WO2023162524A1 - Method of manufacturing mixed powder for additive manufacturing - Google Patents

Method of manufacturing mixed powder for additive manufacturing Download PDF

Info

Publication number
WO2023162524A1
WO2023162524A1 PCT/JP2023/001417 JP2023001417W WO2023162524A1 WO 2023162524 A1 WO2023162524 A1 WO 2023162524A1 JP 2023001417 W JP2023001417 W JP 2023001417W WO 2023162524 A1 WO2023162524 A1 WO 2023162524A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
metal
producing
metal powder
mixed
Prior art date
Application number
PCT/JP2023/001417
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 森口
裕樹 池田
将啓 坂田
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022185694A external-priority patent/JP7378907B2/en
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2023162524A1 publication Critical patent/WO2023162524A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing mixed powder for 3D modeling.
  • 3D modeling is positioned as the third processing method after cutting and composition processing, etc.
  • Technological development is progressing in various technical fields such as automobiles, energy, and biomaterials.
  • molding equipment that uses high-energy heat sources such as lasers and electron beams, molding using metal powder as a raw material became possible.
  • Applications of molding powders are expanding.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-178239 discloses that copper powder for 3D printers was produced by a disc atomization method.
  • the present inventors have found that when CuM alloy powder (where M is an abbreviation for metal and is an element with a high melting point) is produced by the atomization method, the higher the concentration of M, the higher the temperature of the molten alloy at 1000 ° C. A problem was discovered in which the M particles (single particles) that were partially separated inside solidified and adhered to the inner wall of the nozzle, and this adhered solidified substance gradually grew to cause nozzle clogging. If the nozzle is clogged, the flow of the molten metal through the nozzle is hindered, making it impossible to atomize the molten metal.
  • the present inventors prepared Cu powder or a CuM alloy powder with a low M concentration by an atomizing method such as a gas atomizing method or a disk atomizing method, and added commercially available M powder (non-spherical solution) to this Cu powder or CuM alloy powder.
  • an atomizing method such as a gas atomizing method or a disk atomizing method
  • M powder non-spherical solution
  • the purpose of the present invention is to produce a mixed powder for 3D modeling in which the M powder is more uniformly distributed.
  • the present inventors have made intensive studies on the above technical problems, and have found that by using spherical M powder instead of the commercially available M powder (non-spherical pulverized powder), the M powder is more uniformly distributed for 3D modeling. It was found that a mixed powder of
  • the method for producing the mixed powder for 3D printing further comprises producing the first metal powder,
  • the step of producing the first metal powder comprises: Obtaining a molten metal made of dissolved Cu and/or a molten metal made of a CuM alloy having a M concentration of 15% by mass or less; a step of producing the first metal powder from the molten metal by an atomizing method;
  • the method for producing the mixed powder for 3D modeling according to aspect 1 or 2 comprising: [Aspect 4]
  • the method for producing the mixed powder for 3D printing further comprises producing the second metal powder,
  • the present invention by mixing the spherical M powder with the spherical Cu powder or CuM alloy powder, it is possible to obtain a mixed powder for 3D modeling in which the M powder is more uniformly distributed.
  • FIG. 4 is a bar graph showing the absorbance (%) of samples A to E.
  • FIG. 4 is a photograph of a 3D-modeled object modeled using sample A as a raw material. It is the area ratio (%) of the residual Cr powder in the cross section.
  • the present invention provides a first metal powder made of spherically shaped Cu powder and/or CuM alloy powder (hereinafter also referred to as "CuM alloy powder etc.” when there is no need to distinguish between them);
  • An object of the present invention is to obtain a mixed powder for 3D modeling in which the M powder is uniformly dispersed by mixing it with a second metal powder composed of the M powder formed into a spherical shape.
  • a CuM alloy is a two-phase separation type multi-phase alloy consisting of M and Cu, which are difficult to dissolve in Cu.
  • M is an abbreviation for metal, and includes high-melting-point metals with a melting point of 1700° C. or higher.
  • M may be, for example, one or more metal elements selected from the group consisting of V, Cr, Nb, W, Zr, Mo and Ta.
  • 3D modeling is also called additive manufacturing, and the lamination method using EB (Electron Beam) and laser is well known.
  • EB Electro Beam
  • a sintered portion integrated with the underlying sintered portion is formed.
  • a three-dimensional shape is formed layer by layer from the powder. According to these methods, it is possible to form a complicated shape that is difficult with conventional processing methods, and to form a desired three-dimensional model from shape data such as CAD.
  • the first metal powder can be produced by an atomizing method.
  • a gas atomization method or a disc atomization method can be used as the atomization method.
  • the gas atomization method is a method in which molten metal melted in a vacuum is dropped vertically downward from a nozzle, and an inert gas (argon gas, nitrogen gas, etc.) is blown from the surroundings to divide it into small droplets.
  • the fragmented molten metal solidifies while being spheroidized by surface tension while falling in the atomization chamber to obtain spherical powder.
  • the disk atomization method is a method in which molten metal is continuously poured from a nozzle onto a disk that rotates at high speed, and the molten film formed on the upper surface of the disk is scattered in the form of droplets by high-speed rotation to produce powder.
  • the molten metal flows down to the center of the high-speed rotation, spreads over the disk surface, and is pulled toward the outer periphery by centrifugal force to form a thin molten film.
  • the molten film loses its support at the peripheral edge of the disk and forms droplets, and the droplets are separated and scattered by centrifugal force, resulting in atomization.
  • the atomized molten metal is spheroidized by the surface tension of the molten metal itself and cooled by atmospheric gas or radiation cooling to obtain spherical powder.
  • each powder may be produced by a gas atomization method and mixed.
  • the spherical powder is defined by the sphericity, it is preferably 0.80 or more.
  • the sphericity is measured for 1000 powder particles with an equivalent circle diameter of 10 ⁇ m or more in the secondary projection image, and the arithmetic average value of these is defined as the sphericity of the first metal powder. can do. It should be noted that the closer the sphericity is to 1, the closer to a perfect circle.
  • the raw material is a molten metal made of Cu and/or a molten metal made of Cu and M whose M concentration is adjusted to 15% by mass or less.
  • molten metal made of Cu is used as a raw material
  • spherically shaped Cu powder is produced by an atomizing method.
  • a molten metal composed of Cu and M is used as the raw material
  • spherically shaped CuM alloy powder is produced by the atomization method.
  • a mixed powder obtained by mixing these Cu powder and CuM alloy powder may be used as the first metal powder.
  • the target M density required for the 3D modeled object can be determined in advance.
  • Cu powder containing no M
  • the blending conditions are determined so that the target M concentration is achieved only with the second metal powder.
  • the difference between the target M concentration and the M concentration of the first metal powder is used to determine the second metal Powder blending conditions can be determined.
  • the target M concentration cannot be uniquely determined, but is preferably 1% by mass or more, more preferably 15% by mass or more and 75% by mass or less. More preferably, it is 25 mass % or more and 50 mass % or less.
  • Increasing the M concentration also improves the laser extinction coefficient. If the laser absorbance is insufficient, the object can be shaped by, for example, increasing the laser output.
  • Raw materials may contain unavoidable impurities (the same applies hereinafter).
  • Unavoidable impurities include metal elements that are not intentionally included in the raw material but are contained in trace amounts, and contamination from the atmosphere gas and interfaces of refractory bricks during melting and refining to obtain alloys.
  • Non-metallic elements that Among these, particularly representative metal elements include Si, Fe, Ni, and the like. C, O, N and the like are typical elements that form non-metallic inclusions.
  • the upper limit of the content of elements that generate non-metallic inclusions is preferably 0.1% by mass or less in total in the 3D modeled body.
  • the second metal powder is spherical particles manufactured by performing a spheroidizing treatment using non-spherical irregular shaped M powder as a raw material (hereinafter also referred to as raw M powder).
  • the sphericity of the second metal powder is preferably 0.80 or more. Since the technical significance of the sphericity has been described above, the explanation is omitted.
  • a mechanical pulverization method, a spray method, a reduction method, an electrolysis method, or the like can be used to produce the raw material M powder.
  • the raw M powder can be obtained by pulverizing the M lumps using a jaw crusher, a hammer mill, a stamp mill, or the like.
  • the raw material M powder can be obtained by pulverizing the M lumps using a ball mill, vibration mill, or the like.
  • a high-frequency induction thermal plasma method for example, can be used for the spheroidizing treatment.
  • a high-frequency magnetic field is excited by a high-frequency induction coil, plasma gas is supplied into this high-frequency magnetic field, and a high-frequency plasma flame is inductively generated, and the raw material M powder is fed into this high-frequency plasma flame. It is a technique for producing spherical particles by supplying.
  • the spheroidizing method is not limited to the high-frequency induction thermal plasma method.
  • a rotating electrode process can be used.
  • a rotating electrode is melted by high-temperature plasma, and droplets blown off from the electrode surface by centrifugal force are sphered by the aerodynamic pulling force of a gas jet ejected from a gas nozzle placed around the electrode. is.
  • the gas atomization method is not suitable for spheroidizing a high-melting-point metal such as M.
  • This mixing step preferably includes a mixing ratio determination step, a metering step and a narrowly defined mixing step.
  • the mixing ratio of the first metal powder and the second metal powder is determined so that the M concentration of the mixed powder for 3D modeling becomes the target M concentration.
  • the first metal powder and the second metal powder are each weighed so as to achieve the mixing ratio determined in the mixing ratio determining step.
  • An electronic balance for example, can be used as the weighing instrument.
  • the first metal powder and the second metal powder weighed in the weighing step are mixed.
  • Mixing methods include a manual mixing method in which an operator shakes the mixing container containing the mixed powder, a rotary mixing method in which the mixing container containing the mixed powder is mechanically rotated, and a stirrer equipped with a stirring blade to stir the mixed powder.
  • a known method such as a stirring and mixing method can be used.
  • the reason why the M powder is uniformly dispersed is that the M powder is formed into a spherical shape, which increases the fluidity.
  • Whether or not the M powder exhibits the above dispersibility can be evaluated, for example, by measuring the fluidity of the mixed powder in which the M powder is mixed.
  • the fluidity of the mixed powder can be evaluated, for example, by feeding 50 g of the mixed powder into a funnel and measuring the passage time through the orifice in accordance with the standard defined in JIS Z 2502.
  • the fluidity of the mixed powder for 3D modeling changes depending on conditions other than the shape of the powder, so it cannot be defined unambiguously, but it is preferably 30 (s/50 g) or less, more preferably 12 .2 (s/50g) or less. Powders with low fluidity are more suitable for 3D modeling.
  • the dispersibility of the M powder may be evaluated based on color information obtained from the image data of the mixed powder. Specifically, when M is Cr, the entire mixed powder is observed, and if the reddish copper color is dominant and no blue powder group representing Cr is observed, the Cr powder is uniformly mixed. It can be evaluated that On the other hand, when a blue powder group in which Cr is unevenly distributed is observed in the mixed powder, it can be evaluated that the Cr powder is non-uniformly mixed. Of course, image analysis by software may be used to determine whether or not the M powder is uniformly mixed.
  • the fluidity of the M powder is enhanced by molding it into a spherical shape, the above-mentioned uniform distribution state is generally maintained during the transportation process from the mixing container to the modeling stage. Therefore, 3D modeling can be performed using the mixed powder for 3D modeling in which the M powder is uniformly dispersed.
  • FIG. 1 is an SEM (Scanning Electron Microscope) image of pulverized powder. As shown in FIG. 1, non-spherical Cr particles with an irregular shape were confirmed.
  • a second metal powder obtained by spheroidizing pulverized powder of pure Cr was mixed with spherical CuCr atomized powder to obtain a mixed powder (hereinafter also referred to as an example powder).
  • the composition of the CuCr atomized powder was the same as that of the comparative example powder.
  • the amount of the second metal powder added was adjusted so that the mixed powder had a Cr concentration of 25% by mass. Since the preparation method is the same as that of the comparative example powder, the explanation is omitted.
  • the spheroidizing treatment for obtaining the second metal powder was performed using a plasma spheroidizing apparatus (model number: N-Plasma Melting) manufactured by Niimi Sangyo Co., Ltd.
  • FIG. 2 is an SEM image of the second metal powder. As shown in FIG. 2, spherical Cr particles were confirmed.
  • 3 and 4 are photographs of comparative example powder and example powder, respectively.
  • the powder of the example was predominantly copper-red, and no blue powder group was observed.
  • a blue powder group region where pure Cr powder is unevenly distributed
  • the fluidity of each of the comparative example powder and the example powder was measured, and the results shown in Table 1 were obtained.
  • Flow rate was measured according to "JIS Z 2502" described in the embodiment.
  • the sphericity of each of the comparative example powder and the example powder was measured, and the results shown in Table 2 were obtained.
  • the sphericity was measured for 1000 powder particles having an equivalent circle diameter of 10 ⁇ m or more in the secondary projection image, and the arithmetic average value of these was taken as the sphericity. .
  • the Cr powder was uniformly dispersed in the Example powder, unlike the Comparative Example powder. Also, from Table 1, it was found that the powders of Examples had better fluidity than the powders of Comparative Examples. Also, from Table 2, it was found that the example powders had a sphericity superior to that of the comparative example powders (close to 1.00). In addition, in the example powder, the sphericity of each of the first metal powder and the second metal powder was also 0.80 or more. In the comparative example powder, the sphericity of each of the first metal powder and the second metal powder was also less than 0.80.
  • Samples AE shown below were prepared.
  • Sample A Cu25Cr mixed powder obtained by mixing spherical Cr powder with spherical Cu15Cr alloy powder produced by gas atomization (volume ratio of Cr in sample A: 13.7%)
  • Sample B A Cu25Cr mixed powder obtained by mixing a spherical Cu15Cr alloy powder produced by a gas atomization method with crushed Cr powder (irregular shape)
  • Sample C A spherical Cu15Cr alloy powder produced by a gas atomization method
  • Sample D Produced by a gas atomization method Spherical Cu powder
  • Sample E Cu25Cr mixed powder obtained by mixing spherical Cr powder with spherical pure Cu powder produced by the gas atomization method (Cr volume ratio in Sample E: 29.4%)
  • the Cr powders (second metal powders) of samples A and E were produced by subjecting pulverized powder of pure Cr to a spheroidizing treatment.
  • a plasma spheroidizing device manufactured by Niimi Sangyo (model number: N-Plasma Melting) was used.
  • the absorbance (%) of each of samples A to E was measured.
  • the absorbance (%) was measured with an ultraviolet-visible-near-infrared spectrophotometer V-770DS manufactured by JASCO Corporation.
  • Laser light absorptance at 1064 nm which is the wavelength of a fiber laser widely used in laser metal additive manufacturing machines, was compared.
  • Fig. 5 shows the absorbance of samples A to E.
  • sample A and sample E mixed powder in which spherical Cr powder is mixed
  • sample B also has an absorptivity of 50% or more, but from FIGS. Absorption coefficient varies depending on the irradiation position of . Therefore, it is not suitable for a mixed powder for 3D modeling because it also causes variations in modeling properties.
  • the 3D modeled body was cut and the area ratio of the residual Cr powder on the cut surface was determined.
  • the results are shown in FIG.
  • the area ratio of residual Cr powder in the cut surface was 0.5% or less, which was much smaller than the volume ratio of Cr in the mixed powder (13.7%). As a result, it was confirmed that the high melting point Cr powder was melted.
  • sample F is a mixed powder obtained by mixing a first metal powder consisting of V: 0.2% by mass and the balance being Cu, and a second mixed powder consisting of V, wherein the total V content is 17 It is a mixed powder of % by mass.
  • Sample H is a mixed powder obtained by mixing a first metal powder (pure Cu powder) made only of Cu and a second metal powder made of Ta, and the total Ta content is 5% by mass. It is a mixed powder.
  • spherical second metal powder was added to the first metal powder made of atomized powder.
  • spheroidized powder obtained by spheroidizing pulverized powder using a plasma spheroidizing device (model number: N-Plasma Melting) manufactured by Niimi Sangyo Co., Ltd. was used.
  • the second metal powder which is pulverized powder, was added to the first metal powder, which was atomized powder.
  • Fluidity, sphericity, and uneven distribution of M powder in appearance were measured and evaluated in the same manner as in the first experimental example.
  • the mixed powder was sampled five times, the absorbance of each sample was measured, and the difference between the maximum value and the minimum value was defined as the absorbance variation.
  • the measurement of the absorbance was the same as in the second experimental example.
  • a block of 10 mm square was obtained by performing 3D modeling using each mixed powder as a raw material. The energy density during 3D modeling was 290 J/mm 3 . The 3D model was cut, and the area ratio of the remaining M on the cut surface was determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is a method of manufacturing a mixed power for additive manufacturing in which an M powder is more uniformly distributed. The method includes a mixing step for mixing a first metal powder comprising a spherical Cu powder or CuM alloy powder (where M is one or more metal elements) and a second metal powder comprising a spherically formed M powder.

Description

3D造形用混合粉末の製造方法Method for producing mixed powder for 3D modeling
 本発明は、3D造形用混合粉末の製造方法に関する。 The present invention relates to a method for manufacturing mixed powder for 3D modeling.
 3D造形は、切削加工、組成加工等に次ぐ第3の加工法と位置付けられており、構造が複雑な高機能製品の開発や金型などを効率的に製造する次世代技術として、航空宇宙、自動車、エネルギー、生体材料等、様々な技術分野で技術開発が進められている。開発当初は樹脂造形に限られていたが、レーザーや電子ビーム等の高エネルギーの熱源を用いる造形装置の開発に伴い原料に金属粉末を用いた造形が可能となり、主として産業部品の作製に金属3D造形用粉末の適用が広がっている。 3D modeling is positioned as the third processing method after cutting and composition processing, etc. As a next-generation technology for developing highly functional products with complex structures and efficiently manufacturing molds, etc., it is widely used in aerospace, Technological development is progressing in various technical fields such as automobiles, energy, and biomaterials. At the beginning of development, it was limited to resin molding, but with the development of molding equipment that uses high-energy heat sources such as lasers and electron beams, molding using metal powder as a raw material became possible. Applications of molding powders are expanding.
 3D造形用粉末の製造方法として、アトマイズ法が知られている。例えば、特許文献1(特開2018-178239号公報)には、3Dプリンター用の銅粉をディスクアトマイズ法で作製したことが開示されている。 The atomization method is known as a method of manufacturing powder for 3D modeling. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2018-178239) discloses that copper powder for 3D printers was produced by a disc atomization method.
特開2018-178239号公報JP 2018-178239 A
 本発明者等は、CuM合金粉末(ただし、Mはメタルの略であり、高融点の元素である)をアトマイズ法によって作製する場合、Mの濃度が高くなると、1000数百℃の合金の溶湯内で部分的に分離したM粒子(単体)が凝固してノズルの内壁に付着し、この付着した凝固物が徐々に成長することによってノズル閉塞を引き起こす課題を発見した。ノズル閉塞を引き起こすと、ノズル内における溶湯の通液が阻害されるため、アトマイズできなくなる。 The present inventors have found that when CuM alloy powder (where M is an abbreviation for metal and is an element with a high melting point) is produced by the atomization method, the higher the concentration of M, the higher the temperature of the molten alloy at 1000 ° C. A problem was discovered in which the M particles (single particles) that were partially separated inside solidified and adhered to the inner wall of the nozzle, and this adhered solidified substance gradually grew to cause nozzle clogging. If the nozzle is clogged, the flow of the molten metal through the nozzle is hindered, making it impossible to atomize the molten metal.
 そこで、本発明者等は、Cu粉末又はM濃度の低いCuM合金粉末をガスアトマイズ法やディスクアトマイズ法などのアトマイズ法で作製し、このCu粉末又はCuM合金粉末に市販のM粉末(非球形の解砕粉)を混合することによりMリッチな3D造形用混合粉末を得る方法について検討した。しかしながら、この方法では、M粉末の分布が不均一な3D造形用混合粉末しか得られなかった。 Therefore, the present inventors prepared Cu powder or a CuM alloy powder with a low M concentration by an atomizing method such as a gas atomizing method or a disk atomizing method, and added commercially available M powder (non-spherical solution) to this Cu powder or CuM alloy powder. A method of obtaining an M-rich mixed powder for 3D modeling by mixing crushed powder) was investigated. However, with this method, only a mixed powder for 3D modeling in which the distribution of the M powder was non-uniform was obtained.
 本発明は、M粉末がより均一に分布した3D造形用混合粉末を製造することを目的とする。 The purpose of the present invention is to produce a mixed powder for 3D modeling in which the M powder is more uniformly distributed.
 本発明者等は、上記技術課題を鋭意検討し、市販のM粉末(非球形の解砕粉)に代えて、球状のM粉末を用いることにより、M粉末がより均一に分布した3D造形用の混合粉末が得られることを知見した。 The present inventors have made intensive studies on the above technical problems, and have found that by using spherical M powder instead of the commercially available M powder (non-spherical pulverized powder), the M powder is more uniformly distributed for 3D modeling. It was found that a mixed powder of
 すなわち、本発明によれば、以下の態様が提供される。
[態様1]
 球状に成形されたCu粉末及び/又はCuM合金粉末(ただし、Mは1種以上または2種以上の金属元素である)からなる第1の金属粉末と、球状に成形されたM粉末からなる第2の金属粉末とを混合するステップを含む、3D造形用混合粉末の製造方法。
[態様2]
 前記第1の金属粉末と前記第2の金属粉末とを混合するステップが、
 3D造形用混合粉末のM濃度が目標濃度となるように、前記第1の金属粉末及び前記第2の金属粉末の混合比を決定するステップと、
 前記決定した混合比に応じて前記第1の金属粉末及び前記第2の金属粉末を計量するステップと、
 前記計量した前記第1の金属粉末及び前記第2の金属粉末を混合するステップと、
を含む、態様1に記載の3D造形用混合粉末の製造方法。
[態様3]
 前記3D造形用混合粉末の製造方法が、前記第1の金属粉末を製造するステップをさらに含み、
 前記第1の金属粉末を製造するステップが、
 溶解されたCuからなる溶湯及び/又はM濃度が15質量%以下であるCuM合金からなる溶湯を得るステップと、
 この溶湯からアトマイズ法により前記第1の金属粉末を製造するステップと、
を含む、態様1又は2に記載の3D造形用混合粉末の製造方法。
[態様4]
 前記3D造形用混合粉末の製造方法が、前記第2の金属粉末を製造するステップをさらに含み、
 前記第2の金属粉末を製造するステップが、M粉末をプラズマ溶融処理によって製造するステップである、態様1~3のいずれか一つに記載の3D造形用混合粉末の製造方法。
[態様5]
 前記計量した前記第1の金属粉末及び前記第2の金属粉末を混合するステップにおいて、混合された混合粉末が、0.80以上の球形度を有する、態様2~5のいずれか一つに記載の3D造形用混合粉末の製造方法。
That is, according to the present invention, the following aspects are provided.
[Aspect 1]
A first metal powder made of spherically shaped Cu powder and/or CuM alloy powder (where M is one or more metal elements), and a spherically shaped M powder made of a first metal powder. 2. A method for producing a mixed powder for 3D modeling, comprising the step of mixing the metal powder of 2.
[Aspect 2]
mixing the first metal powder and the second metal powder,
determining the mixing ratio of the first metal powder and the second metal powder so that the M concentration of the mixed powder for 3D printing is the target concentration;
weighing the first metal powder and the second metal powder according to the determined mixing ratio;
mixing the weighed first metal powder and the second metal powder;
The method for producing the mixed powder for 3D modeling according to aspect 1, comprising:
[Aspect 3]
The method for producing the mixed powder for 3D printing further comprises producing the first metal powder,
The step of producing the first metal powder comprises:
Obtaining a molten metal made of dissolved Cu and/or a molten metal made of a CuM alloy having a M concentration of 15% by mass or less;
a step of producing the first metal powder from the molten metal by an atomizing method;
The method for producing the mixed powder for 3D modeling according to aspect 1 or 2, comprising:
[Aspect 4]
The method for producing the mixed powder for 3D printing further comprises producing the second metal powder,
The method for producing a mixed powder for 3D printing according to any one of aspects 1 to 3, wherein the step of producing the second metal powder is a step of producing the M powder by plasma melting treatment.
[Aspect 5]
6. The method according to any one of aspects 2 to 5, wherein in mixing the weighed first metal powder and the second metal powder, the mixed mixed powder has a sphericity of 0.80 or more. A method for producing a mixed powder for 3D modeling.
 本発明によれば、球状のM粉末を、球状のCu粉末又はCuM合金粉末に混合することにより、M粉末がより均一に分布した3D造形用の混合粉末を得ることができる。 According to the present invention, by mixing the spherical M powder with the spherical Cu powder or CuM alloy powder, it is possible to obtain a mixed powder for 3D modeling in which the M powder is more uniformly distributed.
純Cr解砕粉のSEM画像である。It is an SEM image of pure Cr pulverized powder. 球状のCr粉末のSEM画像である。It is an SEM image of spherical Cr powder. 比較例粉末の写真である。It is a photograph of a comparative example powder. 実施例粉末の写真である。It is a photograph of an example powder. 試料A~Eの吸光率(%)を測定した棒グラフである。4 is a bar graph showing the absorbance (%) of samples A to E. FIG. 試料Aを原料として造形した3D造形体の写真である。4 is a photograph of a 3D-modeled object modeled using sample A as a raw material. 断面における残存Cr粉の面積比(%)である。It is the area ratio (%) of the residual Cr powder in the cross section.
 本発明は、球状に成形されたCu粉末及び/又はCuM合金粉末(以下、これらを特に区別する必要がない場合には、「CuM合金粉末等」ともいう)からなる第1の金属粉末と、球状に成形されたM粉末からなる第2の金属粉末とを混合し、M粉末が均一に分散した3D造形用混合粉末を得ることを目的とする。 The present invention provides a first metal powder made of spherically shaped Cu powder and/or CuM alloy powder (hereinafter also referred to as "CuM alloy powder etc." when there is no need to distinguish between them); An object of the present invention is to obtain a mixed powder for 3D modeling in which the M powder is uniformly dispersed by mixing it with a second metal powder composed of the M powder formed into a spherical shape.
 CuM合金は、Cuに固溶しにくいMとCuからなる二相分離型の複相合金のことである。Mはメタルの略であり、融点が1700℃以上の高融点メタルが含まれる。Mは、例えば、V、Cr、Nb、W、Zr、Mo及びTaからなる群から選択される1種又は2種以上の金属元素であってもよい。 A CuM alloy is a two-phase separation type multi-phase alloy consisting of M and Cu, which are difficult to dissolve in Cu. M is an abbreviation for metal, and includes high-melting-point metals with a melting point of 1700° C. or higher. M may be, for example, one or more metal elements selected from the group consisting of V, Cr, Nb, W, Zr, Mo and Ta.
 3D造形は、積層造形(Additive Manufacturing)とも呼ばれており、EB(Electron Beam)やレーザーを用いた積層法が良く知られている。これは、造形ステージ上に金属粉末層を形成して、この粉末層の所定部にビームを照射し、その後、上記粉末層の上に新たな粉末層を形成して、その所定部にビームを照射して焼結することで、下層の焼結部と一体となった焼結部を形成する。これを繰り返すことで、粉末から一層ずつ積層的に三次元形状を造形する。これらの手法によれば、従来の加工方法では困難であった複雑な形状を造形することが可能であり、CAD等の形状データから所望の3次元造形体を成形することができる。  3D modeling is also called additive manufacturing, and the lamination method using EB (Electron Beam) and laser is well known. This involves forming a metal powder layer on a modeling stage, irradiating a beam on a predetermined portion of this powder layer, then forming a new powder layer on the powder layer, and irradiating a beam on the predetermined portion. By irradiating and sintering, a sintered portion integrated with the underlying sintered portion is formed. By repeating this process, a three-dimensional shape is formed layer by layer from the powder. According to these methods, it is possible to form a complicated shape that is difficult with conventional processing methods, and to form a desired three-dimensional model from shape data such as CAD.
(第1の金属粉末)
 第1の金属粉末は、アトマイズ法によって製造することができる。アトマイズ法として、例えば、ガスアトマイズ法、ディスクアトマイズ法を用いることができる。ガスアトマイズ法は、真空中で溶解した溶湯を、ノズルから鉛直下方に落下させ、周囲から不活性ガス(アルゴンガス、窒素ガス等)を吹き付けることで、小さな液滴に分断する方法である。分断された溶融金属は、噴霧チャンバ内で落下する間に表面張力により球形化しながら凝固し、球状の粉末が得られる。ディスクアトマイズ法は、ノズルから溶湯を高速で回転するディスク上に連続的に流下し、ディスク上面に形成させた溶融膜を高速回転により液滴状に飛散させて粉末を製造する方法である。溶湯は高速回転の中心に流れ落ち、ディスク表面に広がるとともに遠心力で外周に引張られ薄い溶融膜を形成する。溶融膜はディスクの周端で支持を失い滴状となり、遠心力によりその融滴が分離及び飛散され、微粒化が起こる。微粒化された溶湯は溶湯自らの持つ表面張力により球状化されながら雰囲気ガスもしくは放射冷却により冷却され、球状の粉末が得られる。CuM合金粉末等を、Cu粉末とCuM合金粉末との混合粉末とする場合には、それぞれの粉末をガスアトマイズ法で製造し、これらを混合すればよい。
(First metal powder)
The first metal powder can be produced by an atomizing method. As the atomization method, for example, a gas atomization method or a disc atomization method can be used. The gas atomization method is a method in which molten metal melted in a vacuum is dropped vertically downward from a nozzle, and an inert gas (argon gas, nitrogen gas, etc.) is blown from the surroundings to divide it into small droplets. The fragmented molten metal solidifies while being spheroidized by surface tension while falling in the atomization chamber to obtain spherical powder. The disk atomization method is a method in which molten metal is continuously poured from a nozzle onto a disk that rotates at high speed, and the molten film formed on the upper surface of the disk is scattered in the form of droplets by high-speed rotation to produce powder. The molten metal flows down to the center of the high-speed rotation, spreads over the disk surface, and is pulled toward the outer periphery by centrifugal force to form a thin molten film. The molten film loses its support at the peripheral edge of the disk and forms droplets, and the droplets are separated and scattered by centrifugal force, resulting in atomization. The atomized molten metal is spheroidized by the surface tension of the molten metal itself and cooled by atmospheric gas or radiation cooling to obtain spherical powder. When the CuM alloy powder or the like is to be a mixed powder of Cu powder and CuM alloy powder, each powder may be produced by a gas atomization method and mixed.
 球状の粉末を球形度で規定すると、好ましくは0.80以上である。静的自動画像分析装置を用いて、二次投影像における円相当径が10μm以上の粉末粒子1000個に対し球形度を測定し、これらの算術平均値を第1の金属粉末の球形度と定義することができる。なお、球形度が1に近づくほど真円に近くなる。 When the spherical powder is defined by the sphericity, it is preferably 0.80 or more. Using a static automatic image analyzer, the sphericity is measured for 1000 powder particles with an equivalent circle diameter of 10 μm or more in the secondary projection image, and the arithmetic average value of these is defined as the sphericity of the first metal powder. can do. It should be noted that the closer the sphericity is to 1, the closer to a perfect circle.
 原材料には、Cuからなる溶湯及び/又はM濃度が15質量%以下に濃度調整されたCu及びMからなる溶湯が用いられる。原材料としてCuからなる溶湯を用いた場合、アトマイズ法によって、球状に成形されたCu粉末(第1の金属粉末)が製造される。原材料としてCu及びMからなる溶湯を用いた場合、アトマイズ法によって、球状に成形されたCuM合金粉末(第1の金属粉末)が製造される。上述した通り、これらのCu粉末及びCuM合金粉末を混合した混合粉末を第1の金属粉末としてもよい。 The raw material is a molten metal made of Cu and/or a molten metal made of Cu and M whose M concentration is adjusted to 15% by mass or less. When molten metal made of Cu is used as a raw material, spherically shaped Cu powder (first metal powder) is produced by an atomizing method. When a molten metal composed of Cu and M is used as the raw material, spherically shaped CuM alloy powder (first metal powder) is produced by the atomization method. As described above, a mixed powder obtained by mixing these Cu powder and CuM alloy powder may be used as the first metal powder.
 3D造形体に求められる目標M濃度は、予め定めておくことができる。第1の金属粉末としてCu粉末(Mを含有しない)を選択した場合には、第2の金属粉末のみによって目標M濃度が達成されるように、ブレンド条件が決定される。第1の金属粉末としてCuM合金粉末、又は、Cu粉末とCuM合金粉末との混合粉末を選択する場合には、目標M濃度と第1の金属粉末のM濃度との差分から、第2の金属粉末のブレンド条件を決定することができる。 The target M density required for the 3D modeled object can be determined in advance. When Cu powder (containing no M) is selected as the first metal powder, the blending conditions are determined so that the target M concentration is achieved only with the second metal powder. When selecting CuM alloy powder or a mixed powder of Cu powder and CuM alloy powder as the first metal powder, the difference between the target M concentration and the M concentration of the first metal powder is used to determine the second metal Powder blending conditions can be determined.
 ここで、M濃度が増大すると硬さが向上する一方で、導電性が低下するため、硬さ及び導電性はトレードオフの関係にある。3D造形体の用途によって、求められる硬さ及び導電性は変わるため、目標M濃度を一義的に定めることはできないが、好ましくは1質量%以上、より好ましくは15質量%以上75質量%以下、さらに好ましくは25質量以上50質量%以下である。M濃度が増加することによって、レーザー吸光率も向上する。なお、レーザー吸光率が不足する場合には、例えば、レーザー出力を上げることによって、造形することができる。 Here, as the M concentration increases, the hardness improves, but the conductivity decreases, so hardness and conductivity are in a trade-off relationship. Since the required hardness and conductivity vary depending on the application of the 3D model, the target M concentration cannot be uniquely determined, but is preferably 1% by mass or more, more preferably 15% by mass or more and 75% by mass or less. More preferably, it is 25 mass % or more and 50 mass % or less. Increasing the M concentration also improves the laser extinction coefficient. If the laser absorbance is insufficient, the object can be shaped by, for example, increasing the laser output.
 アトマイズ法によってCuM合金粉末を製造する場合、M濃度が15質量%を超過すると、Mが析出してノズル閉塞を起こすおそれがある。ノズル閉塞を起こすと、溶湯が流れなくなり、アトマイズできなくなる。したがって、アトマイズ法によってCuM合金粉末を製造する場合には、M濃度を15質量%以下に設定するのが望ましい。なお、原材料には不可避的不純物が含まれ得る(以下、同様である)。不可避的不純物には意図的に含有させなくても原料に微量に含まれている金属元素や、合金を得るために溶解や精錬している最中に雰囲気ガスや耐火物煉瓦などの界面より混入する非金属元素がある。この内特に代表的な金属元素としてはSiやFeやNiなどがあげられる。また、非金属介在物を生成する代表的な元素としてはCやOやNなどがあげられる。そして非金属介在物を生成する元素の含有率の上限は、3D造形体に合計で0.1質量%以下とすることが好ましい。 When the CuM alloy powder is produced by the atomization method, if the M concentration exceeds 15% by mass, M may precipitate and clog the nozzle. If the nozzle is clogged, the molten metal will stop flowing and cannot be atomized. Therefore, when producing CuM alloy powder by the atomization method, it is desirable to set the M concentration to 15% by mass or less. Raw materials may contain unavoidable impurities (the same applies hereinafter). Unavoidable impurities include metal elements that are not intentionally included in the raw material but are contained in trace amounts, and contamination from the atmosphere gas and interfaces of refractory bricks during melting and refining to obtain alloys. There are non-metallic elements that Among these, particularly representative metal elements include Si, Fe, Ni, and the like. C, O, N and the like are typical elements that form non-metallic inclusions. The upper limit of the content of elements that generate non-metallic inclusions is preferably 0.1% by mass or less in total in the 3D modeled body.
(第2の金属粉末)
 第2の金属粉末は、球形ではない不定形状のM粉末を原材料(以下、原料M粉末ともいう)とした球状化処理を行うことによって製造される球形の粒子である。第2の金属粉末を球形度で規定すると、好ましくは0.80以上である。球形度の技術的意義については、上述したから説明を省略する。原料M粉末の製造には、機械的粉砕法、噴霧法、還元法、電解法などを用いることができる。機械的粉砕法において、M塊が比較的大きい場合には、ジョークラッシャー、ハンマーミル、スタンプミル等を用いてM塊を粉砕することによって、原料M粉末を得ることができる。機械的粉砕法において、M塊が比較的小さい場合には、ボールミル、振動ミルなどを用いてM塊を粉砕することによって、原料M粉末を得ることができる。
(Second metal powder)
The second metal powder is spherical particles manufactured by performing a spheroidizing treatment using non-spherical irregular shaped M powder as a raw material (hereinafter also referred to as raw M powder). The sphericity of the second metal powder is preferably 0.80 or more. Since the technical significance of the sphericity has been described above, the explanation is omitted. A mechanical pulverization method, a spray method, a reduction method, an electrolysis method, or the like can be used to produce the raw material M powder. In the mechanical pulverization method, if the M lumps are relatively large, the raw M powder can be obtained by pulverizing the M lumps using a jaw crusher, a hammer mill, a stamp mill, or the like. In the mechanical pulverization method, if the M lumps are relatively small, the raw material M powder can be obtained by pulverizing the M lumps using a ball mill, vibration mill, or the like.
 球状化処理には、例えば、高周波誘導熱プラズマ法を用いることができる。高周波誘導熱プラズマ法は、高周波誘導コイルにより高周波磁場を励磁し、この高周波磁場内にプラズマガスを供給して、誘導的に高周波プラズマフレームを発生させるとともに、この高周波プラズマフレーム内に原料M粉末を供給することによって球状化粒子を製造する技術である。 A high-frequency induction thermal plasma method, for example, can be used for the spheroidizing treatment. In the high-frequency induction thermal plasma method, a high-frequency magnetic field is excited by a high-frequency induction coil, plasma gas is supplied into this high-frequency magnetic field, and a high-frequency plasma flame is inductively generated, and the raw material M powder is fed into this high-frequency plasma flame. It is a technique for producing spherical particles by supplying.
 ただし、球状化処理の方法は高周波誘導熱プラズマ法に限るものではない。例えば、高周波誘導熱プラズマ法に代えて、回転電極法(Rotating Electrode Process)を用いることもできる。回転電極法は、回転する電極を高温プラズマによって溶解させ、電極表面から遠心力によって吹き飛ばされた液滴を、電極周辺に配置したガスノズルから噴出するガスジェットによる空気力学的引張力によって球状化する技術である。なお、ガスアトマイズ法は、Mのような高融点金属を球状化するのに適さない。 However, the spheroidizing method is not limited to the high-frequency induction thermal plasma method. For example, instead of the high-frequency induction thermal plasma method, a rotating electrode process can be used. In the rotating electrode method, a rotating electrode is melted by high-temperature plasma, and droplets blown off from the electrode surface by centrifugal force are sphered by the aerodynamic pulling force of a gas jet ejected from a gas nozzle placed around the electrode. is. The gas atomization method is not suitable for spheroidizing a high-melting-point metal such as M.
(混合方法)
 球状のCuM合金粉末等(第1の金属粉末)と、球状のM粉末(第2の金属粉末)とを混合する。この混合ステップは、混合比決定ステップ、計量ステップ及び狭義の混合ステップを含むのが好ましい。
(Mixing method)
Spherical CuM alloy powder or the like (first metal powder) and spherical M powder (second metal powder) are mixed. This mixing step preferably includes a mixing ratio determination step, a metering step and a narrowly defined mixing step.
 混合比決定ステップでは、3D造形用混合粉末のM濃度が目標M濃度となるように、第1の金属粉末及び第2の金属粉末の混合比を決定する。 In the mixing ratio determination step, the mixing ratio of the first metal powder and the second metal powder is determined so that the M concentration of the mixed powder for 3D modeling becomes the target M concentration.
 計量ステップでは、混合比決定ステップで決定した混合比となるように、第1の金属粉末及び第2の金属粉末をそれぞれ計量する。計量器には、例えば、電子天秤を用いることができる。 In the weighing step, the first metal powder and the second metal powder are each weighed so as to achieve the mixing ratio determined in the mixing ratio determining step. An electronic balance, for example, can be used as the weighing instrument.
 狭義の混合ステップでは、計量ステップで計量した第1の金属粉末及び第2の金属粉末を混合する。混合方法は、混合粉末が入った混合容器を作業者が揺らす手混合方式、混合粉末が入った混合容器を機械的に回転させる回転混合方式、攪拌翼を備えた撹拌機により混合粉末を攪拌させる攪拌混合方式など公知の方法を用いることができる。M粉末が均一に分散する理由は、M粉末が球状に成形されているため、流動性が高まるからである。 In the narrowly defined mixing step, the first metal powder and the second metal powder weighed in the weighing step are mixed. Mixing methods include a manual mixing method in which an operator shakes the mixing container containing the mixed powder, a rotary mixing method in which the mixing container containing the mixed powder is mechanically rotated, and a stirrer equipped with a stirring blade to stir the mixed powder. A known method such as a stirring and mixing method can be used. The reason why the M powder is uniformly dispersed is that the M powder is formed into a spherical shape, which increases the fluidity.
 M粉末が上述の分散性を発現しているか否かは、例えば、M粉末を混合した混合粉末の流動度を測定することによって評価できる。混合粉末の流動度は、例えば、JIS Z 2502に定める規格に従って、50gの混合粉末を漏斗に供給し、オリフィスにおける通過時間を計測することによって評価できる。3D造形用混合粉末の流動度は、粉末の形状以外の条件にっても変化するため、一義的に定義することはできないが、好ましくは30(s/50g)以下であり、より好ましくは12.2(s/50g)以下である。流動度が小さい粉末は、より3D造形に適している。また、CuM合金粉末等とM粉末とでは金属色が異なるため、混合粉末の画像データから得られる色情報に基づきM粉末の分散性を評価してもよい。具体的には、MがCrである場合、混合粉末全体を観察し、赤銅色が支配的で、かつ、Crを表す青色の粉末群が看取されない場合には、Cr粉末が均一に混合されているものと評価できる。他方、混合粉末中にCrが偏在した青色の粉末群が看取された場合には、Cr粉末が不均一に混合されていると評価できる。勿論、ソフトウェアによる画像解析によって、M粉末が均一に混合されているか否かを判別してもよい。 Whether or not the M powder exhibits the above dispersibility can be evaluated, for example, by measuring the fluidity of the mixed powder in which the M powder is mixed. The fluidity of the mixed powder can be evaluated, for example, by feeding 50 g of the mixed powder into a funnel and measuring the passage time through the orifice in accordance with the standard defined in JIS Z 2502. The fluidity of the mixed powder for 3D modeling changes depending on conditions other than the shape of the powder, so it cannot be defined unambiguously, but it is preferably 30 (s/50 g) or less, more preferably 12 .2 (s/50g) or less. Powders with low fluidity are more suitable for 3D modeling. Further, since the CuM alloy powder and the like differ in metal color from the M powder, the dispersibility of the M powder may be evaluated based on color information obtained from the image data of the mixed powder. Specifically, when M is Cr, the entire mixed powder is observed, and if the reddish copper color is dominant and no blue powder group representing Cr is observed, the Cr powder is uniformly mixed. It can be evaluated that On the other hand, when a blue powder group in which Cr is unevenly distributed is observed in the mixed powder, it can be evaluated that the Cr powder is non-uniformly mixed. Of course, image analysis by software may be used to determine whether or not the M powder is uniformly mixed.
 球状に成形することによってM粉末の流動性が高められているため、混合容器から造形ステージに至るまでの搬送過程において、上述の均一な分布状態は概ね維持される。したがって、M粉末が均一に分散した3D造形用混合粉末を用いて3D造形を行うことができる。 Because the fluidity of the M powder is enhanced by molding it into a spherical shape, the above-mentioned uniform distribution state is generally maintained during the transportation process from the mixing container to the modeling stage. Therefore, 3D modeling can be performed using the mixed powder for 3D modeling in which the M powder is uniformly dispersed.
 次に、実施例を示しながら、本発明についてより具体的に説明する。 Next, the present invention will be described more specifically with reference to Examples.
(第1実験例)
 Cr塊を解砕した解砕粉(純Cr解砕粉)を球状のCuCrアトマイズ粉に混合してCr濃度が25質量%の混合粉末(以下、比較例粉末ともいう)を得た。解砕粉には市販品を使用した。CuCrアトマイズ粉の組成は、Crが15質量%、残部がCuとした(Cu15Cr合金)。混合粉末のCr濃度を25質量%にするために、Cu15Cr合金粉末と純Cr粉末の混合比を15対2に決定した。混合比を決定した後、Cu15Cr合金粉末と純Cr粉末をそれぞれ計量し、1765gのCu15Cr合金粉末と235gの純Cr粉末を混合した。図1は、解砕粉のSEM(Scanning Electron Microscope)画像である。図1に示すように、球状とは異なる不定形状のCr粒子が確認された。
(First Experimental Example)
A crushed powder obtained by crushing Cr lumps (pure Cr crushed powder) was mixed with spherical CuCr atomized powder to obtain a mixed powder having a Cr concentration of 25% by mass (hereinafter also referred to as a comparative example powder). A commercially available product was used as the pulverized powder. The composition of the atomized CuCr powder was 15% by mass of Cr and the balance was Cu (Cu15Cr alloy). In order to make the Cr concentration of the mixed powder 25% by mass, the mixing ratio of the Cu15Cr alloy powder and the pure Cr powder was determined to be 15:2. After determining the mixing ratio, Cu15Cr alloy powder and pure Cr powder were weighed respectively, and 1765 g of Cu15Cr alloy powder and 235 g of pure Cr powder were mixed. FIG. 1 is an SEM (Scanning Electron Microscope) image of pulverized powder. As shown in FIG. 1, non-spherical Cr particles with an irregular shape were confirmed.
 純Crの解砕粉を球状化処理した第2の金属粉末を球状のCuCrアトマイズ粉に混合して混合粉末(以下、実施例粉末ともいう)を得た。CuCrアトマイズ粉の組成は、比較例粉末と同じにした。第2の金属粉末の添加量は、混合粉末のCr濃度が25質量%となるように調整した。調整方法は、比較例粉末と同じであるから、説明を省略する。第2の金属粉末を得るための球状化処理は、ニイミ産業製のプラズマ球状化処理装置(型番:N-Plasma Melting)を用いて行った。図2は、第2の金属粉末のSEM画像である。図2に示すように、球状のCr粒子が確認された。 A second metal powder obtained by spheroidizing pulverized powder of pure Cr was mixed with spherical CuCr atomized powder to obtain a mixed powder (hereinafter also referred to as an example powder). The composition of the CuCr atomized powder was the same as that of the comparative example powder. The amount of the second metal powder added was adjusted so that the mixed powder had a Cr concentration of 25% by mass. Since the preparation method is the same as that of the comparative example powder, the explanation is omitted. The spheroidizing treatment for obtaining the second metal powder was performed using a plasma spheroidizing apparatus (model number: N-Plasma Melting) manufactured by Niimi Sangyo Co., Ltd. FIG. 2 is an SEM image of the second metal powder. As shown in FIG. 2, spherical Cr particles were confirmed.
 図3及び図4はそれぞれ比較例粉末及び実施例粉末の写真である。実施例粉末は、赤銅色が支配的であり、青色の粉末群は確認されなかった。他方、比較例粉末では、点線で囲んだ領域に青色の粉末群(純Cr粉末の偏在領域)が確認された。また、比較例粉末及び実施例粉末それぞれの流動度を測定し、表1の結果を得た。流動度の測定は、実施形態に記載の「JIS Z 2502」にしたがって行った。また、比較例粉末及び実施例粉末それぞれの球形度を測定し、表2の結果を得た。Malvern Instruments製の静的自動画像分析装置 モフォロギG3を用いて、二次投影像における円相当径が10μm以上の粉末粒子1000個に対し球形度を測定し、これらの算術平均値を球形度とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
3 and 4 are photographs of comparative example powder and example powder, respectively. The powder of the example was predominantly copper-red, and no blue powder group was observed. On the other hand, in the comparative example powder, a blue powder group (region where pure Cr powder is unevenly distributed) was confirmed in the region surrounded by the dotted line. Further, the fluidity of each of the comparative example powder and the example powder was measured, and the results shown in Table 1 were obtained. Flow rate was measured according to "JIS Z 2502" described in the embodiment. In addition, the sphericity of each of the comparative example powder and the example powder was measured, and the results shown in Table 2 were obtained. Using a static automatic image analyzer Morphologi G3 manufactured by Malvern Instruments, the sphericity was measured for 1000 powder particles having an equivalent circle diameter of 10 μm or more in the secondary projection image, and the arithmetic average value of these was taken as the sphericity. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図3及び図4の写真を比較参照して、実施例粉末は、比較例粉末と異なりCr粉末が均一に分散していることがわかった。また、表1から、実施例粉末は、比較例粉末よりも流動性が優れていることがわかった。また、表2から、実施例粉末は、比較例粉末よりも球形度が優れている(1.00に近い)ことがわかった。なお、実施例粉末では、第1の金属粉末及び第2の金属粉末のそれぞれの球形度も0.80以上であった。比較例粉末では、第1の金属粉末及び第2の金属粉末のそれぞれの球形度もそれぞれ0.80未満であった。 By comparing and referring to the photographs of FIGS. 3 and 4, it was found that the Cr powder was uniformly dispersed in the Example powder, unlike the Comparative Example powder. Also, from Table 1, it was found that the powders of Examples had better fluidity than the powders of Comparative Examples. Also, from Table 2, it was found that the example powders had a sphericity superior to that of the comparative example powders (close to 1.00). In addition, in the example powder, the sphericity of each of the first metal powder and the second metal powder was also 0.80 or more. In the comparative example powder, the sphericity of each of the first metal powder and the second metal powder was also less than 0.80.
 以上の実験結果から、球状のCr粉末を球状のCuCrアトマイズ粉に添加することによってアトマイズ法では製造できないCr濃度が高く、かつ、Crが均一に分散した3D造形用混合粉末を得られることがわかった。 From the above experimental results, it was found that by adding the spherical Cr powder to the spherical CuCr atomized powder, it is possible to obtain a mixed powder for 3D printing in which the Cr concentration is high and Cr is uniformly dispersed, which cannot be produced by the atomizing method. Ta.
(第2実験例)
 以下に示される試料A~Eを準備した。
 試料A:ガスアトマイズ法により製造した球状のCu15Cr合金粉末に、球状のCr粉末を混合したCu25Cr混合粉末(試料AにおけるCrの体積率:13.7%)
 試料B:ガスアトマイズ法により製造した球状のCu15Cr合金粉末に、Crの解砕粉(不定形状)を混合したCu25Cr混合粉末
 試料C:ガスアトマイズ法により製造した球状のCu15Cr合金粉末
 試料D:ガスアトマイズ法により製造した球状のCu粉末
 試料E:ガスアトマイズ法により製造した球状の純Cu粉末に、球状のCr粉末を混合したCu25Cr混合粉末(試料EにおけるCrの体積率:29.4%)
(Second experimental example)
Samples AE shown below were prepared.
Sample A: Cu25Cr mixed powder obtained by mixing spherical Cr powder with spherical Cu15Cr alloy powder produced by gas atomization (volume ratio of Cr in sample A: 13.7%)
Sample B: A Cu25Cr mixed powder obtained by mixing a spherical Cu15Cr alloy powder produced by a gas atomization method with crushed Cr powder (irregular shape) Sample C: A spherical Cu15Cr alloy powder produced by a gas atomization method Sample D: Produced by a gas atomization method Spherical Cu powder Sample E: Cu25Cr mixed powder obtained by mixing spherical Cr powder with spherical pure Cu powder produced by the gas atomization method (Cr volume ratio in Sample E: 29.4%)
 試料A及びEのCr粉末(第2の金属粉末)は、純Crの解砕粉に対して球状化処理を施すことにより製造した。球状化処理には、ニイミ産業製のプラズマ球状化処理装置(型番:N-Plasma Melting)を使用した。 The Cr powders (second metal powders) of samples A and E were produced by subjecting pulverized powder of pure Cr to a spheroidizing treatment. For the spheroidizing treatment, a plasma spheroidizing device manufactured by Niimi Sangyo (model number: N-Plasma Melting) was used.
 試料A~Eのそれぞれの吸光率(%)を測定した。吸光率(%)は、日本分光株式会社製 紫外可視近赤外分光光度計V-770DSにより測定した。一般的にレーザー式金属積層造形機に広く用いられるファイバーレーザーの波長である1064nmにおけるレーザー光吸収率を比較した。なお、レーザー光吸収率は、測定によって求められる全反射を用いて、「吸収率=1-全反射率」にて算出した。 The absorbance (%) of each of samples A to E was measured. The absorbance (%) was measured with an ultraviolet-visible-near-infrared spectrophotometer V-770DS manufactured by JASCO Corporation. Laser light absorptance at 1064 nm, which is the wavelength of a fiber laser widely used in laser metal additive manufacturing machines, was compared. The laser light absorptance was calculated by using the total reflection determined by the measurement as "absorptance=1-total reflectance".
 試料A~Eの吸光率を図5に示す。同図から明らかなように、試料A及び試料E(球状のCr粉末を混合した混合粉末)は、3D造形で汎用される鋼の吸光率(50%)以上を備えているため、造形用粉末として適している。また、試料Bも50%以上の吸光率を備えているが、前述の図3及び図4から、試料Bは試料Aと異なり、純Cr粉末が均一に分散していないため、レーザーや電子ビームの照射位置によって吸光率にばらつきが生じる。したがって造形性にもばらつきが生じるため、3D造形用混合粉末には適さない。試料Aを用いて3D造形を行ったところ、図6の立方体が得られた。 Fig. 5 shows the absorbance of samples A to E. As is clear from the figure, sample A and sample E (mixed powder in which spherical Cr powder is mixed) have a light absorption coefficient (50%) or higher than that of steel commonly used in 3D modeling. suitable as In addition, sample B also has an absorptivity of 50% or more, but from FIGS. Absorption coefficient varies depending on the irradiation position of . Therefore, it is not suitable for a mixed powder for 3D modeling because it also causes variations in modeling properties. When 3D modeling was performed using sample A, the cube shown in FIG. 6 was obtained.
 また、試料Aについて、レーザーのエネルギー密度を種々変更して、3D造形をした後、3D造形体を切断して、切断面における残存Cr粉の面積比を求めた。その結果を図7に示す。同図に示すように、切断面における残存Cr粉の面積比は0.5%以下であり、混合粉末におけるCrの体積率(13.7%)より遥かに小さかった。これにより、高融点のCr粉末が溶融していることが確認された。 Also, for sample A, after 3D modeling was performed by changing the laser energy density in various ways, the 3D modeled body was cut and the area ratio of the residual Cr powder on the cut surface was determined. The results are shown in FIG. As shown in the figure, the area ratio of residual Cr powder in the cut surface was 0.5% or less, which was much smaller than the volume ratio of Cr in the mixed powder (13.7%). As a result, it was confirmed that the high melting point Cr powder was melted.
(第3実験例)
 第1実験例及び第2実験例の試験を、他の試料についても行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の「第1の金属粉末のM量」とは、第1の金属粉末に含まれるM(メタル)の含有量(質量%)のことであり、「合計M量」とは、混合粉末全体に含まれるMの含有量(質量%)のことである。例えば、試料Fは、V:0.2質量%及び残部がCuからなる第1の金属粉末と、Vからなる第2の混合粉末とを混合した混合粉末であって、Vの総含有量17質量%の混合粉末である。また、試料Hは、Cuのみからなる第1の金属粉末(純Cu粉末)と、Taからなる第2の金属粉末とを混合した混合粉末であって、Taの総含有量が5質量%の混合粉末である。実施例では、アトマイズ粉からなる第1の金属粉末に、球状の第2の金属粉末を添加した。実施例における第2の金属粉末には、ニイミ産業製のプラズマ球状化処理装置(型番:N-Plasma Melting)を用いて解砕粉を球状化した、球状化処理粉を使用した。比較例では、アトマイズ粉からなる第1の金属粉末に、解砕粉である第2の金属粉末を添加した。
(Third experimental example)
The tests of the first experimental example and the second experimental example were also performed on other samples. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
The "M amount of the first metal powder" in Table 3 is the content (mass%) of M (metal) contained in the first metal powder, and the "total M amount" is the mixed powder It is the content (% by mass) of M contained in the whole. For example, sample F is a mixed powder obtained by mixing a first metal powder consisting of V: 0.2% by mass and the balance being Cu, and a second mixed powder consisting of V, wherein the total V content is 17 It is a mixed powder of % by mass. Sample H is a mixed powder obtained by mixing a first metal powder (pure Cu powder) made only of Cu and a second metal powder made of Ta, and the total Ta content is 5% by mass. It is a mixed powder. In the example, spherical second metal powder was added to the first metal powder made of atomized powder. As the second metal powder in the examples, spheroidized powder obtained by spheroidizing pulverized powder using a plasma spheroidizing device (model number: N-Plasma Melting) manufactured by Niimi Sangyo Co., Ltd. was used. In the comparative example, the second metal powder, which is pulverized powder, was added to the first metal powder, which was atomized powder.
 流動度、球形度、及び外観上のM粉末の偏在については、第1実験例と同様の方法で測定及び評価した。混合粉末を5回サンプリングして、それぞれのサンプルの吸光率を測定し、最大値及び最小値の差分を吸光率のバラつきとした。吸光率の測定は、第2実験例と同じにした。それぞれの混合粉末を原料として、3D造形を行うことにより、10mm角のブロックを得た。3D造形時のエネルギー密度は、290J/mmとした。3D造形体を切断して、切断面における残存Mの面積比を求めた。 Fluidity, sphericity, and uneven distribution of M powder in appearance were measured and evaluated in the same manner as in the first experimental example. The mixed powder was sampled five times, the absorbance of each sample was measured, and the difference between the maximum value and the minimum value was defined as the absorbance variation. The measurement of the absorbance was the same as in the second experimental example. A block of 10 mm square was obtained by performing 3D modeling using each mixed powder as a raw material. The energy density during 3D modeling was 290 J/mm 3 . The 3D model was cut, and the area ratio of the remaining M on the cut surface was determined.
 以上の実験結果から、球状のM粉末をCuMアトマイズ粉又は純Cuアトマイズ粉に添加することによって、アトマイズ法では製造できないM濃度が高く、かつ、Mが均一に分散した3D造形用混合粉末を得られることがわかった。また、実施例の粉末では、吸光率のバラつきを小さくできた。 

 
From the above experimental results, by adding spherical M powder to CuM atomized powder or pure Cu atomized powder, a mixed powder for 3D modeling in which M concentration is high and M is uniformly dispersed, which cannot be produced by the atomizing method, is obtained. It was found that In addition, the powders of the examples were able to reduce the variation in the absorbance.

Claims (6)

  1.  球状に成形されたCu粉末及び/又はCuM合金粉末(ただし、Mは1種以上または2種以上の金属元素である)からなる第1の金属粉末と、球状に成形されたM粉末からなる第2の金属粉末とを混合するステップを含む、3D造形用混合粉末の製造方法。 A first metal powder made of spherically shaped Cu powder and/or CuM alloy powder (where M is one or more metal elements), and a spherically shaped M powder made of a first metal powder. 2. A method for producing a mixed powder for 3D modeling, comprising the step of mixing the metal powder of 2.
  2.  前記第1の金属粉末と前記第2の金属粉末とを混合するステップが、
     3D造形用混合粉末のM濃度が目標濃度となるように、前記第1の金属粉末及び前記第2の金属粉末の混合比を決定するステップと、
     前記決定した混合比に応じて前記第1の金属粉末及び前記第2の金属粉末を計量するステップと、
     前記計量した前記第1の金属粉末及び前記第2の金属粉末を混合するステップと、
    を含む、請求項1に記載の3D造形用混合粉末の製造方法。
    mixing the first metal powder and the second metal powder,
    determining the mixing ratio of the first metal powder and the second metal powder so that the M concentration of the mixed powder for 3D printing is the target concentration;
    weighing the first metal powder and the second metal powder according to the determined mixing ratio;
    mixing the weighed first metal powder and the second metal powder;
    The method for producing a mixed powder for 3D modeling according to claim 1, comprising
  3.  前記3D造形用混合粉末の製造方法が、前記第1の金属粉末を製造するステップをさらに含み、
     前記第1の金属粉末を製造するステップが、
     溶解されたCuからなる溶湯及び/又はM濃度が15質量%以下であるCuM合金からなる溶湯を得るステップと、
     この溶湯からアトマイズ法により前記第1の金属粉末を製造するステップと、
    を含む、請求項1又は2に記載の3D造形用混合粉末の製造方法。
    The method for producing the mixed powder for 3D printing further comprises producing the first metal powder,
    The step of producing the first metal powder comprises:
    Obtaining a molten metal made of dissolved Cu and/or a molten metal made of a CuM alloy having a M concentration of 15% by mass or less;
    a step of producing the first metal powder from the molten metal by an atomizing method;
    The method for producing a mixed powder for 3D modeling according to claim 1 or 2, comprising:
  4.  前記3D造形用混合粉末の製造方法が、前記第2の金属粉末を製造するステップをさらに含み、
     前記第2の金属粉末を製造するステップが、M粉末をプラズマ溶融処理によって製造するステップである、請求項1又は2に記載の3D造形用混合粉末の製造方法。
    The method for producing the mixed powder for 3D printing further comprises producing the second metal powder,
    3. The method of producing a mixed powder for 3D modeling according to claim 1, wherein the step of producing the second metal powder is a step of producing the M powder by plasma fusion treatment.
  5.  前記3D造形用混合粉末の製造方法が、前記第2の金属粉末を製造するステップをさらに含み、
     前記第2の金属粉末を製造するステップが、M粉末をプラズマ溶融処理によって製造するステップである、請求項3に記載の3D造形用混合粉末の製造方法。
    The method for producing the mixed powder for 3D printing further comprises producing the second metal powder,
    4. The method of producing a mixed powder for 3D modeling according to claim 3, wherein the step of producing the second metal powder is a step of producing the M powder by plasma fusion treatment.
  6.  前記計量した前記第1の金属粉末及び前記第2の金属粉末を混合するステップにおいて、混合された混合粉末が、0.80以上の球形度を有する、請求項2に記載の3D造形用混合粉末の製造方法。

     
    3. The mixed powder for 3D printing according to claim 2, wherein in the step of mixing the weighed first metal powder and the second metal powder, the mixed powder has a sphericity of 0.80 or more. manufacturing method.

PCT/JP2023/001417 2022-02-28 2023-01-18 Method of manufacturing mixed powder for additive manufacturing WO2023162524A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-030289 2022-02-28
JP2022030289 2022-02-28
JP2022-185694 2022-11-21
JP2022185694A JP7378907B2 (en) 2022-02-28 2022-11-21 Method for producing mixed powder for 3D modeling

Publications (1)

Publication Number Publication Date
WO2023162524A1 true WO2023162524A1 (en) 2023-08-31

Family

ID=87765491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001417 WO2023162524A1 (en) 2022-02-28 2023-01-18 Method of manufacturing mixed powder for additive manufacturing

Country Status (1)

Country Link
WO (1) WO2023162524A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154850A (en) * 2015-07-06 2018-10-04 株式会社日立製作所 Powder material, laminated molded body, and method for producing the laminated molded body
WO2019225589A1 (en) * 2018-05-23 2019-11-28 古河電気工業株式会社 Copper-based powder, surface-coated copper-based powder and mixed powder thereof, laminated article and method for producing same, and various metallic components
CN111360254A (en) * 2020-03-23 2020-07-03 陕西斯瑞新材料股份有限公司 Method for preparing CuW90 material by using spherical tungsten powder and atomized copper powder
JP2021031691A (en) * 2019-08-19 2021-03-01 山陽特殊製鋼株式会社 Cu alloy powder
WO2021039912A1 (en) * 2019-08-27 2021-03-04 日立金属株式会社 Wc-based super-hard alloy powder, wc-based super-hard alloy member, and method for producing wc-based super-hard alloy member
JP2021075753A (en) * 2019-11-08 2021-05-20 セイコーエプソン株式会社 Powder for manufacturing three-dimensional molded article, composition for manufacturing three-dimensional molded article and method for manufacturing three-dimensional molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154850A (en) * 2015-07-06 2018-10-04 株式会社日立製作所 Powder material, laminated molded body, and method for producing the laminated molded body
WO2019225589A1 (en) * 2018-05-23 2019-11-28 古河電気工業株式会社 Copper-based powder, surface-coated copper-based powder and mixed powder thereof, laminated article and method for producing same, and various metallic components
JP2021031691A (en) * 2019-08-19 2021-03-01 山陽特殊製鋼株式会社 Cu alloy powder
WO2021039912A1 (en) * 2019-08-27 2021-03-04 日立金属株式会社 Wc-based super-hard alloy powder, wc-based super-hard alloy member, and method for producing wc-based super-hard alloy member
JP2021075753A (en) * 2019-11-08 2021-05-20 セイコーエプソン株式会社 Powder for manufacturing three-dimensional molded article, composition for manufacturing three-dimensional molded article and method for manufacturing three-dimensional molded article
CN111360254A (en) * 2020-03-23 2020-07-03 陕西斯瑞新材料股份有限公司 Method for preparing CuW90 material by using spherical tungsten powder and atomized copper powder

Similar Documents

Publication Publication Date Title
Popovich et al. Metal powder additive manufacturing
CN105764634B (en) Using goal approach/material pair powder is suitable for, by being superimposed the method for manufacturing component with high energy beam melting or sintered powder grains
TW201734217A (en) Noble-metal powder and the use thereof for producing components
US4756746A (en) Process of producing fine spherical particles
EP3787822B1 (en) Ods alloy powder, method for producing same by means of plasma treatment, and use thereof
EP3187285A1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
JP6703759B2 (en) Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
WO2019230806A1 (en) Metal powder for 3d printers, shaped article, and method for producing shaped article
Fan et al. Phase formation in molybdenum disilicide powders during in-flight induction plasma treatment
WO2023162524A1 (en) Method of manufacturing mixed powder for additive manufacturing
Sun et al. Characterization, preparation, and reuse of metallic powders for laser powder bed fusion: a review
JP2019112700A (en) Production method of metal powder material
JP7378907B2 (en) Method for producing mixed powder for 3D modeling
CN114641357A (en) Spherical powder for producing three-dimensional objects
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder
US20220388059A1 (en) Powder material
JPWO2019124047A1 (en) Spherical Ti powder and its manufacturing method
US20220176447A1 (en) Method of producing solid spherical powder,and method of producing shaped product
JP2023126112A (en) Cu ALLOY AND 3D OBJECT
Ravry et al. Centrifugal atomization of stainless-steel rotating rods melted by a high-power LASER beam
JP7249811B2 (en) METHOD FOR MANUFACTURING METAL POWDER MATERIAL
Riabov The effects of morphology and surface oxidation of stainless steel powder in laser based-powder bed fusion
JP7484875B2 (en) Method for producing melting raw material, and melting raw material
WO2004096469A1 (en) A metal powder composition
Cheney et al. Production of rapidly solidified ultrafine metal and ceramic powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759530

Country of ref document: EP

Kind code of ref document: A1