JP2001342506A - Method for production of powder material and method for producing target material - Google Patents

Method for production of powder material and method for producing target material

Info

Publication number
JP2001342506A
JP2001342506A JP2000162795A JP2000162795A JP2001342506A JP 2001342506 A JP2001342506 A JP 2001342506A JP 2000162795 A JP2000162795 A JP 2000162795A JP 2000162795 A JP2000162795 A JP 2000162795A JP 2001342506 A JP2001342506 A JP 2001342506A
Authority
JP
Japan
Prior art keywords
powder
target
thermal plasma
producing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000162795A
Other languages
Japanese (ja)
Inventor
Takeshi Kan
剛 韓
Tomonori Ueno
友典 上野
Hideo Murata
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000162795A priority Critical patent/JP2001342506A/en
Publication of JP2001342506A publication Critical patent/JP2001342506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove contaminants intruded during the processing for recycling or to inhibit the intrusion of contaminants during recycling. SOLUTION: A method for production of a powder material comprises using a high purity target to be disposed after sputtering operation as a starting material, and obtaining the powder material with high purity and fine, uniform conformation, by which a target can be manufactured inexpensively. Further, there is provided a method for producing the target material using the above powder material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ターゲット材等の
原料として好適な粉末を提供することができる粉末原料
の製造方法およびこれを用いたターゲット材の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder material capable of providing a powder suitable as a material for a target material and the like, and a method for producing a target material using the same.

【0002】[0002]

【従来の技術】近年、半導体LSI、磁気記録媒体、平
面型ディスプレイ、携帯電話などの発達に伴い、それら
を構成する高融点金属及びその合金からなる薄膜材料の
需要が急激に増加している。上記の薄膜材料はたとえ
ば、スパッタリングにより成膜されるので、薄膜材料形
成用ターゲット材の使用量が急激に増加している。
2. Description of the Related Art In recent years, with the development of semiconductor LSIs, magnetic recording media, flat-panel displays, mobile phones, and the like, the demand for thin-film materials made of high-melting metals and alloys thereof has rapidly increased. Since the above-mentioned thin film material is formed, for example, by sputtering, the amount of a target material for forming a thin film material is rapidly increasing.

【0003】薄膜材料を形成するために用いられるター
ゲット材には、高純度化、低酸素化、高密度化、組織の
微細均一化などが要求されており、従来、高融点金属を
主成分とする材料は複数の高純度化精製プロセスによっ
て精製し、ターゲット材に加工製造していた。そして、
該ターゲット材をスパッタリング、特にマグネトロンス
パッタ法により成膜し、情報機器に用いる薄膜材料を作
製してきた。
[0003] The target material used for forming a thin film material is required to have high purity, low oxygen, high density, uniform microstructure, and the like. These materials were refined by a plurality of high-purification purification processes and processed into target materials. And
The target material has been formed into a film by sputtering, particularly magnetron sputtering, to produce a thin film material for use in information equipment.

【0004】[0004]

【発明が解決しようとする課題】しかし、薄膜材料を作
製する際、通常マグネトロンスパッタ法を用いるが、こ
の方法は、スパッタ成膜速度が高い一方、ターゲットの
消費は全面に同一な速度ではなく、磁場分布により部分
的に優先エロージョンされるため、ターゲット材の20
〜50%しかスパッタされず、残りの50%以上の部分
は残材とされ、その残材の殆どは廃棄されている。情報
機器に使われているターゲット材の高融点金属の殆ど
は、地球資源として限られている材料であり、ターゲッ
ト材の50%以上が廃棄されることは地球資源にとって
有益なことではなく、また、高価な高純度金属の廃棄
は、製造上のコスト増となるなど大きな問題となる。上
記残材を再利用する方法について本発明者は検討した。
However, when a thin film material is produced, a magnetron sputtering method is usually used. However, this method has a high sputter deposition rate, but consumes a target not at the same rate over the entire surface. Since partial preferential erosion is caused by the magnetic field distribution, 20% of the target material
Only about 50% is sputtered, and the remaining 50% or more is left as residual material, and most of the residual material is discarded. Most of the refractory metals in target materials used in information equipment are limited to earth resources, and discarding more than 50% of target materials is not beneficial to earth resources. Disposal of expensive high-purity metal poses a serious problem such as an increase in manufacturing cost. The present inventor has studied a method of reusing the above residual material.

【0005】上記のターゲット材の残材を再生すること
に際しての最大の課題は、ターゲットの使用と再生のた
めの加工に導入した不純物を再度取り除くこと、あるい
は再生加工中に不純物を導入しないことである。まず、
スパッタリングを行った後の廃却ターゲットを化学的湿
式分離による高純度化方法について検討した。この方法
は廃却ターゲットを溶液とし、高純度化分離する方法で
ある。この化学的方法はコストが高く、高価なPtなど
貴金属に用いることは可能であるが、貴金属より割に安
い高融点金属、例えばW、Mo、Ta、Ruなどに適用
するのはコスト面から難しかった。
[0005] The biggest problem in regenerating the residual material of the above-mentioned target material is to remove impurities introduced into the processing for use and regeneration of the target again, or not to introduce impurities during the regeneration processing. is there. First,
The method of purifying the waste target after sputtering by chemical wet separation was studied. In this method, a waste target is used as a solution, and a high-purity separation is performed. Although this chemical method is expensive and can be used for precious metals such as expensive Pt, it is difficult to apply it to refractory metals which are relatively cheaper than precious metals, for example, W, Mo, Ta, Ru and the like. Was.

【0006】次に、高純度化を実現する目的で高真空中
における再溶解の真空冶金方法、特に電子ビーム溶解に
ついて検討した。電子ビーム(EB)溶解による精錬は
高融点金属の高純度化に有効であることが知られている
が、高融点金属及びその合金からなるターゲット材で
は、コストが高いことに加え、EB溶解による合金組成
ずれ、溶解したインゴットの加工困難により産業的に適
用ができなかった。
Next, for the purpose of realizing high purity, a vacuum metallurgical method of remelting in a high vacuum, particularly an electron beam melting was studied. Refining by electron beam (EB) melting is known to be effective for purifying high melting point metals. However, in the case of a target material composed of a high melting point metal and its alloy, the cost is high and the EB melting Industrial application was not possible due to alloy composition deviation and difficulty in processing the melted ingot.

【0007】さらに、ターゲットを粉砕して再焼結する
方法、例えば希土類元素の水素脆化を利用して、粉砕し
て脱水素と再焼結という方法は特開平11−18986
6号で開示されている。しかし、粉砕プロセスにより大
量の不純物導入が避けられず、高純度ターゲットの再生
に対応できない問題があった。本発明の目的は、スパッ
タリングを行った後の高純度廃却ターゲットを出発原料
とし、高純度かつ組織微細均一の粉末原料を作製し、そ
れを用いてターゲットを安価に製造する、すなわちリサ
イクルすることも可能な粉末原料の製造方法および、こ
れを用いたターゲット材の製造方法を提供することであ
る。
Further, a method of pulverizing and re-sintering a target, for example, a method of pulverizing, dehydrogenating and re-sintering using hydrogen embrittlement of a rare earth element is disclosed in JP-A-11-18986.
No. 6 disclose. However, there is a problem that introduction of a large amount of impurities is inevitable due to the pulverization process, and it is not possible to cope with regeneration of a high-purity target. An object of the present invention is to use a high-purity waste target after sputtering as a starting material, produce a high-purity and fine-structure uniform powder material, and use it to manufacture the target at low cost, that is, to recycle. It is another object of the present invention to provide a method for producing a powder raw material and a method for producing a target material using the same.

【0008】[0008]

【課題を解決するための手段】本発明者は上記の課題を
解決するために鋭意研究を行った。その結果、機械的粉
砕した純度の低い粉末を熱プラズマ中に導入すること
で、高融点金属や貴金属粉末の球状化、低酸素化および
高純度化が可能となることを知見し、本発明に到達し
た。
Means for Solving the Problems The present inventor has made intensive studies to solve the above problems. As a result, it was found that by introducing mechanically pulverized low-purity powder into thermal plasma, spheroidizing, low-oxygen, and high-purification of high-melting-point metal and noble metal powders became possible. Reached.

【0009】すなわち本発明は、金属ブロックを粉砕
し、得られた粉末を熱プラズマ中に通し、球状化及び高
純度化して粉末原料とする粉末原料の製造方法である。
また本発明において、熱プラズマの動作ガスに水素を導
入することが好ましい。さらに、本発明において、金属
ブロックはスパッタリングを行った後の廃却ターゲット
であることが好ましい。本発明において、金属はRu、
Ta、W、Moから選ばれる金属またはこれらを主体と
する合金であることが好ましい。
[0009] That is, the present invention is a method for producing a powder raw material by pulverizing a metal block, passing the obtained powder through a thermal plasma, spheroidizing and purifying the powder to obtain a powder raw material.
In the present invention, it is preferable to introduce hydrogen into the working gas of the thermal plasma. Further, in the present invention, the metal block is preferably a waste target after performing sputtering. In the present invention, the metal is Ru,
It is preferable to use a metal selected from Ta, W, and Mo or an alloy mainly containing these metals.

【0010】さらに本発明の粉末原料の製造方法により
得られた粉末を使って、焼結により製造するターゲット
材の製造方法である。
Further, the present invention relates to a method for producing a target material produced by sintering using the powder obtained by the method for producing a powder raw material of the present invention.

【0011】[0011]

【発明の実施の形態】本発明について、以下に詳しく説
明する。本発明の最大の特徴は、金属ブロックを粉砕
し、得られた粉末を熱プラズマ中に通し、球状化及び高
純度化して粉末材料することである。熱プラズマ処理に
よる粉末の球状化、高純度化、低酸素化効果の機構は不
明点が多いが、主に粉末の高分散状態に起因すると考え
られる。粉末で溶融し、金属液滴とプラズマの反応面積
が、普通の溶解精錬より数桁大きく、また、不純物元素
が蒸発表面にまでの拡散距離が数桁短縮される。これに
より物理蒸発の動力学的な条件が著しく向上すると考え
られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below. The most important feature of the present invention is that the metal block is pulverized, and the obtained powder is passed through a thermal plasma to be spheroidized and highly purified to obtain a powder material. The mechanism of the spheroidization, high-purity, and low-oxygenation effects of the powder by the thermal plasma treatment is largely unknown, but it is considered to be mainly due to the highly dispersed state of the powder. Melting with powder, the reaction area between metal droplets and plasma is several orders of magnitude larger than ordinary melting and refining, and the diffusion distance of impurity elements to the evaporation surface is reduced by several orders of magnitude. It is believed that this significantly improves the kinetic conditions for physical evaporation.

【0012】通常金属ブロックを粉砕して得られた粉末
はその粉砕時に多量の不純物が導入され、そのまま元の
粉末と同様に例えばターゲット材に用いることが不可能
であるが、本発明の方法により作製した粉末原料では、
熱プラズマ中に通すことにより、高純度化、球状化を図
ることができ、例えばターゲット材として用いる場合に
はスパッタリング時のスプラッシュ等の問題に対し、非
常に有効なものとなる。
Usually, a large amount of impurities are introduced into the powder obtained by pulverizing the metal block during the pulverization, and it is impossible to use the powder as it is as the original powder, for example, as a target material. In the prepared powder raw material,
By passing through thermal plasma, high purity and spheroidization can be achieved. For example, when used as a target material, it is very effective against problems such as splash during sputtering.

【0013】また、本発明の粉末原料の製造方法として
は、熱プラズマ中に水素を導入することが好ましい。水
素ガスの導入により、熱プラズマの熱伝導性を上昇させ
ることが可能で、とりわけ、水素の励起原子やイオンで
ある活性種の発生により、機構はまだ不明であるが、元
素の蒸発速度を著しく向上させることができる。さら
に、熱プラズマ中に水素の添加することにより、低融点
不純物元素の蒸発が顕著となる。
In the method for producing a powder raw material according to the present invention, it is preferable to introduce hydrogen into thermal plasma. By introducing hydrogen gas, it is possible to increase the thermal conductivity of thermal plasma.In particular, the mechanism of the generation of excited species and active species of hydrogen is unknown, but the evaporation rate of the element is significantly increased. Can be improved. Further, by adding hydrogen to the thermal plasma, evaporation of the low melting point impurity element becomes remarkable.

【0014】また、本発明の粉末原料の製造方法におい
て、金属ブロックはスパッタリングを行った後の廃却タ
ーゲットを用いることが好ましい。ターゲット材質は地
球資源に限りのある元素を多量に使うため、その再利
用、すなわちリサイクルは地球資源の有効利用になる。
また、ターゲット材は元々高純度であり、その原料を使
うことで高純度粉末を製造することにより低コスト化が
できるというメリットがある。
In the method for producing a powdery raw material according to the present invention, it is preferable to use a discard target after sputtering for the metal block. Because the target material uses a large amount of elements that are limited to earth resources, its reuse, that is, recycling, is an effective use of earth resources.
In addition, the target material is originally high-purity, and there is an advantage that the cost can be reduced by producing a high-purity powder by using the raw material.

【0015】さらに、本発明の粉末原料の製造方法にお
いて、用いる金属はRu、Ta、W、Moから選ばれる
金属またはこれらを主体とする合金とするものが好まし
い。本発明の粉末原料の製造方法は、基本的にマトリッ
クスと不純物の蒸気圧差を利用して蒸発により高純度化
を図るものである。そのために、高融点元素であるW、
Mo、Ta、Ruに対して、マトリックスと不純物の蒸
気圧差が大きいため、分離効果は最も大きいため好まし
い。用いる金属の成分組成としては、W、Mo、Ta、
Ruの純金属でもよく、また、例えばMo−W系、W−
Ti系、Mo−Cr系などのW、Mo、Ta、Ruを主
体とする合金でもよい。そして、例えばRu−Al系、
Ta−Si系のような低融点金属を含んだ化合物または
合金でもよい。
Further, in the method for producing a powder raw material of the present invention, the metal used is preferably a metal selected from Ru, Ta, W, and Mo, or an alloy mainly containing these. The method for producing a powder raw material according to the present invention basically aims at high purification by evaporation using a vapor pressure difference between a matrix and impurities. Therefore, high melting point element W,
Since the vapor pressure difference between the matrix and the impurities is larger than that of Mo, Ta, and Ru, the separation effect is the largest, which is preferable. As the component composition of the metal used, W, Mo, Ta,
Ru pure metal may be used. For example, Mo-W, W-
An alloy mainly composed of W, Mo, Ta, or Ru, such as a Ti-based or Mo-Cr-based alloy, may be used. And, for example, Ru-Al system,
A compound or alloy containing a low melting point metal such as Ta-Si may be used.

【0016】また、本発明により得られた粉末原料を用
いたターゲット材の製造方法は、スパッタリングを行っ
た後の廃却ターゲットブロック材を粉砕し、得られた粉
末を熱プラズマ中に通し、球状化及び高純度化された粉
末を原料として焼結によりターゲット材を製造すること
により、以下のメリットがある。高純度化粉末を使用す
ることにより、製造したターゲット材の高純度化を確保
する。また、粉末の球状化により、ホットプレスの型や
HIPカプセルに充填する際、充填密度を大幅に向上さ
せ、焼結緻密化を容易にする。また充填密度が向上する
ことで、焼結中の異常変形、反りなどを減少させ、歩留
を向上させる。さらに球状粉の使用は、ターゲットサイ
ズに合わせてニアネットシェップ製造性を向上させる。
The method for producing a target material using the powdery raw material obtained according to the present invention is a method for pulverizing a discarded target block material after sputtering, passing the obtained powder through a thermal plasma, By producing a target material by sintering using a purified and highly purified powder as a raw material, there are the following advantages. By using the highly purified powder, it is possible to ensure high purity of the manufactured target material. Further, when the powder is filled into a hot press mold or a HIP capsule by spheroidizing the powder, the packing density is greatly improved, and sintering and densification are facilitated. In addition, by improving the packing density, abnormal deformation and warpage during sintering are reduced, and the yield is improved. Furthermore, the use of spherical powder improves near net shep manufacturability according to the target size.

【0017】焼結方法としては、ホットプレスや熱間静
水圧プレス(以下、HIP)等が挙げられる。ホットプ
レスでも可能であるが、HIPすることが最適であるこ
とが分かった。その原因として、(1)HIPではカプ
セル真空封入が出来、焼結中の酸素上昇など不純物の増
加がない、(2)HIPはホットプレスよりも焼結圧力
を高く採用でき、低温焼結で結晶粒成長を抑制できる、
等が挙げられる。また、プラズマ処理で得られた球状粉
を採用するため、カプセルの充填密度が高く、焼結緻密
化が容易となり、焼結中の異常変形が低減できるので、
例えば、要求されるターゲットサイズに合わせてニアネ
ットシェップ製造することが最適である。このような粉
末を使って、HIP焼結により相対密度99%以上、組
織微細均一なターゲットを実現できる。
Examples of the sintering method include a hot press and a hot isostatic press (hereinafter, HIP). Although hot pressing is possible, HIP has been found to be optimal. The causes are as follows: (1) HIP enables vacuum encapsulation of capsules, and there is no increase in impurities such as an increase in oxygen during sintering. (2) HIP can employ a higher sintering pressure than hot pressing, and crystallizes at low temperature Can suppress grain growth,
And the like. In addition, since the spherical powder obtained by the plasma treatment is used, the packing density of the capsule is high, the sintering can be easily densified, and the abnormal deformation during sintering can be reduced.
For example, it is optimal to manufacture a near net shep according to the required target size. By using such a powder, a target having a relative density of 99% or more and a fine structure having a uniform structure can be realized by HIP sintering.

【0018】なお、二元以上の合金組成のターゲットで
も、粉砕と熱プラズマ処理による、高純度、低酸素の実
現により同じ組成のターゲット材の製造ができる。熱プ
ラズマ処理中の複数元素の蒸気圧差により、組成ずれが
多少発生しても、その後の粉末焼結により製造するの
で、焼結段階での合金調整が自由であり、要求組成の達
成に自由であるという利点がある。
It is to be noted that, even with a target having an alloy composition of two or more, a target material having the same composition can be produced by realizing high purity and low oxygen by pulverization and thermal plasma treatment. Even if there is some composition deviation due to the vapor pressure difference of multiple elements during thermal plasma processing, since it is manufactured by subsequent powder sintering, alloy adjustment at the sintering stage is free, and it is free to achieve the required composition. There is an advantage that there is.

【0019】本発明に用いる熱プラズマ装置を図1に示
す。粉砕で得た原料粉末を粉末供給装置2に装入し、キ
ャリアガスに運ばれてノズルから供給し、熱プラズマ高
温帯3(例えば5,000〜10,000℃)に導入
し、高温帯において溶融し、金属液相の表面張力の働き
で球状化する。また、高温での低価蒸気圧の高い酸化物
の蒸発により酸素の低減も行う。熱プラズマ高温帯で原
料粉末を溶融することで、原料粉末は液滴状態となり、
不純物の蒸発により高純度化される。特に、水素を導入
した熱プラズマ高温域では、水素イオン、励起原子など
の還元反応により処理金属粉末の酸素含有量がいっそう
低下する。さらに、機構が明らかにされていなが、水素
イオン、励起原子の存在により、不純物元素の蒸発を著
しく向上させることができるという効果を発見した。処
理原料はプラズマ高温領域において液滴状態で処理さ
れ、高温領域を通過して冷却され、回収缶5に収納す
る。処理が完了後、チャンバー4を大気に開放して粉末
を回収する。
FIG. 1 shows a thermal plasma apparatus used in the present invention. The raw material powder obtained by the pulverization is charged into the powder supply device 2, carried by a carrier gas and supplied from a nozzle, introduced into a high-temperature zone 3 (for example, 5,000 to 10,000 ° C.), and It melts and becomes spherical due to the surface tension of the liquid metal phase. Further, oxygen is reduced by evaporating an oxide having a low vapor pressure at a high temperature. By melting the raw material powder in the high temperature zone of the thermal plasma, the raw material powder becomes a droplet state,
Purified by evaporation of impurities. In particular, in a high temperature region of thermal plasma into which hydrogen has been introduced, the oxygen content of the treated metal powder further decreases due to a reduction reaction of hydrogen ions, excited atoms, and the like. Furthermore, although the mechanism has not been clarified, the present inventors have found that the presence of hydrogen ions and excited atoms can significantly improve the evaporation of impurity elements. The processing raw material is processed in a droplet state in the plasma high temperature region, cooled through the high temperature region, and stored in the recovery can 5. After the processing is completed, the chamber 4 is opened to the atmosphere to collect the powder.

【0020】[0020]

【実施例】(実施例1)本発明の実施例について以下に
説明する。半導体用5N高純度Ruターゲットのスパッ
タリング後の廃却ターゲットをロールクラッシャで平均
粒径1mmに解砕して、その後ボールミルで平均粒径8
0μmの粉末に粉砕した。粉砕中における金属不純物元
素の混入を防ぐために、クラッシャ表面に超硬質材料コ
ーティングしたものを使用した。なお、ボールミル処理
では、Ruの長時間粉砕により表面層を形成できるよう
にした。
(Embodiment 1) An embodiment of the present invention will be described below. Disposal target after sputtering of 5N high-purity Ru target for semiconductor is crushed by a roll crusher to an average particle diameter of 1 mm, and then crushed by a ball mill to an average particle diameter of 8 mm.
It was ground to a powder of 0 μm. In order to prevent metal impurity elements from being mixed during pulverization, a crusher surface coated with a super-hard material was used. In the ball mill treatment, the surface layer was formed by pulverizing Ru for a long time.

【0021】以上の粉砕で得られた平均粒径80μmの
粉末を図1に示す熱プラズマ処理プロセスにより処理す
る。原料粉末供給装置2を経由して、Arキャリアガス
の輸送により熱プラズマに供給する。処理した粉末を回
収缶5から回収する。
The powder having an average particle size of 80 μm obtained by the above pulverization is processed by the thermal plasma processing process shown in FIG. Via the raw material powder supply device 2, the carrier is supplied to the thermal plasma by transporting an Ar carrier gas. The treated powder is collected from the collection can 5.

【0022】熱プラズマ処理で得られた粉末をカプセル
に充填し、脱気封止してHIP焼結する。機械加工によ
りターゲットを作成した。粉砕粉末から、プラズマ処
理、HIP焼結の条件と結果を本発明例として表1に示
す。なお、表1における比較例は、熱プラズマ処理前の
原料粉を熱プラズマ処理を行わずHIP焼結したもので
ある。また、ターゲット残材の粉砕前、粉砕後、熱プラ
ズマ処理とHIP焼結後の不純物分析結果を表2に示
す。表1および2から、Ruターゲットについて、粉砕
+熱プラズマ処理+HIPプロセスにより高純度・高密
度・組織微細均一のターゲットを製造できることが分か
る。
The powder obtained by the thermal plasma treatment is filled in a capsule, degassed and sealed, and HIP-sintered. The target was created by machining. Table 1 shows the conditions and results of the plasma treatment and the HIP sintering of the pulverized powder as examples of the present invention. In addition, the comparative example in Table 1 is obtained by subjecting the raw material powder before the thermal plasma treatment to HIP sintering without performing the thermal plasma treatment. Table 2 shows the results of impurity analysis before and after pulverization of the target residual material, thermal plasma treatment and HIP sintering. From Tables 1 and 2, it can be seen that a target having high purity, high density, and fine structure uniformity can be manufactured by pulverization + thermal plasma treatment + HIP process for the Ru target.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】(実施例2)半導体用LSI配線のバリア
メタル用5Nの高純度Taターゲットの再生について実
施例1と同様の検討を行った。スパッタリング後のTa
ターゲット残材を1atmの水素中で、700℃−1h
rで水素添加処理を施した。その時、Ta素材に水素を
4100ppm固溶させた。水素を吸収したTaブロッ
ク材料をロールクラッシャで平均粒径0.5mmに解砕
して、その後ボールミルで平均粒径40μmの粉末に粉
砕した。粉砕した粉末を1000℃×1hrの真空脱水
素処理を行う。真空脱水素処理の真空度は5.3×10
−3Pa(4×10−5Torr)である。その処理の
より粉末の水素量を2.1ppmまで低減した。
(Example 2) The same study as in Example 1 was conducted for the reproduction of a 5N high-purity Ta target for a barrier metal of an LSI wiring for a semiconductor. Ta after sputtering
700 ° C-1h in 1 atm of hydrogen
A hydrogenation treatment was performed at r. At that time, 4100 ppm of hydrogen was dissolved in the Ta material. The Ta block material that had absorbed hydrogen was crushed by a roll crusher to an average particle size of 0.5 mm, and then pulverized by a ball mill into powder having an average particle size of 40 μm. The pulverized powder is subjected to a vacuum dehydrogenation treatment at 1000 ° C. × 1 hr. The degree of vacuum in the vacuum dehydrogenation process is 5.3 × 10
−3 Pa (4 × 10 −5 Torr). The hydrogen content of the powder was reduced to 2.1 ppm by the treatment.

【0026】以上の粉砕で得られた平均粒径40μmの
粉末を図1に示す熱プラズマ処理プロセスにより処理す
る。原料粉末供給装置2を経由して、Arキャリアガス
の輸送により熱プラズマに供給する。処理した粉末を回
収缶5から回収する。
The powder having an average particle size of 40 μm obtained by the above pulverization is processed by the thermal plasma processing process shown in FIG. Via the raw material powder supply device 2, the carrier is supplied to the thermal plasma by transporting an Ar carrier gas. The treated powder is collected from the collection can 5.

【0027】熱プラズマ処理で得られた粉末をカプセル
に充填し、脱気封止してHIP焼結する。製造した機械
加工によりターゲットを作成した。粉砕粉末から、プラ
ズマ処理、HIP焼結の条件と結果を本発明例として表
3に示す。なお、表3における比較例は、熱プラズマ処
理前の原料粉を熱プラズマ処理を行わずHIP焼結した
ものである。また、ターゲット残材の粉砕前、プラズマ
処理前、熱プラズマ処理とHIP焼結後の不純物分析結
果を表4に示す。表3および4から、Taターゲットに
ついても、粉砕+熱プラズマ処理+HIPプロセスによ
り高純度・高密度組織微細均一のターゲットを製造でき
ることが分かる。
The powder obtained by the thermal plasma treatment is filled in a capsule, degassed and sealed, and HIP-sintered. A target was created by the manufactured machining. Table 3 shows the conditions and results of the plasma treatment and the HIP sintering of the pulverized powder as examples of the present invention. In the comparative example in Table 3, the raw material powder before the thermal plasma treatment was subjected to HIP sintering without performing the thermal plasma treatment. In addition, Table 4 shows the results of impurity analysis before pulverization of the target residual material, before plasma treatment, and after thermal plasma treatment and HIP sintering. From Tables 3 and 4, it can be seen that, for the Ta target as well, a target having high purity, high density structure, and fine uniformity can be manufactured by pulverization + thermal plasma treatment + HIP process.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【発明の効果】以上のように、本発明によれば、スパッ
タリングした後の高純度ターゲット残材を機械的粉砕
し、水素を装入した熱プラズマ処理により高純度、低酸
素、球状粉末素材の粉末材料を製造し、処理で得られた
粉末を加圧焼結により高純度、高密度組織微細均一のタ
ーゲット材を製造できる。この方法により、地球資源に
限りのある元素の有効利用、すなわちリサイクルを実現
でき、さらに、ターゲット製造の低コスト化を実現でき
る。
As described above, according to the present invention, the high-purity target material after sputtering is mechanically pulverized, and a high-purity, low-oxygen, spherical powder material is obtained by thermal plasma treatment with hydrogen. A powder material is produced, and the powder obtained by the treatment can be subjected to pressure sintering to produce a high-purity, high-density structure, fine and uniform target material. By this method, it is possible to effectively use, that is, recycle, elements that are limited to earth resources, and to further reduce the cost of target production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関する熱プラズマ装置の模式図であ
る。
FIG. 1 is a schematic view of a thermal plasma device according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱プラズマ装置、2 粉末供給装置、3 プラズマ
高温帯、4 チャンバー、5 回収缶、6 ノズル、7
コイル、8 水冷チューブ
1 thermal plasma device, 2 powder supply device, 3 plasma high temperature zone, 4 chambers, 5 collection cans, 6 nozzles, 7
Coil, 8 water-cooled tubes

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA04 BA02 BA04 BA07 CA01 DA09 EA03 EF02 EG04 4K018 AA02 AA19 AA21 AA40 BA01 BA03 BA09 BB03 BC06 EA13 KA29 4K029 DC03 DC04 DC09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA04 BA02 BA04 BA07 CA01 DA09 EA03 EF02 EG04 4K018 AA02 AA19 AA21 AA40 BA01 BA03 BA09 BB03 BC06 EA13 KA29 4K029 DC03 DC04 DC09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属ブロックを粉砕し、得られた粉末を
熱プラズマ中に通し、球状化及び高純度化して粉末原料
とすることを特徴とする粉末原料の製造方法。
1. A method for producing a powder raw material, comprising pulverizing a metal block, passing the obtained powder through thermal plasma, and spheroidizing and purifying the powder to obtain a powder raw material.
【請求項2】 熱プラズマ中に水素を導入することを特
徴とする請求項1に記載の粉末原料の製造方法。
2. The method according to claim 1, wherein hydrogen is introduced into the thermal plasma.
【請求項3】 金属ブロックはスパッタリングを行った
後の廃却ターゲットであることを特徴とする請求項1ま
たは2に記載の粉末原料の製造方法。
3. The method according to claim 1, wherein the metal block is a waste target after sputtering.
【請求項4】 金属はRu、Ta、W、Moから選ばれ
る金属またはこれらを主体とする合金であることを特徴
とする請求項1ないし3のいずれかに記載の粉末原料の
製造方法。
4. The method for producing a powder raw material according to claim 1, wherein the metal is a metal selected from Ru, Ta, W, and Mo or an alloy containing these as a main component.
【請求項5】 請求項1ないし4のいずれかに記載の粉
末原料の製造方法により得られた粉末を原料として焼結
によりターゲット材を作製することを特徴とするターゲ
ット材の製造方法。
5. A method for producing a target material, comprising sintering a powder obtained by the method for producing a powder material according to claim 1 as a raw material.
JP2000162795A 2000-05-31 2000-05-31 Method for production of powder material and method for producing target material Pending JP2001342506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162795A JP2001342506A (en) 2000-05-31 2000-05-31 Method for production of powder material and method for producing target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162795A JP2001342506A (en) 2000-05-31 2000-05-31 Method for production of powder material and method for producing target material

Publications (1)

Publication Number Publication Date
JP2001342506A true JP2001342506A (en) 2001-12-14

Family

ID=18666651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162795A Pending JP2001342506A (en) 2000-05-31 2000-05-31 Method for production of powder material and method for producing target material

Country Status (1)

Country Link
JP (1) JP2001342506A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193826A (en) * 2004-12-13 2006-07-27 Hitachi Metals Ltd Production methods of metal powder with high melting point and target material
JP2006274399A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Method for manufacturing fine powder of alloy, and fine powder of alloy
JP2006283054A (en) * 2005-03-31 2006-10-19 Hoya Corp Sputtering target, manufacturing method for substrate with multi-layered reflecting film, manufacturing method for reflection type mask blank, and manufacturing method for reflection type mask
JP2007277671A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd METHOD FOR PRODUCING Mo ALLOY POWDER AND METHOD FOR PRODUCING SPUTTERING TARGET MATERIAL
CN100431748C (en) * 2005-07-27 2008-11-12 北京工业大学 Rare-earth element gadolinium nano particle and nano crystal block material preparing method
WO2011071225A1 (en) 2009-12-07 2011-06-16 주식회사 풍산 Production method for high purity copper powder using a thermal plasma
KR101143860B1 (en) * 2009-12-24 2012-05-22 희성금속 주식회사 Manufacturing method of a Ru powder and Ru target material using a waste-Ru target
KR101154975B1 (en) * 2010-04-07 2012-06-14 희성금속 주식회사 Tantallum powder and manufacturing method thereof
WO2012150757A1 (en) * 2011-05-04 2012-11-08 희성금속 주식회사 Preparation method of ruthenium (ru) powder for preparation of ruthenium target
JP2013522473A (en) * 2010-03-25 2013-06-13 ヒ スング メタル リミテッド Method for producing highly purified and refined ruthenium (Ru) powder using used ruthenium (Ru) target
KR101284598B1 (en) 2011-04-14 2013-07-10 희성금속 주식회사 Tantallum powder and manufacturing method thereof
KR101285284B1 (en) 2011-04-26 2013-07-11 희성금속 주식회사 Manufacturing method of a high purity Ru powder and target using a waste Ru target
JP2013528700A (en) * 2010-04-12 2013-07-11 ヒ スング メタル リミテッド Method for producing tantalum (Ta) powder using eutectic alloy
WO2014046324A1 (en) * 2012-09-24 2014-03-27 희성금속 주식회사 Method for manufacturing ultra-high-purity, ultra-fine ruthenium alloy powder
KR101510852B1 (en) * 2013-09-16 2015-04-10 한국생산기술연구원 Method for manufacturing powder of ruthenium-chromium with rf plasma process
KR20160031853A (en) * 2014-09-15 2016-03-23 한국생산기술연구원 Density and sphericity enhanced RuCr alloy and the manufacturing method of the same
WO2019124344A1 (en) * 2017-12-18 2019-06-27 日立金属株式会社 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder
WO2020194789A1 (en) * 2019-03-28 2020-10-01 Jx金属株式会社 Joint body of target material and backing plate, and method for manufacturing joint body of target material and backing plate

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193826A (en) * 2004-12-13 2006-07-27 Hitachi Metals Ltd Production methods of metal powder with high melting point and target material
JP2006274399A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Method for manufacturing fine powder of alloy, and fine powder of alloy
JP2006283054A (en) * 2005-03-31 2006-10-19 Hoya Corp Sputtering target, manufacturing method for substrate with multi-layered reflecting film, manufacturing method for reflection type mask blank, and manufacturing method for reflection type mask
CN100431748C (en) * 2005-07-27 2008-11-12 北京工业大学 Rare-earth element gadolinium nano particle and nano crystal block material preparing method
JP2007277671A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd METHOD FOR PRODUCING Mo ALLOY POWDER AND METHOD FOR PRODUCING SPUTTERING TARGET MATERIAL
CN102665972B (en) * 2009-12-07 2015-09-23 株式会社豊山 The method of high-purity copper powder is produced by hot plasma
CN102665972A (en) * 2009-12-07 2012-09-12 株式会社豊山 Production method for high purity copper powder using a thermal plasma
US9061353B2 (en) 2009-12-07 2015-06-23 Poongsan Corporation Production method for high purity copper powder using a thermal plasma
WO2011071225A1 (en) 2009-12-07 2011-06-16 주식회사 풍산 Production method for high purity copper powder using a thermal plasma
KR101143860B1 (en) * 2009-12-24 2012-05-22 희성금속 주식회사 Manufacturing method of a Ru powder and Ru target material using a waste-Ru target
JP2013522473A (en) * 2010-03-25 2013-06-13 ヒ スング メタル リミテッド Method for producing highly purified and refined ruthenium (Ru) powder using used ruthenium (Ru) target
KR101154975B1 (en) * 2010-04-07 2012-06-14 희성금속 주식회사 Tantallum powder and manufacturing method thereof
JP2013528700A (en) * 2010-04-12 2013-07-11 ヒ スング メタル リミテッド Method for producing tantalum (Ta) powder using eutectic alloy
KR101284598B1 (en) 2011-04-14 2013-07-10 희성금속 주식회사 Tantallum powder and manufacturing method thereof
JP2014518565A (en) * 2011-04-26 2014-07-31 ヒ スング メタル リミテッド Ultra high purity ruthenium (Ru) powder using waste ruthenium (Ru) target and method for producing target
KR101285284B1 (en) 2011-04-26 2013-07-11 희성금속 주식회사 Manufacturing method of a high purity Ru powder and target using a waste Ru target
KR101206416B1 (en) 2011-05-04 2012-11-29 희성금속 주식회사 Method of manufacturing ruthenium powder for fabricating Ru Sputtering Target
JP2014518939A (en) * 2011-05-04 2014-08-07 ヒ スング メタル リミテッド Ruthenium powder production method for ruthenium (Ru) target production
WO2012150757A1 (en) * 2011-05-04 2012-11-08 희성금속 주식회사 Preparation method of ruthenium (ru) powder for preparation of ruthenium target
KR101469873B1 (en) * 2012-09-24 2014-12-05 희성금속 주식회사 Manufacturing method of a high purity and refining Ru alloy powder
WO2014046324A1 (en) * 2012-09-24 2014-03-27 희성금속 주식회사 Method for manufacturing ultra-high-purity, ultra-fine ruthenium alloy powder
KR101510852B1 (en) * 2013-09-16 2015-04-10 한국생산기술연구원 Method for manufacturing powder of ruthenium-chromium with rf plasma process
KR20160031853A (en) * 2014-09-15 2016-03-23 한국생산기술연구원 Density and sphericity enhanced RuCr alloy and the manufacturing method of the same
KR101647997B1 (en) * 2014-09-15 2016-08-12 한국생산기술연구원 Density and sphericity enhanced RuCr alloy and the manufacturing method of the same
WO2019124344A1 (en) * 2017-12-18 2019-06-27 日立金属株式会社 Method for producing tial intermetallic compound powder, and tial intermetallic compound powder
CN111465462A (en) * 2017-12-18 2020-07-28 日立金属株式会社 Method for producing TiAl intermetallic compound powder and TiAl intermetallic compound powder
WO2020194789A1 (en) * 2019-03-28 2020-10-01 Jx金属株式会社 Joint body of target material and backing plate, and method for manufacturing joint body of target material and backing plate

Similar Documents

Publication Publication Date Title
US6676728B2 (en) Sputtering target, method of making same, and high-melting metal powder material
JP2001342506A (en) Method for production of powder material and method for producing target material
EP1585844B1 (en) Powder metallurgy sputtering targets and methods of producing same
JP4388263B2 (en) Iron silicide sputtering target and manufacturing method thereof
JP2005336617A (en) Target for sputtering, its production method and high melting point metal powder material
JP2005336617A5 (en)
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
JP4465662B2 (en) Method for producing metal powder and method for producing target material
JP6083673B2 (en) Sputtering target made of high purity lanthanum
US20130233706A1 (en) Al-based alloy sputtering target and production method of same
CN113235056A (en) Preparation method of high-purity tantalum target material
TW201533248A (en) High-purity tantalum powder and preparation method therefor
KR101469873B1 (en) Manufacturing method of a high purity and refining Ru alloy powder
US20140123810A1 (en) Preparation method of Ruthenium(Ru) powder for preparation of Ruthenium target
JP2003055758A (en) Tungsten sintered compact target for sputtering, and its manufacturing method
US20140105777A1 (en) Production method for ultra-high-purity ruthenium(ru) powder and target by using waste ruthenium(ru) targets
JP5577454B2 (en) Method for producing tantalum (Ta) powder using eutectic alloy
JP3037772B2 (en) Ti-W target material and method of manufacturing the same
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPH04116161A (en) Titanium target material and production thereof
JPH04362105A (en) Production of fine intermetallic compound powder
KR20210067740A (en) Method of producing titanium-based powder using transfer arc plasma
JPH06280009A (en) Target for sputtering and its production
JPH0551732A (en) Target for sputtering and production thereof
JP2018111867A (en) High purity cerium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100226