこで、この発電所内の発電ユニットを温排水制限ユニット群として取り扱う。
また、初期のコンバインドサイクル発電においては、複数台の発電ユニットをグルーピングして1つの負荷指令を複数台の発電ユニットに配分する制御装置(GLC)が設けられた。理由は、初期のコンバインドサイクル発電においては、1台の発電ユニットの発電能力が小容量であったため、中央給電所から各発電ユニットに直接負荷指令を出すと、中央給電所の処理が多くなってしまったからである。一方、現在では制御装置(GLC)により制御される発電ユニットの容量アップ(アップレート)により、中央給電所から各発電ユニットに直接負荷指令を出すケースも出てきている。そのため、群のメンバーがある時点から増減する事態が発生している。
以上のように、発電ユニットに関しては、自然環境により性能が変化する問題や、群に関連する問題がある。ここで、各発電ユニットの発電量は、需要に応じた発電量とする必要がある。発電量が需要よりも多いと、周波数が上がったり、電圧が上がったりする。一方、発電量が需要よりも少ないと、風波数が下がったり、電圧が下がったりする。そのため、各発電ユニットの発電量を的確に見込むことが、需要に応じた発電量を実現するために必要となる。予測需要と実発電量とを一致させることを、実同時同量と呼んでいる。
また、近年は発電事業者と小売事業者とが分かれたことで、発電事業者は、発電するとコミットした発電量を発電することが求められ、小売事業者は、需要家に売るとコミットした需要だけ発電量を消費することが求められる。これは、計画値同時同量と呼ばれている。発電事業者は、発電量がコミットした発電量に満たない場合や多すぎる場合には、インバランスと呼ばれるペナルティを支払わなければならない。
よって、発電事業者にとっては、自己の発電ユニットの発電量が自然環境の変化でどう変化するかを把握して、これを発電計画に反映することが、実同時同量や計画値同時同量を実現する上で必要となる。
発電計画では、ある時間メッシュ(例えば1時間、30分、5分などの間隔)で、ある期間(例えば1日間、1週間、1ケ月)の間の発電が計画される。例えば、需要やコミットした発電量を満たすために、1つまたは複数の発電形式の複数の発電ユニットの各々について、起動タイミングや発電出力が計画される。その際には、発電コストが少ない経済的な組合せを考慮した計画を策定することも求められる。
特開2009−22137号公報
発電計画の策定に関しては、様々な方法が知られている。例えば、複数の発電機を連動させて発電機出力を配分する方法が知られている。また、複数の発電機をグループ(群)に分けて、ある需要局面において一方のグループの出力を上げ他方のグループの出力を下げることで、融通性のある動的負荷配分を行う方法が知られている。しかしながら、個々の発電ユニットの性能をこれらの配分に反映させる方法は考えられていない。
このように、従来の方法では、個々の発電ユニットの性能、例えば自然環境により変化する性能を反映した負荷配分を行うことができない。さらには、発電ユニットをグルーピングして負荷配分を行う際に、個々の発電ユニットの性能やグルーピングを反映した負荷配分を行うことができない。
また、従来は送配電事業者、発電事業者、小売事業者が1つの会社の中にあり、需要に対する発電ユニットの負荷配分を決定する際には、多少の差分が発生しても予備力を多めに見込んでおくことで大きな問題は生じなかった。しかしながら、今後、送配電事業者がその他の事業者と別会社に分かれる場合には、上述のインバランスによるペナルティが発生することになる。
このインバランスを最小にするためには、個々の発電ユニットの性能を発電計画に精緻に反映させることが必要となる。また、複数の発電ユニットを群として制御している場合には、群のメンバー構成や群の各メンバーの性能がある時点から変化することに対応可能な発電計画の策定が求められる。
そこで、本発明の実施形態は、発電設備の性能や群を考慮に入れて発電計画を策定可能な発電計画策定装置、発電計画策定方法、および発電計画策定プログラムを提供することを課題とする。
一の実施形態によれば、発電計画策定装置は、発電設備の性能または群についての情報を処理する発電情報処理部であって、自然環境についてのデータに基づいて前記発電設備の性能を予測する、または、前記発電設備の群の定義として、前記群に属する前記発電設備についてのデータと、前記群に対する制約についてのデータとを登録する、発電情報処理部を備える。さらに、前記装置は、前記発電情報処理部により予測された前記発電設備の性能、または前記発電情報処理部により登録された前記群の定義に基づいて、前記発電設備についての発電計画を作成する発電計画作成部を備える。前記発電計画作成部は、前記自然環境についての第1データから予測された前記性能に基づいて第1発電計画を作成し、前記自然環境についての第2データから予測された前記性能に基づいて第2発電計画を作成し、前記第1および第2発電計画に基づいて第3発電計画を作成する、または、第1性能を有する前記発電設備が属する第1群についての負荷配分と、第2性能を有する前記発電設備が属する第2群についての負荷配分の少なくともいずれかを選択し、選択した負荷配分に基づいて前記発電計画を作成する。
第1実施形態の発電計画策定装置の構成を示すブロック図である。 第1実施形態の性能マトリックスマップの例を示した図である。 第1実施形態の発電計画策定装置の動作を示すフローチャートである。 第2実施形態の発電計画策定装置の構成を示すブロック図である。 第2実施形態の発電計画策定装置の動作を説明するためのグラフである。 第2実施形態の発電計画策定装置の動作を示すフローチャートである。 第3実施形態の発電計画策定装置の構成を示すブロック図である。 第3実施形態の発電計画策定装置の動作を示すフローチャートである。 第4実施形態の発電計画策定装置の構成を示すブロック図である。 第4実施形態の群定義データの例を示した図である。 第4実施形態の群構成の例を示した模式図である。 第4実施形態の群構成の例を示した模式図である。 第4実施形態の負荷配分の例を示したグラフである。 第5実施形態の発電計画策定装置の構成を示すブロック図である。 第6実施形態の発電計画策定装置の構成を示すブロック図である。
以下、本発明の実施形態を、図面を参照して説明する。図1〜図15では、同一または類似の構成に同一の符号を付し、重複する説明は省略する。
(第1実施形態)
図1は、第1実施形態の発電計画策定装置の構成を示すブロック図である。図1の発電計画策定装置は、需要やコミットした発電量に対して、発電ユニットをいつ起動してどれくらいの発電出力で動作させるかという発電計画を策定する。発電ユニットとは例えば、種々の発電形式の発電機である。発電ユニットは、発電設備の例である。
図1の発電計画策定装置は、予測需要データ入力部1と、発電設備データ入力部2と、予測天候データ入力部3と、発電設備性能予測部4と、発電計画作成部5と、予測需要データ格納部11と、発電設備データ格納部12と、予測天候データ格納部13と、発電設備性能データ格納部14と、発電計画データ格納部15と、予測誤差入力部21と、予測誤差計算部22と、待機設備選択部23とを備えている。本実施形態の発電設備性能予測部4は、発電情報処理部の例である。また、本実施形態の予測誤差計算部22は、誤差率計算部と予備率計算部の例である。
予測需要データ入力部1は、電力需要の予測に関する時系列データである予測需要データを、発電計画策定装置に入力する。このデータから予測される需要電力は、発電計画の策定対象である発電ユニットが満たすべき供給電力でもある。予測需要データ格納部11は、予測需要データ入力部1から入力された予測需要データを時系列順にテーブルに格納している。
発電設備データ入力部2は、発電ユニット(発電設備)の特性や運転についてのデータである発電設備データを、発電計画策定装置に入力する。発電設備データの例は、発電ユニットのコード名、発電ユニットの定格MWや最低MWなどの基本条件、発電ユニットに課される制約に関する情報(制約条件の種類や制約期間)などである。発電設備データ格納部12は、発電設備データ入力部2から入力された発電設備データをテーブルに格納している。発電設備データ格納部12はさらに、発電計画作成部5が発電計画を作成する際に必要な計算範囲を格納している。
予測天候データ入力部3は、発電予定日時の発電ユニットの近傍での天候の予測に関する時系列データである予測天候データを、発電計画策定装置に入力する。予測天候データは、自然環境についてのデータの例である。本実施形態の予測天候データは、発電ユニットの近傍での気温(大気温度)や海水温(海水温度)の予測データである。予測天候データ格納部13は、予測天候データ入力部3から入力された予測天候データをテーブルに格納している。予測天候データは、時間メッシュごとにテーブルに格納される。
発電設備性能予測部4は、予測天候データ格納部13から取得した予測天候データと、発電設備データ格納部12から取得した発電設備データとに基づいて、発電ユニットの性能を予測する。具体的には、発電設備性能予測部4は、天候により変化する発電ユニットの性能の予測データを時間メッシュごとに算出する。このような性能の例は、気温または海水温により変化する発電ユニットの最大出力である。発電設備性能予測部4による性能の予測結果は、発電設備性能データとして、発電設備性能データ格納部14の性能マトリックスマップに格納される。
例えば、発電設備性能予測部4は、発電設備データとして、基準熱効率η[%]、海水温による修正係数α[%]、気温による修正係数β[%]、コンバインドサイクル発電の火力最大出力の気温補正係数k[MW/℃]、k[MW/℃]、k[MW/℃]、k[MW]、発熱量単価Fv[円/MJ]、発電出力P[MW]、燃焼費Y[円/h]などを発電設備データ格納部12から取り出す。また、発電設備性能予測部4は、予測天候データとして、気温Ta[℃]と海水温Tw[℃]を発電設備データ格納部12から取り出す。そして、発電設備性能予測部4は、発電設備データと予測天候データを式(1)〜(8)に代入する。
Figure 0006703777
Figure 0006703777
Figure 0006703777
Figure 0006703777
Figure 0006703777
Figure 0006703777
Figure 0006703777
Figure 0006703777
式(1)は、コンバインドサイクル発電の気温補正後の最大出力Px[MW]を表す。式(2)は、コンバインドサイクル発電の気温補正後の熱効率η’[%]を表す。式(3)は、汽力発電の気温補正後の熱効率η’[%]を表す。
また、式(4)は、海水温Tw[℃]と真空度V[hPa]との関係を表す(a〜aは海水温の補正係数)。式(5)は、真空度V[hPa]と修正係数α[%]との関係を表す(b〜bは真空度の補正係数)。式(6)は、気温Ta[℃]と修正係数β[%]との関係を表す(c〜cは気温の補正係数)。
また、式(7)は、発電出力P[MW]と燃料費Y[円/h]との関係を表す(式中のKf[J/Wh]は発熱量換算係数)。式(8)は、発電出力P[MW]と燃料費Y[円/h]との関係の最小二乗法による近似式を表す。
なお、符号iは、発電ユニット同士を区別するために使用される。例えば、P(1)=500MW、P(2)=375MW、P(3)=250MW、P(4)=125MWである。また、式(8)の符号a、b、cをそれぞれ、燃料費関数の2次係数、1次係数、および定数項と呼ぶ。a、b、cの値が小さいほど、発電ユニットは安価な燃料費で動作することができ、経済的な性能が高いといえる。
コンバインドサイクル発電の発電ユニットを取り扱う場合、発電設備性能予測部4は、式(1)から最大出力Pxを算出し、式(2)、(4)〜(7)の計算結果を式(8)に代入することで燃料費関数の2次係数a、1次係数b、および定数項cを算出する(図2を参照)。
図2は、第1実施形態の性能マトリックスマップの例を示した図である。
図2は、時間メッシュごとに与えられた気温Taと海水温Twを示している。発電設備性能予測部4は、これらの気温Taと海水温Twに基づいて、各発電ユニットの最大出力Px、2次係数a、1次係数b、および定数項cを算出し、性能マトリックスマップに時間メッシュごとに格納する。図2は、発電ユニット1、2、・・・、nのPx、a、b、cの時系列データの例を示している。
図2は、ある晴れた日の00:00〜14:00の気温Taと海水温Twの変化を示している。図2から理解されるように、晴れの日には夜中から昼にかけて気温Taが上がっていく。一方、コンバインドサイクル発電の発電ユニットの最大出力Pxは、気温Taが上がるにつれて下がっていく(図2の発電ユニット1〜nの最大出力Pxを参照)。そのため、コンバインドサイクル発電の発電ユニットは、夜中から昼にかけて気温Taが上がると、定格まで出力を上げられなくなる場合がある。
そこで、本実施形態で発電計画を作成する際には、例えば、性能マトリックスマップの最大出力Pxを考慮に入れて発電計画を作成する。これにより、発電計画の発電量と実際の発電量とのずれの小さい発電を実現することができる。
また、コンバインドサイクル発電や汽力発電では、気温Taと海水温Twの影響により発電ユニットの発電効率が変化する。そのため、燃料費がより安くなるように複数の発電ユニットの出力配分を行いたい場合には、これらの発電ユニットの合計出力と気温Taおよび海水温Twとの関係を算出し、この算出結果に基づいて出力配分を決定することで、燃焼費を低減することができる。
そこで、本実施形態の発電設備性能予測部4は、発電出力Pと燃料費Yとの関係の近似式(燃料費関数)の2次係数a、1次係数b、定数項cを算出し、これらの算出結果を性能マトリックスマップに格納する。これにより、発電計画作成部5は、各発電ユニットの発電出力Pと燃料費Yとの関係を把握することが可能となり、複数の発電ユニットの合計燃料費が安くなるように出力配分を行って発電計画を作成することが可能となる。
以下、再び図1を参照して、本実施形態の発電計画策定装置の構成および動作について説明する。
発電計画作成部5は、発電ユニットの性能に関するデータ(発電設備性能データ)を、発電設備性能データ格納部14内の性能マトリックスマップから取得し、予測需要データを予測需要データ格納部11から取得する。そして、発電計画作成部5は、取得した発電設備性能データと予測需要データに基づいて、上記発電ユニットについての発電計画を作成する。これにより、電力需要の予測と好適な出力配分とを考慮に入れた発電計画を作成することが可能となる。発電計画作成部5により作成された発電計画は、発電計画データとして、発電計画データ格納部15内に時間メッシュごとに格納される。
例えば、発電計画作成部5は、複数の発電ユニットの最大出力Pxを性能マトリックスマップから取得し、発電計画の発電量と実際の発電量とのずれが小さくなるようにこれらの発電ユニットの出力配分を行って発電計画を作成する。これにより、需要やコミットした発電量を満たす発電計画を作成することが可能となる。
また、発電計画作成部5は、複数の発電ユニットの燃料費関数の2次係数a、1次係数b、および定数項cを性能マトリックスマップから取得し、これらの発電ユニットの合計燃料費が安くなるように出力配分を行って発電計画を作成する。これにより、発電コストが少ない経済的な発電計画を作成することが可能となる。
次に、予測誤差入力部21、予測誤差計算部22、および待機設備選択部23の機能について説明する。
発電計画の作成時から提出時までに長い日数が空く場合には、発電計画の大気温度(予想温度)と、実際の大気温度(実績温度)との間に大きい差がある場合がある。この差は季節によっても異なり、例えば、発電計画の大気温度が夏の晴れの日の温度に相当し、実際の大気温度が夏の雨の日の温度に相当する場合、前者の予想温度と後者の実績温度との差が10℃近く生じる場合もある。これは、海水温についても同様である。
実際、予想温度ではなく当日の実績温度を考慮して発電計算を作成すると、電力需要を満たせない場合がある。その場合、どのくらい需要を満たさないのか、どの発電ユニットを起動できるかを瞬時に判断することが難しいことが問題となる。そこで、予測誤差入力部21、予測誤差計算部22、および待機設備選択部23は、以下のように動作することでこの問題に対処する。
予測誤差入力部21は、発電計画策定装置のユーザからの切替操作に応じて、予測誤差計算をオンにするかオフにするかを切り替える。また、予測天候データ入力部3が、現在の予測天候データを発電計画策定装置に入力するのに対し、予測誤差入力部21は、過去に予測された予測天候データを発電計画策定装置に入力する。前者の予測天候データは、第1データの例であり、後者の予測天候データは、第2データの例である。本実施形態の予測天候データは、発電ユニットの近傍での気温(大気温度)や海水温(海水温度)の予測データである。
上述のように、発電設備性能予測部4は、予測天候データ入力部3(予測天候データ格納部13)から現在の予測天候データを取得し、このデータに基づいて発電ユニットの性能を予測し、この予測結果を発電設備性能データとして発電設備性能データ格納部14に格納する。そして、発電計画作成部5は、この発電設備性能データに基づいて発電計画を作成する。以下、この発電計画を「第1発電計画」と呼ぶ。
同様に、発電設備性能予測部4は、予測誤差入力部21から過去の予測天候データを取得し、このデータに基づいて発電ユニットの性能を予測し、この予測結果を発電設備性能データとして発電設備性能データ格納部14に格納する。そして、発電計画作成部5は、この発電設備性能データに基づいて発電計画を作成する。以下、この発電計画を「第2発電計画」と呼ぶ。
予測誤差計算部22は、第1発電計画の電力供給に関する誤差率と、第2発電計画の電力供給に関する誤差率とを計算する。本実施形態の誤差率は、同じ時刻の需要電力と供給電力との比であり、供給電力を需要電力で割ることで与えられる。第1発電計画の誤差率は、第1発電計画と予測需要データとを用いて計算され、第2発電計画の誤差率は、第2発電計画と予測需要データとを用いて計算される。
また、予測誤差計算部22は、第2発電計画の誤差率が第1発電計画の誤差率よりも大きい場合や小さい場合には、発電ユニットの待機に関する予備率を再計算する。具体的には、これらの誤差率が一致するように予備率を再計算する。本実施形態の予備率は、発電ユニットを最大出力未満の出力で運転させる際の指標である。例えば、予備率が20%の場合には、発電計画の策定対象である発電ユニットのうちの少なくともいずれかを、最大出力の80%の出力で運転し、最大出力未満の出力で待機させる。発電計画作成部5により計算された予備率と異なる値の予備率が、予測誤差計算部22により再計算される。
この際、待機設備選択部23は、再計算された予備率が、発電ユニットの追加起動または追加停止を必要とする値であるか否かを判断する。そして、待機設備選択部23は、発電ユニットの追加起動または追加停止が必要な場合には、各発電ユニットの効率を考慮した上で即時起動または即時停止できる発電ユニットを選択し、発電ユニットの選択結果を発電計画作成部5に通知する。起動対象として選択された発電ユニットは、最大出力未満の出力で運転されることとなる。
発電計画作成部5は、待機設備選択部23からの通知に基づいて、第1発電計画を修正する。例えば、発電ユニットの追加起動や追加停止がない場合には、起動中の発電ユニットのラインナップは変更せず、起動中の発電ユニットの負荷を変更することで、予備率の再計算結果に対応し、第1発電計画を修正する。一方、発電ユニットの追加起動がある場合には、発電ユニットを起動可能なタイミングや、発電ユニットの起動後に所定出力に達するまでの所要時間などの条件が、発電ユニットごとに異なることが問題となる。そのため、この場合の発電計画作成部5は、これらの条件を考慮した上で予備率の再計算結果に対応し、第1発電計画を修正する。
こうして、発電計画作成部5は、第1発電計画を修正することで上記予備率を満足する第3発電計画を作成し、第3発電計画を発電計画データとして発電計画データ格納部15内に格納する。
なお、発電設備性能予測部4は、予測誤差入力部21から過去の予測天候データを取得する代わりに、予測天候データ格納部13から過去の予測天候データを取得してもよい。この場合、発電設備性能予測部4は例えば、現在の予測天候データより約1年前の予測天候データのうち、現在の予測天候データと気温や海水温が近い予測天候データを、過去の予測天候データとして取得してもよい。
図3は、第1実施形態の発電計画策定装置の動作を示すフローチャートである。
予測誤差計算がオンの場合には(ステップS11)、予測誤差計算部22は、第1発電計画(現在の予測天候データ)に基づいて誤差率を計算するとともに(ステップS12)、第2発電計画(過去の予測天候データ)に基づいて誤差率を計算する(ステップS13)。なお、ステップS12の予測天候データは、ステップS13の予測天候データよりも過去のデータであれば、必ずしも現在の天候予測データでなくてもよい。
次に、予測誤差計算部22は、これらの誤差率が一致するように、発電ユニットの待機に関する予備率を再計算する(ステップS14)。次に、待機設備選択部23は、再計算された予備率が、発電ユニットの追加起動または追加停止を必要とする値であるか否かを判断する(ステップS15)。
発電ユニットの追加起動または追加停止が必要な場合には、即時起動または即時停止できる発電ユニットを選択し、起動対象として選択された発電ユニットを最大出力未満の出力で起動する(ステップS16)。その後、第1発電計画を修正することで、上記予備率を満足する第3発電計画を作成する(ステップS17)。一方、発電ユニットの追加起動または追加停止が不要な場合には、ステップS16を経由せずにステップS17を実行する。
以上のように、本実施形態の発電計画策定装置は、気温や海水温など、自然環境についてのデータに基づいて発電ユニットの性能を予測し、予測した性能に基づいて発電計画を作成する。よって、本実施形態によれば、自然環境による発電ユニットの性能の変化を考慮した好適な発電計画を策定することが可能となり、発電量の予測性や発電の経済性に優れた発電計画を策定することが可能となる。
また、本実施形態によれば、天候の変化に容易に対応可能な発電計画を策定することが可能となる。例えば、発電計画の利用時に天候がくもりから晴天に変わった場合などに、発電ユニットを即時に起動または停止することで、天候の変化に対応することができる。よって、本実施形態によれば、実現性の高い発電計画を策定することが可能となる。
(第2実施形態)
図4は、第2実施形態の発電計画策定装置の構成を示すブロック図である。
図4の発電計画策定装置は、図1の待機設備選択部23の代わりに負荷配分計算部24を備えている。
上述のように、予想温度ではなく当日の実績温度を考慮して発電計算を作成すると、電力需要を満たせない場合がある。その場合、どのくらい需要を満たさないのか、どの発電ユニットを起動できるかを瞬時に判断することが難しいことが問題となる。場合によっては、当日の気温が分かった時点で発電ユニットを起動しようとしても、起動が間に合わない場合もある。この場合には、需要が未達成となってしまう。そこで、本実施形態では、待機設備選択部23の代わりに負荷配分計算部24を使用し、ある程度の誤差率を許容する代わりに、第1実施形態のような発電ユニットの追加起動や追加停止を回避する。
以下、本実施形態の予測誤差入力部21、予測誤差計算部22、および負荷配分計算部24の動作について説明する。
第1実施形態と同様に、予測誤差入力部21は、予測誤差計算をオンにするかオフにするかを切り替える。また、予測天候データ入力部3が、現在の予測天候データを発電計画策定装置に入力するのに対し、予測誤差入力部21は、過去に予測された予測天候データを発電計画策定装置に入力する。
発電設備性能予測部4は、現在の予測天候データに基づいて発電ユニットの性能を予測し、発電計画作成部5は、この発電設備性能データに基づいて発電計画(第1発電計画)を作成する。同様に、発電設備性能予測部4は、過去の予測天候データに基づいて発電ユニットの性能を予測し、発電計画作成部5は、この発電設備性能データに基づいて発電計画(第2発電計画)を作成する。
予測誤差計算部22は、第1発電計画の電力供給に関する誤差率と、第2発電計画の電力供給に関する誤差率とを計算する。また、予測誤差計算部22は、第2発電計画の誤差率が第1発電計画の誤差率よりも大きい場合や小さい場合には、発電ユニットの待機に関する予備率を再計算する。
この際、負荷配分計算部24は、第1発電計画が全期間に渡り発電ユニットの負荷変動のみで予備率を満たすことができるか否かを判断する。そして、負荷配分計算部24は、起動停止が必要があれば、発電ユニットの起動停止を行って所望の予備率を実現するが、起動停止が不要であれば、発電ユニットの負荷配分の変更のみで予備率を実現する。後者の場合には、負荷配分計算部24は、予備率の変化に応じた負荷配分の変更が必要となっても即時対応できるユニットラインナップを作成する。発電ユニットの起動停止や負荷配分の情報は、負荷配分計算部24から発電計画作成部5に通知される。
発電計画作成部5は、負荷配分計算部24からの通知に基づいて、第1発電計画を修正する。具体的には、発電計画作成部5は、第1発電計画を修正することで上記予備率を満足する第3発電計画を作成し、第3発電計画を発電計画データとして発電計画データ格納部15内に格納する。なお、本実施形態の予備率は、第1および第2発電計画の誤差率が一致するように設定する必要はなく、これらの誤差率の差が一定範囲内に収まるように設定してもよい。
図5は、第2実施形態の発電計画策定装置の動作を説明するためのグラフである。
図5は、ある発電ユニットの負荷(MW)の時間変化を示している。各発電ユニットの負荷は、負荷の変化率とキープ時間の制約を有している。負荷の変化率は、1分あたりの負荷の変化量であり、例えば、負荷の変化量の上限や下限が、負荷の大きさに応じて変化する。負荷のキープ時間は、同じ負荷の値が持続する時間であり、例えば、負荷がX以上になると、負荷のキープ時間がY以下に制約される(X、Yは所定の実数)。
そのため、負荷配分計算部24は、これらの制約と、発電設備データ格納部12からのその他の制約とを同時に満たしつつ、予備率の変化に応じた負荷配分の変更に即時対応できるユニットラインナップを作成する。
図6は、第2実施形態の発電計画策定装置の動作を示すフローチャートである。
予測誤差計算がオンの場合には(ステップS21)、予測誤差計算部22は、第1発電計画(現在の予測天候データ)に基づいて誤差率を計算するとともに(ステップS22)、第2発電計画(過去の予測天候データ)に基づいて誤差率を計算する(ステップS23)。
次に、予測誤差計算部22は、これらの誤差率の差が一定範囲内に収まるように、発電ユニットの待機に関する予備率を再計算する(ステップS24)。次に、負荷配分計算部24は、第1発電計画が全期間に渡り発電ユニットの負荷変動のみで予備率を満たすことができるか否かを判断する(ステップS25)。
負荷変動のみで対応できない場合には、起動中の発電ユニットの出力を適宜低下させるか、このときに需要を満たさない場合には停止中の発電ユニットを適宜起動させる(ステップS26)。その後、第1発電計画を修正することで、上記予備率を満足する第3発電計画を作成する(ステップS27)。一方、負荷変動のみで対応できる場合には、ステップS26を経由せずにステップS27を実行する。
本実施形態によれば、天候の変化に容易に対応可能な発電計画を策定することが可能となる。例えば、発電計画の利用時に天候がくもりから晴天に変わった場合などに、発電ユニットを起動・停止せずに、負荷配分の変更により天候の変化に対応することができる。よって、本実施形態によれば、急な天候の変化にも負荷配分の変更だけで対応可能な自由度の高い発電計画を策定することが可能となる。
(第3実施形態)
図7は、第3実施形態の発電計画策定装置の構成を示すブロック図である。
図7の発電計画策定装置は、図1の予測誤差計算部22と待機設備選択部23の代わりに、供給能力マージン付加部25と供給能力通知部26とを備えている。本実施形態の供給能力マージン付加部25は、マージン計算部の例である。
上述のように、予想温度ではなく当日の実績温度を考慮して発電計算を作成すると、電力需要を満たせない場合がある。その場合、発電計画をコミットして小売事業者に送付した後に、急な天候の変化により想定ほど電力を供給できないと、発電計画の発電量を満足できない場合にインバランスと呼ばれるペナルティを支払わなければならない。そこで、本実施形態では、最初に小売事業者に供給能力(供給力)を通知する際に、気温(または海水温。以下同様)を高めに予測して最大出力を計算して発電計画を策定する。
以下、本実施形態の予測誤差入力部21、供給能力マージン付加部25、および供給能力通知部26の動作について説明する。
予測誤差入力部21は、発電計画策定装置のユーザからの切替操作に応じて、供給能力計算をオンにするかオフにするかを切り替える。また、予測誤差入力部21は、該ユーザからの入力操作に応じて、気温の変動を許容するための差分温度(温度マージン)を発電計画策定装置に入力する。差分温度がT℃の場合、予測気温に対する実際の気温の変動は±T℃まで許容される。さらに、予測天候データ入力部3が、現在の予測天候データを発電計画策定装置に入力するのに対し、予測誤差入力部21は、過去に予測された予測天候データを発電計画策定装置に入力する。
発電設備性能予測部4は、現在の予測天候データに基づいて発電ユニットの性能を予測し、発電計画作成部5は、この発電設備性能データに基づいて発電計画(第1発電計画)を作成する。一方、発電設備性能予測部4は、過去の予測天候データと差分温度とに基づいて発電ユニットの性能を予測し、発電計画作成部5は、この発電設備性能データに基づいて発電計画(第2発電計画)を作成する。その結果、第2発電結果は、差分温度を反映したものとなる。
供給能力マージン付加部25は、第1および第2発電計画に基づいて、発電ユニットの電力供給に関するマージン(余力需要)を計算する。このマージンは、全時間メッシュにおいて時間メッシュごとに作成され、発電計画作成部5に提供される。発電計画作成部5は、予測需要にマージンを加算して第1発電計画を作成し直すことで第1発電計画を修正する。こうして、発電計画作成部5は、第1発電計画を修正することで上記マージンを満足する第3発電計画を作成し、第3発電計画を発電計画データとして発電計画データ格納部15内に格納する。
供給能力通知部26は、発電計画データ格納部15内の発電計画データを参照し、第1発電計画の代わりに第3発電計画を小売事業者に通知する。これにより、発電計画の策定対象の発電ユニットの供給能力が天候の変化によりマージン分だけ低下しても電力需要を満足することが可能な発電計画を小売事業者に送付することが可能となる。本実施形態のマージンの値は例えば、予測気温を±T℃の範囲(振れ幅)内で変動させて作成した第2発電計画を利用することで計算される。なお、供給能力通知部26は、第3発電計画の情報とともに、発電ユニットの供給能力の情報も小売事業者に通知してもよい。
図8は、第3実施形態の発電計画策定装置の動作を示すフローチャートである。
供給能力計算がオンの場合には(ステップS31)、供給能力マージン付加部25は、第1発電計画(現在の予測天候データ)に基づいて発電ユニットの供給能力を計算するとともに(ステップS32)、第2発電計画(過去の予測天候データ)に基づいて発電ユニットの供給能力を計算する(ステップS33)。
ここで、本実施形態の第1発電計画は、現在の予測天候データとして、気温が高めの予測天候データを用いて作成される。(ステップS32を参照)。一方、本実施形態の第2発電計画は、過去の予測天候データにおける気温を振れ幅内で変動させて作成される(ステップS33を参照)。
なお、ステップS33では、予測誤差入力部21から過去の予測天候データを取得する代わりに、予測天候データ格納部13から過去の予測天候データを取得して、第2発電計画を作成してもよい。この場合、発電設備性能予測部4は例えば、現在の予測天候データより約1年前の予測天候データのうち、気温が高めの予測天候データを、過去の予測天候データとして取得することが望ましい。
次に、供給能力マージン付加部25は、第1および第2発電計画に基づいて、発電ユニットの電力供給に関するマージンを計算し、発電ユニットの供給能力にマージンを付加する(ステップS34)。具体的には、予測需要にマージンを加算することで、マージンが付加される。本実施形態のマージンの値は例えば、ステップS33で気温が振れ幅内で変動しても電力需要が満足されるように設定される。
次に、供給能力マージン付加部25は、マージンが付加された供給能力を実現するために、発電ユニットの追加起動または追加停止を必要とするか否かを判断する(ステップS35)。発電ユニットの追加起動または追加停止が必要な場合には、起動中の発電ユニットの出力を適宜低下させるか、このときに需要を満たさない場合には停止中の発電ユニットを適宜起動させる(ステップS36)。その後、第1発電計画を修正することで、上記マージンを満足する第3発電計画を作成する(ステップS37)。一方、発電ユニットの追加起動または追加停止が不要な場合には、ステップS36を経由せずにステップS37を実行する。
本実施形態によれば、天候の変化に容易に対応可能な発電計画を策定することが可能となる。例えば、発電計画の利用時に天候がくもりから晴天に変わった場合などに、インバランスと呼ばれるペナルティの支払いを回避可能な発電計画を策定することができる。
(第4実施形態)
図9は、第4実施形態の発電計画策定装置の構成を示すブロック図である。
図9の発電計画策定装置は、図1の予測天候データ入力部3、発電設備性能予測部4、予測天候データ格納部13、発電設備性能データ格納部14、予測誤差入力部21、予測誤差計算部22、および待機設備選択部23の代わりに、群定義データ入力部6と、群制約変更部7と、群定義変更部8と、仮想GLC群負荷配分部9と、GLC群負荷配分部10と、群定義データ格納部16と、群制約データ格納部17とを備えている。本実施形態の群定義データ入力部6、群制約変更部7、および群定義変更部8は、発電情報処理部の例である。また、本実施形態の群定義データ入力部6と群定義データ格納部16はそれぞれ、入力部と格納部の例である。
群定義データ入力部6は、発電ユニットの群の定義に関するデータである群定義データを、発電計画策定装置に入力して登録する。群定義データは、群に属する発電ユニットについてのデータや、群に対する制約についてのデータにより構成されている。前者のデータは、どの群にどの発電ユニットが属しているかを示している。後者のデータは、どの群にどんな制約が課されるかを示している。群定義データ格納部16は、群定義データ入力部6から入力された群定義データをテーブルに格納(登録)している。
なお、群定義データ格納部16内の群定義データの一部は、発電設備データ格納部12内の発電設備データを使用して作成される。このような群定義データの例は、群に属する発電ユニットのコード名、基本条件、制約情報などである。なお、群に対する制約は、群定義データ入力部6の代わりに発電設備データ入力部2から入力できるようにしてもよいし、群定義データ入力部6と発電設備データ入力部2の両方から入力できるようにしてもよい。この場合、発電設備データ入力部2は、発電情報処理部や入力部の例である。
図10は、第4実施形態の群定義データの例を示した図である。
図10は、同一中操群である群A〜Cと、除停止利用率群である群D、Eと、出力制限群である群F、Gと、GLC群である群H〜Jとを示している。例えば、群Aには発電ユニット1、2が属しており、群Bには発電ユニット3、4が属している。
同一中操群は、同じ発電所中操に属する発電ユニットの群である。除停止利用率群は、群に属する発電ユニットの除停止利用率を制限するための群である。出力制限群は、群に属する発電ユニットの出力を制限するための群である。GLC群は、1つの負荷指令を群に属する発電ユニットに配分するための群である。他の例としては、群に属する発電ユニットの同時起動を制限する同時起動制限群や、同じ発電所に属する発電ユニットからなる発電所群などが挙げられる。
例えば、出力制限群である群Fには、漁業協定Aを順守するために、群Fの合計出力を1000MW以下とする制限(制約)が課されている。この場合、群Fが有効になっている期間内においては、群Fに属する発電ユニット1〜4の合計出力は、1000MW以下に制限される。
また、出力制限群である群Gには、環境排出基準Bを順守するために、群Gの合計出力を600MW以下とする制限(制約)が課されている。600MWという制約は、多くの場合、1台の発電ユニットに課されるような制約である。よって、群Gが有効になっている期間内においては、多くの場合、群Gに属する1台の発電ユニットのみが稼働するが、各発電ユニットの出力が小さい場合には、群Gに属する2台以上の発電ユニットが同時に稼働し得る。
また、同時起動制限群には、同時に起動可能な発電ユニットの台数を例えば1台とする制限(制約)が課されている。この場合、この群が有効になっている期間内においては、この群に属する2台以上の発電ユニットを同時に起動状態にすることはできない。
このように、群に対する制約には、1000MW、600MW、同時起動制限のような条件に関する制約や、群の有効期間や無効期間のような期間に関する制約がある。群定義データ格納部16は、群定義データとして、このような条件や期間に関する制約についてのデータを格納している。
なお、本実施形態の群に対する制約には、2種類のものがある。1つは、先に群に対する制約を決定し、その後にその群のメンバーとなる発電ユニットを決定した場合である。この場合、ある発電ユニットをある群のメンバーに決定すると、その発電ユニットに課される制約が自動的に決定される。もう1つは、先に群のメンバーを決定し、その後にその群に対する制約を決定した場合である。この場合、ある群に属する発電ユニットに課される制約は、その発電ユニットがその群のメンバーになった後に決定される。
図11は、第4実施形態の群構成の例を示した模式図である。
図11は、発電ユニット1〜3がある出力制限群に属し、発電ユニット2〜4がある同一中操群に属し、発電ユニット3〜6がある同時起動制限群に属し、発電ユニット5、6がある漁業協定A対象群に属していることを示している。
ここで、発電ユニット2は、出力制限群と同一中操群とに属し、発電ユニット5は、同時起動制限群と漁業協定A対象群とに属している。このように、本実施形態の群は、1つの発電ユニットが複数の群に重複して属することが許容されるように定義される。
図12は、第4実施形態の群構成の例を示した模式図である。図12は、図11を抽象化した図に相当する。
図12は、発電ユニットU〜Uが群Gに属し、発電ユニットU、Uが群Gに属し、発電ユニットU〜Uが群Gに属し、発電ユニットU、Uが群Gに属していることを示している。群G〜Gは、1つの発電ユニットが複数の群に重複して属することが許容されるように定義されている。
この場合、各発電ユニットは複数の群に属することができるため、発電ユニットに課される制約を様々な形で変更し、自由な負荷配分を行うことが可能となる。一方、発電ユニットに課される制約の種類が多いと、制約同士が競合するなどして、発電ユニットを柔軟に運用することが難しくなる可能性がある。
そこで、本実施形態の発電計画策定装置では、様々な群に関するデータを発電計画作成部5に提供し、発電計画作成部5がこれらの群の制約をできる限り両立させるように発電計画を作成する。すなわち、発電計画作成部5は、複数の制約が課された情報処理の解を求める形で発電計画を作成する。これにより、様々な群を取り扱いつつも好適な発電計画を策定することが可能となる。
以下、再び図9を参照して、本実施形態の発電計画策定装置の構成および動作について説明する。
群制約変更部7および群定義変更部8は、群定義データ格納部16内の群定義データを変更(更新)するためのブロックである。本実施形態では、群定義データ入力部6が、群定義データを継続的に変更することができ、群定義変更部8が、群定義データを一時的に変更することができる。発電計画策定装置のユーザは、群定義データを継続的または一時的に変更する操作を発電計画策定装置のUI(User Interface)上で行うことで、群定義データを変更することができる。
群制約変更部7は、群定義データに含まれる群の制約を一時的に変更するための群制約データを発電計画策定装置に入力する。群定義変更部7から入力された群制約データは、群制約データ格納部17に格納される。この群制約データは、変更データの例である。
群定義変更部8は、群制約データ格納部17内の群制約データに基づいて、群定義データ格納部16内の群定義データを一時的に変更する。例えば、ある群の群制約データが群制約データ格納部17から読み出された場合、その群の定義(制約)が変更されるように群定義データ格納部16内の群定義データを書き換える。
群制約データは例えば、群に課される制約の変更期間や変更内容に関するデータを含んでいる。群定義変更部8は、群定義データ格納部16内の群定義データをこの変更期間の間、この変更内容に沿って変更する。この変更期間が経過した後には、群定義データ格納部16内の群定義データが元の内容に戻る。
発電計画作成部5は、発電ユニットの群の定義に関するデータ(群定義データ)を群定義データ格納部16から取得し、予測需要データを予測需要データ格納部11から取得する。そして、発電計画作成部5は、取得した群定義データと予測需要データに基づいて、上記発電ユニットについての発電計画を作成する。これにより、電力需要の予測と個々の群の制約とを考慮に入れた発電計画を作成することが可能となり、個々の群の制約を満たしつつ電力需要に応じた発電を行うことが可能となる。発電計画作成部5により作成された発電計画は、発電計画データとして、発電計画データ格納部15内に時間メッシュごとに格納される。
なお、群定義データ格納部16内の群定義データが群定義変更部8により一時的に変更された場合には、発電計画作成部5は、変更された群定義データに基づいて発電計画を作成する。一方、群定義データ格納部16内の群定義データが群定義変更部8により変更されていない場合には、発電計画作成部5は、群定義データ入力部6(または発電設備データ入力部2)により入力された群定義データに基づいて発電計画を作成する。
また、発電計画作成部5は、群定義データそのものを取得する代わりに、仮想GLC群負荷配分部9やGLC群負荷配分部10が群定義データを処理して得られた処理結果を取得してもよい。以下、仮想GLC群負荷配分部9やGLC群負荷配分部10の動作や、仮想GLC群やGLC群について説明する。仮想GLC群は第1群の例であり、GLC群は第2群の例である。
GLC制御の対象となる発電ユニットでは、発電ユニットに設けられているGLC制御装置が中央給電所からの指令を受け取り、GLC制御装置が、起動完了して給電指令可能状態になっている発電ユニットに均等割りした指令値を与えている。
この場合、GLC群に属する発電ユニットに関しては、最大出力、起動カーブ、停止カーブなどの特性については発電ユニットごとに問題なく処理できるが、発電ユニットの負荷配分において問題が生じる。理由は、等λ法を用いて負荷配分を行うため、増分単価が等しい発電ユニットの負荷配分は同時に行えるが、増分単価が異なる発電ユニットの負荷配分は同時に行うことができないからである。増分単価が異なる発電ユニットの負荷配分は、順番に行うしかない。
しかしながら、発電ユニット同士の増分単価は、同じであることはあまりなく、異なることが一般的である。一般に、増分単価が一致する発電ユニットの例は、コンバインドサイクル発電の同軸発電ユニットくらいしかない。
ここで、発電ユニットの特性によっては、ユニットA、Bの1MWあたりの単価(円)を最低出力で比較するとユニットAの方がコストが安い場合であっても、ユニットA、Bの1MWあたりの単価(円)を最高出力で比較するとユニットBの方がコストが安い場合もある。また、ユニットA、Bの出力を100MWだけ上昇させるためのコストはユニットAの方が安いが、上昇後のコストはユニットBの方が安い場合もある。そのため、一般的なGLC負荷配分処理は、増分単価が一致する発電ユニットにしか適用できないという問題があった。
一方、本実施形態では、増分単価が同じ発電ユニット同士を、GLC群としてグルーピングし、増分単価が近い発電ユニット同士を、仮想GLC群としてグルーピングする。仮想GLC群には、増分単価が同じ発電ユニット同士が属していてもよいし、増分単価が異なる発電ユニット同士が属していてもよい。本実施形態の仮想GLC群は、増分単価の近似値が同じ発電ユニット同士を含んでいる。別言すると、誤差の範囲内で増分単価が一致する発電ユニット同士が、同じ仮想GLC群に属している。
よって、本実施形態では、誤差の範囲内で増分単価が一致する複数の発電ユニットが存在する場合には、これらを仮想GLC群としてグルーピングする。そして、これらの発電ユニットの負荷配分は、これらの発電ユニットの増分単価が同じ値であると想定して行われる。これにより、増分単価が異なる発電ユニットの負荷配分を同時に行うことが可能となる。また、これらの発電ユニットの増分単価は近似的に一致するため、同時配分による不都合や計算誤差も小さく抑えることが可能となる。増分単価が近似的に一致するという近似の精度は、同時配分による不都合や計算誤差があまり問題視されない場合には、低い精度に設定することができ、多くの発電ユニットをグルーピングすることが可能となる。
本実施形態の発電計画策定装置は、仮想GLC群とGLG群とを併用するために、仮想GLC群負荷配分部9とGLC群負荷配分部10の両方を備えている。後述するように、発電計画作成部5は、仮想GLC群の負荷配分とGLG群の負荷配分のいずれか一方を利用して発電計画を作成してもよいし、仮想GLC群の負荷配分とGLG群の負荷配分の両方を利用して発電計画を作成してもよい。
また、GLC群と仮想GLC群は、増分単価以外の性能に基づいて設定されてもよい。この場合、同じ性能を有する発電ユニット同士が、GLC群としてグルーピングされ、近い性能を有する発電ユニット同士が、仮想GLC群としてグルーピングされる。
次に、仮想GLC群負荷配分部9とGLC群負荷配分部10の詳細について説明する。
GLC群負荷配分部10は、GLC群に関して負荷配分を決定するブロックである。GLC群は、1つの負荷指令を群に属する発電ユニットに配分するための群である。GLC群負荷配分部10は、群定義データ格納部16から取得した群定義データに基づいて、GLC群に属する発電ユニットの負荷配分を決定する。
一方、仮想GLC群負荷配分部9は、仮想GLC群に関して負荷配分を決定するブロックである。仮想GLC群は、GLC群と同様に、1つの負荷指令を群に属する発電ユニットに配分するための群である。仮想GLC群負荷配分部9は、群定義データ格納部16から取得した群定義データに基づいて、仮想GLC群に属する発電ユニットの負荷配分を決定する。
発電計画作成部5は、仮想GLC群に属する発電ユニットの負荷配分の決定結果(第1負荷配分データ)を仮想GLC群負荷配分部9から取得し、GLC群に属する発電ユニットの負荷配分の決定結果(第2負荷配分データ)をGLC群負荷配分部10から取得し、予測需要データを予測需要データ格納部11から取得する。そして発電計画作成部5は、取得した第1負荷配分データ、第2負荷配分データ、および予測需要データに基づいて、上記発電ユニットについての発電計画を作成する。これにより、電力需要の予測、GLC群の負荷配分、および仮想GLC群の負荷配分を考慮に入れた発電計画を作成することが可能となり、負荷指令を達成しつつ電力需要に応じた発電を行うことが可能となる。発電計画作成部5により作成された発電計画は、発電計画データとして、発電計画データ格納部15内に時間メッシュごとに格納される。
なお、発電計画作成部5は、仮想GLC群の負荷配分とGLG群の負荷配分のいずれか一方を利用して発電計画を作成してもよいし、仮想GLC群の負荷配分とGLG群の負荷配分の両方を利用して発電計画を作成してもよい。例えば、仮想GLC群とGLC群の両方に属する発電ユニットが存在する場合や、仮想GLC群とGLG群のいずれか一方のみを考慮した発電計画を作成したい場合には、いずれか一方の負荷配分のみを利用することが考えられる。この場合、発電計画作成部5は、仮想GLC群の負荷配分またはGLG群の負荷配分を選択し、選択した負荷配分に基づいて発電計画を作成する。
次に、本実施形態の負荷配分の詳細を説明する。以下の説明は、GLC群に対してなされているが、仮想GLC群にも適宜適用可能である。
GLC群が燃費性能の異なる複数の発電ユニットを含む場合、GLC群負荷配分部10は例えば、燃費性能が良い発電ユニットがなるべく稼働するように負荷配分を決定する。具体的には、電力需要が少ない場合には、GLC群負荷配分部10は、GLC群のうちの燃料性能の悪い発電ユニットを解列するように負荷配分を決定する。一方、電力需要が多い場合には、GLC群負荷配分部10は、GLC群のうちの燃料性能の悪い発電ユニットを並列するように負荷配分を決定する。
さらに、電力需要の変化量が発電ユニットの解列や並列を必要としない程度の範囲内であれば、GLC群負荷配分部10は、その後の電力需要の増減に対応できるように、GLC群の複数の発電ユニットの出力が互いに同じ値にそろうように負荷配分を決定する。この場合、いずれかの発電ユニットが最大出力に達した場合には、GLC群負荷配分部10は、この発電ユニットの出力は最大出力に維持し、残りの発電ユニットの出力は互いに同じ値にそろうように負荷配分を決定する。また、次の発電ユニットが最大出力に達した場合には、GLC群負荷配分部10は、これら2台の発電ユニットの出力は最大出力に維持し、残りの発電ユニットの出力は互いに同じ値にそろうように負荷配分を決定する。GLC群負荷配分部10は、このような処理をGLC群のすべての発電ユニットの出力が最大出力に達するまで繰り返す。
逆に、GLC群のすべての発電ユニットの出力が最大出力のときに電力需要が低下する場合には、最大出力が1番大きい発電ユニットの出力を徐々に下げる。次に、この発電ユニットの出力が2番目に最大出力が大きい発電ユニットの出力まで下がったら、これら2台の発電ユニットの出力を同じ値にそろえて徐々に下げるか、一方の発電ユニットを停止して他方の発電ユニットの出力を徐々に下げる。この際、GLC群負荷配分部10は、これら2台の発電ユニットの負荷配分を前者のように規定するか後者のように規定するかの経済性判定を行い、経済性の高い方の負荷配分を採用することに決定する。GLC群負荷配分部10は、このような処理をGLC群のすべての発電ユニットについて繰り返す。
本実施形態では、複数のGLC群を群定義データ格納部16に登録可能である。これらのGLC群に関しては、発電ユニットのアップレートによる最大出力の向上や、燃焼器の改良による発電ユニットの性能の改良がなされると、GLC群のメンバーや有効期間が都度変更される。このように、本実施形態では、複数のGLC群を柔軟に運用することが可能である。
例えば、あるGLC群が5台の発電ユニットを含み、各発電ユニットの出力変化率が5MW/分である場合を想定する。この場合、各発電ユニットの出力は1分間で5MWしか変化しないが、5台の発電ユニットの出力を同時に変化させれば、最大で25MW/分の出力変化率を実現することができる。これは例えば、大規模太陽光発電(メガソーラ)の発電量が天候の急変で大きく変化した場合に発電量バックアップを行うための有効な負荷配分方法となる。
発電計画作成部5は、電力需要と負荷配分との関係を規定した負荷配分データをGLC群負荷配分部10から取得し、予測需要データを予測需要データ格納部11から取得する。そして、発電計画作成部5は、電力需要と負荷配分との関係にこの予測需要データを適用することで負荷配分の時系列データを作成し、この時系列データに基づいて発電計画を作成する。
図13は、第4実施形態の負荷配分の例を示したグラフである。
図13は、あるGLC群に属するコンバインドサイクル発電の1軸発電ユニット、2軸発電ユニット、および3軸発電ユニットの出力の時間変化と、電力需要の時間変化とを示している。図13はさらに、ある気温における1軸発電ユニット、2軸発電ユニット、および3軸発電ユニットの最大出力を示している。コンバインドサイクル発電の発電ユニットの最大出力は、上述の式(1)で与えられる。
符号Kは、性能の悪い3軸発電ユニットだけ出力が低く設定されている場合を示しており、符号Kは、性能の悪い3軸発電ユニットだけ停止する場合を示している。一方、符号Kおよび符号Kは、3台の発電ユニットの出力を同じ値にそろえた場合を示している。さらに、符号Kは、3台の発電ユニットの出力が最大出力に達した場合を示している。このように、本実施形態のGLC群負荷配分部10は、電力需要の変化に応じて負荷配分を様々な形に変化させることができる。
以上のように、本実施形態の発電計画策定装置は、群のメンバーや制約など、群の定義に関するデータを群定義データ登録部16内に登録し、登録した定義に基づいて発電計画を作成する。よって、本実施形態によれば、個々の群のメンバーや制約を考慮した好適な発電計画を策定することが可能となり、発電の経済性や運用の柔軟性に優れた発電計画を策定することが可能となる。
また、本実施形態によれば、多少の性能差のある発電ユニット同士を仮想GLC群としてグルーピングすることで、同時に出力変化させることが可能となる。これにより、見かけ上の負荷変化率が大きい負荷配分を行うことができ、より自由度が高く操作性の良い発電計画を作成することが可能となる。これは例えば、大規模太陽光発電(メガソーラ)の発電量が天候の急変で大きく変化した場合に発電量バックアップを行うための有効な負荷配分方法となる。例えば、水力、太陽光、火力等の複数方式の発電ユニットの発電計画をまとめて作成する際に本実施形態が効果的である。
なお、群制約変更部7は、群の制約を一時的に変更するための変更データ(群制約データ)を入力するが、これを、群の定義を一時的に変更するための変更データを入力する変更部に置き換えてもよい。すなわち、変更データによる変更対象は、群の制約のみに限定せずに、群のメンバーにまで拡大してもよい。この場合、群定義変更部8は、群定義データに含まれる群の制約だけでなく、群定義データに含まれる群のメンバーも一時的に変更することが可能となる。例えば、ある群に属する発電ユニットの台数が、群定義データの変更により、一時的に増加または減少することになる。
(第5実施形態)
図14は、第5実施形態の発電計画策定装置の構成を示すブロック図である。
図14の発電計画策定装置は、図1の予測誤差入力部21、予測誤差計算部22、および待機設備選択部23の代わりに、リアルタイムデータ入力部27、誤差推定部28、および処理結果通知部29を備えている。本実施形態の処理結果通知部29は、表示部の例である。
本実施形態では、予測天候データ入力部3が、現在の予測天候データを発電計画策定装置に入力するのに対し、リアルタイムデータ入力部27は、現在の計測天候データを各発電所30からリアルタイムに取得して、発電計画策定装置に入力する。本実施形態の計測天候データは、発電ユニットの近傍での気温(大気温度)や海水温(海水温度)の計測データであり、例えば、各発電所30において発電ユニット付近に設置された計測器により計測される。予測天候データは、第1データの例であり、計測天候データは、第2データの例である。リアルタイムデータ入力部27はさらに、発電ユニットの現在の出力値を取得して、発電計画策定装置に入力する。
発電設備性能予測部4は、予測天候データに基づいて発電ユニットの性能を予測し、発電計画作成部5は、この発電設備性能データに基づいて発電計画(第1発電計画)を作成する。同様に、発電設備性能予測部4は、計測天候データに基づいて発電ユニットの性能を予測し、発電計画作成部5は、この発電設備性能データに基づいて発電計画(第2発電計画)を作成する。第1および第2発電計画は、発電計画データとして発電計画データ格納部15内に格納される。
処理結果通知部29は、発電計画データ格納部15内の発電計画データを参照し、上述の第1および第2発電計画を同一画面上に表示する。例えば、第1発電計画の出力値の変化を示すグラフと、第2発電計画の出力値の変化を示すグラフとを同一座標上に表示し、ユーザがこれらを比較できるようにする。この座標に、リアルタイムデータ入力部27から入力された現在の出力値も表示してもよい。また、第1発電計画の気温変化(すなわち予測気温の変化)を示すグラフと、第2発電計画の気温変化(すなわち計測気温の変化)を示すグラフとを同一座標上に表示してもよい。
誤差推定部28は、これら予測気温と計測気温との差を計算し、この差を気温誤差として処理結果通知部29により上記画面に表示する。これにより、予測気温と計測気温との誤差の情報をユーザに提供することができる。
また、誤差推定部28は、第1実施形態の予測誤差計算部22および待機設備選択部23と同じ機能を有していてもよい。この場合、誤差推定部28は、誤差率および予備率を計算することができ、発電計画作成部5は、予備率に基づいて第1発電計画から第3発電計画を作成することができる。一方、誤差推定部28は、第2実施形態の予測誤差計算部22および負荷配分計算部24と同じ機能を有していてもよい。この場合も、誤差推定部28は、誤差率および予備率を計算することができ、発電計画作成部5は、予備率に基づいて第1発電計画から第3発電計画を作成することができる。
また、誤差推定部28は、予測気温と計測気温との間の誤差率を計算し、この誤差率を発電計画作成部5に提供してもよい。この場合、発電計画作成部5は、誤差率が所定範囲内になるように第1発電計画を修正することで、第3発電計画を作成してもよい。
また、本実施形態の発電計画策定装置は、上記画面を見たユーザからの入力操作に基づいて、第1発電計画を修正してもよい。例えば、予測天候データの気温をユーザが修正できるようにしてもよい。この場合、発電設備性能予測部4は、この予測天候データに基づいて発電ユニットの性能を予測し直し、発電計画作成部5は、この発電設備性能データに基づいて第1発電計画を作成し直す。これにより、ユーザの意思を踏まえて第1発電計画から第3発電計画を作成することが可能となる。
本実施形態によれば、発電計画における予測値とリアルタイムの計測値との差を、ユーザが視覚的に認識することが可能となる。また、このときに不都合な差が存在する場合には、ユーザがこれに迅速に対応することができ、安定性の高い発電計画の運用が実現可能となる。
(第6実施形態)
図15は、第6実施形態の発電計画策定装置の構成を示すブロック図である。
図15の発電計画策定装置31は、CPU(Central Processing Unit)等のプロセッサ32と、RAM(Random Access Memory)等の主記憶装置33と、HDD(Hard Disc Drive)等の補助記憶装置34と、LAN(Local Area Network)ボード等のネットワークインタフェース35と、メモリスロットやメモリポート等のデバイスインタフェース36と、これらの機器を互いに接続するバス37とを備えている。発電計画策定装置31は例えば、PC(Personal Computer)等のコンピュータであり、キーボードやマウス等の入力装置や、LCD(Liquid Crystal Display)モニタ等の表示装置を備えている。
本実施形態においては、第1〜第5実施形態のいずれかの発電計画策定装置の情報処理をコンピュータに実行させるための発電計画策定プログラムが、補助記憶装置34内にインストールされている。発電計画策定装置31は、このプログラムを主記憶装置33に展開して、プロセッサ32により実行する。これにより、図1、図4、図7、図9、または図14に示す各ブロックの機能を発電計画策定装置31内で実現し、第1〜第5実施形態で説明した発電計画を作成することが可能となる。なお、この情報処理により生成されたデータは、主記憶装置33に一時的に保持されるか、補助記憶装置34内に格納され保存される。
発電計画策定プログラムは例えば、このプログラムを記録した外部装置38をデバイスインタフェース36に装着し、このプログラムを外部装置38から補助記憶装置34に格納することでインストール可能である。外部装置38の例は、コンピュータ読み取り可能な記録媒体や、このような記録媒体を内蔵する記録装置である。記録媒体の例はCD−ROMやDVD−ROMであり、記録装置の例はHDDである。また、発電計画策定プログラムは例えば、このプログラムをネットワークインタフェース35を介してダウンロードすることでインストール可能である。
本実施形態によれば、第1〜第5実施形態のいずれかの発電計画策定装置の機能をソフトウェアにより実現することが可能となる。
以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置、方法、およびプログラムは、その他の様々な形態で実施することができる。また、本明細書で説明した装置、方法、およびプログラムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。
1:予測需要データ入力部、2:発電設備データ入力部、
3:予測天候データ入力部、4:発電設備性能予測部、5:発電計画作成部、
6:群定義データ入力部、7:群制約変更部、8:群定義変更部、
9:仮想GLC群負荷配分部、10:GLC群負荷配分部、
11:予測需要データ格納部、12:発電設備データ格納部、
13:予測天候データ格納部、14:発電設備性能データ格納部、
15:発電計画データ格納部、16:群定義データ格納部、
17:群制約データ格納部、21:予測誤差入力部、
22:予測誤差計算部、23:待機設備選択部、
24:負荷配分計算部、25:供給能力マージン付加部、26:供給能力通知部、
27:リアルタイムデータ入力部、28:誤差推定部、29:処理結果通知部、
30:各発電所、31:発電計画策定装置、32:プロセッサ、
33:主記憶装置、34:補助記憶装置、35:ネットワークインタフェース、
36:デバイスインタフェース、37:バス、38:外部装置

Claims (7)

  1. 発電設備の性能についての情報を処理する発電情報処理部であって、自然環境についてのデータに基づいて前記発電設備の性能を予測する、発電情報処理部と、
    前記発電情報処理部により予測された前記発電設備の性能に基づいて、前記発電設備についての発電計画を作成する発電計画作成部と、
    を備える発電計画策定装置であって
    前記発電計画作成部は、前記自然環境についての第1データである現在の予測天候データから予測された前記性能に基づいて第1発電計画を作成し、前記自然環境についての第2データである過去に予測された予測天候データから予測された前記性能に基づいて第2発電計画を作成し、前記第1および第2発電計画に基づいて第3発電計画を作成
    前記発電計画策定装置はさらに、
    前記第1発電計画における供給電力を需要電力で割った誤差率と、前記第2発電計画における供給電力を需要電力で割った誤差率とを計算する誤差率計算部と、
    前記第1発電計画の前記誤差率と、前記第2発電計画の前記誤差率とが一致するように、前記発電設備を最大出力から最大出力に予備率を掛けた出力を引いた出力で運転して前記発電設備を待機させるための予備率を、前記発電計画作成部による前記予備率の計算後に再計算する予備率計算部と、
    を備え、
    前記発電計画作成部は、前記予備率計算部により再計算された前記予備率に基づいて前記第1発電計画を修正することで前記第3発電計画を作成する、
    発電計画策定装置。
  2. 前記発電計画作成部は、前記第1発電計画において待機対象の前記発電設備を変更することで前記第3発電計画を作成する、請求項に記載の発電計画策定装置。
  3. 前記発電計画作成部は、前記第1発電計画において前記発電設備の負荷配分を変更することで前記第3発電計画を作成する、請求項に記載の発電計画策定装置。
  4. 前記第1および第2発電計画に基づいて、前記発電設備の供給能力が天候の変化によりマージン分だけ低下しても電力需要を満足することが可能なマージンを計算するマージン計算部を備え、
    前記発電計画作成部は、前記第1発電計画を前記マージンを満足するよう修正することで前記第3発電計画を作成する、請求項1に記載の発電計画策定装置。
  5. 前記発電情報処理部は、
    前記発電設備についてのデータと、前記自然環境についてのデータとに基づいて、前記発電設備の性能を予測する発電設備性能予測部を備え、
    前記発電計画作成部は、前記発電設備性能予測部により予測された前記発電設備の性能に基づいて、前記発電計画を作成する、請求項1からのいずれか1項に記載の発電計画策定装置。
  6. 発電設備の性能についての情報を処理する発電情報処理部が、自然環境についてのデータに基づいて前記発電設備の性能を予測し、
    発電計画作成部が、前記発電情報処理部により予測された前記発電設備の性能に基づいて、前記発電設備についての発電計画を作成する、
    ことを備える発電計画策定方法であって
    前記発電計画作成部は、前記自然環境についての第1データである現在の予測天候データから予測された前記性能に基づいて第1発電計画を作成し、前記自然環境についての第2データである過去に予測された予測天候データから予測された前記性能に基づいて第2発電計画を作成し、前記第1および第2発電計画に基づいて第3発電計画を作成
    前記発電計画策定方法はさらに、
    誤差率計算部が、前記第1発電計画における供給電力を需要電力で割った誤差率と、前記第2発電計画における供給電力を需要電力で割った誤差率とを計算し、
    予備率計算部が、前記第1発電計画の前記誤差率と、前記第2発電計画の前記誤差率とが一致するように、前記発電設備を最大出力から最大出力に予備率を掛けた出力を引いた出力で運転して前記発電設備を待機させるための予備率を、前記発電計画作成部による前記予備率の計算後に再計算する、
    ことを備え、
    前記発電計画作成部は、前記予備率計算部により再計算された前記予備率に基づいて前記第1発電計画を修正することで前記第3発電計画を作成する、
    発電計画策定方法。
  7. 発電設備の性能についての情報を処理する発電情報処理部が、自然環境についてのデータに基づいて前記発電設備の性能を予測し、
    発電計画作成部が、前記発電情報処理部により予測された前記発電設備の性能に基づいて、前記発電設備についての発電計画を作成する、
    ことを備える発電計画策定方法をコンピュータに実行させる発電計画策定プログラムであって、
    前記発電計画作成部は、前記自然環境についての第1データである現在の予測天候データから予測された前記性能に基づいて第1発電計画を作成し、前記自然環境についての第2データである過去に予測された予測天候データから予測された前記性能に基づいて第2発電計画を作成し、前記第1および第2発電計画に基づいて第3発電計画を作成
    前記発電計画策定方法はさらに、
    誤差率計算部が、前記第1発電計画における供給電力を需要電力で割った誤差率と、前記第2発電計画における供給電力を需要電力で割った誤差率とを計算し、
    予備率計算部が、前記第1発電計画の前記誤差率と、前記第2発電計画の前記誤差率とが一致するように、前記発電設備を最大出力から最大出力に予備率を掛けた出力を引いた出力で運転して前記発電設備を待機させるための予備率を、前記発電計画作成部による前記予備率の計算後に再計算する、
    ことを備え、
    前記発電計画作成部は、前記予備率計算部により再計算された前記予備率に基づいて前記第1発電計画を修正することで前記第3発電計画を作成する、
    発電計画策定プログラム。
JP2016205457A 2016-10-19 2016-10-19 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム Active JP6703777B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016205457A JP6703777B2 (ja) 2016-10-19 2016-10-19 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム
TW106133579A TWI665570B (zh) 2016-10-19 2017-09-29 發電計劃發展裝置、發電計劃發展方法及記錄媒體
AU2017239491A AU2017239491B2 (en) 2016-10-19 2017-10-03 Power generation plan developing apparatus, power generation plan developing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205457A JP6703777B2 (ja) 2016-10-19 2016-10-19 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020074341A Division JP2020113338A (ja) 2020-04-17 2020-04-17 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム

Publications (2)

Publication Number Publication Date
JP2018067155A JP2018067155A (ja) 2018-04-26
JP6703777B2 true JP6703777B2 (ja) 2020-06-03

Family

ID=62086096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205457A Active JP6703777B2 (ja) 2016-10-19 2016-10-19 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム

Country Status (3)

Country Link
JP (1) JP6703777B2 (ja)
AU (1) AU2017239491B2 (ja)
TW (1) TWI665570B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104561B2 (ja) 2018-05-31 2022-07-21 株式会社日立製作所 エネルギー運用装置及び方法並びにシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211548A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd 発電計画作成方法および装置
JP5493886B2 (ja) * 2010-01-08 2014-05-14 富士電機株式会社 太陽光発電量予測システムおよび太陽光発電量予測方法
JP5412332B2 (ja) * 2010-03-05 2014-02-12 株式会社日立製作所 発電機運用計画決定装置、発電機運用計画決定方法及び発電機運用計画決定プログラム
CN101777769B (zh) * 2010-03-24 2012-06-20 上海交通大学 电网的多智能体优化协调控制方法
US9337656B2 (en) * 2010-04-08 2016-05-10 Vestas Wind Systems A/S Method and system for forecasting wind energy
US20120083933A1 (en) * 2010-09-30 2012-04-05 General Electric Company Method and system to predict power plant performance
ES2460666T3 (es) * 2011-08-26 2014-05-14 Abb Research Ltd. Asignación de unidades para generación de potencia eólica
JP6088737B2 (ja) * 2012-02-16 2017-03-01 株式会社日立製作所 電力系統の運用方法、運用装置および蓄電池管理装置
US9184589B2 (en) * 2013-02-27 2015-11-10 Mitsubishi Electric Research Laboratories, Inc. Method for optimizing power flows in electric power networks
JP2016093016A (ja) * 2014-11-06 2016-05-23 富士電機株式会社 運転計画生成装置、運転計画生成方法及びプログラム
JP5886407B1 (ja) * 2014-12-05 2016-03-16 中国電力株式会社 予測装置

Also Published As

Publication number Publication date
TW201816642A (zh) 2018-05-01
JP2018067155A (ja) 2018-04-26
AU2017239491B2 (en) 2019-08-29
AU2017239491A1 (en) 2018-05-10
TWI665570B (zh) 2019-07-11

Similar Documents

Publication Publication Date Title
Khani et al. Real-time optimal dispatch and economic viability of cryogenic energy storage exploiting arbitrage opportunities in an electricity market
JP2010233352A (ja) 電力供給システムおよび分散型発電装置の制御装置
JP6334177B2 (ja) 運転計画作成装置、制御装置、運転計画作成方法、およびプログラム
JP6385984B2 (ja) エネルギー管理装置、エネルギー管理方法及びエネルギー管理プログラム
JP2010114968A (ja) 定検計画策定装置、方法、及びその制御プログラム
JP6253797B2 (ja) 発電設備運用装置および運用方法
JP2010213477A (ja) 発電計画作成方法、装置、プログラムおよび記憶装置
JP2008295175A (ja) 発電機の運転計画策定装置、運転計画策定方法ならびに、その装置および方法を実行させるためのプログラム
JP5178032B2 (ja) 発電機出力量決定システム、方法及びプログラム
Taccari et al. Short-term planning of cogeneration power plants: a comparison between MINLP and piecewise-linear MILP formulations
JP6197689B2 (ja) 運転計画支援プログラム、運転計画支援方法および運転計画支援装置
Reddy et al. Profit-based conventional resource scheduling with renewable energy penetration
WO2022168357A1 (ja) 発電量管理システム及び発電量管理方法
JP7359535B2 (ja) 演算装置、システム、演算方法及びプログラム
JP6703777B2 (ja) 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム
US20200211128A1 (en) System, device, and method for mode-based energy storage
JP2020113338A (ja) 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム
JP2018060416A (ja) 発電計画策定装置、発電計画策定方法、および発電計画策定プログラム
JP5681091B2 (ja) エネルギー選択支援装置、エネルギー選択支援方法及びエネルギー選択支援プログラム
CN114243693B (zh) 微电网的调度模型构建方法、装置和计算机设备
JP2017173945A (ja) 契約電力最適化装置
JP7234819B2 (ja) 需要制御方法、制御装置、プログラム及び電力システム
Prakash et al. Quantifying reserve capabilities for designing flexible electricity markets: An Australian case study with increasing penetrations of renewables
Ponciroli et al. Testing of Strategies for the Acceleration of the Cost Optimization
JP2011215672A (ja) 情報処理装置、発電出力推定方法およびプログラム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6703777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150