JP2003049201A - Spherical powder of metal and metallic compound, and manufacturing method thereof - Google Patents

Spherical powder of metal and metallic compound, and manufacturing method thereof

Info

Publication number
JP2003049201A
JP2003049201A JP2001236105A JP2001236105A JP2003049201A JP 2003049201 A JP2003049201 A JP 2003049201A JP 2001236105 A JP2001236105 A JP 2001236105A JP 2001236105 A JP2001236105 A JP 2001236105A JP 2003049201 A JP2003049201 A JP 2003049201A
Authority
JP
Japan
Prior art keywords
spherical powder
metal
powder
gas
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001236105A
Other languages
Japanese (ja)
Inventor
Akira Terajima
章 寺島
Yoshiaki Inoue
好明 井上
Seiji Yokota
誠二 横田
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2001236105A priority Critical patent/JP2003049201A/en
Publication of JP2003049201A publication Critical patent/JP2003049201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing spherical powder of metal and metallic compound which is composed of a material such as carbides or nitrides, e.g. silicon carbide, silicon nitride, titanium nitride, etc., used, e.g. for grinding media for high temperature structural members and has required sphere size, composition and structure. SOLUTION: In this method, raw-material powder of metal or metallic compound is heated and melted by high-temperature plasma in a prescribed gaseous atmosphere to undergo spheroidizing, and the resultant spheroidized intermediate spherical powder is heat-treated in a prescribed gaseous atmosphere, by which the spherical powder of metal and metallic compound having required composition and structure can be formed. The raw-material powder is fed via a feed pipe 21 into plasma flame 1 generated by a plasma torch. The raw-material powder is melted by heating and granulated and falls down within a chamber 31. The resultant intermediate spherical particles are further heat-treated, by which the required spherical product can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば高温構造材
の粉砕メディアなどに使用されるSiC,Si34
TiNなどの炭化物あるいは窒化物などの球状粉末成
品、およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to SiC, Si 3 N 4 , and
The present invention relates to a spherical powder product such as a carbide or nitride such as TiN, and a method for producing the same.

【0002】[0002]

【従来の技術】不純物の混入をなくして金属系化合物の
球状粉末を得る方法として、金属又は金属系化合物の粉
末を粉末状態で熱プラズマにより溶融して表面張力によ
り球状化させる方法が行われている(特開平6−257
17号など)。
2. Description of the Related Art As a method for obtaining a spherical powder of a metal compound without mixing impurities, a method of melting a powder of a metal or a metal compound in a powder state by thermal plasma and making it spherical by surface tension is performed. (JP-A-6-257)
No. 17).

【0003】この方法は、原料粉末の粒度とプラズマ加
熱条件と球状化冷却条件を選択することにより球状粒子
の大きさを任意に変えて所要の球径の球状粉末を得るこ
とができるという、大きな利点を有する。
According to this method, the size of the spherical particles can be arbitrarily changed by selecting the particle size of the raw material powder, the plasma heating condition and the spheroidizing cooling condition to obtain a spherical powder having a required spherical diameter. Have advantages.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記プ
ラズマ球状化においては、溶融球状化した粒子が落下冷
却の際、凝固前にチャンバ壁に当たって潰れたり、相互
付着して変形したりして、球状粒子の収率が低下すると
いう問題点がある。これを防止するために、溶融粒子を
急冷することが必要であるが、急冷すると粒子の結晶構
造が制御できないために所要の結晶構造の球状粉末を得
ることができない。
However, in the above-mentioned plasma spheroidization, when the molten spheroidized particles fall and cool, they collide with the chamber wall before being solidified, and are crushed or deformed by mutual adhesion. However, there is a problem in that the yield of In order to prevent this, it is necessary to rapidly cool the molten particles. However, when the molten particles are rapidly cooled, the crystal structure of the particles cannot be controlled, so that a spherical powder having a required crystal structure cannot be obtained.

【0005】また、金属系窒化物や炭化物の球状粉末を
得る場合、球状化の加熱に使用するプラズマガスは、球
状化条件を主体にするために、所要の組成の金属系窒化
物や炭化物の球状粉末を得ることは困難であるという問
題点がある。すなわち、例えばSiCのように無融点の
金属系材料の窒化物や炭化物の球状化の場合、高温のプ
ラズマにより加熱されると昇華してしまう。また、例え
ばSi3 4 のように高温における組成の安定性の悪い
材料では、3000〜4000℃のプラズマ中で加熱す
るとSiとN2 に分解する。また、TiN,TiCのよ
うな高融点材料を球状化するプラズマ炉は大きなパワー
を必要とし、設備が高価になるという問題点がある。
Further, when a spherical powder of metal-based nitride or carbide is obtained, the plasma gas used for heating for spheroidization is mainly composed of spheroidizing conditions. There is a problem that it is difficult to obtain a spherical powder. That is, in the case of spheroidizing a nitride or carbide of a non-melting metal material such as SiC, it is sublimated when heated by high-temperature plasma. Further, for example, a material having a poor composition stability at a high temperature such as Si 3 N 4 decomposes into Si and N 2 when heated in plasma at 3000 to 4000 ° C. Further, there is a problem in that a plasma furnace for spheroidizing a refractory material such as TiN or TiC requires a large amount of power and the equipment becomes expensive.

【0006】そこで本発明は、上記の問題の少ない組成
の中間球状粉末を使用して、所定の雰囲気炉内で加熱す
ることにより、所要の組成で安定化した結晶構造を有す
る所要の大きさの金属系化合物の球状粉末成品およびそ
の製造方法を提供することを目的とする。
In view of the above, the present invention uses an intermediate spherical powder having a composition with less problems as described above and heating it in a furnace with a predetermined atmosphere to obtain a crystal structure of a required size and a stabilized crystal structure. It is an object to provide a spherical powder product of a metal-based compound and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の金属及び金属系化合物の球状粉末成品とそ
の製造方法は、金属又は金属系化合物の原料粉末を熱プ
ラズマにより粉末状態で加熱溶融して球状化した中間球
状粉末を、所定ガス雰囲気中で加熱処理して生成するこ
とを特徴とするものである。
In order to achieve the above object, a spherical powder product of a metal and a metal-based compound and a method for producing the same according to the present invention is a method in which a raw material powder of a metal or a metal-based compound is powdered by thermal plasma. It is characterized in that it is produced by heat-treating, in a predetermined gas atmosphere, an intermediate spherical powder that has been melted by heating to be spherical.

【0008】すなわち、所要の球径の不純物の少ない金
属や金属系化合物の中間球状粉末を得るには、原料粉末
をクリーンなエネルギーであるプラズマにより溶融球状
化して、所要の球径が得られる最適の条件で球状化する
ことが望ましい。しかし、プラズマにより溶融球状化し
た球状粉末は、各粒子が均一な所要の結晶構造や組成に
ならず、炉などで溶融して生成した金属系化合物の組成
や結晶系と異なる場合が多い。すなわち、プラズマ球状
化では粒子の一つ一つの冷却速度が異なるために、球状
粉末の結晶系が原料粉末の結晶系と異なったり、あるい
は粒子ごとに結晶系に差があるものが混在する場合が生
ずる。そこで、この中間球状粉末を所要の結晶系の粉末
にする必要がある。
That is, in order to obtain an intermediate spherical powder of a metal or a metal-based compound having a required spherical diameter with a small amount of impurities, the raw material powder is melt-sphericalized by plasma which is clean energy, and the required spherical diameter is optimally obtained. It is desirable to make the particles spherical under the conditions. However, the spherical powder fused and spheroidized by plasma does not have a required crystal structure or composition in which each particle is uniform, and often has a different composition or crystal system from the metal-based compound produced by melting in a furnace or the like. That is, in plasma spheroidization, since the cooling rate of each particle is different, the crystal system of the spherical powder may be different from that of the raw material powder, or there may be a case where particles having different crystal systems coexist. Occurs. Therefore, it is necessary to make the intermediate spherical powder into powder of a required crystal system.

【0009】本発明は、これを結晶安定化といい、前記
球状化した中間球状粉末を所定ガス雰囲気中で再度加熱
処理することにより、全粒子が均一な所要の組成で安定
化した結晶構造を有する所要の球径の金属及び金属系化
合物の球状粉末を得るものである。
In the present invention, this is referred to as crystal stabilization. By subjecting the spheroidized intermediate spherical powder to heat treatment again in a predetermined gas atmosphere, a crystal structure in which all particles are stabilized with a required composition is obtained. A spherical powder of a metal and a metal-based compound having a required spherical diameter is obtained.

【0010】例えば、Nb3 Alを熱プラズマにより球
状化すると、A15+A2構造が混在する場合がある。
これを前記加熱処理することにより、均一にA15構造
の球状粉末を得ることができる。また、Siを熱プラズ
マにより球状化すると、単非結晶+多結晶+単結晶の混
在する組織になることもあるが、前記加熱処理すること
により単結晶の均一な球状粉末を得ることができる。
For example, if Nb 3 Al is spheroidized by thermal plasma, the A15 + A2 structure may coexist.
By subjecting this to the heat treatment, a spherical powder having an A15 structure can be obtained uniformly. Further, when Si is spheroidized by thermal plasma, it may have a structure in which single non-crystal + polycrystal + single crystal are mixed, but by the heat treatment, a uniform single-crystal spherical powder can be obtained.

【0011】上記の結晶安定化した金属系化合物の球状
粉末成品を得るには、前記中間球状粉末を窒化、炭化、
炭窒化又は酸化ガスあるいは非酸化ガスのいずれかの単
体又は混合ガス雰囲気中で加熱処理して結晶安定化する
ことが望ましい。
In order to obtain a spherical powder product of the above crystal-stabilized metal-based compound, the intermediate spherical powder is nitrided, carbonized,
It is desirable to heat-treat in a simple substance or mixed gas atmosphere of carbonitriding or oxidizing gas or non-oxidizing gas to stabilize the crystal.

【0012】また本発明の方法により金属系窒化物の球
状粉末成品を得るには、前記中間球状粉末を窒化ガスの
単体又は混合ガス雰囲気中で加熱処理して生成すること
が望ましい。
Further, in order to obtain a spherical powder product of a metal-based nitride by the method of the present invention, it is desirable that the intermediate spherical powder is produced by heat treatment in a simple atmosphere or a mixed gas atmosphere of nitriding gas.

【0013】また本発明の方法により金属系炭化物の球
状粉末成品を得るには、前記中間球状粉末を炭化ガスの
単体又は混合ガス雰囲気中で加熱処理して生成すること
が望ましい。
Further, in order to obtain a spherical powder product of a metal-based carbide by the method of the present invention, it is desirable that the intermediate spherical powder is produced by heat treatment in a carbon gas simple substance or mixed gas atmosphere.

【0014】また本発明の方法により金属系炭窒化物の
球状粉末成品を得るには、前記中間球状粉末を炭窒化ガ
スの単体又は混合ガス雰囲気中で加熱処理して生成する
ことが望ましい。
Further, in order to obtain a spherical powder product of a metal-based carbonitride by the method of the present invention, it is desirable that the intermediate spherical powder is produced by heat treatment in an atmosphere of carbonitriding gas alone or in a mixed gas atmosphere.

【0015】さらに本発明の方法により金属系酸化物の
球状粉末成品を得るには、前記中間球状粉末を酸化ガス
の単体又は混合ガス雰囲気中で加熱処理して生成するこ
とが望ましい。ここで酸化ガスには空気も含む。
Further, in order to obtain a spherical powder product of a metal-based oxide by the method of the present invention, it is preferable that the intermediate spherical powder is produced by heat treatment in an atmosphere of an oxidizing gas or in a mixed gas atmosphere. Here, the oxidizing gas also includes air.

【0016】[0016]

【発明の実施の形態】以下、本発明を図示の一実施形態
について具体的に説明する。図1は本発明の工程を示す
フローチャート、図2は本実施形態に用いた金属系化合
物の球状粉末の製造装置の断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to an embodiment shown in the drawings. FIG. 1 is a flow chart showing steps of the present invention, and FIG. 2 is a sectional view of an apparatus for producing a spherical powder of a metal compound used in this embodiment.

【0017】図1のフローチャートを用いて本発明の工
程を説明する。まず金属又は金属系化合物の原料を粉砕
又は造粒して、ほぼ所要の球状粉末成品の粒度に分級し
た原料粉末を(STEP1)、図2に示す熱プラズマに
より加熱して溶融球状化する(STEP2)。これによ
り、所要の粒度の揃った中間球状粉末が得られる(ST
EP3)。しかし、この中間球状粉末は所要の結晶構造
や組成を有していない。
The process of the present invention will be described with reference to the flow chart of FIG. First, a raw material of a metal or a metal-based compound is pulverized or granulated, and a raw material powder obtained by classifying to a substantially required particle size of a spherical powder product (STEP 1) is heated by the thermal plasma shown in FIG. 2 to be melt-spheroidized (STEP 2). ). As a result, an intermediate spherical powder having a uniform particle size can be obtained (ST
EP3). However, this intermediate spherical powder does not have the required crystal structure or composition.

【0018】そこで、この中間球状粉末をガス雰囲気加
熱炉で加熱処理して(STEP4)、所要の結晶構造や
組成に変成させ、所要の粒径と結晶構造や組成を有する
金属系化合物の球状粉末成品を得る(STEP5)。こ
のガス雰囲気加熱炉には通常のガス雰囲気の調整できる
電気加熱炉を使用した。
Therefore, this intermediate spherical powder is heat-treated in a gas atmosphere heating furnace (STEP 4) to be transformed into a required crystal structure and composition, and a spherical powder of a metal compound having a required particle size, crystal structure and composition. Obtain a product (STEP 5). As this gas atmosphere heating furnace, an electric heating furnace capable of adjusting a normal gas atmosphere was used.

【0019】図2に基づき本実施形態に使用した球状粉
末の製造装置の全体の構成について簡単に説明する。本
実施形態の製造装置はプラズマトーチ11、原料供給管
21、チャンバー31により構成されている。
The overall structure of the spherical powder manufacturing apparatus used in this embodiment will be briefly described with reference to FIG. The manufacturing apparatus of this embodiment includes a plasma torch 11, a raw material supply pipe 21, and a chamber 31.

【0020】プラズマトーチ11の水冷される石英管1
2の外周に高周波誘導コイル17が巻かれ、図示しない
高周波電源から高周波電流が付加される。トーチヘッド
16に設けられた図示しないガス供給管から石英管12
の内部にプラズマガスが供給される。石英管12の下部
は水冷ジャケット18に固定される。
Water-cooled quartz tube 1 of plasma torch 11
A high frequency induction coil 17 is wound around the outer periphery of 2, and a high frequency current is added from a high frequency power source (not shown). From the gas supply pipe (not shown) provided in the torch head 16 to the quartz pipe 12
A plasma gas is supplied to the inside of the. The lower part of the quartz tube 12 is fixed to a water cooling jacket 18.

【0021】原料供給管21の上部は図示しない原料ホ
ッパーに接続され、その下部先端がプラズマフレーム1
の吹き出し側に開口されている。そして、原料は図示し
ない原料ホッパーから原料供給管21を通してキャリヤ
ガスによりプラズマフレーム中に投入される。
The upper portion of the raw material supply pipe 21 is connected to a raw material hopper (not shown), and the lower end thereof is connected to the plasma flame 1.
It is opened on the balloon side. Then, the raw material is introduced into the plasma flame from the raw material hopper (not shown) through the raw material supply pipe 21 by the carrier gas.

【0022】チャンバー31の上蓋34に水冷ジャケッ
ト18が固定されてプラズマトーチ11が上蓋34の上
に搭載される。チャンバー31の円筒部32の下部は開
口されて回収容器33に接続されている。チャンバー3
1内は図示しない排気ポンプにより排気される。
The water cooling jacket 18 is fixed to the upper lid 34 of the chamber 31, and the plasma torch 11 is mounted on the upper lid 34. The lower portion of the cylindrical portion 32 of the chamber 31 is opened and connected to the recovery container 33. Chamber 3
The inside of 1 is exhausted by an exhaust pump (not shown).

【0023】上記の構成の球状粉末の製造装置の動作に
ついて以下に説明する。まず、プラズマトーチ11にプ
ラズマガスを流入しながら高周波誘導コイル17に高周
波電力を掛けると、石英管12内に図に示すプラズマ1
が発生し石英管12の下部側から噴出する。
The operation of the spherical powder manufacturing apparatus having the above-described structure will be described below. First, when high-frequency power is applied to the high-frequency induction coil 17 while the plasma gas is flowing into the plasma torch 11, the plasma 1 shown in the figure is placed in the quartz tube 12.
Is generated and spouts from the lower side of the quartz tube 12.

【0024】図示しない原料ホッパーから、原料粉末を
キャリアガスにより原料供給管21を介してプラズマフ
レーム1に供給すると、原料粉末は粉末のまま加熱溶融
される。加熱溶融されて球状化された粒子はガス冷却に
より急冷されてチャンバー31内に落下し、回収容器3
3に収容される。
When a raw material powder is supplied from a raw material hopper (not shown) to the plasma flame 1 through a raw material supply pipe 21 by a carrier gas, the raw material powder is heated and melted as a powder. The particles that have been melted by heating and spheroidized are rapidly cooled by gas cooling and fall into the chamber 31, where the recovery container 3
It is housed in 3.

【0025】このように、プラズマ加熱装置によれば、
原料粉末の粒度とプラズマ条件を選択することにより任
意の粒度の球状粉末が得られる。
As described above, according to the plasma heating device,
A spherical powder having an arbitrary particle size can be obtained by selecting the particle size of the raw material powder and the plasma conditions.

【0026】上記球状粉末製造装置のプラズマ加熱によ
り溶融球状化した中間球状粉末を、ガス雰囲気加熱炉に
より所定のガス雰囲気中で加熱処理することにより所要
の金属系化合物の球状粉末成品を得る。以下、実施例に
ついて詳細を説明する。
The intermediate spherical powder melt-spheroidized by the plasma heating of the spherical powder producing apparatus is heat-treated in a predetermined gas atmosphere in a gas atmosphere heating furnace to obtain a spherical powder product of a required metal compound. Hereinafter, the example will be described in detail.

【0027】[0027]

【実施例1】実施例1は金属Siの単結晶化の実験を行
った。図3はその製造工程のフローチャートである。 a.球状化条件 約150μm径のSiの原料粉末を原料ホッパーに装入
し、Arガス+H2 ガス雰囲気中でプラズマにより加熱
溶融して球状化し、この球状化した粒子を分級して粒径
約150μmのSiの中間球状粉末を得た。 b.ガス雰囲気炉加熱処理条件 次に上記の中間球状粉末をガス雰囲気電気炉に装入し、
下記の条件で加熱処理しSiの球状粉末成品を作成し
た。 雰囲気ガス:(Ar+H2 ガス) 加熱温度×時間:1650K×10ks
Example 1 In Example 1, an experiment for single crystallization of metallic Si was conducted. FIG. 3 is a flowchart of the manufacturing process. a. Spheroidizing conditions Si raw material powder having a diameter of about 150 μm was charged into a raw material hopper, and heated and melted by plasma in an Ar gas + H 2 gas atmosphere to be spheroidized, and the spheroidized particles were classified to have a particle diameter of about 150 μm. An intermediate spherical powder of Si was obtained. b. Gas atmosphere furnace heat treatment conditions Next, charge the above intermediate spherical powder into a gas atmosphere electric furnace,
Heat treatment was performed under the following conditions to prepare a spherical Si powder product. Atmospheric gas: (Ar + H 2 gas) heating temperature × time: 1650K × 10 kS

【0028】図4に球状粉末成品の形状のSEM写真を
示す。図4のSEM写真から分かるように、球状粉末成
品は約150μmの綺麗な球状粉末になっている。
FIG. 4 shows an SEM photograph of the shape of the spherical powder product. As can be seen from the SEM photograph of FIG. 4, the spherical powder product is a beautiful spherical powder of about 150 μm.

【0029】また、Si中間球状粉末とSi球状粉末成
品について、湾曲IPX線回折装置を用いて透過ラウエ
法により結晶性を確認試験した。その結果、Si中間球
状粉末は多結晶体のデバイリングを示したが、Si球状
粉末成品は単結晶体のラウエスポットを示し、完全に単
結晶化したことが判った。
The crystallinity of the Si intermediate spherical powder and the product of the Si spherical powder were confirmed by a transmission Laue method using a curved IPX-ray diffractometer. As a result, it was found that the Si intermediate spherical powder showed a Debye ring of a polycrystalline body, whereas the Si spherical powder product showed a Laue spot of a single crystal body and was completely single crystallized.

【0030】このように、Siは熱プラズマにより溶融
球状化すると、得られた中間球状粉末は多結晶になる
が、本発明の加熱処理により単結晶構造にすることがで
きる。すなわち、本発明により前述した結晶安定化が可
能であることが判った。
As described above, when Si is melt-spheroidized by thermal plasma, the obtained intermediate spherical powder becomes polycrystalline, but can be made to have a single crystal structure by the heat treatment of the present invention. That is, it was found that the above-described crystal stabilization was possible according to the present invention.

【0031】本実施例ではSiについて示したが、本方
法のガス雰囲気加熱処理により他の高温で分解しやすい
金属あるいは金属化合物についても同様に、所要の安定
した組織を有し、かつ所要の球径に揃った粒子の球状粉
末成品が得られる。
Although Si is shown in the present embodiment, other metals or metal compounds that are easily decomposed at a high temperature by the gas atmosphere heat treatment of the present method similarly have a required stable structure and a required sphere. A spherical powder product having particles of uniform diameter is obtained.

【0032】[0032]

【実施例2】実施例2は、実施例1と同様に本発明の方
法により、金属酸化物としてNi粉末からNiOを生成
する実験を行った。図5は製造工程のフローチャートで
ある。 a.球状化条件 約150μm径のNi原料粉末を原料ホッパーに装入
し、Arガス+H2 ガス雰囲気中でプラズマにより加熱
溶融して球状化し、この球状化した粒子を分級して粒径
150〜200μmのNi中間球状粉末を得た。 b.ガス雰囲気炉加熱処理条件 次に上記の中間球状粉末をガス雰囲気電気炉に装入し、
下記の条件で加熱処理しNiOの球状粉末成品を作成し
た。 雰囲気ガス:(O2 ガス:760Torr) 加熱温度×時間:1273K×170ks
[Example 2] In Example 2, as in Example 1, an experiment was conducted to produce NiO from Ni powder as a metal oxide by the method of the present invention. FIG. 5 is a flowchart of the manufacturing process. a. Spheroidizing conditions Ni raw material powder having a diameter of about 150 μm was charged into a raw material hopper, and heated and melted by plasma in an Ar gas + H 2 gas atmosphere to be spheroidized, and the spheroidized particles were classified to have a particle size of 150 to 200 μm. Ni intermediate spherical powder was obtained. b. Gas atmosphere furnace heat treatment conditions Next, charge the above intermediate spherical powder into a gas atmosphere electric furnace,
A heat treatment was performed under the following conditions to prepare a spherical NiO powder product. Atmosphere gas: (O 2 gas: 760 Torr) Heating temperature x time: 1273K x 170ks

【0033】その結果を図6および図7に示す。図6は
X線回折の図、図7は球状粉末成品の形状のSEM写真
である。図6の回折パターンから判るように、球状粉末
成品の結晶構造は均一なNiOになっている。また、図
7のSEM写真から分かるように、球状粉末成品は15
0〜200μmの綺麗な球状粉末になっている。このよ
うに本発明の方法によれば、球状化が容易なNiの中間
球状粉末を用いて、均一なNiOの結晶構造を有し、か
つ所要の球径に揃った粒子を有するNiOの球状粉末成
品が高い収率で得られる。
The results are shown in FIGS. 6 and 7. FIG. 6 is an X-ray diffraction diagram, and FIG. 7 is an SEM photograph of the shape of the spherical powder product. As can be seen from the diffraction pattern of FIG. 6, the spherical powder product has a uniform crystal structure of NiO. Moreover, as can be seen from the SEM photograph of FIG.
It is a beautiful spherical powder of 0 to 200 μm. As described above, according to the method of the present invention, a spherical NiO powder having a uniform NiO crystal structure and particles having a uniform spherical diameter is used by using an intermediate spherical powder of Ni that is easily spheroidized. The product is obtained in high yield.

【0034】本実施例ではNiOについて示したが、本
方法のガス雰囲気加熱処理により、他の金属あるいは金
属化合物についても同様に、所要の安定した組織を有
し、かつ所要の球径に揃った粒子の金属酸化物の球状粉
末成品が得られる。
Although NiO is shown in the present embodiment, by the gas atmosphere heat treatment of this method, other metals or metal compounds similarly have the required stable structure and have the required spherical diameter. A spherical powder product of metal oxide particles is obtained.

【0035】[0035]

【実施例3】実施例3は、金属チタンから金属窒化物T
iNのの球状粉末成品を得る実験を行った。図8は製造
工程のフローチャートである。 a.球状化条件 球状化は実施例1と同じ装置を使用し、約100μm径
のTi原料粉末を実施例1と同じArガス+H2 ガス雰
囲気中でプラズマにより加熱溶融して球状化し、この球
状化した粒子を分級して粒径80〜120μmのNi中
間球状粉末を得た。 b.ガス雰囲気炉加熱処理条件 次に上記の中間球状粉末をガス雰囲気電気炉に装入し、
下記の条件で加熱処理しTiNの球状粉末成品を作成し
た。 雰囲気ガス:(N2 ガス:760Torr) 加熱温度×時間:1273K×230ks
Third Embodiment In a third embodiment, metal titanium to metal nitride T is used.
An experiment was conducted to obtain a spherical powder product of iN. FIG. 8 is a flowchart of the manufacturing process. a. Spheroidizing conditions For spheroidizing, the same apparatus as in Example 1 was used, and a Ti raw material powder having a diameter of about 100 μm was heated and melted by plasma in the same Ar gas + H 2 gas atmosphere as in Example 1 to be spheroidized, and spheroidized. The particles were classified to obtain Ni intermediate spherical powder having a particle size of 80 to 120 μm. b. Gas atmosphere furnace heat treatment conditions Next, charge the above intermediate spherical powder into a gas atmosphere electric furnace,
Heat treatment was performed under the following conditions to prepare a TiN spherical powder product. Atmosphere Gas: (N 2 gas: 760 Torr) heating temperature × time: 1273K × 230ks

【0036】その結果を図9及び図10に示す。図9は
X線回折のパターン、図10は球状粉末成品の形状のS
EM写真である。図12のX線回折のパターンから球状
粉末成品の結晶構造は均一なTiNになっていることが
判る。また、図10のSEM写真から球状粉末成品は8
0〜120μmの綺麗な球状粉末になっていることが判
る。
The results are shown in FIGS. 9 and 10. FIG. 9 shows the X-ray diffraction pattern, and FIG. 10 shows the S of the spherical powder product.
It is an EM photograph. From the X-ray diffraction pattern of FIG. 12, it can be seen that the crystal structure of the spherical powder product is uniform TiN. Moreover, from the SEM photograph of FIG.
It can be seen that it is a beautiful spherical powder of 0 to 120 μm.

【0037】このように本発明の方法によれば、球状化
が容易なTiの中間球状粉末を用いて、均一なTiNの
結晶構造を有し、かつ所要の球径に揃った粒子を有する
TiNの球状粉末成品が得られる。
As described above, according to the method of the present invention, TiN having a uniform TiN crystal structure and particles having a uniform spherical diameter is used by using an intermediate spherical powder of Ti which is easily spheroidized. A spherical powder product of is obtained.

【0038】本実施例では原料粉末に金属チタンを用い
たが、原料粉末にTiNの粉末を用いてもよい。この場
合もプラズマの高温溶解により、TiNの化学組成に変
動が生ずるが加熱処理により純粋のTiN組成の球状粉
末成品が得られる。また、本実施例ではTiNについて
示したが、本方法のガス雰囲気又はN2 ガス雰囲気の加
熱処理により他の金属あるいは金属化合物についても同
様に所要の安定した組織を有し、かつ所要の球径に揃っ
た粒子の窒化物の球状粉末成品が得られる。
In this embodiment, metallic titanium is used as the raw material powder, but TiN powder may be used as the raw material powder. In this case as well, the chemical composition of TiN varies due to high-temperature melting of plasma, but a spherical powder product having a pure TiN composition can be obtained by heat treatment. Although TiN is shown in this example, other metals or metal compounds also have the required stable structure and have the required sphere diameter by the heat treatment in the gas atmosphere or N 2 gas atmosphere of the present method. A spherical powder product of nitride having uniform particles is obtained.

【0039】[0039]

【実施例4】実施例4は、金属チタンからTiCの金属
炭化物の球状粉末成品を得る実験を行った。図11は製
造工程のフローチャートである。 a.球状化条件 球状化は実施例1と同じく、約100μm径のTi原料
粉末をArガス+H2ガス雰囲気中でプラズマにより加
熱溶融して球状化し、この球状化した粒子を分級して粒
径80〜120μmのTi中間球状粉末を得た。 b.ガス雰囲気炉加熱処理条件 次に上記の中間球状粉末を電気真空浸炭炉に装入し、下
記の条件で加熱処理しガス浸炭によりTiCの球状粉末
成品を作成した。 雰囲気ガス:(C2 2 ガス:1.0Torr) 加熱温度×時間:1223K×86ks
Example 4 In Example 4, an experiment was conducted to obtain a spherical powder product of TiC metal carbide from titanium metal. FIG. 11 is a flowchart of the manufacturing process. a. Spheroidization conditions As in Example 1, spheroidization was performed by heating and melting a Ti raw material powder having a diameter of about 100 μm with plasma in an Ar gas + H 2 gas atmosphere to spheroidize, and classifying the spheroidized particles to a particle size of 80- 120 μm Ti intermediate spherical powder was obtained. b. Gas atmosphere furnace heat treatment conditions Next, the above intermediate spherical powder was charged into an electric vacuum carburizing furnace, and heat treatment was carried out under the following conditions, and a TiC spherical powder product was prepared by gas carburizing. Atmosphere gas: (C 2 H 2 gas: 1.0 Torr) Heating temperature x time: 1223K x 86ks

【0040】その結果を図12及び図13に示す。図1
2はX線回折の図、図13は球状粉末成品の形状のSE
M写真である。図12に見られるように球状粉末成品の
結晶構造は均一なTiCになっており、図13のSEM
写真から分かるように球形は80〜120μmの綺麗な
球状粉末になっている。
The results are shown in FIGS. 12 and 13. Figure 1
2 is an X-ray diffraction diagram, and FIG. 13 is an SE of a spherical powder product.
It is an M photograph. As shown in FIG. 12, the crystal structure of the spherical powder product is uniform TiC.
As can be seen from the photograph, the spherical shape is a beautiful spherical powder of 80 to 120 μm.

【0041】このように本発明の方法によれば、球状化
が容易なTiの中間球状粉末を用いて、均一なTiCの
結晶構造を有している。
As described above, according to the method of the present invention, the intermediate spherical powder of Ti, which is easily spheroidized, is used and has a uniform TiC crystal structure.

【0042】本実施例では原料粉末に金属チタンを用い
たが、原料粉末にTiNの粉末を用いてもよい。この場
合も加熱処理により純粋のTiC組成の球状粉末成品が
得られる。また、本実施例ではTiCについて示した
が、本方法のガス雰囲気又はC組成のガス雰囲気の加熱
処理により、他の金属あるいは金属化合物についても同
様に、所要の安定した組織を有し、かつ所要の球径に揃
った粒子の炭化物の球状粉末成品が得られる。
In this embodiment, metallic titanium was used as the raw material powder, but TiN powder may be used as the raw material powder. Also in this case, the spherical powder product having a pure TiC composition can be obtained by the heat treatment. Further, although TiC is shown in this embodiment, the heat treatment of the gas atmosphere of the present method or the gas atmosphere of the C composition also has the required stable structure and has the same required structure for other metals or metal compounds. As a result, a spherical powder product of carbide having particles having a uniform spherical diameter can be obtained.

【0043】[0043]

【実施例5】実施例5は、金属シリコンから固体浸炭に
よりSiCの金属炭化物を得る実験を行った。図14は
製造工程のフローチャートである。 a.球状化条件:球状化は実施例1と同じで、約100
μmの径の金属シリコンの原料を実施例1と同一条件で
溶融球状化し、分級して100〜150μmの中間球状
粉末を得た。 b.加熱処理条件 次に上記の金属シリコンの中間球状粉末と超微粒子炭素
(20nm以下)とを、Si:C=1:2(wt%比)
の比率で混合し、雰囲気電気炉に装入し下記の条件で加
熱処理し、Si+C=SiCの反応により単結晶のSi
Cの球状粉末成品を作成した。 雰囲気ガス:(Arガス:760Torr) 加熱温度×時間:1653K×43ks c.後処理: 洗浄して超微粒子炭素を除去した。
Fifth Embodiment In a fifth embodiment, an experiment for obtaining a metal carbide of SiC from metal silicon by solid carburization is conducted. FIG. 14 is a flowchart of the manufacturing process. a. Spheroidization conditions: Spheroidization is the same as in Example 1 and is about 100.
A raw material of metallic silicon having a diameter of μm was melt-spheroidized under the same conditions as in Example 1 and classified to obtain an intermediate spherical powder of 100 to 150 μm. b. Heat treatment conditions Next, the above-mentioned intermediate spherical powder of metallic silicon and ultrafine carbon (20 nm or less) were mixed with Si: C = 1: 2 (wt% ratio).
Mixed in the following ratio, charged in an atmosphere electric furnace, and heat-treated under the following conditions, and the reaction of Si + C = SiC causes a single crystal Si
A spherical powder product of C was prepared. Atmosphere gas: (Ar gas: 760 Torr) Heating temperature x time: 1653K x 43ks c. Post-treatment: Ultrafine carbon particles were removed by washing.

【0044】その結果を図15および図16に示す。図
15はX線回折の図、図16は球状粉末成品の形状のS
EM写真である。図15のX線回折パターンと図16の
SEM写真から、得られた球状粉末成品はSiCの組成
を有し100〜150μm径の球径の揃った粒子を有し
ていることが判る。
The results are shown in FIGS. 15 and 16. FIG. 15 is an X-ray diffraction diagram, and FIG. 16 is an S shape of a spherical powder product.
It is an EM photograph. From the X-ray diffraction pattern of FIG. 15 and the SEM photograph of FIG. 16, it can be seen that the obtained spherical powder product has particles of SiC composition having a uniform spherical diameter of 100 to 150 μm.

【0045】実施例3及び4では原料粉末に金属チタン
及びシリコンを用いたが、原料粉末にTiC又はSiC
の粉末を用いてもよい。
In Examples 3 and 4, metallic titanium and silicon were used as the raw material powder, but TiC or SiC was used as the raw material powder.
You may use the powder of.

【0046】以上述べたように、本発明の金属系化合物
の球状粉末成品とその製造方法は、金属又は金属系化合
物の原料粉末を熱プラズマにより加熱溶融して球状化し
て得られた中間球状粉末を、さらに所定ガス雰囲気中で
加熱処理して生成することにより構造の安定した球状粉
末成品を得るものである。
As described above, the spherical powder product of the metal-based compound and the method for producing the same according to the present invention are intermediate spherical powders obtained by heating and melting a raw material powder of a metal or a metal-based compound by thermal plasma to make it spherical. Is further heated in a predetermined gas atmosphere to produce a spherical powder product having a stable structure.

【0047】すなわち、プラズマにより溶融して球状化
するので不純部の混入がない球状粉末が得られる。ま
た、原料粉末の粒径、プラズマ条件、冷却条件の選択に
より所要の球径の球状粉末が得られる。しかし、この中
間球状粉末は所要の結晶構造や組成を有していないの
で、本発明はこの中間球状粉末を所定ガス雰囲気中で加
熱処理することにより、所要の組成で安定化した結晶構
造を有する所要の球径の金属又は金属系化合物の球状粉
末を得るものである。
That is, since it is melted by the plasma to be spheroidized, a spherical powder free of impurities is obtained. Further, spherical powder having a required spherical diameter can be obtained by selecting the particle size of the raw material powder, plasma conditions, and cooling conditions. However, since this intermediate spherical powder does not have a required crystal structure or composition, the present invention has a crystalline structure stabilized at a required composition by heat treating this intermediate spherical powder in a predetermined gas atmosphere. It is intended to obtain a spherical powder of a metal or a metal compound having a required spherical diameter.

【0048】本発明の方法によれば、ガス雰囲気を選択
して加熱処理することにより、安定結晶化した金属及び
金属系化合物の球状粉末成品、所要の組成の金属系の窒
化物、炭化物あるいは酸化物について、所要の球径の球
状粉末成品が得られる。
According to the method of the present invention, a spherical powder product of a stable crystallized metal and a metal compound, a metal nitride, a carbide or an oxide of a required composition is selected by heating in a gas atmosphere. As a result, a spherical powder product having a required spherical diameter can be obtained.

【0049】[0049]

【発明の効果】以上説明したように、本発明の金属系化
合物の球状粉末成品とその製造方法によれば、任意に所
要の球径が揃った所要の組成や組織を有する金属及び金
属系化合物の球状粉末が得られるので、これらを使用し
た部材の用途が開ける。
As described above, according to the spherical powder product of the metal-based compound and the method for producing the same according to the present invention, the metal and the metal-based compound having the desired composition and texture with desired spherical diameters are arbitrarily arranged. Since spherical powders of 1 are obtained, the applications of members using these can be opened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の金属系化合物の球状粉末成品の製造
工程を示すフローチャート。
FIG. 1 is a flowchart showing a manufacturing process of a spherical powder product of a metal compound according to the present invention.

【図2】 本発明実施形態に使用した球状粉末の製造装
置の断面図。
FIG. 2 is a cross-sectional view of a spherical powder manufacturing apparatus used in an embodiment of the present invention.

【図3】 本発明実施例1のSiの球状粉末成品の製造
工程を示すフローチャート。
FIG. 3 is a flowchart showing a manufacturing process of a spherical Si powder product according to the first embodiment of the present invention.

【図4】 本発明実施例1のSiの球状粉末成品のSE
M写真。
4] SE of spherical Si powder product of Example 1 of the present invention
M photo.

【図5】 本発明実施例1の金属酸化物(NiO)の製
造工程を示すフローチャート。
FIG. 5 is a flowchart showing a process for producing a metal oxide (NiO) according to the first embodiment of the present invention.

【図6】 本発明実施例2の金属酸化物(NiO)の球
状粉末成品のX線回折パターン。
FIG. 6 is an X-ray diffraction pattern of a spherical powder product of metal oxide (NiO) of Example 2 of the present invention.

【図7】 本発明実施例2の金属酸化物(NiO)の球
状粉末成品のSEM写真。
FIG. 7 is an SEM photograph of a spherical powder product of metal oxide (NiO) of Example 2 of the present invention.

【図8】 本発明実施例3の金属窒化物(TiN)の製
造工程を示すフローチャート。
FIG. 8 is a flowchart showing a manufacturing process of a metal nitride (TiN) of Example 3 of the invention.

【図9】 本発明実施例3の金属窒化物(TiN)の球
状粉末成品のX線回折パターン。
9 is an X-ray diffraction pattern of a spherical powder product of metal nitride (TiN) of Example 3 of the present invention. FIG.

【図10】 本発明実施例3の金属窒化物(TiN)の
球状粉末成品のSEM写真。
FIG. 10 is an SEM photograph of a spherical powder product of metal nitride (TiN) of Example 3 of the present invention.

【図11】 本発明実施例4の金属炭化物(TiC)の
製造工程を示すフローチャート。
FIG. 11 is a flowchart showing a process for producing a metal carbide (TiC) according to Example 4 of the present invention.

【図12】 本発明実施例4の金属炭化物(TiC)の
球状粉末成品のX線回折パターン。
FIG. 12 is an X-ray diffraction pattern of a spherical powder product of metal carbide (TiC) of Example 4 of the present invention.

【図13】 本発明実施例4の金属炭化物(TiC)の
球状粉末成品のSEM写真。
FIG. 13 is an SEM photograph of a spherical powder product of metal carbide (TiC) of Example 4 of the present invention.

【図14】 本発明実施例5の金属炭化物(TiC)の
製造工程を示すフローチャート。
FIG. 14 is a flowchart showing a process for producing a metal carbide (TiC) according to the fifth embodiment of the present invention.

【図15】 本発明実施例5の金属炭化物(TiC)の
球状粉末成品のX線回折パターン。
FIG. 15 is an X-ray diffraction pattern of a spherical powder product of metal carbide (TiC) of Example 5 of the present invention.

【図16】 本発明実施例5の金属炭化物(TiC)の
球状粉末成品のSEM写真。
FIG. 16 is an SEM photograph of a spherical powder product of metal carbide (TiC) of Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 プラズマフレーム、2 プラズマフレームの加熱
部、3 原料粉末、4球状粉末成品、11 プラズマト
ーチ、12 石英管、13 コアガス供給管、14 シ
ースガス供給管、15 ガスボンベ、16 トーチヘッ
ド、17 高周波誘導コイル、18 水冷ジャケット、
19 クーリングガス供給管、20 キャリアガス管、
21 原料供給手段、22 原料ホッパー、23 原料
供給管、24 原料供給ノズル、31 チャンバー、3
2 円筒部、33 回収容器、34 上蓋、35 サイ
クロン、36 フィルタ、37 エアポンプ、40 高
周波電源、41 急冷手段、42 冷却ガスノズル、4
3 冷却ガス供給管、
1 plasma flame, 2 heating part of plasma flame, 3 raw material powder, 4 spherical powder product, 11 plasma torch, 12 quartz tube, 13 core gas supply tube, 14 sheath gas supply tube, 15 gas cylinder, 16 torch head, 17 high frequency induction coil, 18 water cooling jacket,
19 cooling gas supply pipe, 20 carrier gas pipe,
21 material supply means, 22 material hopper, 23 material supply pipe, 24 material supply nozzle, 31 chamber, 3
2 cylindrical part, 33 collection container, 34 upper lid, 35 cyclone, 36 filter, 37 air pump, 40 high frequency power supply, 41 rapid cooling means, 42 cooling gas nozzle, 4
3 cooling gas supply pipe,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 21/06 C01B 21/06 D 4K018 31/30 31/30 C01G 1/02 C01G 1/02 53/04 53/04 // C01B 31/36 601 C01B 31/36 601C 601S C30B 1/04 C30B 1/04 (72)発明者 横田 誠二 神奈川県平塚市田村5893高周波熱錬株式会 社内 (72)発明者 川嵜 一博 神奈川県平塚市田村5893高周波熱錬株式会 社内 Fターム(参考) 4G042 DA01 DB08 4G046 MA09 MA14 MB02 MC01 4G048 AA01 AB01 AB05 AD04 4G075 AA27 BB10 BD14 CA02 CA47 CA62 DA01 DA02 EB01 4G077 AA01 BA04 CA08 JA06 JB02 4K018 AA01 AD01 AD09 AD10 BB03 BC06 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C01B 21/06 C01B 21/06 D 4K018 31/30 31/30 C01G 1/02 C01G 1/02 53/04 53/04 // C01B 31/36 601 C01B 31/36 601C 601S C30B 1/04 C30B 1/04 (72) Inventor Seiji Yokota 5893 Tamura, Hiratsuka-shi, Kanagawa In-house (72) Inventor, Kawasaki Kaichi Hiroshi Kanagawa Prefecture Hiratsuka City Tamura 5893 High-frequency Heat and Refining Stock Association In-house F-term (reference) 4G042 DA01 DB08 4G046 MA09 MA14 MB02 MC01 4G048 AA01 AB01 AB05 AD04 4G075 AA27 BB10 BD14 CA02 CA47 CA62 DA01 DA01 JA02 JA02 CA01 JA02 CA01 JA02 CA01 JA02 CA01 JA02 CA01 JA02 AD09 AD10 BB03 BC06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 金属又は金属系化合物の原料粉末を熱プ
ラズマにより粉末状態で加熱溶融して球状化した中間球
状粉末を、所定ガス雰囲気中で加熱処理して生成するこ
とを特徴とする金属及び金属系化合物の球状粉末成品の
製造方法。
1. A metal or a metal-containing compound produced by heat-melting a raw material powder of a metal or a metal-based compound in a powder state by thermal plasma to form an intermediate spherical powder by heating in a predetermined gas atmosphere. A method for producing a spherical powder product of a metal-based compound.
【請求項2】 前記中間球状粉末を、窒化、炭化、炭窒
化又は酸化ガスあるいは非酸化ガスのいずれかの単体又
は混合ガス雰囲気中で加熱処理して結晶安定化すること
を特徴とする請求項1に記載の金属及び金属系化合物の
球状粉末成品の製造方法。
2. The intermediate spherical powder is heat-treated in a single or mixed gas atmosphere of nitriding, carbonizing, carbonitriding, or oxidizing gas or non-oxidizing gas to stabilize crystals. 1. A method for producing a spherical powder product of a metal or a metal-based compound according to 1.
【請求項3】 前記中間球状粉末を、窒化ガスの単体又
は混合ガス雰囲気中で加熱処理して生成することを特徴
とする請求項1に記載の金属系窒化物の球状粉末成品の
製造方法。
3. The method for producing a spherical powder product of a metal-based nitride according to claim 1, wherein the intermediate spherical powder is produced by heat treatment in a single or mixed gas atmosphere of nitriding gas.
【請求項4】 前記中間球状粉末を、炭化ガスの単体又
は混合ガス雰囲気中で加熱処理して生成することを特徴
とする請求項1に記載の金属系炭化物の球状粉末成品の
製造方法。
4. The method for producing a spherical powder product of a metal-based carbide according to claim 1, wherein the intermediate spherical powder is produced by heat treatment in a simple atmosphere or a mixed gas atmosphere of carbonized gas.
【請求項5】 前記中間球状粉末を、炭窒化ガスの単体
又は混合ガス雰囲気中で加熱処理して生成することを特
徴とする請求項1に記載の金属系炭窒化物の球状粉末成
品の製造方法。
5. The production of a spherical powder product of a metal-based carbonitride according to claim 1, wherein the intermediate spherical powder is produced by heat treatment in a simple substance or mixed gas atmosphere of carbonitriding gas. Method.
【請求項6】 前記中間球状粉末を、酸化ガス又は空気
のいずれかの単体あるいは他ガスとの混合ガス雰囲気中
で加熱処理して生成することを特徴とする請求項1に記
載の金属系酸化物の球状粉末成品の製造方法。
6. The metal-based oxidation according to claim 1, wherein the intermediate spherical powder is produced by heat treatment in a single gas of an oxidizing gas or air or in a mixed gas atmosphere with another gas. A method for producing a spherical powder product of a product.
【請求項7】 金属又は金属系化合物の粉末を熱プラズ
マにより粉末状態で加熱溶融し、球状化して得られた中
間球状粉末を、所定ガス雰囲気中で加熱処理して生成さ
れたことを特徴とする金属及び金属系化合物の球状粉末
成品。
7. An intermediate spherical powder obtained by heating and melting a powder of a metal or a metal-based compound in a powder state by thermal plasma and spheroidizing the powder, which is produced by heat treatment in a predetermined gas atmosphere. Spherical powder products of metals and metal compounds.
【請求項8】 前記中間球状粉末を、窒化、炭化、炭窒
化又は酸化ガスあるいは非酸化ガスのいずれかの単体又
は混合ガス雰囲気中で加熱処理して生成されたことを特
徴とする請求項7に記載の安定結晶化した金属及び金属
系化合物の球状粉末成品。
8. The intermediate spherical powder is produced by heat treatment in a single or mixed gas atmosphere of nitriding, carbonizing, carbonitriding, or oxidizing gas or non-oxidizing gas. A spherical powder product of the stable crystallized metal or metal-based compound according to the item 1.
【請求項9】 前記中間球状粉末を窒化ガスの単体又は
混合ガス雰囲気中で加熱処理して生成されたことを特徴
とする請求項7に記載の金属系窒化物の球状粉末成品。
9. The spherical powder product of a metal-based nitride according to claim 7, wherein the intermediate spherical powder is produced by heating the intermediate spherical powder in a single or mixed gas atmosphere of nitriding gas.
【請求項10】 前記中間球状粉末を炭化ガスの単体又
は混合ガス雰囲気中で加熱処理して生成されたことを特
徴とする請求項7に記載の金属系炭化物の球状粉末成
品。
10. The spherical powder product of a metal-based carbide according to claim 7, which is produced by heating the intermediate spherical powder in an atmosphere of a single carbon gas or a mixed gas atmosphere.
【請求項11】 前記中間球状粉末を炭窒化ガスの単体
又は混合ガス雰囲気中で加熱処理して生成されたことを
特徴とする請求項7に記載の金属系炭窒化物の球状粉末
成品。
11. The spherical powder product of a metal-based carbonitride according to claim 7, which is produced by heating the intermediate spherical powder in an atmosphere of a carbonitriding gas alone or in a mixed gas atmosphere.
【請求項12】 前記中間球状粉末を酸化ガス又は混合
ガス雰囲気中で加熱処理して生成されたことを特徴とす
る請求項7に記載の金属系酸化物の球状粉末成品。
12. The spherical powder product of a metal oxide according to claim 7, which is produced by heat-treating the intermediate spherical powder in an oxidizing gas or mixed gas atmosphere.
JP2001236105A 2001-08-03 2001-08-03 Spherical powder of metal and metallic compound, and manufacturing method thereof Pending JP2003049201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236105A JP2003049201A (en) 2001-08-03 2001-08-03 Spherical powder of metal and metallic compound, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236105A JP2003049201A (en) 2001-08-03 2001-08-03 Spherical powder of metal and metallic compound, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003049201A true JP2003049201A (en) 2003-02-21

Family

ID=19067441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236105A Pending JP2003049201A (en) 2001-08-03 2001-08-03 Spherical powder of metal and metallic compound, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003049201A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263275A (en) * 2003-03-04 2004-09-24 Hitachi Metals Ltd R-Fe-N MAGNET POWDER AND ITS PRODUCTION METHOD
JP2005342559A (en) * 2004-05-31 2005-12-15 Hitachi Metals Ltd Method of manufacturing quantitatively cut chip and method of manufacturing metal sphere using the chip-manufacturing method
EP2135900A1 (en) * 2007-03-20 2009-12-23 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
JP2017220590A (en) * 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 Powder-compact magnetic core of iron-based magnetic material
WO2019124344A1 (en) * 2017-12-18 2019-06-27 日立金属株式会社 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder
CN111906295A (en) * 2020-06-29 2020-11-10 广东省材料与加工研究所 Spherical hard alloy powder and preparation method thereof
CN112299420A (en) * 2020-06-12 2021-02-02 将乐三晶新材料有限公司 Process for preparing spherical metal silicon powder by using plasma flame gun
CN112643020A (en) * 2020-12-09 2021-04-13 同济大学 Metal powder spheroidizing shaping device and using method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263275A (en) * 2003-03-04 2004-09-24 Hitachi Metals Ltd R-Fe-N MAGNET POWDER AND ITS PRODUCTION METHOD
JP2005342559A (en) * 2004-05-31 2005-12-15 Hitachi Metals Ltd Method of manufacturing quantitatively cut chip and method of manufacturing metal sphere using the chip-manufacturing method
EP2135900A1 (en) * 2007-03-20 2009-12-23 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
EP2135900A4 (en) * 2007-03-20 2010-04-28 Toray Industries Black resin composition, resin black matrix, color filter and liquid crystal display
US8329068B2 (en) 2007-03-20 2012-12-11 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
CN109219857A (en) * 2016-06-08 2019-01-15 松下知识产权经营株式会社 Compressed-core and its manufacturing method
JP2017220590A (en) * 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 Powder-compact magnetic core of iron-based magnetic material
CN109219857B (en) * 2016-06-08 2020-12-25 松下知识产权经营株式会社 Dust core and method for manufacturing same
WO2019124344A1 (en) * 2017-12-18 2019-06-27 日立金属株式会社 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder
CN111465462A (en) * 2017-12-18 2020-07-28 日立金属株式会社 Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
CN112299420A (en) * 2020-06-12 2021-02-02 将乐三晶新材料有限公司 Process for preparing spherical metal silicon powder by using plasma flame gun
CN111906295A (en) * 2020-06-29 2020-11-10 广东省材料与加工研究所 Spherical hard alloy powder and preparation method thereof
CN112643020A (en) * 2020-12-09 2021-04-13 同济大学 Metal powder spheroidizing shaping device and using method thereof
CN112643020B (en) * 2020-12-09 2022-05-17 同济大学 Metal powder spheroidizing shaping device and using method thereof

Similar Documents

Publication Publication Date Title
US5486675A (en) Plasma production of ultra-fine ceramic carbides
Ishigaki et al. Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma
CN113493191B (en) Method for preparing high-purity alpha-silicon nitride powder and high-purity alpha-silicon nitride powder
JP2003049201A (en) Spherical powder of metal and metallic compound, and manufacturing method thereof
JPH0692712A (en) Particulate oxide ceramic powder
JPH08508000A (en) Method for producing ultrafine aluminum nitride powder
US5298296A (en) Process for the elaboration of powders uniformly coated with ultrafine silicon-base particles using chemical vapor decomposition in the presence of core powders
Li et al. Carbon dioxide laser synthesis of ultrafine silicon carbide powders from diethoxydimethylsilane
JPS61256905A (en) Fine hexagonal boron nitride power having high purity and its preparation
Wang et al. Preparation and characterization of AlN powders in the AlCl3–NH3–N2 system
JPS6111886B2 (en)
TW201609536A (en) Novel process and product
Hu et al. Formation mechanisms of α-Si3N4 crystals from amorphous Si3N4 powder synthesized by a low-temperature liquid-phase method
Wang et al. Preparation of hollow SiC spheres by combustion synthesis
JP4545357B2 (en) Method for producing aluminum nitride powder
Sun et al. Transformation of polysilicon cutting waste into SiC/α-Si3N4 composite powders via electromagnetic induction heating
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JP2004115334A (en) Method of manufacturing high alpha-type silicon nitride fine powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JPS6111885B2 (en)
JPS5891018A (en) Manufacture of fine nitride powder
JPH0680412A (en) Production of polycrystalline silicon
JPH0257623A (en) Production of fine copper powder
JPS6048446B2 (en) Method for manufacturing silicon nitride powder
Chu et al. Rapid synthesis of aluminum nitride nanopowders from gaseous aluminum chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091001