JP2022046953A - W powder - Google Patents

W powder Download PDF

Info

Publication number
JP2022046953A
JP2022046953A JP2020152616A JP2020152616A JP2022046953A JP 2022046953 A JP2022046953 A JP 2022046953A JP 2020152616 A JP2020152616 A JP 2020152616A JP 2020152616 A JP2020152616 A JP 2020152616A JP 2022046953 A JP2022046953 A JP 2022046953A
Authority
JP
Japan
Prior art keywords
powder
present
measured
ultrafine particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020152616A
Other languages
Japanese (ja)
Inventor
清美 中村
Kiyomi Nakamura
功一 坂卷
Koichi Sakamaki
和也 斉藤
Kazuya Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020152616A priority Critical patent/JP2022046953A/en
Publication of JP2022046953A publication Critical patent/JP2022046953A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a W powder for shaping that is suitable for near net shaping, and resists being flocculated and has favorable flowability, which affects ease of supply and filling.SOLUTION: A W powder has a composition consisting of W and unavoidable impurities. The minimum reflectance measured in the range of 360-740 nm in wavelength is 10% or more. The fluidity measured in accordance with JIS Z 2502 is 15 s/50 g or less. Preferably, the circularity is 0.85 or more; the oxygen content is 0.001-0.020 mass%; and the brightness L* measured in accordance with JIS Z 8781-4: 2013 is 40 or more.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、積層造形法(AM法)や射出成形法(MIM法)などのニアネット成形に適したW(タングステン)粉末に関する。 The present invention relates to W (tungsten) powder suitable for near-net molding such as, for example, a laminated molding method (AM method) and an injection molding method (MIM method).

高融点金属であるWは、熱膨張率が低く、熱伝導率が高いことから、電子機器などの電極や、高温炉の発熱体や反射板などに用いられている。また、Wは、同体積における放射線の遮蔽特性がPb(鉛)よりも優れていることから、放射線遮蔽材や、散乱した放射線を吸収するコリメータといったX線検査機器の構成部品などにも用いられている。
また、Wは、機械加工性が悪いため、例えば、上記コリメータなどの複雑形状品は、W粉末を用いた焼結法のほか、AM法やMIM法といったニアネット成形によって造形物を作製し、この造形物に切削加工などを施して最終形状の製品を得ることが知られている。
W, which is a refractory metal, has a low coefficient of thermal expansion and a high thermal conductivity, and is therefore used for electrodes of electronic devices, heating elements of high temperature furnaces, reflectors, and the like. W is also used as a component of X-ray inspection equipment such as a radiation shielding material and a collimator that absorbs scattered radiation because the radiation shielding property in the same volume is superior to that of Pb (lead). ing.
Further, since W has poor machinability, for example, for a complicated shape product such as the collimator, a molded product is produced by near-net molding such as AM method or MIM method in addition to the sintering method using W powder. It is known that a product having a final shape is obtained by subjecting this model to cutting or the like.

ここで、Wは、高融点であるために、上記のニアネット成形に用いるW粉末をガスアトマイズ法や水アトマイズ法で得ることは困難である。このため、例えば、熱プラズマを利用したW粉末の製造方法が特許文献1で提案されている。この特許文献1は、減圧下に窒素ガスを用いて高温プラズマを発生させ、このプラズマでW原料を溶融し、雰囲気ガス流中に浮遊するW超微粒子を連続的に捕集・回収する方法が記載されており、工業的生産規模、すなわち大量かつ廉価で生産することができるという点で有用な技術である。 Here, since W has a high melting point, it is difficult to obtain the W powder used for the near net molding by the gas atomizing method or the water atomizing method. Therefore, for example, a method for producing W powder using thermal plasma has been proposed in Patent Document 1. In Patent Document 1, a method of generating high-temperature plasma using nitrogen gas under reduced pressure, melting W raw materials with this plasma, and continuously collecting and recovering W ultrafine particles suspended in an atmospheric gas flow is used. It is described and is a useful technique in terms of industrial production scale, that is, it can be produced in large quantities and at low cost.

特開平2-6339号公報Japanese Unexamined Patent Publication No. 2-6339

本発明者の検討によると、特許文献1の手法により、上記のニアネット成形に用いるW粉末を得ようとすると、W粉末が凝集する場合があることを確認した。このW粉末の凝集という問題は、ニアネット成形時に、造形装置や造形箇所へ安定して必要量のW粉末を供給する供給性や充填性に影響を及ぼす流動性を低下させ、得られる製品の高強度化が妨げられる。 According to the study of the present inventor, it was confirmed that the W powder may be aggregated when the W powder used for the above-mentioned near net molding is to be obtained by the method of Patent Document 1. This problem of agglutination of W powder reduces the fluidity that affects the supplyability and filling property of stably supplying the required amount of W powder to the modeling device and the modeling site during near-net molding, and the product obtained. Higher strength is hindered.

本発明の目的は、凝集が抑制され、供給性や充填性に影響を及ぼす流動性に優れる、ニアネット成形に適した成形用のW粉末を提供することである。 An object of the present invention is to provide a W powder for molding suitable for near-net molding, which suppresses aggregation and has excellent fluidity that affects supplyability and filling property.

本発明者は、W粉末の凝集という問題に対して、表面性状に着目し、特定の波長で測定される反射率を所定の範囲にすることで、W粉末の供給性や充填性に影響を及ぼす流動性を大きく改善できることを見出し、本発明に到達した。 The present inventor pays attention to the surface texture to the problem of aggregation of W powder, and by setting the reflectance measured at a specific wavelength within a predetermined range, the supplyability and filling property of W powder are affected. We have found that the fluidity exerted can be greatly improved, and have reached the present invention.

本発明のW粉末は、Wおよび不可避不純物からなる組成を有し、波長360~740nmの範囲で測定される反射率の最小値が10%以上であり、JIS Z 2502に準拠して測定される流動度が15s/50g以下である。 The W powder of the present invention has a composition consisting of W and unavoidable impurities, has a minimum reflectance of 10% or more measured in the wavelength range of 360 to 740 nm, and is measured in accordance with JIS Z 2502. The fluidity is 15 s / 50 g or less.

本発明のW粉末は、円形度が0.85以上であることが好ましい。 The W powder of the present invention preferably has a circularity of 0.85 or more.

本発明のW粉末は、酸素を0.001~0.020質量%の範囲で含むことが好ましい。 The W powder of the present invention preferably contains oxygen in the range of 0.001 to 0.020% by mass.

本発明のW粉末は、JIS Z 8781-4:2013に準拠して測定した明度L*が40以上であることが好ましい。 The W powder of the present invention preferably has a brightness L * of 40 or more as measured in accordance with JIS Z 8781-4: 2013.

本発明は、凝集が抑制され、供給性や充填性に影響を及ぼす流動性に優れる、ニアネット成形に適したW粉末を提供することができ、例えば、X線検査機器の製造に有用な技術となる。 INDUSTRIAL APPLICABILITY The present invention can provide W powder suitable for near-net molding, which suppresses aggregation and has excellent fluidity that affects supplyability and filling property, and is a technique useful for manufacturing, for example, X-ray inspection equipment. Will be.

本発明例および比較例となるW粉末の外観を示す走査型電子顕微鏡写真。A scanning electron micrograph showing the appearance of W powder as an example of the present invention and a comparative example.

本発明のW粉末は、波長360~740nmの範囲で測定される反射率の最小値が10%以上である。上述したAM法やMIM法といったニアネット成形では、体積基準の累積粒度分布の50%粒径(以下、「D50」という。)が1~250μmの範囲の粉末の集合体が用いられている。ここで、D50が1μmよりも小さい、超微粒子を含む成形用のW粉末の集合体は、例えば粒子径が0.3μm以下の超微粒子同士の凝集や、粒子径が1~250μmである成形に寄与するW粉末(以下、「成形用W粉末」ともいう。)の表面に粒子径が0.3μm以下の超微粒子や超微粒子同士の凝集物が付着しやすい。成形用W粉末の表面に多量の超微粒子が付着すると、成形用W粉末の表面に微細な凹凸が多数形成されてしまう。 The W powder of the present invention has a minimum reflectance of 10% or more measured in the wavelength range of 360 to 740 nm. In the near-net molding such as the AM method and the MIM method described above, an aggregate of powders having a 50% particle size (hereinafter referred to as “D50”) of the volume-based cumulative particle size distribution in the range of 1 to 250 μm is used. Here, the aggregate of W powder for molding containing ultrafine particles having a D50 smaller than 1 μm can be used, for example, for agglomeration of ultrafine particles having a particle size of 0.3 μm or less or molding having a particle size of 1 to 250 μm. Ultrafine particles having a particle size of 0.3 μm or less and agglomerates of ultrafine particles tend to adhere to the surface of the contributing W powder (hereinafter, also referred to as “W powder for molding”). When a large amount of ultrafine particles adhere to the surface of the W powder for molding, a large number of fine irregularities are formed on the surface of the W powder for molding.

表面に超微粒子が多量に付着した成形用W粉末の集合体は、超微粒子による光の乱反射や吸収が生じ、反射率が大きく低下する。このため、本発明のW粉末は、波長360~740nmの範囲で測定される反射率の最小値を10%以上とする。これにより、本発明のW粉末は、個々の成形用W粉末の表面に付着する超微粒子による微細な凹凸の形成が抑制される。このため、本発明のW粉末は、凝集が抑制され、供給性や充填性に影響を及ぼす流動性を向上することができる。上記と同様の理由から、本発明の実施形態に係るW粉末の反射率の最小値は13%以上が好ましく、13.5%以上がより好ましい。
尚、本発明でいう波長360~740nmの範囲で測定される反射率は、JIS Z 8781-4:2013に準拠して、例えば、コニカミノルタ製の分光測色計(CM-2500d)を用いて測定することができる。
The aggregate of W powder for molding having a large amount of ultrafine particles adhered to the surface causes diffuse reflection and absorption of light by the ultrafine particles, and the reflectance is greatly reduced. Therefore, the W powder of the present invention has a minimum reflectance of 10% or more measured in the wavelength range of 360 to 740 nm. As a result, in the W powder of the present invention, the formation of fine irregularities due to the ultrafine particles adhering to the surface of each W powder for molding is suppressed. Therefore, the W powder of the present invention can suppress agglomeration and improve the fluidity that affects the supplyability and the filling property. For the same reason as described above, the minimum value of the reflectance of the W powder according to the embodiment of the present invention is preferably 13% or more, more preferably 13.5% or more.
The reflectance measured in the wavelength range of 360 to 740 nm in the present invention is based on JIS Z 8781-4: 2013, for example, using a spectrophotometer (CM-2500d) manufactured by Konica Minolta. Can be measured.

本発明のW粉末は、JIS Z 2502に準拠して測定される流動度が15s/50g以下である。流動度は、50gの粉末が直径2.5mmのオリフィスを備える漏斗を通過する時間で表わされる。本発明の実施形態に係るW粉末は、その用途から、流動することが前提とされ、造形時に造形装置へ安定して必要量の粉末を供給する観点から、流動度は14s/50g以下が好ましく、12s/50g以下がより好ましく、10s/50g以下がさらに好ましい。
尚、流動度の測定においては、JIS Z 2502にもあるように、オリフィスを開けても粉末が流れ出さない場合は、粉末が流れ出すよう漏斗を軽く1回たたいてもよい。
The W powder of the present invention has a fluidity of 15 s / 50 g or less as measured in accordance with JIS Z 2502. Fluidity is expressed as the time it takes for 50 g of powder to pass through a funnel with a 2.5 mm diameter orifice. The W powder according to the embodiment of the present invention is premised on flowing from the viewpoint of its use, and the fluidity is preferably 14 s / 50 g or less from the viewpoint of stably supplying the required amount of powder to the modeling apparatus at the time of modeling. , 12 s / 50 g or less is more preferable, and 10 s / 50 g or less is further preferable.
In the measurement of fluidity, as described in JIS Z 2502, if the powder does not flow out even if the orifice is opened, the funnel may be lightly tapped once so that the powder flows out.

本発明の実施形態に係るW粉末は、所定の供給性や充填性を得ることができれば、どのような形状であってもよいところ、球形状であることが好ましく、具体的には、円形度が0.85以上であることが好ましく、0.95以上がより好ましい。
本発明でいう円形度は、下記の数式によって算出され、真球状の粉末であれば、その円形度は1.0となる。円形度は、供給性や充填性を向上させる観点から、高ければ高いほど好ましいが、分級による工数増加や歩留低下といった製造性を考慮すると0.99以下が好ましく、0.98以下がより好ましい。
[円形度]=4π[粒子の投影面積]/[粒子の周囲長]
ここで、粒子の投影面積および周囲長の測定は、例えば、画像分析装置を用いることができる。
The W powder according to the embodiment of the present invention may have any shape as long as a predetermined supplyability and filling property can be obtained, and is preferably spherical, specifically, circularity. Is preferably 0.85 or more, and more preferably 0.95 or more.
The circularity referred to in the present invention is calculated by the following mathematical formula, and in the case of a spherical powder, the circularity is 1.0. The higher the circularity is, the more preferable it is from the viewpoint of improving the supplyability and the filling property. ..
[Circularity] = 4π [Projected area of particles] / [Perimeter of particles] 2
Here, for the measurement of the projected area and the perimeter of the particles, for example, an image analyzer can be used.

本発明の実施形態に係るW粉末は、0.001~0.020質量%の酸素を含むことが好ましい。酸素は、W粉末に含まれる不純物や母材のWと結合して酸化物を形成する場合がある。この酸化物が造形物内へ取り込まれ、欠陥として残存し、造形物の機械的特性を低下させる。このため、本発明の実施形態に係るW粉末は、酸素含有量を0.020質量%以下にすることが好ましい。
一方、W粉末の酸素濃度が0.001質量%よりも低いと、大気に晒された場合に急激な酸化による発熱が生じる虞がある。このため、本発明の実施形態に係るW粉末は、酸素含有量を0.001質量%以上にすることが好ましい。
The W powder according to the embodiment of the present invention preferably contains 0.001 to 0.020% by mass of oxygen. Oxygen may combine with impurities contained in the W powder or W of the base metal to form an oxide. This oxide is taken into the model and remains as a defect, degrading the mechanical properties of the model. Therefore, the W powder according to the embodiment of the present invention preferably has an oxygen content of 0.020% by mass or less.
On the other hand, if the oxygen concentration of the W powder is lower than 0.001% by mass, heat generation due to rapid oxidation may occur when exposed to the atmosphere. Therefore, the W powder according to the embodiment of the present invention preferably has an oxygen content of 0.001% by mass or more.

本発明の実施形態に係るW粉末は、JIS Z8781-4:2013に準拠して測定される明度L*が40以上であることが好ましい。
表面に超微粒子が多量に付着した成形用W粉末の集合体は、超微粒子による光の乱反射や吸収が生じ、明度L*が大きく低下する。このため、本発明のW粉末は、明度L*を40以上とする。これにより、本発明のW粉末は、個々のW粉末表面に付着する超微粒子による微細な凹凸の形成が抑制され、W粉末の凝集が抑制され、供給性や充填性を向上することができる。上記と同様の理由から、本発明の実施形態に係るW粉末の明度L*は、45以上が好ましい。
尚、本発明でいう明度L*は、JIS Z 8781-4:2013に準拠して、例えば、コニカミノルタ製の分光測色計(CM-2500d)を用いて測定することができる。
The W powder according to the embodiment of the present invention preferably has a brightness L * of 40 or more as measured in accordance with JIS Z8781-4: 2013.
In the aggregate of W powder for molding in which a large amount of ultrafine particles are adhered to the surface, diffused reflection and absorption of light by the ultrafine particles occur, and the brightness L * is greatly reduced. Therefore, the W powder of the present invention has a brightness L * of 40 or more. As a result, in the W powder of the present invention, the formation of fine irregularities due to the ultrafine particles adhering to the surface of each W powder is suppressed, the aggregation of the W powder is suppressed, and the supplyability and the filling property can be improved. For the same reason as described above, the brightness L * of the W powder according to the embodiment of the present invention is preferably 45 or more.
The brightness L * referred to in the present invention can be measured by using, for example, a spectrocolorimeter (CM-2500d) manufactured by Konica Minolta in accordance with JIS Z 8781-4: 2013.

本発明のW粉末は、例えば、酸化W粉末を還元したW原料粉末や、インゴット材を切削、粉砕処理したW原料粉末を、ニアネット成形の方法で適切なD50が1~250μmの範囲に分級したW粉末を用いることができる。尚、本発明では、波長360~740nmの範囲で測定される反射率の最小値を10%以上のW粉末とするために、必要に応じて、流動補助剤を添加・混合することが好ましい。そして、流動補助剤は、D50が1μm以下のアルミナやシリカの粉末が好ましく、50質量ppm以下の範囲で添加することが好ましい。 In the W powder of the present invention, for example, the W raw material powder obtained by reducing the oxidized W powder or the W raw material powder obtained by cutting and crushing the ingot material is classified into a range of 1 to 250 μm having an appropriate D50 by a near net molding method. W powder can be used. In the present invention, it is preferable to add and mix a flow aid as necessary in order to obtain a W powder having a minimum reflectance of 10% or more measured in the wavelength range of 360 to 740 nm. The flow aid is preferably an alumina or silica powder having a D50 of 1 μm or less, and is preferably added in a range of 50 mass ppm or less.

また、上記のW原料粉末に、熱プラズマを利用した球状化処理を行なうことで、凝集が抑制された流動性の高いW粉末を得ることができる。ここで、球状化処理とは、上記のW原料粉末を熱プラズマ炎に通過させて、加熱溶融された液滴が凝固することで球状のW粉末を得る処理法である。溶融した液滴は、表面張力の働きにより球状化した状態で凝固するため、真球状に近い、サテライトの少ないW粉末を得ることが可能である。
ここで、熱プラズマ炎の動作ガスには、水素ガスと不活性ガスとの混合ガスを用いることが好ましい。動作ガスに水素ガスを用いることで、よりエネルギー密度の高い熱プラズマ炎を発生させることができ、W原料粉末の溶融、球状化が促進される。また、水素による還元作用により、W粉末の酸素含有量を低減することができる。
Further, by performing a spheroidizing treatment on the above W raw material powder using thermal plasma, it is possible to obtain a highly fluid W powder in which aggregation is suppressed. Here, the spheroidizing treatment is a treatment method in which the above-mentioned W raw material powder is passed through a thermal plasma flame and the heat-melted droplets are solidified to obtain spherical W powder. Since the molten droplets solidify in a spheroidized state due to the action of surface tension, it is possible to obtain W powder that is close to a true sphere and has few satellites.
Here, it is preferable to use a mixed gas of hydrogen gas and an inert gas as the operating gas of the thermal plasma flame. By using hydrogen gas as the operating gas, it is possible to generate a thermal plasma flame having a higher energy density, and the melting and spheroidizing of the W raw material powder is promoted. In addition, the oxygen content of W powder can be reduced by the reducing action of hydrogen.

熱プラズマ炎は、温度分布を有しており、高温領域では10000℃近くに達する。このような高温領域を通過したW原料粉末は、溶融するだけでなく、その一部が蒸発、揮発してガス化する場合があり、凝固する際に付着性の高い粒子径が0.3μm以下の超微粒子を生成してしまう場合がある。超微粒子の生成量は、球状化処理中の熱プラズマ炎の状態や、反応炉内の圧力変動などに影響を受ける。
特に、球状化処理中に反応炉の内圧が減圧状態の場合には、蒸気圧温度が低下するため、W原料粉末の気化が促進され、得られるW粉末への超微粒子量の付着が増加する。一方、球状化処理中に反応炉の内圧が加圧状態の場合には、エネルギー密度がより高い熱プラズマ炎が形成され、W原料粉末の球状化が促進される一方、Wの気化も促進されてしまい、得られるW粉末への超微粒子量の付着が増加する。このため、本発明のW粉末を熱プラズマを利用した球状化処理で得る場合は、球状化処理中に反応炉内の圧力値の変動(ばらつき)[(最大値-最小値)/(最大値+最小値)]×100(%)を5.0%以下に調整することが好ましい。
The thermal plasma flame has a temperature distribution and reaches close to 10,000 ° C. in the high temperature region. The W raw material powder that has passed through such a high temperature region not only melts, but a part of it may evaporate, volatilize and gasify, and the particle size having high adhesion when solidifying is 0.3 μm or less. May produce ultrafine particles. The amount of ultrafine particles produced is affected by the state of the thermal plasma flame during the spheroidizing process and the pressure fluctuation in the reactor.
In particular, when the internal pressure of the reactor is reduced during the spheroidizing treatment, the vapor pressure temperature decreases, so that the vaporization of the W raw material powder is promoted and the adhesion of the amount of ultrafine particles to the obtained W powder increases. .. On the other hand, when the internal pressure of the reactor is pressurized during the spheroidizing process, a thermal plasma flame having a higher energy density is formed, and the spheroidization of the W raw material powder is promoted, while the vaporization of W is also promoted. This will increase the adhesion of the amount of ultrafine particles to the obtained W powder. Therefore, when the W powder of the present invention is obtained by a spheroidizing treatment using thermal plasma, the pressure value in the reaction furnace fluctuates (variations) [(maximum value-minimum value) / (maximum value) during the spheroidizing treatment. + Minimum value)] × 100 (%) is preferably adjusted to 5.0% or less.

また、多量の超微粒子が付着したW粉末は、表面に微細な凹凸が形成され、凝集しやすくなり、供給性や充填性に影響を及ぼす流動性を低下させる。このため、本発明のW粉末を得るには、球状化処理を経たW粉末をW素粉とし、表面に付着する超微粒子を除去することが好ましい。
表面に付着した超微粒子を低減するには、例えば、気流式分級機による分級処理を行なうことが好ましい。この気流式分級は、例えば、精密空気分級機を用いて、ロータ回転数を2000rpm以上にして処理することで、超微粒子の低減が可能である。ロータ回転数は、3000rpm以上が好ましく、4000rpm以上がより好ましい。
In addition, the W powder to which a large amount of ultrafine particles are attached has fine irregularities formed on the surface and tends to aggregate, which lowers the fluidity that affects the supplyability and the filling property. Therefore, in order to obtain the W powder of the present invention, it is preferable to use the W powder that has undergone the spheroidizing treatment as the W element powder and remove the ultrafine particles adhering to the surface.
In order to reduce the amount of ultrafine particles adhering to the surface, for example, it is preferable to perform a classification process using an airflow type classifier. In this airflow type classification, for example, by using a precision air classifier and processing the rotor at a rotation speed of 2000 rpm or more, it is possible to reduce ultrafine particles. The rotor rotation speed is preferably 3000 rpm or more, more preferably 4000 rpm or more.

また、表面に付着した超微粒子を低減するには、W素粉を純水やアルコーなどへ浸漬させて、揺動や超音波を印加して洗浄を行なってもよい。また、超微粒子は、比表面積が高く高酸素濃度であることから、水素を導入した還元性雰囲気下で熱処理を施してもよい。
尚、本発明のW粉末を得るには、W素粉の表面からすべての超微粒子を除去する必要はなく、波長360~740nmの範囲で測定される反射率の最小値が10%以上となるように、超微粒子の付着量を低減すればよい。
Further, in order to reduce the amount of ultrafine particles adhering to the surface, W elementary powder may be immersed in pure water, alcohol, or the like, and washed by shaking or applying ultrasonic waves. Further, since the ultrafine particles have a high specific surface area and a high oxygen concentration, they may be heat-treated in a reducing atmosphere in which hydrogen is introduced.
In order to obtain the W powder of the present invention, it is not necessary to remove all the ultrafine particles from the surface of the W raw powder, and the minimum value of the reflectance measured in the wavelength range of 360 to 740 nm is 10% or more. As described above, the amount of ultrafine particles adhered may be reduced.

市販のW粉末を、集合体のD50が11μmとなるように分級調整してW原料粉末を準備した。このW原料粉末に、JIS Z5052に準拠して測定した流動度が15s/50g以下となるまで、流動補助剤としてD50が1μm以下のシリカ粉末を合計で30質量ppm添加して混合し、本発明例1となるW粉末を得た。 A commercially available W powder was classified and adjusted so that the D50 of the aggregate was 11 μm, and a W raw material powder was prepared. To this W raw material powder, silica powder having a D50 of 1 μm or less as a flow aid is added in a total amount of 30 mass ppm and mixed until the fluidity measured according to JIS Z5052 becomes 15 s / 50 g or less, and the present invention is used. W powder as Example 1 was obtained.

市販のW粉末を、集合体のD50が11μmとなるように分級調整してW原料粉末を準備した。このW原料粉末を、高周波誘導熱プラズマ装置を用いて球状化処理を行ない、D50が11μmの本発明例2となるW粉末を得た。
動作条件は、プラズマ電力を120kWとし、動作ガスとしてアルゴン(流量=260L/min)と水素(流量=30L/min)を調整して、供給ガスにアルゴン(流量=8L/min)を用いた。このとき、球状化処理中の反応炉内の圧力変動[(最大値-最小値)/(最大値+最小値)]×100(%)が2.0%となるように調整した。
A commercially available W powder was classified and adjusted so that the D50 of the aggregate was 11 μm, and a W raw material powder was prepared. This W raw material powder was spheroidized using a high frequency induced thermal plasma apparatus to obtain W powder having a D50 of 11 μm, which is Example 2 of the present invention.
As the operating conditions, the plasma power was 120 kW, argon (flow rate = 260 L / min) and hydrogen (flow rate = 30 L / min) were adjusted as the operating gas, and argon (flow rate = 8 L / min) was used as the supply gas. At this time, the pressure fluctuation in the reactor during the spheroidizing treatment [(maximum value-minimum value) / (maximum value + minimum value)] × 100 (%) was adjusted to be 2.0%.

市販のW粉末を、集合体のD50が11μmとなるように分級調整してW原料粉末を準備した。このW原料粉末を、高周波誘導熱プラズマ装置を用いて球状化処理を行ない、W素粉を得た。
動作条件は、プラズマ電力を120kWとし、動作ガスとしてアルゴン(流量=260L/min)と水素(流量=30L/min)を調整して、供給ガスにアルゴン(流量=8L/min)を用いた。このとき、球状化処理中の反応炉内の圧力変動[(最大値-最小値)/(最大値+最小値)]×100(%)が5.6%となるように調整した。
次に、球状化処理されたW素粉に対して、日清エンジニアリング製の精密空気分級機(TC-25)を使用し、ロータ回転数を4000rpmに設定して分級処理を行ない、D50が11μmの本発明例3となるW粉得た。
A commercially available W powder was classified and adjusted so that the D50 of the aggregate was 11 μm, and a W raw material powder was prepared. This W raw material powder was spheroidized using a high frequency induced thermal plasma apparatus to obtain W raw powder.
As the operating conditions, the plasma power was 120 kW, argon (flow rate = 260 L / min) and hydrogen (flow rate = 30 L / min) were adjusted as the operating gas, and argon (flow rate = 8 L / min) was used as the supply gas. At this time, the pressure fluctuation in the reactor during the spheroidizing treatment [(maximum value-minimum value) / (maximum value + minimum value)] × 100 (%) was adjusted to be 5.6%.
Next, the spheroidized W raw powder was classified using a precision air classifier (TC-25) manufactured by Nisshin Engineering Co., Ltd. at a rotor rotation speed of 4000 rpm, and the D50 was 11 μm. W powder according to Example 3 of the present invention was obtained.

市販のW粉末を、集合体のD50が11μmとなるように分級調整してW原料粉末を準備した。このW原料粉末を、高周波誘導熱プラズマ装置を用いて球状化処理を行ない、W素粉を得た。
動作条件は、プラズマ電力を120kWとし、動作ガスとしてアルゴン(流量=260L/min)と水素(流量=30L/min)を調整して、供給ガスにアルゴン(流量=8L/min)を用いた。このとき、球状化処理中の反応炉内の圧力変動[(最大値-最小値)/(最大値+最小値)]×100(%)が2.0%となるように調整した。
次に、球状化処理されたW素粉に対して、日清エンジニアリング製の精密空気分級機(TC-25)を使用し、ロータ回転数を4000rpmに設定して分級処理を行ない、D50が11μmの本発明例4となるW粉得た。
A commercially available W powder was classified and adjusted so that the D50 of the aggregate was 11 μm, and a W raw material powder was prepared. This W raw material powder was spheroidized using a high frequency induced thermal plasma apparatus to obtain W raw powder.
As the operating conditions, the plasma power was 120 kW, argon (flow rate = 260 L / min) and hydrogen (flow rate = 30 L / min) were adjusted as the operating gas, and argon (flow rate = 8 L / min) was used as the supply gas. At this time, the pressure fluctuation in the reactor during the spheroidizing treatment [(maximum value-minimum value) / (maximum value + minimum value)] × 100 (%) was adjusted to be 2.0%.
Next, the spheroidized W raw powder was classified using a precision air classifier (TC-25) manufactured by Nisshin Engineering Co., Ltd. at a rotor rotation speed of 4000 rpm, and the D50 was 11 μm. W powder according to Example 4 of the present invention was obtained.

市販のW粉末を、集合体のD50が11μmとなるように分級調整してW原料粉末を準備した。このW原料粉末を、高周波誘導熱プラズマ装置を用いて球状化処理を行ない、D50が11μmの比較例となるW粉末を得た。
動作条件は、プラズマ電力を120kWとし、動作ガスとしてアルゴン(流量=260L/min)と水素(流量=30L/min)を調整して、供給ガスにアルゴン(流量=8L/min)を用いた。このとき、球状化処理中の反応炉内の圧力変動[(最大値-最小値)/(最大値+最小値)]×100(%)が5.6%となるように調整した。
A commercially available W powder was classified and adjusted so that the D50 of the aggregate was 11 μm, and a W raw material powder was prepared. This W raw material powder was spheroidized using a high frequency induced thermal plasma apparatus to obtain W powder having a D50 of 11 μm as a comparative example.
As the operating conditions, the plasma power was 120 kW, argon (flow rate = 260 L / min) and hydrogen (flow rate = 30 L / min) were adjusted as the operating gas, and argon (flow rate = 8 L / min) was used as the supply gas. At this time, the pressure fluctuation in the reactor during the spheroidizing treatment [(maximum value-minimum value) / (maximum value + minimum value)] × 100 (%) was adjusted to be 5.6%.

上記で得た各W粉末について、(1)反射率、(2)流動度、(3)円形度、(4)酸素含有量および(5)明度L*を測定した。その結果を表1に示す。
(1)反射率および(5)明度L*
JIS Z 8781-4:2013に準拠して、コニカミノルタ製の分光測色計(CM-2500d)を用いて測定した。尚、反射率および明度L*の測定は、ディテクターへの粉末の付着を抑制するために、ディテクターと測定用粉末試料の間に、厚さ1mmのスペーサを挟んで実施した。また、反射率は、波長360~740nmの範囲で測定される反射率の最小値を採用した。
(2)流動度
JIS Z 2502に準拠した方法で測定した。
尚、本発明例2~本発明例4および比較例となるW粉末は、オリフィスを開けても粉末が流れ出さなかったため、粉末が流れ出すように漏斗を軽く1回たたいてから測定をした。
(3)円形度
Malvern Instruments製の粒子画像分析装置(Morphologi G3)を用いて、20000個を測定することで求めた。
(4)酸素含有量
酸素含有量は、不活性ガス溶融―赤外線吸収法により分析した。
For each W powder obtained above, (1) reflectance, (2) fluidity, (3) circularity, (4) oxygen content and (5) brightness L * were measured. The results are shown in Table 1.
(1) Reflectance and (5) Brightness L *
The measurement was performed using a spectrocolorimeter (CM-2500d) manufactured by Konica Minolta in accordance with JIS Z 8781-4: 2013. The reflectance and brightness L * were measured by sandwiching a spacer having a thickness of 1 mm between the detector and the powder sample for measurement in order to suppress the adhesion of the powder to the detector. Further, as the reflectance, the minimum value of the reflectance measured in the wavelength range of 360 to 740 nm was adopted.
(2) Fluidity Measured by a method conforming to JIS Z 2502.
Since the W powder of the present invention Example 2 to the present invention example 4 and the comparative example did not flow out even when the orifice was opened, the measurement was performed after lightly tapping the funnel once so that the powder flowed out.
(3) Circularity It was determined by measuring 20000 pieces using a particle image analyzer (Morphilogi G3) manufactured by Malvern Instruments.
(4) Oxygen content The oxygen content was analyzed by the Infrared gas melting-infrared absorption method.

Figure 2022046953000002
Figure 2022046953000002

比較例となるW粉末は、図1に示すように、表面に粒子径が0.3μm以下の超微粒子(淡色の分布物である。)が多数観察された。また、比較例となるW粉末は、成形用W粉末同士が凝集している箇所も確認された。このようなW粉末は、流動度が15s/50g以下であっても、反射率が10%を下回っていた。また、比較例となるW粉末は、酸素含有量が0.020質量%を超えており、明度L*が40を下回っていた。 As shown in FIG. 1, a large number of ultrafine particles (light-colored distribution) having a particle diameter of 0.3 μm or less were observed on the surface of the W powder as a comparative example. Further, in the W powder as a comparative example, it was confirmed that the W powder for molding was agglomerated with each other. Such W powder had a reflectance of less than 10% even when the fluidity was 15 s / 50 g or less. Further, the W powder as a comparative example had an oxygen content of more than 0.020% by mass and a brightness L * of less than 40.

一方、本発明例となるW粉末は、図1に示すように、いずれも、粒子径が0.3μm以下の超微粒子の付着が抑制されていることが確認できた。そして、本発明例となるW粉末は、いずれも、反射率が10%以上、流動度が15s/50g以下であった。また、本発明例となるW粉末は、いずれも、酸素含有量が0.020質量%以下であり、明度L*が40以上であり、成形用W粉末同士の凝集が抑制され、供給性や充填性といった取り扱い性に優れる、ニアネット成形に適した成形用のW粉末であることが確認できた。

On the other hand, as shown in FIG. 1, it was confirmed that the W powder as an example of the present invention suppressed the adhesion of ultrafine particles having a particle size of 0.3 μm or less. The W powder used as an example of the present invention had a reflectance of 10% or more and a fluidity of 15 s / 50 g or less. In addition, all of the W powders of the present invention have an oxygen content of 0.020% by mass or less, a brightness L * of 40 or more, agglomeration of W powders for molding is suppressed, and supplyability is improved. It was confirmed that the W powder for molding is suitable for near-net molding and has excellent handleability such as filling property.

Claims (4)

Wおよび不可避不純物からなる組成を有し、波長360~740nmの範囲で測定される反射率の最小値が10%以上であり、JIS Z 2502に準拠して測定される流動度が15s/50g以下であるW粉末。 It has a composition consisting of W and unavoidable impurities, the minimum reflectance measured in the wavelength range of 360 to 740 nm is 10% or more, and the fluidity measured in accordance with JIS Z 2502 is 15 s / 50 g or less. W powder. 円形度が0.85以上である請求項1に記載のW粉末。 The W powder according to claim 1, which has a circularity of 0.85 or more. 酸素を0.001~0.020質量%を含む請求項1または請求項2に記載のW粉末。 The W powder according to claim 1 or 2, which contains 0.001 to 0.020% by mass of oxygen. JIS Z 8781-4:2013に準拠して測定される明度L*が40以上である請求項1ないし請求項3のいずれかに記載のW粉末。

The W powder according to any one of claims 1 to 3, wherein the brightness L * measured in accordance with JIS Z 8781-4: 2013 is 40 or more.

JP2020152616A 2020-09-11 2020-09-11 W powder Pending JP2022046953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020152616A JP2022046953A (en) 2020-09-11 2020-09-11 W powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020152616A JP2022046953A (en) 2020-09-11 2020-09-11 W powder

Publications (1)

Publication Number Publication Date
JP2022046953A true JP2022046953A (en) 2022-03-24

Family

ID=80780140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152616A Pending JP2022046953A (en) 2020-09-11 2020-09-11 W powder

Country Status (1)

Country Link
JP (1) JP2022046953A (en)

Similar Documents

Publication Publication Date Title
CA3003502C (en) Metal powder atomization manufacturing processes
US11577314B2 (en) Spheroidal titanium metallic powders with custom microstructures
AU2022283742B2 (en) Reactive metal powders in-flight heat treatment processes
JP6703759B2 (en) Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
KR102432787B1 (en) ODS alloy powder, production method thereof by plasma treatment, and use thereof
Li et al. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar–H 2 and Ar–N 2 as the sheath gases at atmospheric pressure
Kalayda et al. The plasma atomization process for the Ti-Al-V powder production
US20220331858A1 (en) SPHERICAL Ti-BASED POWDER AND MANUFACTURING METHOD THEREFOR
RU2681022C1 (en) Method for producing narrow fractional spherical powders from heat-resisting alloys based on nickel aluminide
JP2022046953A (en) W powder
JP2004232084A (en) Method of producing micro metallic ball
JP2020117433A (en) Glass particles, conductive composition therewith and production method of glass particles
JP2024027858A (en) WMo alloy powder
JP3253175B2 (en) Method for producing spherical silver fine particles
JP2004338961A (en) Method for manufacturing spherical glass powder, and spherical glass powder
RU2783095C1 (en) Method for producing powders of complex alloys with spherical particles
WO2023162524A1 (en) Method of manufacturing mixed powder for additive manufacturing
JP2023126111A (en) Method for producing mixed powder for 3D modeling
Li et al. Publisher’s Erratum to: Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar–H2 and Ar–N2 as the sheath gases at at-mospheric pressure
Фролов et al. Numerical simulation of cooling of fine metal powder in various gaseous environment
JP2023147173A (en) METHOD OF PRODUCING Cu ALLOY
JPH04270105A (en) Reduction of beta-type silicon carbide fine powder
JP2005088028A (en) Solder paste, method for manufacturing metallic sphere for solder paste, and method for manufacturing solder paste
JP2002167214A (en) Fine spheroidal silica powder manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402