JP6703759B2 - Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder - Google Patents

Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder Download PDF

Info

Publication number
JP6703759B2
JP6703759B2 JP2019537317A JP2019537317A JP6703759B2 JP 6703759 B2 JP6703759 B2 JP 6703759B2 JP 2019537317 A JP2019537317 A JP 2019537317A JP 2019537317 A JP2019537317 A JP 2019537317A JP 6703759 B2 JP6703759 B2 JP 6703759B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
tial intermetallic
compound powder
tial
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019537317A
Other languages
Japanese (ja)
Other versions
JPWO2019124344A1 (en
Inventor
清美 中村
清美 中村
韓 剛
剛 韓
坂巻 功一
功一 坂巻
斉藤 和也
和也 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2019124344A1 publication Critical patent/JPWO2019124344A1/en
Application granted granted Critical
Publication of JP6703759B2 publication Critical patent/JP6703759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F2009/001Making metallic powder or suspensions thereof from scrap particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • B22F2009/046Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/40Intermetallics other than rare earth-Co or -Ni or -Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、TiAl金属間化合物粉末の製造方法と、TiAl金属間化合物粉末に関するものである。 The present invention relates to a TiAl intermetallic compound powder manufacturing method and a TiAl intermetallic compound powder.

TiAlやTiAl、TiAl等を含むTiAl金属間化合物は、密度が小さい一方で、高温強度に優れることから、有用な軽量耐熱材料として、航空宇宙分野や発電分野等における各種機器の構造部品への適用が進んでいる。
ところで、TiAl金属間化合物は、延性に乏しく、機械加工が難しい材料である。よって、所定の形状を有したTiAl金属間化合物を作製するときには、TiAl金属間化合物の粉末を準備して、これを各種の粉末冶金法(例えば、焼結、熱間静水圧プレス、金属粉末射出成形)や積層造形法(3Dプリンティングや付加製造技術(additive manufacturing)とも呼ばれる)によってニアネットシェイプに成形する手法が現実的である。そして、このニアネットシェイプに成形されたTiAl金属間化合物の表面に切削加工を行って、各種部品の最終形状に仕上げる手法が現実的である。
TiAl intermetallic compounds containing TiAl, Ti 3 Al, and TiAl 3 have low density and excellent high-temperature strength, so they are useful lightweight heat-resistant materials as structural parts for various equipment in the aerospace and power generation fields. Is being applied to.
By the way, the TiAl intermetallic compound is a material having poor ductility and difficult to machine. Therefore, when a TiAl intermetallic compound having a predetermined shape is prepared, a powder of TiAl intermetallic compound is prepared and subjected to various powder metallurgy methods (for example, sintering, hot isostatic pressing, metal powder injection). A method of forming a near net shape by a molding method or an additive manufacturing method (also referred to as 3D printing or additive manufacturing technology) is practical. Then, a method of cutting the surface of the TiAl intermetallic compound formed in the near net shape to finish the final shape of various parts is practical.

上記のTiAl金属間化合物粉末を得る手法として、「TiAl金属間化合物を主成分とする合金を溶解し、前記溶解で得られる液滴を急冷凝固させて金属粉末を得る」手法が提案されている(特許文献1)。 As a method of obtaining the TiAl intermetallic compound powder, a method of "melting an alloy containing a TiAl intermetallic compound as a main component and rapidly solidifying the droplets obtained by the melting to obtain a metal powder" has been proposed. (Patent Document 1).

特開2008−208432号公報JP, 2008-208432, A

特許文献1の手法は、TiAl金属間化合物粉末の組織を微細化するのに有効な手法である。組織が微細化されたTiAl金属間化合物粉末であれば、例えば、それを焼結によって成形したときに、上記の微細な組織を維持できるので、成形品に強度を付与できるとのことである。
しかし、このような手法で得られた成形品であっても、その強度の向上には改善の余地がある。つまり、TiAl金属間化合物粉末の内部に多くの気孔(空隙)があると、成形品の内部においても、上記の気孔に起因した空隙が少なからず残留して、成形品の機械的特性や信頼性を低下させ得る。
The method of Patent Document 1 is an effective method for refining the structure of the TiAl intermetallic compound powder. It is said that if the TiAl intermetallic compound powder having a fine structure is used, for example, when the powder is formed by sintering, the above-mentioned fine structure can be maintained, so that strength can be imparted to the molded product.
However, even a molded product obtained by such a method has room for improvement in its strength. In other words, if there are many pores (voids) inside the TiAl intermetallic compound powder, some voids due to the above-mentioned pores also remain inside the molded product, and the mechanical properties and reliability of the molded product are improved. Can be lowered.

本発明の目的は、TiAl金属間化合物粉末の内部の気孔を低減することができる、TiAl金属間化合物粉末の製造方法と、そのTiAl金属間化合物粉末を提供することである。 An object of the present invention is to provide a method for producing a TiAl intermetallic compound powder capable of reducing pores inside the TiAl intermetallic compound powder, and the TiAl intermetallic compound powder.

本発明は、TiAl金属間化合物の切削片を、熱プラズマ炎に通過させて球状化処理するTiAl金属間化合物粉末の製造方法である。そして、好ましくは、以下の一つまたは二つ以上の要件を満たすTiAl金属間化合物粉末の製造方法である。
・上記の切削片の大きさが500μm以下である。
・上記の熱プラズマ炎の電力が10〜250kWである。
・上記の熱プラズマ炎が高周波プラズマ炎である。
・上記の熱プラズマ炎の動作ガスが不活性ガスである。
・上記の熱プラズマ炎の領域に上記の切削片を供給するために使用するキャリアガスが不活性ガスである。
The present invention is a method for producing a TiAl intermetallic compound powder in which a cutting piece of a TiAl intermetallic compound is passed through a thermal plasma flame to be spheroidized. And, preferably, it is a method for producing a TiAl intermetallic compound powder satisfying one or more of the following requirements.
-The size of the above cutting pieces is 500 μm or less.
The power of the above thermal plasma flame is 10 to 250 kW.
-The above-mentioned thermal plasma flame is a high frequency plasma flame.
The working gas of the above thermal plasma flame is an inert gas.
The carrier gas used to supply the cuttings in the area of the thermal plasma flame is an inert gas.

また、本発明は、断面における気孔率が0〜0.4面積%のTiAl金属間化合物粉末である。そして、好ましくは、以下の一つまたは二つ以上の要件を満たすTiAl金属間化合物粉末である。
・二次投影像における面積円形度が、全体の90%以上の個数において、0.9以上である。
・粒子径が、体積基準の累積粒度分布の50%粒子径(D50)で1〜250μmである。
・成分組成が、質量%で、Al:10〜80%、残部Tiおよび不純物である。そして、さらに、Nb:20.0%以下、Cr:20.0%以下のうちの1種または2種の元素種を含むか、または、V、Ta、Mn、B、Si、C、W、Yのうちの1種または2種以上の元素種を、それぞれ20.0%以下含む。
・粉末冶金法または積層造形法に用いられる。
Further, the present invention is a TiAl intermetallic compound powder having a cross-section porosity of 0 to 0.4 area %. And, it is preferably a TiAl intermetallic compound powder satisfying one or more of the following requirements.
-Area circularity in the secondary projection image is 0.9 or more in 90% or more of the whole.
The particle diameter is 1 to 250 μm in 50% particle diameter (D50) of the volume-based cumulative particle size distribution.
-Ingredient composition is% by mass, Al: 10 to 80%, balance Ti and impurities. Further, it further contains one or two elemental species of Nb: 20.0% or less and Cr: 20.0% or less, or V, Ta, Mn, B, Si, C, W, 20.0% or less of each of one or more elemental species of Y is contained.
-Used in powder metallurgy or additive manufacturing.

本発明によれば、TiAl金属間化合物粉末の内部の気孔を低減することができる。 According to the present invention, it is possible to reduce pores inside the TiAl intermetallic compound powder.

本発明例のTiAl金属間化合物粉末の断面の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the cross section of the TiAl intermetallic compound powder of the example of this invention. 比較例のTiAl金属間化合物粉末の断面の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the cross section of the TiAl intermetallic compound powder of a comparative example. 本発明に関する球状化処理を行うための熱プラズマ処理装置の一例を示す構造図である。1 is a structural diagram showing an example of a thermal plasma processing apparatus for performing a spheroidizing process according to the present invention. 実施例2で用いた切削片、および、この切削片より作製したTiAl金属間化合物粉末の外観形状の一例を示す図面代用写真である。5 is a drawing-substituting photograph showing an example of the external shape of the cutting piece used in Example 2 and the TiAl intermetallic compound powder produced from this cutting piece. 実施例2で用いた切削片、および、この切削片より作製したTiAl金属間化合物粉末の断面のAl濃度をEPMA(電子線マイクロアナライザー)で分析した元素マッピング図である。FIG. 5 is an elemental mapping diagram in which the cutting piece used in Example 2 and the Al concentration in the cross section of the TiAl intermetallic compound powder produced from this cutting piece are analyzed by EPMA (electron beam microanalyzer). 実施例3で用いた切削片、および、この切削片より作製したTiAl金属間化合物粉末の外観形状の一例を示す図面代用写真である。5 is a photograph as a substitute for a drawing showing an example of the external shape of the cutting piece used in Example 3 and the TiAl intermetallic compound powder produced from this cutting piece. 実施例3で用いた切削片、および、この切削片より作製したTiAl金属間化合物粉末の断面のAl濃度をEPMAで分析した元素マッピング図である。FIG. 5 is an element mapping diagram in which the cutting piece used in Example 3 and the Al concentration in the cross section of the TiAl intermetallic compound powder produced from this cutting piece are analyzed by EPMA.

以下に、本発明の各構成要件について説明する。 Each constituent element of the present invention will be described below.

(1)本発明のTiAl金属間化合物粉末の製造方法は、TiAl金属間化合物の切削片を、熱プラズマ炎に通過させて球状化処理するものである。
従来、TiAl金属間化合物粉末は、「TiAl金属間化合物を主成分とする合金を溶解し、前記溶解で得られる液滴を急冷凝固させて金属粉末を得る」手法によって製造されてきた。そして、この従来の手法について、具合的に提案されていた手法は、「プラズマ回転電極法」や「ガスアトマイズ法」であった(特許文献1)。
プラズマ回転電極法によれば、まず、TiAl金属間化合物の母材(インゴット)が出発材料として準備される。そして、この母材を回転電極として、この回転する電極の先端部に、直接、プラズマを照射することで、母材の先端部が溶融したTiAl金属間化合物の成分組成を有する液滴が飛散する。そして、この飛散した液滴が凝固して、TiAl金属間化合物粉末が得られることとなる。
また、ガスアトマイズ法によれば、TiAl金属間化合物の成分組成を有した溶湯が出発材料として準備される。そして、この溶湯の細流にガスの高圧ジェットを当てることで飛散した液滴が凝固して、TiAl金属間化合物粉末が得られることとなる。
(1) In the method for producing a TiAl intermetallic compound powder of the present invention, a cutting piece of the TiAl intermetallic compound is passed through a thermal plasma flame to be spheroidized.
Conventionally, TiAl intermetallic compound powder has been manufactured by a method of "melting an alloy containing a TiAl intermetallic compound as a main component and rapidly cooling and solidifying the droplets obtained by the melting to obtain a metal powder". And about this conventional method, the method proposed concretely was the "plasma rotating electrode method" and the "gas atomizing method" (patent document 1).
According to the plasma rotating electrode method, first, a base material (ingot) of a TiAl intermetallic compound is prepared as a starting material. Then, by directly irradiating the tip of the rotating electrode with plasma using the base material as a rotating electrode, droplets having the component composition of the TiAl intermetallic compound melted at the tip of the base material are scattered. .. Then, the scattered droplets are solidified and TiAl intermetallic compound powder is obtained.
Further, according to the gas atomizing method, a molten metal having a component composition of TiAl intermetallic compound is prepared as a starting material. By applying a high-pressure jet of gas to the fine stream of this molten metal, the scattered droplets are solidified, and TiAl intermetallic compound powder is obtained.

プラズマ回転電極法の場合、予めインゴットを円柱状の電極として準備する必要があり、製造工程の増加からコスト高となる。また、プラズマ回転電極法の場合、粒径が100μm以下といった微細な粉末を製造するとなると、それは容易ではない。
そして、ガスアトマイズ法の場合、アルゴン等の不活性ガス(冷却ガス)を吹き付けながら、溶湯を液滴化し、凝固させるため、内部にガスを巻き込み、凝固後の粉末内部に多くの気孔が形成されやすい。
In the case of the plasma rotating electrode method, it is necessary to prepare an ingot as a cylindrical electrode in advance, which results in an increase in cost due to an increase in manufacturing steps. Further, in the case of the plasma rotary electrode method, it is not easy to produce a fine powder having a particle size of 100 μm or less.
Further, in the case of the gas atomizing method, while blowing an inert gas (cooling gas) such as argon, the molten metal is made into droplets and solidified, so that the gas is entrained inside and many pores are easily formed inside the powder after solidification. ..

これに対して、本発明の場合、まず、上記の出発材料を、TiAl金属間化合物の「切削片」とする。つまり、切削片であれば、始めから、目的とするTiAl金属間化合物粉末に見合った大きさ(体積)に調整しやすいので、ガスアトマイズ法のように、溶融状態で“高圧ガスを吹き付けて”所定の粉末の大きさに分断する必要がなく、TiAl金属間化合物粉末の内部に気孔が形成される要因を取り除くことができる。また、切削片を用いることで、TiAl金属間化合物粉末の粒度調整も容易である。切削片の大きさは、適宜、粉砕や分級等を行うことで、調整することができる。この場合、後述する球状化処理の際の処理能力等を勘定して、例えば、500μm以下の大きさ(長さ)に調整することが好適である。好ましくは400μm以下、より好ましくは300μm以下、さらに好ましくは200μm以下である。また、好ましくは30μm以上、より好ましくは40μm以上、さらに好ましくは50μm以上である。 On the other hand, in the case of the present invention, first, the above-mentioned starting material is a “cutting piece” of a TiAl intermetallic compound. In other words, if it is a cutting piece, it is easy to adjust the size (volume) corresponding to the target TiAl intermetallic compound powder from the beginning, so as in the gas atomizing method, it is possible to “spray a high-pressure gas” in a molten state and set it to a predetermined value. It is not necessary to divide the powder into the size of the powder, and it is possible to remove the factor of forming pores inside the TiAl intermetallic compound powder. Further, by using the cutting pieces, it is easy to adjust the particle size of the TiAl intermetallic compound powder. The size of the cut pieces can be adjusted by appropriately performing pulverization, classification and the like. In this case, it is preferable to adjust the size (length) of, for example, 500 μm or less by counting the processing capacity in the spheroidizing process described later. It is preferably 400 μm or less, more preferably 300 μm or less, and further preferably 200 μm or less. Further, it is preferably 30 μm or more, more preferably 40 μm or more, still more preferably 50 μm or more.

そして、TiAl金属間化合物は延性に乏しい材料であるので、この材料を切削したときに生じる切削片は、長く繋がらずに、粒状に分断された形状になりやすい。よって、このことからも、上述した粒度調整が容易である。
加えて、上記の切削片であれば、大きな素材を直接粉砕するために、素材の水素脆化と粉砕とを組合せて得た「粉砕片」のように、初期(出発材料)の水素含有量が上昇することがないので、TiAl金属間化合物粉末中の水素含有量の低減化にも有利である。そして、このことによって、水素含有量が0.1質量%未満のTiAl金属間化合物粉末を容易に得ることができる。
Since the TiAl intermetallic compound is a material having poor ductility, the cutting pieces produced when cutting this material are likely to have a granular shape without being connected for a long time. Therefore, also from this fact, the above-mentioned particle size adjustment is easy.
In addition, in the case of the above-mentioned cutting pieces, in order to directly grind a large material, the hydrogen content of the initial (starting material), such as "ground pieces" obtained by combining hydrogen embrittlement and grinding of the material Since it does not increase, it is also advantageous for reducing the hydrogen content in the TiAl intermetallic compound powder. And by this, the TiAl intermetallic compound powder having a hydrogen content of less than 0.1 mass% can be easily obtained.

なお、上記の切削片の大きさについては、後述する球状化処理で熱プラズマ炎を利用することを勘定すれば、切削片が大きい方が、TiAl金属間化合物の主要成分であるAlの過剰な揮発量を少なくできる点で有利である。これは、切削片を熱プラズマ炎に通したときに、低融点のAl成分が蒸発しやすく、小さな切削片がこの影響を受けやすいからだと考えられる。そこで、切削片の大きさ(長さ)を、好ましくは70μm以上、より好ましくは80μm以上、さらに好ましくは90μm以上とすることで、球状化処理中の切削片からのAlの過剰な揮発を抑制することができる。これによって出発材料からの成分変動を抑制することができる。また、製造されたTiAl金属間化合物粉末の個々の間で生じ得るAl濃度の差も抑制することができる。 Regarding the size of the above cutting pieces, if the utilization of a thermal plasma flame in the spheroidizing treatment described later is counted, the larger cutting pieces have an excess of Al, which is the main component of the TiAl intermetallic compound. It is advantageous in that the volatilization amount can be reduced. This is considered to be because when the cutting pieces are passed through a thermal plasma flame, the Al component having a low melting point is easily evaporated, and the small cutting pieces are easily affected by this. Therefore, the size (length) of the cutting pieces is preferably 70 μm or more, more preferably 80 μm or more, and further preferably 90 μm or more to prevent excessive volatilization of Al from the cutting pieces during the spheroidizing treatment. can do. This makes it possible to suppress component fluctuations from the starting material. Further, it is possible to suppress the difference in Al concentration that may occur between the produced TiAl intermetallic compound powders.

そして、本発明の場合、上記の切削片に、これを熱プラズマ炎に通過させる「球状化処理」を行うことで、TiAl金属間化合物粉末を得ることができる。球状化処理とは、小片化された金属等の出発材料を高温の熱プラズマ炎に通すことで、その熱プラズマ炎の領域を通過中の小片が溶融すると共に表面張力によって球状化され、その球状化された小片(液滴)が熱プラズマ炎の領域を出た以降に凝固して回収されることで、真球度が高い粉末(例えば、二次投影像を画像解析した面積円形度が0.9以上の粉末)の作製が可能な手法である。そして、得られたTiAl金属間化合物粉末においては、二次投影像における面積円形度が、全体の90%以上の個数において、0.9以上のものである。好ましくは0.95以上のものである。上記の「全体の90%以上の個数」については、概ね10000個のTiAl金属間化合物粉末の面積円形度を測定することができる。測定したTiAl金属間化合物粉末の個数が10000個以上になると、その全体としての面積円形度の含有比率の数値は安定する。このような球状化処理は、例えば、図3の熱プラズマ処理装置によって行うことが可能である(図3の熱プラズマ処理装置の構造については、実施例で説明する)。
なお、上記の二次投影像における面積円形度は、二次投影像における円相当径が1μm以上のTiAl金属間化合物粉末について測定することができる。
Then, in the case of the present invention, the TiAl intermetallic compound powder can be obtained by subjecting the above-mentioned cutting pieces to the “spheroidizing treatment” in which the cutting pieces are passed through a thermal plasma flame. The spheroidizing treatment is to pass the starting material such as smashed metal through a high-temperature thermal plasma flame, and the spheroids passing through the area of the thermal plasma flame are melted and spheroidized by the surface tension. The atomized small pieces (droplets) are solidified and collected after leaving the area of the thermal plasma flame, so that the powder has high sphericity (for example, the area circularity obtained by image analysis of the secondary projection image is 0. This is a method capable of producing powders of .9 or more). And in the obtained TiAl intermetallic compound powder, the area circularity in the secondary projection image is 0.9 or more in 90% or more of the whole. It is preferably 0.95 or more. Regarding the above "number of 90% or more of the whole", the area circularity of approximately 10,000 TiAl intermetallic compound powders can be measured. When the number of measured TiAl intermetallic compound powders is 10,000 or more, the numerical value of the content ratio of the area circularity as a whole becomes stable. Such a spheroidizing treatment can be performed, for example, by the thermal plasma processing apparatus of FIG. 3 (the structure of the thermal plasma processing apparatus of FIG. 3 will be described in the embodiment).
The area circularity in the secondary projection image can be measured for the TiAl intermetallic compound powder having a circle equivalent diameter of 1 μm or more in the secondary projection image.

上記の球状化処理であれば、TiAl金属間化合物が、ガスが取り込まれやすい液滴の状態のときに(つまり、熱プラズマ炎を通過中のときに)、その周囲に存在するガス量が少ないので、液滴が多量のガスと接する機会が少なく、TiAl金属間化合物粉末の内部に気孔が形成される要因を低減することができる。そして、液滴の状態のときに、その周囲に存在するガス量が少ないということは、液滴と反応し得る反応物量も少ないということである。よって、このことによって、凝固後の粉末の清浄度も高く維持できるので、上記の球状化処理は、活性な金属であるTiAl金属間化合物の処理にとってこそ、好適な手法である。そして、以上のことによって、例えば、粒子径が100μm以下にまで及ぶような、微細なTiAl金属間化合物粉末を、低コストで製造することができる。 With the above-mentioned spheroidizing treatment, when the TiAl intermetallic compound is in a droplet state in which gas is easily taken in (that is, when passing through a thermal plasma flame), the amount of gas existing around it is small. Therefore, there is little opportunity for the droplets to come into contact with a large amount of gas, and it is possible to reduce the factor of forming pores inside the TiAl intermetallic compound powder. And, in the state of droplets, the small amount of gas existing around the droplets means that the amount of reactants that can react with the droplets is also small. Therefore, since the cleanliness of the powder after solidification can be maintained high by this, the above spheroidizing treatment is a suitable method only for treating the TiAl intermetallic compound which is an active metal. And by the above, for example, a fine TiAl intermetallic compound powder having a particle diameter of 100 μm or less can be manufactured at low cost.

このとき、動作中の熱プラズマ炎の電力は10kW以上とすることが好ましい。熱プラズマ炎の電力を高くすることで、球状化を促進させやすくなる。好ましくは12kW以上である。
一方で、動作中の熱プラズマ炎の電力の上限については、格段の制限はない。ただし、例えば、250kW以下とすることができる。また、200kW以下や150kW以下、100kW以下とすることができる。さらに、50kW以下や40kW以下、30kW以下とすることができる。そして、熱プラズマ炎の電力を低くすることで、TiAl金属間化合物の主要成分であるAlの過剰な揮発量を少なくすることができる。好ましくは20kW以下、より好ましくは17kW以下、さらに好ましくは14kW以下である。これによって出発材料からの成分変動を抑制することができる。また、製造されたTiAl金属間化合物粉末の個々の間で生じ得るAl濃度の差も抑制することができる。
At this time, the electric power of the thermal plasma flame during operation is preferably 10 kW or more. By increasing the electric power of the thermal plasma flame, it becomes easier to promote spheroidization. It is preferably 12 kW or more.
On the other hand, there is no particular limitation on the upper limit of the electric power of the thermal plasma flame during operation. However, for example, it can be set to 250 kW or less. Further, it can be set to 200 kW or less, 150 kW or less, and 100 kW or less. Further, it can be set to 50 kW or less, 40 kW or less, and 30 kW or less. Then, by reducing the power of the thermal plasma flame, it is possible to reduce the excessive volatilization amount of Al, which is the main component of the TiAl intermetallic compound. It is preferably 20 kW or less, more preferably 17 kW or less, and further preferably 14 kW or less. This makes it possible to suppress component fluctuations from the starting material. Further, it is possible to suppress the difference in Al concentration that may occur between the produced TiAl intermetallic compound powders.

また、熱プラズマ炎を「高周波(RF)プラズマ炎」とすることが好ましい。熱プラズマ炎をRFプラズマ炎とすることで、5000〜10000K程度の高温部を形成することが可能である。そして、このことによって、熱プラズマ炎を通過する切削片が高温に曝されて、その表面や内部が瞬時に溶融され、表面張力により球状化するので、凝固後のTiAl金属間化合物粉末の真球度の向上や、内部の気孔の更なる低減に好適である。
熱プラズマを発生させるときの「動作ガス」は、反応性が低いアルゴン等の不活性ガスを用いることが好ましい。不活性ガスとは、混合ガスではなく、不純物を除き不活性ガスからなるものを言う。動作ガスには水素を用いることも可能である。但し、この場合、凝固後のTiAl金属間化合物粉末中の水素含有量が上昇する場合がある。そして、水素含有量が規制されたTiAl金属間化合物粉末を得たい場合、凝固後のTiAl金属間化合物粉末を減圧雰囲気中や真空中で加熱する等の、脱水素処理を要する。よって、上記の動作ガスは、不活性ガスであることが好ましい。このことによって、TiAl金属間化合物粉末の水素含有量を、例えば、0.002質量%以下や、0.001質量%以下にまで低減することもできる。
これらの動作ガスは、切削片を熱プラズマ炎の領域に供給するために使用するキャリアガスとしても利用することができる。
Further, it is preferable that the thermal plasma flame is a “radio frequency (RF) plasma flame”. By using the thermal plasma flame as the RF plasma flame, it is possible to form a high temperature portion of about 5000 to 10000K. As a result, the cutting pieces passing through the thermal plasma flame are exposed to a high temperature, the surface and the inside thereof are instantly melted and spherical due to the surface tension, so that the solid particles of the TiAl intermetallic compound powder after solidification It is suitable for improving the degree and further reducing internal pores.
As the "working gas" for generating the thermal plasma, it is preferable to use an inert gas such as argon having low reactivity. The inert gas is not a mixed gas but an inert gas except impurities. It is also possible to use hydrogen as the working gas. However, in this case, the hydrogen content in the TiAl intermetallic compound powder after solidification may increase. Then, in order to obtain a TiAl intermetallic compound powder having a regulated hydrogen content, dehydrogenation treatment such as heating the solidified TiAl intermetallic compound powder in a reduced pressure atmosphere or in a vacuum is required. Therefore, it is preferable that the working gas is an inert gas. By this, the hydrogen content of the TiAl intermetallic compound powder can be reduced to, for example, 0.002 mass% or less, or 0.001 mass% or less.
These working gases can also be utilized as a carrier gas used to supply the cutting debris to the area of the thermal plasma flame.

(2)本発明のTiAl金属間化合物粉末は、その断面における気孔率が0〜0.4面積%である。
TiAl金属間化合物の粉末を用いて、これを各種の粉末冶金法や積層造形法によって成形するときに、粉末内部の気孔を予め低減しておけば、成形品内部の気孔も低減できるので、成形品の強度を向上させるのに効果的である。具体的には、粉末の断面積に占める気孔部分の面積の比率(つまり、粉末の断面における気孔率)が「0〜0.4面積%」のTiAl金属間化合物粉末である。好ましくは0.3面積%以下である。より好ましくは0.2面積%以下である。更に好ましくは0.1面積%以下である。そして、これらの気孔率は、上述した本発明のTiAl金属間化合物粉末の製造方法によって達成することが可能である。
(2) The TiAl intermetallic compound powder of the present invention has a porosity of 0 to 0.4 area% in its cross section.
When the powder of TiAl intermetallic compound is used and it is molded by various powder metallurgy or additive manufacturing methods, the pores inside the powder can be reduced if the pores inside the powder are reduced beforehand. It is effective in improving the strength of the product. Specifically, it is a TiAl intermetallic compound powder in which the ratio of the area of the pore portion to the cross-sectional area of the powder (that is, the porosity in the cross section of the powder) is "0 to 0.4 area %". It is preferably 0.3 area% or less. It is more preferably 0.2 area% or less. More preferably, it is 0.1 area% or less. Then, these porosities can be achieved by the method for producing the TiAl intermetallic compound powder of the present invention described above.

なお、上記の気孔率を測定するTiAl金属間化合物粉末の断面は、その粉末の中心位置で分割した断面(つまり、直径が粒子径である断面)とすることが理想的である。しかし、このような断面を、個々の粉末で正確に露出させることは現実的でない。本発明においては、一般的な顕微鏡観察用試料の作製要領に従って、まず、TiAl金属間化合物粉末の集合を、その複数の粉末がランダムな状態で並び、ある程度の厚さが確保できるようにして樹脂に埋め込む。次に、この複数の粉末が埋め込まれた樹脂の一面を研磨する。そして、この研磨面に露出した複数の粉末の断面における気孔率を測定すればよい。 The cross section of the TiAl intermetallic compound powder for measuring the porosity is ideally a cross section divided at the center position of the powder (that is, a cross section whose diameter is the particle diameter). However, it is not practical to accurately expose such a cross section with individual powders. In the present invention, according to the general procedure for preparing a sample for microscopic observation, first, a set of TiAl intermetallic compound powders is arranged so that a plurality of the powders are arranged in a random state so that a certain thickness can be secured. Embed in. Next, one surface of the resin in which the plurality of powders are embedded is polished. Then, the porosity in the cross section of the plurality of powders exposed on the polished surface may be measured.

図1および図2は、それぞれ、本発明例および比較例のTiAl金属間化合物粉末の断面の一例を示す光学顕微鏡写真(倍率100倍)である。これらの顕微鏡写真において、白色の円形状のものがTiAl金属間化合物粉末の断面である。そして、その白色の円形状のものの内部に黒色で確認されるものが気孔である。なお、上記の白色の円形状のものの一方で、黒色の円形状のものは,研磨中に樹脂からTiAl金属間化合物粉末が脱落した跡である。そして、この顕微鏡写真に、画像処理を行うこと等によって、TiAl金属間化合物粉末の断面の気孔率を求めることができる。求める気孔率は、断面に気孔が確認されないTiAl金属間化合物粉末も含めて、概ね500個のTiAl金属間化合物粉末の気孔率を測定し、その全体としての気孔率(平均の気孔率)とすることができる。気孔率を測定したTiAl金属間化合物粉末の個数が500個以上になると、その全体としての気孔率の数値は安定する。 FIG. 1 and FIG. 2 are optical micrographs (magnification: 100 times) showing an example of a cross section of the TiAl intermetallic compound powder of the present invention example and the comparative example, respectively. In these micrographs, a white circular shape is a cross section of the TiAl intermetallic compound powder. And what is confirmed in black inside the white circular shape is a pore. On the other hand, in the above-mentioned white circular shape, the black circular shape is a trace of the TiAl intermetallic compound powder falling off from the resin during polishing. The porosity of the cross section of the TiAl intermetallic compound powder can be obtained by subjecting this micrograph to image processing or the like. The porosity to be obtained is obtained by measuring the porosity of about 500 TiAl intermetallic compound powders, including the TiAl intermetallic compound powders whose pores are not confirmed in the cross section, and taking the porosity (average porosity) as a whole. be able to. When the number of TiAl intermetallic compound powders whose porosity is measured is 500 or more, the numerical value of the porosity as a whole becomes stable.

本発明に関するTiAl金属間化合物の成分組成は、例えば、質量%で、Al:10〜80%、残部Tiの基本的な成分組成とすることができる(不純物を含む)。そして、この成分組成に、粉末がTiAl金属間化合物の形態を維持している範囲で、更に、Nb:20.0%以下、Cr:20.0%以下のうちの1種または2種の元素種を含むことができる。そして、これら元素種の合計が20.0%以下であることが好ましい。
Nbについて、好ましくは0.1%以上、より好ましくは1.0%以上、さらに好ましくは2.0%以上、よりさらに好ましくは3.0%以上、特に好ましくは4.0%以上である。また、Nbについて、好ましくは16.0%以下、より好ましくは13.0%以下、さらに好ましくは10.0%以下、よりさらに好ましくは6.0%以下である。
そして、Crについて、好ましくは0.1%以上、より好ましくは0.5%以上、さらに好ましくは1.0%以上、よりさらに好ましくは1.5%以上、特に好ましくは2.0%以上である。また、Crについて、好ましくは16.0%以下、より好ましくは13.0%以下、さらに好ましくは10.0%以下、よりさらに好ましくは6.0%以下、特に好ましくは3.0%以下である。
The component composition of the TiAl intermetallic compound according to the present invention can be, for example, a basic component composition of Al: 10 to 80% by mass and balance Ti (including impurities). Further, in this component composition, one or two elements of Nb: 20.0% or less and Cr: 20.0% or less are further added to the extent that the powder maintains the form of TiAl intermetallic compound. Seeds can be included. And, the total of these elemental species is preferably 20.0% or less.
Nb is preferably 0.1% or more, more preferably 1.0% or more, still more preferably 2.0% or more, still more preferably 3.0% or more, and particularly preferably 4.0% or more. Further, Nb is preferably 16.0% or less, more preferably 13.0% or less, still more preferably 10.0% or less, still more preferably 6.0% or less.
Regarding Cr, it is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, still more preferably 1.5% or more, and particularly preferably 2.0% or more. is there. Further, Cr is preferably 16.0% or less, more preferably 13.0% or less, further preferably 10.0% or less, still more preferably 6.0% or less, and particularly preferably 3.0% or less. is there.

そして、上記のNbやCrの他には、V、Ta、Mn、B、Si、C、W、Yのうちの1種または2種以上の元素種を、不純物として含んでもよく、または、粉末がTiAl金属間化合物の形態を維持している範囲で、それぞれ20.0%以下含むこともできる。好ましくは、それぞれ0.1%以上とすることができる。また、好ましくは、これら元素種の合計が20.0%以下であるか、または、0.1%以上である。
以上の成分組成は、TiAl金属間化合物粉末を0.1g以上採取して、これを測定して得ることができる。
In addition to the above Nb and Cr, one or more elemental species of V, Ta, Mn, B, Si, C, W and Y may be contained as impurities, or powder. Can be contained in an amount of 20.0% or less, respectively, within a range in which the form of TiAl intermetallic compound is maintained. Preferably, each can be 0.1% or more. Further, preferably, the total of these element species is 20.0% or less, or 0.1% or more.
The above component composition can be obtained by collecting 0.1 g or more of TiAl intermetallic compound powder and measuring it.

本発明のTiAl金属間化合物粉末は、例えば、粒子径を、体積基準の累積粒度分布の50%粒子径(D50)で1〜250μmとすることができる。さらに、このD50による粒子径を150μm以下とすることができる。そして、D50による粒子径が100μm以下や、50μm以下にまで及ぶような、微細なTiAl金属間化合物粉末とすることもできる。なお、このD50による粒子径の下限については、TiAl金属間化合物粉末の流動性を確保する点で、5μmとすることもできる。そして、この下限について、10μmとすることもできる。本発明のTiAl金属間化合物粉末は、各種の粉末冶金法や積層造形法によって成形品を作製するのに用いる原料粉末として、好適である。 The TiAl intermetallic compound powder of the present invention can have a particle size of, for example, 1 to 250 μm in 50% particle size (D50) of the cumulative particle size distribution based on volume. Further, the particle diameter according to D50 can be 150 μm or less. Further, a fine TiAl intermetallic compound powder having a particle diameter by D50 of 100 μm or less, or even 50 μm or less can be used. The lower limit of the particle diameter based on D50 can be set to 5 μm in order to secure the fluidity of the TiAl intermetallic compound powder. The lower limit can be set to 10 μm. The TiAl intermetallic compound powder of the present invention is suitable as a raw material powder used for producing a molded product by various powder metallurgy methods and additive manufacturing methods.

図3は、RF熱プラズマ処理装置の一例を示す構造図である。このRF熱プラズマ処理装置は、直径50mmの円筒形のプラズマ発生空間を有している。そして、熱プラズマ発生部は、誘導結合型RFプラズマトーチで構成されている。この構成は、冷却壁1で仕切られたプラズマ発生空間2を有し、その外側に設けた高周波コイル3と、高周波コイル3の軸方向の一方から動作ガスを供給する動作ガス供給部4とを有する。RF熱プラズマ炎は、供給部4から動作ガスを供給し、高周波コイル3に電圧をかけることで発生させる。
また、この熱プラズマ処理装置は、高周波コイル3の内側に発生させた熱プラズマ炎5中に、キャリアガスとともに、出発材料である小片を供給する粉末供給ノズル6と、熱プラズマ炎5の下流側に設けたチャンバー7と、チャンバー7からの排気を行う排気装置8とを具備している。
FIG. 3 is a structural diagram showing an example of the RF thermal plasma processing apparatus. This RF thermal plasma processing apparatus has a cylindrical plasma generation space with a diameter of 50 mm. The thermal plasma generation unit is composed of an inductively coupled RF plasma torch. This configuration has a plasma generation space 2 partitioned by a cooling wall 1, a high frequency coil 3 provided outside the plasma generation space 2, and a working gas supply unit 4 for supplying a working gas from one side in the axial direction of the high frequency coil 3. Have. The RF thermal plasma flame is generated by supplying a working gas from the supply unit 4 and applying a voltage to the high frequency coil 3.
Further, this thermal plasma processing apparatus includes a powder supply nozzle 6 for supplying a carrier gas and small particles as a starting material into a thermal plasma flame 5 generated inside the high-frequency coil 3, and a downstream side of the thermal plasma flame 5. And a gas exhaust unit 8 for exhausting gas from the chamber 7.

このRF熱プラズマ処理装置を用いて、TiAl金属間化合物の切削片に、球状化処理を実施して、TiAl金属間化合物粉末を作製した(粒子径:約45〜150μm)。各粉末のD50の測定は、マイクロトラック・ベル社製レーザ回折散乱式粒子分布測定装置「MT3300」を用いて、約3gのTiAl金属間化合物粉末について行った。また、作製したTiAl金属間化合物粉末のうち、全体の90%以上の個数において、二次投影像における面積円形度が0.95以上であった。このとき、二次投影像における面積円形度の測定は、マルバーンインスツルメンツ社製粒子画像分析装置「モフォロギG3」を用いて、20000個のTiAl金属間化合物粉末について行った。
切削片は、表2に示す成分組成のインゴットを出発材料として、これを切削することで準備した。切削片は針状であり、その長さは、粉砕および分級を行うことによって、45〜200μm前後に調整した。球状化処理時のプラズマ動作条件は、表1の通りとした。なお、チャンバー7内の圧力は、大気圧に対し−0.02MPaの負圧とした。
Using this RF thermal plasma processing apparatus, the cutting pieces of TiAl intermetallic compound were subjected to spheroidizing treatment to produce TiAl intermetallic compound powder (particle diameter: about 45 to 150 μm). The D50 of each powder was measured for about 3 g of TiAl intermetallic compound powder using a laser diffraction/scattering particle distribution measuring device “MT3300” manufactured by Microtrac Bell. Further, the area circularity in the secondary projection image was 0.95 or more in 90% or more of the manufactured TiAl intermetallic compound powders. At this time, the area circularity in the secondary projection image was measured for 20,000 TiAl intermetallic compound powders using a particle image analyzer “Morhologi G3” manufactured by Malvern Instruments.
The cut pieces were prepared by cutting the ingot having the composition shown in Table 2 as a starting material. The cutting pieces were needle-shaped, and their length was adjusted to around 45 to 200 μm by crushing and classifying. The plasma operating conditions during the spheroidizing treatment are shown in Table 1. The pressure inside the chamber 7 was set to a negative pressure of −0.02 MPa with respect to the atmospheric pressure.

Figure 0006703759
Figure 0006703759

一方で、上記のインゴットを溶解し、この溶解した溶湯に噴射ガスおよび冷却ガスをArとするガスアトマイズ法を実施して、TiAl金属間化合物のガスアトマイズ粉末を作製した。そして、このガスアトマイズ粉末を、粒子径:約45〜150μmとなるよう分級して、TiAl金属間化合物粉末とした(D50による粒子径は表2に示す)。この分級後のTiAl金属間化合物粉末のうち、二次投影像における面積円形度が0.95未満である粉末の個数は、全体の20%を超えていた。このとき、二次投影像における面積円形度の測定は、上記と同様の装置を用いて、20000個のTiAl金属間化合物粉末について行った。 On the other hand, the above-mentioned ingot was melted, and a gas atomizing method using Ti as an injection gas and a cooling gas was carried out on this molten metal to prepare a gas atomized powder of a TiAl intermetallic compound. Then, this gas atomized powder was classified so as to have a particle diameter of about 45 to 150 μm to obtain a TiAl intermetallic compound powder (the particle diameter by D50 is shown in Table 2). Among the TiAl intermetallic compound powders after classification, the number of powders having an area circularity of less than 0.95 in the secondary projection image exceeded 20% of the whole. At this time, the area circularity in the secondary projection image was measured for 20000 pieces of TiAl intermetallic compound powder using the same apparatus as described above.

そして、以上の球状化処理およびガスアトマイズ法で作製したTiAl金属間化合物粉末のそれぞれについて、上述した要領に従って、その断面に観察される気孔率を測定した。また、成分組成も分析した。成分組成の分析は、それぞれの元素種の分析手法に応じて、TiAl金属間化合物粉末を0.1g以上採取して行った。金属元素については、0.25gのTiAl金属間化合物粉末に対して、Al、Nb、Crの含有量をICP発光分光法によって分析した。ガス元素については、0.3gのTiAl金属間化合物粉末に対して、酸素含有量は不活性ガス溶解−赤外線吸収法によって、水素含有量は不活性ガス溶解−熱伝導度法によって分析した(切削片についても同様である)。それらの結果を、出発材料(または、切削片)の成分組成およびD50の粒子径と共に、表2に示す。 Then, with respect to each of the TiAl intermetallic compound powders produced by the above spheroidizing treatment and gas atomizing method, the porosity observed in the cross section was measured according to the above-described procedure. Moreover, the component composition was also analyzed. The analysis of the component composition was performed by collecting 0.1 g or more of TiAl intermetallic compound powder according to the analysis method of each elemental species. Regarding metal elements, the contents of Al, Nb, and Cr were analyzed by ICP emission spectroscopy with respect to 0.25 g of TiAl intermetallic compound powder. Regarding the gas element, with respect to 0.3 g of TiAl intermetallic compound powder, the oxygen content was analyzed by an inert gas dissolution-infrared absorption method, and the hydrogen content was analyzed by an inert gas dissolution-thermal conductivity method (cutting). The same is true for one piece). The results are shown in Table 2 together with the component composition of the starting material (or cutting piece) and the particle size of D50.

Figure 0006703759
Figure 0006703759

表2の結果より、ガスアトマイズ法で作製したTiAl金属間化合物の粉末4の気孔率は、2.2面積%であった。これに対して、球状化処理で作製した本発明例のTiAl金属間化合物の粉末1〜3の気孔率は、0.4面積%以下に低く抑えられていた。
そして、本発明例の粉末1〜3の成分組成を評価すれば、球状化処理のときの最大出力が低い粉末2、3の成分組成(Al含有量)は、出発材料の成分組成からの変動が小さかった。また、球状化処理のときの動作ガスに水素を使用しなかった粉末3は、水素含有量が低かった。
From the results of Table 2, the porosity of the TiAl intermetallic compound powder 4 produced by the gas atomization method was 2.2 area %. On the other hand, the porosities of the powders 1 to 3 of the TiAl intermetallic compound of the present invention produced by the spheroidizing treatment were suppressed to 0.4 area% or less.
When the component compositions of the powders 1 to 3 of the present invention are evaluated, the component composition (Al content) of the powders 2 and 3 having a low maximum output during the spheroidizing treatment is different from the component composition of the starting material. Was small. In addition, the powder 3 in which hydrogen was not used as the working gas during the spheroidizing treatment had a low hydrogen content.

図3のRF熱プラズマ処理装置を用いて、TiAl金属間化合物の切削片に表3の動作条件11、12で球状化処理を実施して、TiAl金属間化合物粉末を作製した。切削片は針状であり、その長さは表3の通りに調整した。この切削片の外観を、図4の走査型電子顕微鏡写真(倍率100倍)に示す。なお、球状化処理時のプラズマ動作条件は、動作ガスをArガス:86L/min(nor)とし、キャリアガスをArガス:4L/min(nor)とした。チャンバー内の圧力は、大気圧に対し−0.02MPaの負圧とした。
また、この一方で、実施例1とは別の、TiAl金属間化合物のガスアトマイズ粉末も準備した。このガスアトマイズ粉末は、粒子径が約45〜150μmになるよう分級されたものである。
The TiAl intermetallic compound cutting pieces were subjected to spheroidizing treatment under the operating conditions 11 and 12 in Table 3 by using the RF thermal plasma processing apparatus of FIG. 3 to produce TiAl intermetallic compound powder. The cut pieces were needle-shaped and their lengths were adjusted as shown in Table 3. The appearance of this cut piece is shown in the scanning electron micrograph (magnification 100 times) of FIG. The plasma operating conditions during the spheroidizing treatment were that the operating gas was Ar gas: 86 L/min (nor) and the carrier gas was Ar gas: 4 L/min (nor). The pressure in the chamber was a negative pressure of −0.02 MPa with respect to the atmospheric pressure.
On the other hand, a gas atomized powder of TiAl intermetallic compound different from that of Example 1 was also prepared. The gas atomized powder is classified so that the particle size is about 45 to 150 μm.

Figure 0006703759
Figure 0006703759

以上の球状化処理およびガスアトマイズ法で作製したTiAl金属間化合物粉末の、D50による粒子径、および、二次投影像における面積円形度を測定した。測定は、D50による粒子径は実施例1と同様の要領に従い、面積円形度は10000個のTiAl金属間化合物粉末について測定した。そして、面積円形度について、測定の結果、球状化処理で作製したTiAl金属間化合物粉末は、いずれの動作条件によっても、その個々の粉末のうち、全体の90%以上の個数で面積円形度が0.95以上であった。それぞれのTiAl金属間化合物粉末の外観形状を、図4の走査型電子顕微鏡写真(倍率100倍)に示す。
なお、ガスアトマイズ法で作製したTiAl金属間化合物粉末は、その個々の粉末のうち、面積円形度が0.95未満である粉末の個数が全体の20%を超えていた。
The particle diameter by D50 and the area circularity in the secondary projection image of the TiAl intermetallic compound powder produced by the above spheroidizing treatment and gas atomizing method were measured. For the measurement, the particle diameter according to D50 was measured in the same manner as in Example 1, and the area circularity was measured for 10000 TiAl intermetallic compound powders. Regarding the area circularity, as a result of the measurement, the TiAl intermetallic compound powder produced by the spheroidizing treatment has an area circularity of 90% or more of all the individual powders under any operating condition. It was 0.95 or more. The external shape of each TiAl intermetallic compound powder is shown in the scanning electron micrograph (magnification 100 times) of FIG.
In the TiAl intermetallic compound powder produced by the gas atomization method, the number of powders having an area circularity of less than 0.95 exceeded 20% of the total of the individual powders.

以上のTiAl金属間化合物粉末のそれぞれについて、上述した要領に従って、その断面に観察される気孔率を測定した。また、成分組成も分析した。成分組成の分析は、実施例1と同様の要領に従った(切削片についても同様である)。それらの結果を、切削片の成分組成およびD50の粒子径と共に、表4に示す。 For each of the above TiAl intermetallic compound powders, the porosity observed in the cross section was measured according to the procedure described above. Moreover, the component composition was also analyzed. The analysis of the component composition followed the same procedure as in Example 1 (the same applies to the cut pieces). The results are shown in Table 4 together with the composition of the cut pieces and the particle size of D50.

Figure 0006703759
Figure 0006703759

表4の結果より、球状化処理で作製した本発明例のTiAl金属間化合物粉末の気孔率は、0.4面積%以下に低く抑えられていた。そして、本発明例の粉末11、12の成分組成を評価すれば、処理される切削片が大きかった粉末12のAl含有量は、切削片の成分組成からの変動が小さかった。 From the results in Table 4, the porosity of the TiAl intermetallic compound powder of the present invention produced by the spheroidizing treatment was suppressed to 0.4 area% or less. Then, when the component compositions of the powders 11 and 12 of the present invention were evaluated, the Al content of the powder 12 in which the cut pieces to be processed was large had little variation from the component composition of the cut pieces.

そして、製造されたTiAl金属間化合物粉末の個々の間で生じ得るAl濃度の差についても、処理される切削片が大きかった粉末12の濃度差が抑えられていた。図5は、TiAl金属間化合物の粉末11、12の断面のAl濃度を、切削片のそれも合わせて、EPMAで分析したときの元素マッピング図(倍率100倍)である。この分析には、日本電子株式会社製電子線マイクロアナライザー「JXA−8900R」を用いた。なお、切削片の結果で、実際の大きさよりも小さく表示されている切削片は、その長さ方向が分析面(紙面側)を向いているものである。
この白黒で表示された元素マッピング図(実際には、図中に示した“色分けによる”Al成分の濃度指標に従って、カラーで表示されている。)において、切削片の色調と比べて、概ね色調の薄い粉末が、Al濃度の低い粉末(つまり、球状化処理中にAl成分が揮発した粉末)である。そして、このようなAl濃度の低い粉末が、粒径の小さいものに多く確認されることがわかる。
Also, regarding the difference in Al concentration that may occur between the individual manufactured TiAl intermetallic compound powders, the difference in concentration of the powder 12 in which the cut pieces to be processed was large was suppressed. FIG. 5 is an elemental mapping diagram (magnification: 100 times) when the Al concentration in the cross section of the TiAl intermetallic compound powders 11 and 12, including that of the cut pieces, is analyzed by EPMA. For this analysis, an electron beam microanalyzer "JXA-8900R" manufactured by JEOL Ltd. was used. In addition, in the result of the cutting pieces, the cutting pieces displayed smaller than the actual size have the length direction facing the analysis surface (paper surface side).
In this element mapping diagram displayed in black and white (actually, it is displayed in color according to the concentration index of the Al component "by color coding" shown in the figure), the color tone is almost the same as that of the cutting piece. Is a powder having a low Al concentration (that is, a powder in which an Al component is volatilized during the spheroidizing treatment). It can be seen that such powders having a low Al concentration are often found in those having a small particle size.

図3のRF熱プラズマ処理装置を用いて、TiAl金属間化合物の切削片に表5の動作条件21、22で球状化処理を実施して、TiAl金属間化合物粉末を作製した。切削片は針状であり、その長さは表5の通りに調整した。この切削片の外観を、図6の走査型電子顕微鏡写真(倍率100倍)に示す。なお、球状化処理時のプラズマ動作条件は、動作ガスをArガス:86L/min(nor)とし、キャリアガスをArガス:4L/min(nor)とした。チャンバー内の圧力は、大気圧に対し−0.02MPaの負圧とした。 Using the RF thermal plasma processing apparatus of FIG. 3, TiAl intermetallic compound cutting pieces were spheroidized under the operating conditions 21 and 22 in Table 5 to produce TiAl intermetallic compound powder. The cut pieces were needle-shaped and their lengths were adjusted as shown in Table 5. The appearance of this cut piece is shown in the scanning electron micrograph (magnification 100 times) of FIG. The plasma operating conditions during the spheroidizing treatment were that the operating gas was Ar gas: 86 L/min (nor) and the carrier gas was Ar gas: 4 L/min (nor). The pressure in the chamber was a negative pressure of −0.02 MPa with respect to the atmospheric pressure.

Figure 0006703759
Figure 0006703759

以上の球状化処理で作製したTiAl金属間化合物粉末の、D50による粒子径、および、二次投影像における面積円形度を測定した。測定は、D50による粒子径は実施例1と同様の要領に従い、面積円形度は10000個のTiAl金属間化合物粉末について測定した。そして、面積円形度について、測定の結果、球状化処理で作製したTiAl金属間化合物粉末は、いずれの動作条件によっても、その個々の粉末のうち、全体の90%以上の個数で面積円形度が0.95以上であった。それぞれのTiAl金属間化合物粉末の外観形状を、図6の走査型電子顕微鏡写真(倍率100倍)に示す。図6より、球状化処理のときの最大出力が高かった粉末は、真球度が高いことがわかる。 The particle diameter by D50 and the area circularity in the secondary projection image of the TiAl intermetallic compound powder produced by the above spheroidizing treatment were measured. For the measurement, the particle diameter according to D50 was measured in the same manner as in Example 1, and the area circularity was measured for 10000 TiAl intermetallic compound powders. Regarding the area circularity, as a result of the measurement, the TiAl intermetallic compound powder produced by the spheroidizing treatment has an area circularity of 90% or more of all the individual powders under any operating condition. It was 0.95 or more. The external shape of each TiAl intermetallic compound powder is shown in the scanning electron micrograph (magnification 100 times) of FIG. It can be seen from FIG. 6 that the powder having a high maximum output during the spheroidizing treatment has a high sphericity.

以上のTiAl金属間化合物粉末のそれぞれについて、上述した要領に従って、その断面に観察される気孔率を測定した。また、成分組成も分析した。成分組成の分析は、実施例1と同様の要領に従った(切削片についても同様である)。それらの結果を、切削片の成分組成およびD50の粒子径と共に、表6に示す。 For each of the above TiAl intermetallic compound powders, the porosity observed in the cross section was measured according to the procedure described above. Moreover, the component composition was also analyzed. The analysis of the component composition followed the same procedure as in Example 1 (the same applies to the cut pieces). The results are shown in Table 6 together with the composition of the cut pieces and the particle size of D50.

Figure 0006703759
Figure 0006703759

表6の結果より、球状化処理で作製した本発明例のTiAl金属間化合物粉末の気孔率は、0.4面積%以下に低く抑えられていた。そして、本発明例の粉末21、22の成分組成を評価すれば、球状化処理のときの最大出力が低かった粉末22のAl含有量は、切削片の成分組成からの変動が小さく、かつ、Alの揮発も抑えられていた。 From the results of Table 6, the porosity of the TiAl intermetallic compound powder of the present invention produced by the spheroidizing treatment was suppressed to 0.4 area% or less. Then, when the component compositions of the powders 21 and 22 of the present invention example are evaluated, the Al content of the powder 22 whose maximum output during the spheroidizing treatment was low has little variation from the component composition of the cutting pieces, and Volatilization of Al was also suppressed.

そして、製造されたTiAl金属間化合物粉末の個々の間で生じ得るAl濃度の差についても、球状化処理のときの最大出力が低かった粉末22の濃度差が抑えられていた。図7は、TiAl金属間化合物の粉末21、22の断面のAl濃度を、切削片のそれも合わせて、図5と同様のEPMAで分析したときの元素マッピング図(倍率100倍)である。 Also, regarding the difference in Al concentration that may occur between the produced TiAl intermetallic compound powders, the difference in concentration of the powder 22 that had a low maximum output during the spheroidizing treatment was suppressed. FIG. 7 is an elemental mapping diagram (magnification 100 times) when the Al concentration in the cross section of the TiAl intermetallic compound powders 21 and 22 is analyzed by the same EPMA as in FIG. 5 together with that of the cut pieces.

1 冷却壁
2 プラズマ発生空間
3 高周波コイル
4 動作ガス供給部
5 熱プラズマ炎
6 粉末供給ノズル
7 チャンバー
8 排気装置
1 Cooling Wall 2 Plasma Generation Space 3 High Frequency Coil 4 Working Gas Supply Section 5 Thermal Plasma Flame 6 Powder Supply Nozzle 7 Chamber 8 Exhaust Device

Claims (12)

水素脆化させずに得たTiAl金属間化合物の切削片を、熱プラズマ炎に通過させて球状化処理し、前記熱プラズマ炎の動作ガスが不活性ガスであり、前記球状化処理後のTiAl金属間化合物粉末に脱水素処理を行わないことを特徴とするTiAl金属間化合物粉末の製造方法。 A cutting piece of TiAl intermetallic compound obtained without hydrogen embrittlement is passed through a thermal plasma flame to be spheroidized, and the working gas of the thermal plasma flame is an inert gas, and TiAl after the spheroidizing treatment is performed. A method for producing a TiAl intermetallic compound powder, characterized in that the intermetallic compound powder is not subjected to dehydrogenation treatment . 前記切削片の大きさが500μm以下であることを特徴とする請求項1に記載のTiAl金属間化合物粉末の製造方法。 The method for producing a TiAl intermetallic compound powder according to claim 1, wherein the size of the cut pieces is 500 μm or less. 前記熱プラズマ炎の電力が10〜250kWであることを特徴とする請求項1または2に記載のTiAl金属間化合物粉末の製造方法。 The method for producing a TiAl intermetallic compound powder according to claim 1 or 2, wherein the power of the thermal plasma flame is 10 to 250 kW. 前記熱プラズマ炎が高周波プラズマ炎であることを特徴とする請求項1ないし3のいずれかに記載のTiAl金属間化合物粉末の製造方法。 The method for producing TiAl intermetallic compound powder according to claim 1, wherein the thermal plasma flame is a high-frequency plasma flame. 前記熱プラズマ炎の領域に前記切削片を供給するために使用するキャリアガスが不活性ガスであることを特徴とする請求項1ないしのいずれかに記載のTiAl金属間化合物粉末の製造方法。 The method for producing a TiAl intermetallic compound powder according to any one of claims 1 to 4 , wherein the carrier gas used to supply the cutting pieces to the region of the thermal plasma flame is an inert gas. 断面における気孔率が0〜0.4面積%、水素含有量が0.002質量%以下であることを特徴とするTiAl金属間化合物粉末。 A TiAl intermetallic compound powder having a porosity in a cross section of 0 to 0.4 area% and a hydrogen content of 0.002 mass% or less . 二次投影像における面積円形度が、全体の90%以上の個数において、0.9以上であることを特徴とする請求項に記載のTiAl金属間化合物粉末。 The TiAl intermetallic compound powder according to claim 6 , wherein the area circularity in the secondary projection image is 0.9 or more in 90% or more of the whole. 粒子径が、体積基準の累積粒度分布の50%粒子径(D50)で1〜250μmであることを特徴とする請求項またはに記載のTiAl金属間化合物粉末。 The TiAl intermetallic compound powder according to claim 6 or 7 , wherein the particle diameter is 1 to 250 µm in 50% particle diameter (D50) of volume-based cumulative particle size distribution. 成分組成が、質量%で、Al:10〜80%、残部Tiおよび不純物であることを特徴とする請求項ないしのいずれかに記載のTiAl金属間化合物粉末。 The TiAl intermetallic compound powder according to any one of claims 6 to 8 , characterized in that the composition is mass%, Al: 10 to 80%, the balance being Ti and impurities. 前記成分組成が、質量%で、さらに、Nb:20.0%以下、Cr:20.0%以下のうちの1種または2種の元素種を含むことを特徴とする請求項に記載のTiAl金属間化合物粉末。 10. The composition according to claim 9 , further comprising one or two elemental species of Nb: 20.0% or less and Cr: 20.0% or less in mass %. TiAl intermetallic compound powder. 前記成分組成が、質量%で、さらに、V、Ta、Mn、B、Si、C、W、Yのうちの1種または2種以上の元素種を、それぞれ20.0%以下含むことを特徴とする請求項または10に記載のTiAl金属間化合物粉末。 The component composition is mass% and further contains 20.0% or less of one or more elemental species selected from V, Ta, Mn, B, Si, C, W and Y. The TiAl intermetallic compound powder according to claim 9 or 10 . 粉末冶金法または積層造形法に用いられることを特徴とする請求項ないし11のいずれかに記載のTiAl金属間化合物粉末。 The TiAl intermetallic compound powder according to any one of claims 6 to 11 , which is used in powder metallurgy or additive manufacturing.
JP2019537317A 2017-12-18 2018-12-18 Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder Active JP6703759B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017241301 2017-12-18
JP2017241301 2017-12-18
PCT/JP2018/046501 WO2019124344A1 (en) 2017-12-18 2018-12-18 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder

Publications (2)

Publication Number Publication Date
JPWO2019124344A1 JPWO2019124344A1 (en) 2019-12-19
JP6703759B2 true JP6703759B2 (en) 2020-06-03

Family

ID=66993646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019537317A Active JP6703759B2 (en) 2017-12-18 2018-12-18 Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder

Country Status (7)

Country Link
US (1) US20210162497A1 (en)
EP (1) EP3730237A4 (en)
JP (1) JP6703759B2 (en)
CN (1) CN111465462A (en)
CA (1) CA3084769C (en)
SG (1) SG11202005142XA (en)
WO (1) WO2019124344A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233658B2 (en) * 2019-03-18 2023-03-07 株式会社Ihi Titanium aluminide alloy material for hot forging and method for forging titanium aluminide alloy material
CN110643877A (en) * 2019-09-09 2020-01-03 中国航发北京航空材料研究院 TiAl intermetallic compound containing W, Mn, Si, B, C and rare earth elements
JPWO2021066142A1 (en) * 2019-10-03 2021-04-08
JP7403135B2 (en) * 2021-08-31 2023-12-22 トーホーテック株式会社 Method for producing TiAl intermetallic compound powder, TiAl intermetallic compound powder, and spherical TiAl intermetallic compound powder
CN114309621B (en) * 2021-12-28 2023-11-10 云航时代(重庆)科技有限公司 Preparation method of fine TiAl alloy spherical powder containing refractory metal elements
CN114472911B (en) * 2022-04-02 2022-08-05 西安欧中材料科技有限公司 Device and method for preparing alloy powder and method for preparing target material by applying alloy powder
CN115386780B (en) * 2022-09-13 2023-03-21 南京工业大学 Lightweight high-strength high-toughness Gao Shangchao alloy and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573871B2 (en) * 1988-12-07 1997-01-22 日鐵溶接工業 株式会社 Method for producing alloy powder containing titanium-aluminum intermetallic compound
JPH04131309A (en) * 1990-09-21 1992-05-06 Showa Denko Kk Manufacture of titanium flake
JP3113144B2 (en) * 1994-04-08 2000-11-27 新日本製鐵株式会社 Method for producing high density sintered titanium alloy
JP2001342506A (en) * 2000-05-31 2001-12-14 Hitachi Metals Ltd Method for production of powder material and method for producing target material
JP2003049201A (en) * 2001-08-03 2003-02-21 High Frequency Heattreat Co Ltd Spherical powder of metal and metallic compound, and manufacturing method thereof
JP2008208432A (en) 2007-02-27 2008-09-11 Kinzoku Giken Kk METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY
JP2009221603A (en) * 2008-02-20 2009-10-01 Hitachi Metals Ltd Method for producing spherical titanium alloy powder
JP2009287105A (en) * 2008-05-30 2009-12-10 Hitachi Metals Ltd Method for producing spherical titanium based powder
CN101850424B (en) * 2010-05-26 2011-07-20 北京科技大学 Method for largely preparing superfine spherical titanium aluminium-based alloyed powder
CN102717086B (en) * 2012-07-04 2014-09-17 北京科技大学 Method for preparing high-niobium titanium-aluminum alloy spherical micro powder in short process
FR3008014B1 (en) * 2013-07-04 2023-06-09 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines METHOD FOR THE ADDITIVE MANUFACTURING OF PARTS BY FUSION OR SINTERING OF POWDER PARTICLES BY MEANS OF A HIGH ENERGY BEAM WITH POWDERS SUITABLE FOR THE PROCESS/MATERIAL TARGETED COUPLE
CN103752836B (en) * 2014-01-16 2015-10-21 北京科技大学 A kind of method preparing fine grain spherical niobium titanium base alloy powder
CN104174856B (en) * 2014-08-29 2016-03-30 中国科学院重庆绿色智能技术研究院 Prepare the method for TiAl based composite powder material
JP6652276B2 (en) * 2014-09-30 2020-02-19 Jx金属株式会社 Ti-Al alloy sputtering target
JP6402163B2 (en) * 2016-12-07 2018-10-10 三菱重工航空エンジン株式会社 Method for hydrodehydrogenating TiAl alloy body and method for producing TiAl alloy powder
CN107130139B (en) * 2017-06-15 2018-09-18 北京科技大学 A method of the addition intensified-sintered Powder Metallurgy TiAl based Alloys of Sn
AU2019290663B2 (en) * 2018-06-19 2023-05-04 6K Inc. Process for producing spheroidized powder from feedstock materials

Also Published As

Publication number Publication date
JPWO2019124344A1 (en) 2019-12-19
EP3730237A4 (en) 2021-08-25
WO2019124344A1 (en) 2019-06-27
SG11202005142XA (en) 2020-07-29
US20210162497A1 (en) 2021-06-03
CA3084769A1 (en) 2019-06-27
CN111465462A (en) 2020-07-28
CA3084769C (en) 2023-01-24
EP3730237A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6703759B2 (en) Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
TW202106893A (en) Spherical tantalum-titanium alloy powder, products containing the same, and methods of making the same
CN112166004B (en) Metal powder for 3D printer, molded object, and method for manufacturing molded object
Martín et al. Gas atomization of γ‐TiAl alloy powder for additive manufacturing
US20220331858A1 (en) SPHERICAL Ti-BASED POWDER AND MANUFACTURING METHOD THEREFOR
JP2009287106A (en) Method for producing titanium spherical powder, and titanium spherical powder
Enneti et al. Direct metal laser sintering/selective laser melting of tungsten powders
JP6346992B1 (en) Metal additive manufacturing object, aluminum additive powder for metal additive manufacturing, and manufacturing method thereof
US11821059B2 (en) Ni-based alloy, Ni-based alloy powder, Ni-based alloy member, and product including Ni-based alloy member
JP2023502935A (en) Spherical powder for manufacturing three-dimensional objects
JP7386819B2 (en) Method for manufacturing parts made of aluminum alloy
US11713496B2 (en) Powder material, powder material for additive manufacturing, and method for producing powder material
WO2020196578A1 (en) Method of producing solid spherical powder, and method of producing shaped product
JP7378907B2 (en) Method for producing mixed powder for 3D modeling
JP7318819B2 (en) Ni-based alloy powder and manufacturing method of laminate-molded product using this Ni-based alloy powder
JP2023126112A (en) Cu ALLOY AND 3D OBJECT
JP2021075737A (en) Cr-BASED ALLOY-ADDED PRODUCT AND METHOD FOR PRODUCING THE SAME, AS WELL AS METHOD FOR PRODUCING Cr-BASED ALLOY POWDER
JP2021075736A (en) Cr-BASED ALLOY-ADDED PRODUCT AND METHOD FOR PRODUCING THE SAME, AS WELL AS METHOD FOR PRODUCING Cr-BASED ALLOY POWDER
JP2021134423A (en) Copper alloy powder for laminated molding, and manufacturing method thereof
KR20160052874A (en) Aluminum composite powders and preparation method thereof
JP2022046953A (en) W powder
JP2006274399A (en) Method for manufacturing fine powder of alloy, and fine powder of alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190712

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200422

R150 Certificate of patent or registration of utility model

Ref document number: 6703759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350