JP2008208432A - METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY - Google Patents

METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY Download PDF

Info

Publication number
JP2008208432A
JP2008208432A JP2007047189A JP2007047189A JP2008208432A JP 2008208432 A JP2008208432 A JP 2008208432A JP 2007047189 A JP2007047189 A JP 2007047189A JP 2007047189 A JP2007047189 A JP 2007047189A JP 2008208432 A JP2008208432 A JP 2008208432A
Authority
JP
Japan
Prior art keywords
intermetallic compound
tial intermetallic
powder
metal powder
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007047189A
Other languages
Japanese (ja)
Inventor
Minoru Ueda
実 上田
Takushi Teraoku
拓史 寺奥
Shuichi Hirayama
修一 平山
Daisuke Kondo
大介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinzoku Giken Co Ltd
Original Assignee
Kinzoku Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinzoku Giken Co Ltd filed Critical Kinzoku Giken Co Ltd
Priority to JP2007047189A priority Critical patent/JP2008208432A/en
Publication of JP2008208432A publication Critical patent/JP2008208432A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing the powder sintered compact of a TiAl intermetallic compound based alloy which improves the cold machinability and ductility as the defects of a TiAl intermetallic compound based alloy, attains material properties excellent in a homogeneous and fine structure, and can obtain a perfectly dense metal sintered compact having a shape close to that of a final product with high reproducibility. <P>SOLUTION: An alloy essentially consisting of a TiAl intermetallic compound is melted, the droplets obtained by the melting are rapidly solidified, so as to obtain metal powder, the metal powder is charged to a can, and is thereafter vacuum-evacuated, and the whole of the can is heated and pressurized by hot isostatic pressing, thus the powder sintered compact is produced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、TiAl金属間化合物基合金の粉末焼結体の製造方法に関する。   The present invention relates to a method for producing a powder sintered body of a TiAl intermetallic compound base alloy.

軽量耐熱材料であるTiAl金属間化合物を主成分とする合金が次世代材料として期待され、航空宇宙機器やタービン等の高温部で使用する部品の材料として非常に有望である。しかしながら、TiAl金属間化合物を主成分とする合金の適用範囲は、従来鋳造や鍛造等によるブロック状部品に限られている。
そして、TiAl金属間化合物基合金の製造方法としては、従来溶解工程を経た鋳造方法と、Ti及びAlの各金属粉末を混合する合成方法とが知られている。
特開平7−197154号公報 特開2003−147475号公報 特公平1−30898号公報 特開平5−70859号公報
An alloy mainly composed of a TiAl intermetallic compound, which is a lightweight heat-resistant material, is expected as a next-generation material, and is very promising as a material for parts used in high-temperature parts such as aerospace equipment and turbines. However, the application range of an alloy mainly composed of a TiAl intermetallic compound is limited to a block-shaped part by conventional casting or forging.
And as a manufacturing method of a TiAl intermetallic compound base alloy, the casting method which passed through the conventional melt | dissolution process and the synthesis method which mixes each metal powder of Ti and Al are known.
JP-A-7-197154 JP 2003-147475 A Japanese Patent Publication No.1-30898 JP-A-5-70859

しかし、上記鋳造方法及び合成方法のいずれの方法も、均一微細組織で無欠陥の任意形状を製造するには多くの制約がある。特に鋳造のみで製造される部品の金属組織は、通常では粗大化しており、それを微細化して強度と延性を付与するには、熱間鍛造と熱処理などの工程を必要とし、得られる部品も材料ロスや形状の制限があるという問題がある。   However, both of the casting method and the synthesis method have many restrictions for producing a defect-free arbitrary shape with a uniform microstructure. In particular, the metal structure of parts manufactured only by casting is usually coarsened, and in order to make it finer and give strength and ductility, processes such as hot forging and heat treatment are required. There is a problem that there is a limitation of material loss and shape.

よって、本発明は上述のような事情によりなされたものであり、本発明の目的は、TiAl金属間化合物基合金の欠点である常温での切削性や延性を改善し、均質で微細組織に優れた材料特性とし、最終製品に近い形状で完全に緻密な金属の焼結体を再現性良く得られるTiAl金属間化合物基合金の粉末焼結体の製造方法を提供することにある。   Therefore, the present invention has been made under the circumstances as described above, and the object of the present invention is to improve the machinability and ductility at room temperature, which is a defect of the TiAl intermetallic compound base alloy, and is excellent in a homogeneous and fine structure. It is an object of the present invention to provide a method for producing a sintered powder of TiAl intermetallic compound base alloy that can obtain a completely dense sintered metal having a shape close to the final product and good reproducibility.

本発明はTiAl金属間化合物基合金の粉末焼結体の製造方法に関し、本発明の上記目的は、TiAl金属間化合物を主成分とする合金を溶解し、前記溶解で得られる液滴を急冷凝固させて金属粉末を得、前記金属粉末を缶に入れて後に真空排気し、前記缶の全体を熱間等方加圧処理により加熱及び加圧して粉末焼結体を製造することによって達成される。   The present invention relates to a method for producing a powder sintered body of a TiAl intermetallic compound-based alloy, and the above object of the present invention is to dissolve an alloy containing a TiAl intermetallic compound as a main component and rapidly solidify droplets obtained by the melting. To obtain a metal powder, put the metal powder in a can and then evacuate, and heat and press the whole can by hot isostatic pressing to produce a powder sintered body .

また、本発明の上記目的は、前記金属粉末の製造がプラズマ回転電極法又はガスアトマイズ法であることにより、或いは前記金属粉末の製造が遠心力又はガス噴流などを利用して液滴から急冷凝固させる方法であることにより、或いは前記金属粉末の微細組織の粗大化を防止しつつ微細組織のままで前記熱間等方加圧処理によって焼結を行うことにより、より効果的に達成される。   Further, the object of the present invention is that the metal powder is produced by a plasma rotating electrode method or a gas atomizing method, or the metal powder is produced by rapid solidification from a droplet using a centrifugal force or a gas jet. It is achieved more effectively by being a method or by carrying out sintering by the hot isostatic pressing while maintaining the fine structure while preventing coarsening of the fine structure of the metal powder.

本発明はTiAl金属間化合物基合金を溶解し、液滴から急冷凝固させる方法で得られた微細組織の金属粉末を、最適な等方加圧及び加熱雰囲気下で焼結させているので、合金の粒成長を抑止し、常温での強度と延性を付与することが可能となった。   In the present invention, a finely structured metal powder obtained by melting a TiAl intermetallic compound-based alloy and rapidly solidifying from a droplet is sintered under an optimal isotropic pressure and heating atmosphere. It became possible to inhibit grain growth of the steel and to impart strength and ductility at room temperature.

本発明の製造方法によれば、TiAl金属間化合物を主成分とする合金の製造プロセスの最適化により、図5の記号#6に示すHIP処理(熱間等方加圧)条件の常温引張強度においては、元の鋳造素材より約25%以上の強度改善と金属組織の微細化による延性の改善が見られ、加工性についても改善される。また、本発明の製造方法に適用した金属製の缶を用いるニアネットシェイプ技術は、材料の節約や材料内部の残留応力が少ないため、製造コストの低減にも効果が期待でき、焼結体を再現性良く製造できるという優れた効果を奏する。   According to the manufacturing method of the present invention, the normal temperature tensile strength under the HIP treatment (hot isostatic pressing) condition indicated by symbol # 6 in FIG. , Improvement in ductility due to the improvement of strength by about 25% or more and refinement of the metal structure is seen compared to the original casting material, and the workability is also improved. In addition, the near net shape technology using a metal can applied to the manufacturing method of the present invention can be expected to be effective in reducing the manufacturing cost because the material can be saved and the residual stress inside the material is small. It produces an excellent effect that it can be manufactured with good reproducibility.

更に、本発明の製造方法によれば、金属カプセルを用いたニアネット成形技術により、比較的自由度の高い金属焼結体を精度良く製造でき、材料ロスや形状の制限も少ない効果がある。   Furthermore, according to the manufacturing method of the present invention, a metal sintered body having a relatively high degree of freedom can be accurately manufactured by a near net forming technique using a metal capsule, and there is an effect that there are few restrictions on material loss and shape.

本発明はTiAl金属間化合物基合金の適用範囲の拡大を目的に,粉末化及びHIP処理(熱間等方加圧)による加圧焼結工法での焼結材を開発し、加圧焼結工法での焼結材の製造プロセスの最適化により、優れた材料特性の結果を得ることができる。本発明の特徴であるニアネットシェイプ技術は、材料の節約や材料内部の残留応力が少ないため、切削性の悪い加圧焼結工法での焼結材の欠点を補う新たな用途の可能性が期待できる。また、粉末化及び焼結技術では酸化等の影響を最小限とすることにより、他の工法では得られない無欠陥で均一な金属組織から成る部品の製造が可能である。   The present invention has developed a sintered material by pressure sintering method by pulverization and HIP treatment (hot isostatic pressing) for the purpose of expanding the application range of TiAl intermetallic compound base alloy, and pressure sintering By optimizing the manufacturing process of the sintered material in the construction method, it is possible to obtain excellent material property results. The near net shape technology, which is a feature of the present invention, has a possibility of a new application that compensates for the disadvantages of the sintered material in the pressure sintering method with poor machinability because the material saving and the residual stress inside the material are small. I can expect. In addition, by minimizing the influence of oxidation or the like in the powdering and sintering techniques, it is possible to manufacture parts having a uniform metal structure that is defect-free and cannot be obtained by other methods.

以下、本発明のTiAl金属間化合物基合金を用いた粉末焼結体の製造方法について、図面を参照して説明する。   Hereinafter, the manufacturing method of the powder sintered compact using the TiAl intermetallic compound base alloy of this invention is demonstrated with reference to drawings.

図1は本発明に用いるプラズマ回転電極法(PREP法)の装置10の例を示す模式図であり、図2はガスアトマイズ法の装置20の例を示す模式図である。図1のプラズマ回転電極法の装置10に示すように、チャンバー11内に原料母材(回転電極)12及びプラズマトーチ13を対向させて配置し、原料母材12を回転させながらその先端部にプラズマを照射して後に急冷することにより、金属液滴及び凝固した金属粉を得ることができる。また、図2のガスアトマイズ法の装置20は、原料母材21の先端部に配設されている誘導加熱コイル22により加熱して原料母材21を溶融し、溶融した金属液滴が落下する中途に不活性ガスをノズルから照射するドーナツ状のノズル部材23が設けられており、誘導加熱コイル22からの金属液滴に不活性ガスを照射して急冷することにより、金属液滴及び凝固した金属粉を得ることができる。   FIG. 1 is a schematic diagram showing an example of a plasma rotating electrode method (PREP method) apparatus 10 used in the present invention, and FIG. 2 is a schematic diagram showing an example of a gas atomization apparatus 20. As shown in the apparatus 10 of the plasma rotating electrode method in FIG. 1, a raw material base material (rotating electrode) 12 and a plasma torch 13 are disposed facing each other in a chamber 11, and the raw material base material 12 is rotated at the tip thereof. Metal droplets and solidified metal powder can be obtained by irradiating with plasma and then rapidly cooling. 2 is heated by an induction heating coil 22 disposed at the tip of the raw material base 21 to melt the raw material base 21, and the molten metal droplets fall midway. Is provided with a donut-shaped nozzle member 23 that irradiates an inert gas from a nozzle, and the metal droplets from the induction heating coil 22 are irradiated with an inert gas and rapidly cooled to thereby cool the metal droplets and the solidified metal. Powder can be obtained.

本発明では上述のように、プラズマ回転電極法(PREP法)の装置10又はガスアトマイズ法の装置20で生成された金属粉末を使用するが、他の粉末製造方法でも液滴から直接凝固させる方法で製造される金属粉であれば、他の方法を選択しても良い。ただし、当該方法で製造された金属粉には、原料母材の成分からの変化が少なく、酸化や窒化などの汚染が少ないことが必要条件である。   In the present invention, as described above, the metal powder generated by the plasma rotating electrode method (PREP method) apparatus 10 or the gas atomization apparatus 20 is used. However, other powder manufacturing methods can directly solidify from droplets. Other methods may be selected as long as the metal powder is manufactured. However, it is a necessary condition that the metal powder produced by the method has little change from the components of the raw material base material and little contamination such as oxidation and nitridation.

本発明では、これらの方法によって得られた金属粉末を、図3に示すような金属製の缶30にArなどの不活性ガス中で充填した後、缶30内のガスを排気口31より排気する。缶30内の真空度は、残留するガスが焼結後に空孔を発生させないよう、少なくとも0.013Pa以下の真空度まで排気しなければならない。また、金属粉末の表面に付着する不純物や表面に付着した水分を完全に除去するため、真空排気と同時に缶30の外部から100℃以上に加熱することが望ましい。缶30の最終の封止は、真空に排気しながら排気口31に連接されたパイプ(図示せず)をプレス等により潰し、切断して溶接封止する。   In the present invention, the metal powder obtained by these methods is filled in a metal can 30 as shown in FIG. 3 in an inert gas such as Ar, and then the gas in the can 30 is exhausted from the exhaust port 31. To do. The degree of vacuum in the can 30 must be exhausted to a degree of vacuum of at least 0.013 Pa so that the remaining gas does not generate pores after sintering. Further, in order to completely remove impurities adhering to the surface of the metal powder and moisture adhering to the surface, it is desirable to heat to 100 ° C. or more from the outside of the can 30 simultaneously with evacuation. For the final sealing of the can 30, a pipe (not shown) connected to the exhaust port 31 is crushed by a press or the like while being evacuated to a vacuum, cut and welded.

缶30の全体をHIP処理により焼結する条件は、充填した金属粉末の組成により最適な条件を選択する必要があるが、急冷凝固によって微細化された組織を粗大化させないため、一般的に1250℃以下で且つ118MPa以上の条件で保持時間が相対的に短い組合せを選択するのが望ましい。   The conditions for sintering the entire can 30 by the HIP process need to select an optimum condition depending on the composition of the filled metal powder. However, since the microstructure refined by rapid solidification is not coarsened, generally 1250 is used. It is desirable to select a combination having a relatively short holding time under the condition of not more than ° C. and not less than 118 MPa.

ここで、HIP処理とは、高温の不活性ガス雰囲気において、缶の外部から高い圧力を加えることにより、缶の内部に存在する空間を消滅させ、金属粉末の表面同士を強制的に結合させ、冶金的に一体化する粉体焼結工程の中の代表的な処理である。   Here, the HIP treatment means that in a high-temperature inert gas atmosphere, by applying a high pressure from the outside of the can, the space existing inside the can is extinguished, and the surfaces of the metal powders are forcibly combined, This is a typical process in the powder sintering process that is metallurgically integrated.

なお、使用する金属製の缶30は、充填する金属粉末に反応や拡散などの影響が少ない材料で、且つHIP処理における収縮過程で割れや溶融の発生しないTiなどの材料で作製されている。そして、缶30の設計は、最終製品の形状に仕上げ代を設けたニアネット形状を、缶30の収縮が完了した時点で得られるようにするため、金属粉末の充填密度や塑性流動、材料特性及び使用する缶30の材料特性や形状などのパラメータに基づいて、解析や試作を経て決定する。   The metal can 30 to be used is made of a material such as Ti that does not cause a reaction or diffusion to the metal powder to be filled and that does not crack or melt during the shrinkage process in the HIP process. The design of the can 30 is such that the near net shape having a finishing allowance in the shape of the final product is obtained when the can 30 is completely contracted, so that the packing density, plastic flow, and material characteristics of the metal powder are obtained. And based on parameters, such as a material characteristic and shape of the can 30 to be used, it determines through an analysis and trial manufacture.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

本発明の製造方法では、先ず原料母材としてTi−A1金属間化合物基合金を用意し、プラズマ回転電極法(PREP法)の装置にて金属粉末を製作した。得られた金属粉末の粒径は約50〜300μmであり、原料母材と金属粉末の成分比較においても大きな変化がないことを、電子プローブマイクロアナライザ及び非分散赤外線吸収法及び熱伝導度法を用いて確認した。得られた金属粉末の例を図4に示す。   In the production method of the present invention, first, a Ti-A1 intermetallic compound base alloy was prepared as a raw material base material, and a metal powder was produced using a plasma rotating electrode method (PREP method). The particle diameter of the obtained metal powder is about 50 to 300 μm, and there is no significant change in the comparison of the components of the raw material base metal and the metal powder. The electron probe microanalyzer, the non-dispersive infrared absorption method and the thermal conductivity method are used. Used to confirm. An example of the obtained metal powder is shown in FIG.

上述のようにして得られた金属粉末を用いて、図3に示すような缶30に充填して缶の内部を0.013Pa以下まで排気した後、図5に記号#1〜#6で示す各種条件にてHIP処理を行い、常温引張強度及び組織観察を電子プローブマイクロアナライザの反射電子像で確認した。   After filling the can 30 as shown in FIG. 3 using the metal powder obtained as described above and exhausting the inside of the can to 0.013 Pa or less, it is shown by symbols # 1 to # 6 in FIG. HIP treatment was performed under various conditions, and the normal temperature tensile strength and the structure observation were confirmed by a backscattered electron image of an electron probe microanalyzer.

その結果、HIP処理条件を最適化することによって、記号#6のHIP処理条件の常温引張強度においては、記号#7の鋳造素材より25%以上も高い強度の材料となることを発見し、得られた焼結体の金属組織においても元の鋳造素材より微細で均一な組織の材料を得ることが出来た。   As a result, by optimizing the HIP processing conditions, it was discovered that the tensile strength at room temperature under the HIP processing conditions of symbol # 6 is 25% higher than that of the casting material of symbol # 7. Even in the metal structure of the sintered body, it was possible to obtain a material having a finer and more uniform structure than the original casting material.

また、記号#2〜#5のHIP処理においても、記号#7の鋳造素材の常温引張強度よりも高い結果を得、反射電子像より金属組織の微細化と均一性が確認できた。   Moreover, also in the HIP processing of symbols # 2 to # 5, a result higher than the normal temperature tensile strength of the casting material of symbol # 7 was obtained, and the refinement and uniformity of the metal structure could be confirmed from the reflected electron image.

これらの実施例は、使用したTiAl金属間化合物基合金におけるHIP処理条件によって得られた結果であるが、HIP処理の焼結過程における粒成長の早さや組織の冶金的変化及び合金の高温強度によって、さらに処理の温度と圧力及び保持時間を最適化することが可能であり、示した条件範囲内に限定するものではない。即ち、金属粉末の微細組織の粗大化を防止しつつ、微細組織のままで焼結を行う手段としてHIP処理の有効性を示すものである。   These examples are the results obtained by the HIP treatment conditions in the used TiAl intermetallic compound-based alloy, but depending on the speed of grain growth in the sintering process of HIP treatment, the metallurgical change of the structure, and the high temperature strength of the alloy. Further, it is possible to further optimize the processing temperature, pressure and holding time, and the present invention is not limited to the indicated condition range. That is, the effectiveness of the HIP treatment is shown as a means for sintering while maintaining the fine structure while preventing coarsening of the fine structure of the metal powder.

本発明に係る製造方法におけるプラズマ回転電極法の装置例を示す模式図である。It is a schematic diagram which shows the apparatus example of the plasma rotating electrode method in the manufacturing method which concerns on this invention. 本発明に係る製造方法におけるガスアトマイズ法の装置例を示す模式図である。It is a schematic diagram which shows the apparatus example of the gas atomizing method in the manufacturing method which concerns on this invention. 本発明の製造方法に用いる金属製缶の一例を示す模式的構造図である。It is a typical structure figure showing an example of a metal can used for the manufacturing method of the present invention. 本発明の実施例におけるプラズマ回転電極法によって製造した金属粉末の一例を示す組織図である。It is a structure | tissue chart which shows an example of the metal powder manufactured by the plasma rotating electrode method in the Example of this invention. 本発明の各実施例におけるHIP処理条件で製造した焼結体の常温引張強度と反射電子像の一覧を示す図である。It is a figure which shows the list of normal temperature tensile strength and a reflected-electron image of the sintered compact manufactured on the HIP process conditions in each Example of this invention. 記号#1のHIP処理条件における焼結体の反射電子像の組織図である。It is a structure | tissue chart of the reflected-electron image of a sintered compact in the HIP processing conditions of code | symbol # 1. 記号#2のHIP処理条件における焼結体の反射電子像の組織図である。It is a structure | tissue chart of the reflected-electron image of a sintered compact in the HIP processing conditions of code | symbol # 2. 記号#3のHIP処理条件における焼結体の反射電子像の組織図である。It is a structure | tissue chart of the backscattered electron image of the sintered compact in the HIP processing conditions of the symbol # 3. 記号#4のHIP処理条件における焼結体の反射電子像の組織図である。It is a structure | tissue chart of the reflected-electron image of a sintered compact in the HIP processing conditions of code | symbol # 4. 記号#5のHIP処理条件における焼結体の反射電子像の組織図である。It is a structure | tissue chart of the reflected-electron image of the sintered compact in the HIP processing conditions of the symbol # 5. 記号#6のHIP処理条件における焼結体の反射電子像の組織図である。It is a structure | tissue chart of the reflected-electron image of a sintered compact in the HIP processing conditions of the symbol # 6. 記号#7の粉末化前原料における鋳造材のままの反射電子像の組織図である。It is a structure | tissue chart of the reflected-electron image as a cast material in the raw material before pulverization of the symbol # 7.

符号の説明Explanation of symbols

10 プラズマ回転電極法(PREP法)の装置
11 チャンバー
12 回転母材(回転電極)
13 プラズマトーチ
20 ガスアトマイズ法の装置
21 原料母材
22 誘導加熱コイル
23 ノズル部材
30 金属製缶
31 排気口
10 Apparatus for Plasma Rotating Electrode Method (PREP Method) 11 Chamber 12 Rotating Base Material (Rotating Electrode)
13 Plasma torch 20 Gas atomizing apparatus 21 Raw material base material 22 Induction heating coil 23 Nozzle member 30 Metal can 31 Exhaust port

Claims (4)

TiAl金属間化合物を主成分とする合金を溶解し、前記溶解で得られる液滴を急冷凝固させて金属粉末を得、前記金属粉末を缶に入れて後に真空排気し、前記缶の全体を熱間等方加圧処理により加熱及び加圧して粉末焼結体を製造することを特徴とするTiAl金属間化合物基合金の粉末焼結体の製造方法。 An alloy containing a TiAl intermetallic compound as a main component is dissolved, and droplets obtained by the dissolution are rapidly solidified to obtain a metal powder. The metal powder is put into a can and then evacuated to heat the entire can. A method for producing a powder sintered body of a TiAl intermetallic compound-based alloy, wherein a powder sintered body is produced by heating and pressing with an isostatic pressing treatment. 前記金属粉末の製造がプラズマ回転電極法又はガスアトマイズ法である請求項1に記載のTiAl金属間化合物基合金の粉末焼結体の製造方法。 The method for producing a sintered powder of a TiAl intermetallic compound based alloy according to claim 1, wherein the metal powder is produced by a plasma rotating electrode method or a gas atomizing method. 前記金属粉末の製造が遠心力又はガス噴流などを利用して液滴から急冷凝固させる方法である請求項1に記載のTiAl金属間化合物基合金の粉末焼結体の製造方法。 The method for producing a powder sintered body of a TiAl intermetallic compound based alloy according to claim 1, wherein the production of the metal powder is a method of rapidly solidifying from droplets using a centrifugal force or a gas jet. 前記金属粉末の微細組織の粗大化を防止しつつ微細組織のままで前記熱間等方加圧処理によって焼結を行うようになっている請求項1乃至3のいずれかにTiAl金属間化合物基合金の粉末焼結体の製造方法。
The TiAl intermetallic compound group according to any one of claims 1 to 3, wherein sintering is performed by the hot isostatic pressing while the microstructure is maintained while preventing the coarsening of the microstructure of the metal powder. A method for producing a powder sintered body of an alloy.
JP2007047189A 2007-02-27 2007-02-27 METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY Pending JP2008208432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047189A JP2008208432A (en) 2007-02-27 2007-02-27 METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047189A JP2008208432A (en) 2007-02-27 2007-02-27 METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY

Publications (1)

Publication Number Publication Date
JP2008208432A true JP2008208432A (en) 2008-09-11

Family

ID=39784985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047189A Pending JP2008208432A (en) 2007-02-27 2007-02-27 METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY

Country Status (1)

Country Link
JP (1) JP2008208432A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513537A (en) * 2011-12-06 2012-06-27 中国航空工业集团公司北京航空材料研究院 Method for preparing TiAl alloy plate by argon atomization in powder metallurgy
CN102632075A (en) * 2012-04-28 2012-08-15 中南大学 Preparation method of large-size thin plate of niobium-containing titanium-aluminum based alloy by powder metallurgy
CN104550963A (en) * 2014-12-16 2015-04-29 中国航空工业集团公司北京航空材料研究院 Method for realizing forming of titanium alloy powder by utilizing titanium hydride alloy powder
CN104550964A (en) * 2015-01-20 2015-04-29 哈尔滨工业大学 Method for producing TiAl alloy plates through beta-gamma TiAl pre-alloy powder
EP2990141A1 (en) * 2014-09-01 2016-03-02 MTU Aero Engines GmbH Method for producing TiAl components
EP3239468A1 (en) 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
WO2019124344A1 (en) 2017-12-18 2019-06-27 日立金属株式会社 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder
KR20190143537A (en) * 2018-06-12 2019-12-31 한국과학기술연구원 Metal powder manufacturing appatatus for metal 3d printer
CN112404427A (en) * 2020-10-30 2021-02-26 西北工业大学 Method for directly forging and forming thick plate blank by TiAl alloy powder at high temperature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236403A (en) * 1990-02-14 1991-10-22 Sumitomo Metal Ind Ltd Manufacture of ti al base alloy-made machine parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236403A (en) * 1990-02-14 1991-10-22 Sumitomo Metal Ind Ltd Manufacture of ti al base alloy-made machine parts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513537A (en) * 2011-12-06 2012-06-27 中国航空工业集团公司北京航空材料研究院 Method for preparing TiAl alloy plate by argon atomization in powder metallurgy
CN102632075A (en) * 2012-04-28 2012-08-15 中南大学 Preparation method of large-size thin plate of niobium-containing titanium-aluminum based alloy by powder metallurgy
EP2990141A1 (en) * 2014-09-01 2016-03-02 MTU Aero Engines GmbH Method for producing TiAl components
US10029309B2 (en) 2014-09-01 2018-07-24 MTU Aero Engines AG Production process for TiAl components
CN104550963A (en) * 2014-12-16 2015-04-29 中国航空工业集团公司北京航空材料研究院 Method for realizing forming of titanium alloy powder by utilizing titanium hydride alloy powder
CN104550964A (en) * 2015-01-20 2015-04-29 哈尔滨工业大学 Method for producing TiAl alloy plates through beta-gamma TiAl pre-alloy powder
EP3239468A1 (en) 2016-04-27 2017-11-01 MTU Aero Engines GmbH Method for producing a rotor blade for a fluid flow engine
WO2019124344A1 (en) 2017-12-18 2019-06-27 日立金属株式会社 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder
KR20190143537A (en) * 2018-06-12 2019-12-31 한국과학기술연구원 Metal powder manufacturing appatatus for metal 3d printer
KR102112602B1 (en) 2018-06-12 2020-05-19 한국과학기술연구원 Metal powder manufacturing appatatus for metal 3d printer
US11241738B2 (en) 2018-06-12 2022-02-08 Korea Institute Of Science And Technology Metal powder manufacturing apparatus for metal 3D printer
CN112404427A (en) * 2020-10-30 2021-02-26 西北工业大学 Method for directly forging and forming thick plate blank by TiAl alloy powder at high temperature

Similar Documents

Publication Publication Date Title
JP2008208432A (en) METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY
US20190309402A1 (en) Aluminum alloy products having fine eutectic-type structures, and methods for making the same
JP5524257B2 (en) Method for producing metal articles without melting
Löber et al. Comparison off selective laser and electron beam melted titanium aluminides
CN109648082A (en) A kind of 4D Method of printing of Ti-Ni marmem and application
Heidloff et al. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing
US11111400B2 (en) Multimaterial powder with composite grains for additive synthesis
WO2021031231A1 (en) Hot isostatic pressing process for ti2alnb alloy powder
KR20170033338A (en) Method for manufacturing machine components by additive manufacturing
Grosdidier et al. Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering
CN109175391B (en) Method for in-situ synthesis of nano-oxide particle dispersion strengthened alloy
US11773468B2 (en) Al—Mg—Si alloys for applications such as additive manufacturing
US20190194781A1 (en) Aluminum alloy powder for additive manufacturing, and method for manufacturing a piece by manufacturing from this powder
GB2575005A (en) A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
JP7230243B2 (en) Nickel-base alloy for powder and method for producing powder
Chen et al. Additive manufacturing of W–Fe composites using laser metal deposition: Microstructure, phase transformation, and mechanical properties
Cheng et al. Microstructure and mechanical properties of additive manufactured Ti-6Al-4V components by annular laser metal deposition in a semi-open environment
CN108251670B (en) Preparation method of high-temperature-resistant intermetallic compound alloy
JP2022092544A (en) Niobium powder, niobium-powder producing member, method of making them, and method of manufacturing niobium member
KR100546537B1 (en) Metal article and method of generating a spray formed article
Mashl Powder metallurgy processing by hot isostatic pressing
CN111215623B (en) Powder metallurgy densification pressureless sintering method of Ti-Al alloy
KR102008721B1 (en) Manufacturing method of Cr-Al binary alloy powder having excellent oxidation and corrosion resistance, the Cr-Al binary alloy powder, manufacturing method of Cr-Al binary alloy PVD target having excellent oxidation and corrosion resistance and the Cr-Al binary alloy PVD target
Tornberg et al. New optimised manufacturing route for PM tool steels and High Speed Steels
Mehta et al. Processing of shape memory alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508