JP6702559B2 - 電子機器、方法及びプログラム - Google Patents

電子機器、方法及びプログラム Download PDF

Info

Publication number
JP6702559B2
JP6702559B2 JP2017023016A JP2017023016A JP6702559B2 JP 6702559 B2 JP6702559 B2 JP 6702559B2 JP 2017023016 A JP2017023016 A JP 2017023016A JP 2017023016 A JP2017023016 A JP 2017023016A JP 6702559 B2 JP6702559 B2 JP 6702559B2
Authority
JP
Japan
Prior art keywords
period
stress
stress index
sensor
sleep period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017023016A
Other languages
English (en)
Other versions
JP2018126422A (ja
Inventor
麻未 齋藤
麻未 齋藤
康裕 鹿仁島
康裕 鹿仁島
隆 須藤
隆 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017023016A priority Critical patent/JP6702559B2/ja
Publication of JP2018126422A publication Critical patent/JP2018126422A/ja
Application granted granted Critical
Publication of JP6702559B2 publication Critical patent/JP6702559B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態はストレスに関する情報を求めることに関する。
ストレスに関する情報の測定には2種類の方法がある。1つは、血液や体液に基づくものである。これは、1週間、1か月等の長期にわたりユーザに蓄積されたストレス(以下、慢性ストレスとも称する)に関する情報を測定することはできるが、医療機器を使うので、測定が容易ではなく、ユーザの負担が大きい。他は、ウェアラブル型の生体センサを用いて測定した脈拍又は心拍に基づくものである。これは、1分、5分、15分等の短時間のストレス(以下、瞬時ストレスとも称する)に関する情報を求めることはできるが、慢性ストレスに関する安定した情報を簡単に求めることはできない。慢性ストレスに関する情報を求めるためには、ユーザにウェアラブルセンサを装着させ、脈拍又は心拍を測定する。そして、測定値を演算し、LF、HF等の自律神経バランスに関する指標を演算し、指標の変化の傾向を調べる必要がある。
しかし、この方法は、指標演算は常時行っているので、消費電力が多い。また、脈拍又は心拍は、睡眠時は安定しているが、覚醒時は急激に変動することがある。そのため、脈拍又は心拍の1日の測定値の平均値や日中の測定値群の中の代表値を用いて自律神経指標を演算すると、覚醒時の脈拍又は心拍の変動がノイズとなり、指標が安定しない。
米国特許出願公開第2016/0331315号明細書 特開2016−10709号公報
従来は、ストレスに関する安定した情報を簡単に求めることができない。
本発明の目的は、ストレスに関する安定した情報を簡単に求めることができる電子機器、方法及びプログラムを提供することである。
実施形態によれば、電子機器は、センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得する取得手段と、ユーザの入眠から出眠までの睡眠期間を検出し、センサによって測定されたユーザの脈拍又は心拍に関する生体情報を用いて、ユーザの睡眠期間がレム睡眠期間かを判定する判定手段と、睡眠期間の最初のレム睡眠期間の開始から第1期間内にセンサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内にセンサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内にセンサにより測定された第3生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内にセンサにより測定された第4生体情報を用いて第2ストレス指標を決定する決定手段と、第1ストレス指標と第2ストレス指標とを用いて定められたユーザのストレスに関する情報を出力する出力手段と、を具備する。取得手段は、1つの睡眠期間において、第1期間と第2期間は生体情報の入力を受け、第1期間から第2期間までの期間の少なくとも一部は生体情報の入力を受けない
図1は実施形態のシステム構成の一例を示すブロック図である。 図2はセンサ端末10の構成の一例を示すブロック図である。 図3はモバイル端末12の構成の一例を示すブロック図である。 図4はストレス判定アプリケーション66bの機能ブロックの一例を示す。 図5は体動データ処理モジュール112が体動データ変動量、体動量を算出する手順の一例を示す。 図6は体動検出モジュール114、覚醒/睡眠判定モジュール120による覚醒/睡眠の判定の一例を示す。 図7は脈拍間隔データ処理モジュール128が脈拍間隔データを補間する動作の一例を示す。 図8は自律神経指標演算モジュール132が自律神経指標LF、HFを演算する動作の一例を示す。 図9は一般的な成人のLF/HFの変動状態の一例を示す。 図10はセンサ端末10の動作の一例を示すフローチャートである。 図11はモバイル端末12の動作の一例の前半を示すフローチャートである。 図12はモバイル端末12の動作の一例の後半を示すフローチャートである。 図13はストレス指標テーブルの一例を示す。 図14はサーバ14の動作の一例を示すフローチャートである。 図15はストレス指標の変化の一例を示す。 図16はストレス指標の変化の他の例を示す。
以下、実施の形態について図面を参照して説明する。
(ストレスと脈拍又は心拍の関係)
心臓の動きに関する事象として、心拍と脈拍がある。1分間に心臓が拍動する回数が心拍数であり、手足の動脈が1分間に拍動する回数が脈拍数である。健常者の場合、両者は一致するので、以下、脈拍数と心拍数を区別せず、脈拍数又は心拍数と称する。脈拍数又は心拍数の逆数が脈拍間隔又は心拍間隔である。
心臓の動きは、自律神経の働きによって支配される。自律神経は、交感神経と副交感神経を含む。交感神経の働きが活発になる(活性化する)と、脈拍数又は心拍数は増加し、副交感神経の働きが活性化すると、脈拍数又は心拍数は減少する。身体を動かすと、交感神経が活性化するので、心拍数は増加する。身体が動いていない安静時は、副交感神経が活性化するので、心拍数が減少する。そのため、安静時の脈拍数又は心拍数を用いると、」自律神経のバランスを安定して評価することができる。自律神経のバランスは、ストレスによっても影響され、緊張すると、瞬時ストレスにより交感神経が活性化し、心拍数が増加する(胸がドキドキする)。また、職場や人間関係の影響などによる慢性ストレスが溜まっていると、交感神経は常に活性化された状態となるため、安静時の脈拍数又は心拍数は増加する。このように、脈拍又は心拍に関する情報(例えば脈拍数又は心拍数あるいは脈拍間隔又は心拍間隔)を用いることにより、どの程度ストレスを受けているかに関するストレス指標を決定し得る。ストレス指標とは、人間や動物等のある時点のストレスの強さを示すものであればよく、詳細は後述するが、例えば、自律神経バランスであって、LF/HF、SDNN、PNN50、HFのみ、LFのみ等を用いて測定される。瞬時ストレスは、短期間(1分、5分、15分等)に測定されたストレス指標を用いて算出される。慢性ストレスは、長期間(1週間、1か月以上)に測定されたストレス指標を用いて算出される。
(システム構成)
図1は実施形態のシステム構成の一例を示すブロック図である。実施形態は、説明の便宜上、センサ端末10、モバイル端末12、サーバ14の3つのユニットからなるシステムを示す。
センサ端末10とモバイル端末12との間、モバイル端末12とサーバ14との間は、無線又は有線により接続される。例えば、センサ端末10とモバイル端末12との間はブルーツース(登録商標)を用いて接続され、モバイル端末12とサーバ14の間はネットワーク16を介して接続される。センサ端末10は測定値をモバイル端末12へ送信し、センサ端末10はモバイル端末12からの制御信号等を受信してもよい。
センサ端末10は、各種の生体情報を測定するセンサを含む。生体情報は脈拍又は心拍に関する情報であればよく、たとえば、ユーザの心拍または脈拍の間隔の大小に関する情報や、ユーザの心拍または脈拍の間隔の変化に関する情報を含む。本実施形態では、生体情報は、ストレスに関する情報を求めるために用いられる。センサ端末10は、生体情報を検知で可能なセンサを保有すればよく、例えば脈波センサと加速度センサを含む。なお、脈波センサの代わりに心拍センサを用いてもよい。センサ端末10は、ウェアラブル端末でもよいし、ベッド等に備え付けられている端末でもよい。
ウェアラブル端末の場合、その態様は、リストバンド型、腕時計型、指輪型、メガネ型、イヤリング型、ペンダント型、貼り付け型、衣服内蔵型、胸骨下部等にベルトで装着等のいずれでも良い。
ベッドに備え付けられているセンサ端末としては、マットセンサと称されるものがある。マットセンサとは、ベッドマットの表面に設置され、ユーザの胸部又は腹部の振動を計測して、心拍と体動を検出する圧力センサである。圧力センサは、ユーザの不在、在床、体動等を測定可能なように振動を検出できればよく、例えば、ポリフッ化ビニリデンなどの高分子圧電材料を薄膜状にし、両面に可撓性の電極膜を付着させてテープ状に形成した圧電素子により構成される。
モバイル端末12は、センサ端末10から送信された生体情報を受信し、受信した生体情報を演算し、ストレス指標を求める。このストレス指標を求める演算はセンサ端末10で行われてもよい。その場合、センサ端末14からストレス指標がモバイル端末12に送信される。モバイル端末12は、ストレス指標をサーバ14へ送信し、サーバ14がストレス指標に基づいてストレスの度合いを判定し、判定結果を自身から出力する、あるいは判定結果をモバイル端末12へ送信し、モバイル端末12から出力させる。判定はサーバ14に限らず、モバイル端末12で行っても良い。さらに、センサ端末10がストレス指標を求める演算を行う場合、判定もセンサ端末10で行っても良い。判定の例は、ストレスの解消やストレスの蓄積がある。後者の場合、センサ端末10又はモバイル端末12又はサーバ14から、警告が発生されてもよい。モバイル端末12は、例えば、携帯電話、スマートフォン、PC、タブレット端末などであってもよいし、専用端末であってもよい。
サーバ14は多数のモバイル端末12と接続可能である。例えば企業の健康管理団体のサーバは、企業の従業員のモバイル端末12からストレス指標を受信し、ストレス指標やストレス状態の判定に役立つ情報をストレージに蓄積する。産業医等がクライアント端末18を用いてサーバ14にアクセスして、従業員のストレスに関する情報等を閲覧して、ストレスの度合いを判定し、それに応じた健康管理を行うことができる。
図1は、3つのユニットからなるシステムを示したが、ユニットの数は3つに限られない。3つのユニットの機能の全てを1つのユニット、例えばセンサ端末10に実装してもよいし、3つのユニットの機能を2つのユニット、例えばセンサ端末10とモバイル端末12又はセンサ端末10とサーバ14に分割して実装してもよい。例えば、図1では、センサ端末10から脈波データがモバイル端末12に送信され、モバイル端末12で脈波データからストレス指標が演算され、ストレス指標がサーバ14に送信され、ストレス指標がサーバ14に蓄積されるが、センサ端末10でストレス指標を求める演算、求めたストレス指標の蓄積をしてもよいし、サーバ14を省略し、モバイル端末12でストレス指標の蓄積をしてもよいし、モバイル端末12を省略し、サーバ14でストレス指標を求める演算、求めたストレス指標の蓄積をしてもよい。センサ端末10とモバイル端末12はユーザ毎の端末であり、多数のセンサ端末10からの情報が多数のモバイル端末12を介してサーバ14にアップロード可能である。
(センサ端末12)
図2はセンサ端末10の構成の一例を示すブロック図である。センサ端末10は加速度センサ22、脈波センサ24、ブルーツースモジュール26、CPU28、メモリ30、フラッシュメモリ34、エンベデッドコントローラ(EC)36、2次電池(ここでは、リチウムイオン電池)38、充電端子40、システムコントローラ42、ディスプレイ43、スピーカ45等を含む。システムコントローラ42は、CPU28と各コンポーネントとの間を接続するブリッジデバイスである。
加速度センサ22は、3軸方向の例えば−2G〜2Gの加速度を計測する。加速度センサ22から出力されるアナログの加速度データは、A/D変換器44を介してシステムコントローラ42に入力される。A/D変換器44は、アナログデータのゲイン、オフセットを調整した後、10ビットの加速度データに変換する。加速度センサ22は、加速度を常時計測し、A/D変換器44は、一定周期、例えば50ms毎に加速度データをシステムコントローラ42に供給する。
脈波センサ24は、心臓が血液を送り出すことに伴い発生する血管の容積変化を脈波として測定するためのものであり、光源である発光素子(例えば緑色のLED)24aと、受光部であるフォトダイオード24bを含む。LED24aとフォトダイオード24bは同一平面に実装される。脈波センサ24の前面には透明な窓部が設けられ、LED24aからの光が窓部を通して皮膚表面に照射され、皮膚表面の反射光が窓部を通してフォトダイオード24bに入射される。フォトダイオード24bは毛細血管内の血流変化により変化する反射光の変動を測定する。フォトダイオード24bから出力されるアナログの測定データは、A/D変換器46によりデジタルデータに変換され、システムコントローラ42に入力される。A/D変換器46は脈波センサ24のフォトダイオード24bからの出力電流を電圧に変換し、電圧を増幅して、例えばハイパスフィルタ(カットオフ周波数:0.1Hz)とローパスフィルタ(カットオフ周波数:50Hz)を施した後、10ビットの脈波データに変換する。なお、センサ端末12が指輪型のウェアラブル端末の場合、フォトダイオードは、反射光ではなく、血管を透過した光を受光してもよい。
ブルーツースモジュール26は、モバイル端末12との通信に使用される。システムコントローラ42は、ブルーツースモジュール26を用いて加速度データと脈波データをモバイル端末12に送信する。システムコントローラ42は、ブルーツースモジュール26を用いてモバイル端末12から制御信号を受信する。
CPU28はセンサ端末10の各コンポーネントの動作を制御するプロセッサである。CPU28は、フラッシュメモリ34に記憶されているアプリケーションプログラム(以下、単にアプリケーション又はアプリと称することもある)を実行することにより、センサ端末10の動作を制御する。なお、アプリケーションは更新可能である。センサ端末10の動作はアプリケーションにより制御されるのではなく、専用のハードウェア、例えばカスタムLSI、セミカスタムLSI、プログラマブルDSPにより制御されてもよい。
エンベデッドコントローラ36は、センサ端末10の電力管理を実行するための電力管理コントローラであり、リチウムイオン電池38の充電を制御する。センサ端末10が充電器48に装着されると、充電端子40を介して充電器48からの充電電流がセンサ端末10に供給され、リチウムイオン電池38が充電される。エンベデッドコントローラ36は、リチウムイオン電池38からの電力に基づいて各コンポーネントへ動作電源を供給する。
センサ端末10には機器IDが付与されている。センサ端末10は、加速度データと脈波データをモバイル端末12に送信する際、送信データに機器IDを含める。このため、モバイル端末12は、機器IDに基づいてセンサ端末10からのデータを識別できる。
(モバイル端末12)
図3はモバイル端末12の構成の一例を示すブロック図である。モバイル端末12はブルーツースモジュール60、無線通信モジュール62、CPU64、メモリ66、SSD(又はHDD)68、ディスプレイ70、スピーカ72、エンベデッドコントローラ(EC)74、2次電池(ここでは、リチウムイオン電池)76、充電端子78、システムコントローラ82等を含む。システムコントローラ82は、CPU64と各コンポーネントとの間を接続するブリッジデバイスである。
CPU64は、モバイル端末12に実装された各コンポーネントの動作を制御するプロセッサである。CPU64は、不揮発性のストレージデバイスであるSSD68からメモリ66にロードされる各種ソフトウェアを実行する。このソフトウェアは、オペレーティングシステム(OS)66a、ストレス判定アプリケーションプログラム66b等を含む。メモリ66はワーキングメモリ66cも含む。ストレス判定アプリケーションプログラム66bは、加速度データ、脈波データに基づいて、ユーザのある時点でのストレス指標を求める。
ストレス指標の例は種々存在するが、実施形態では、自律神経のバランスを示す指標を用いる。自律神経のバランスを示す指標の例は後述する。このストレス指標の変化の度合い等に基づいて、ユーザにストレスが蓄積され慢性ストレス状態になっているか、あるいはストレスが解消されているか等が判定できる。ストレス指標及び変化の度合いは、センサ端末10、モバイル端末12、サーバ14のいずれで計算してもよい。ストレス指標そのもの又は指標の変化の度合いは、モバイル端末12のディスプレイ70又はサーバ14にアクセスするクライアント端末18で表示されてもよい。変化の度合いが所定の閾値以上の場合、ストレスが蓄積されている警告をモバイル端末12のディスプレイ70、スピーカ72等から発してもよい。なお、アプリケーションは更新可能である。ストレス指標を求める演算又は指標の変化の度合いを求める演算、さらには変化の度合いに基づいてストレス状態を判定する処理はアプリケーションにより実行されるのではなく、専用のハードウェア、例えばカスタムLSI、セミカスタムLSI、プログラマブルDSPにより実行されてもよい。
ディスプレイ70はタッチパネルであってもよく、CPU64の制御のもとでシステムコントローラ82からの表示信号に基づいてストレス指標そのもの又は指標の変化の度合いを表示してもよいし、ストレス状態が良好でない場合の警告を表示してもよい。ストレスに関する情報や警告はスピーカ72から出力されてもよい。
ブルーツースモジュール60はセンサ端末10のブルーツースモジュール26と通信し、センサ端末10から出力される生体情報を受信し、制御信号をセンサ端末10へ送信する。
無線通信モジュール62は、無線LANや3G移動通信などの無線通信又はNFC(Near Field Communication)などの近接無線通信を実行するように構成されたモジュールである。無線通信デバイス62を介してモバイル端末12はネットワーク16に接続される。
エンベデッドコントローラ74は、センサ端末10のエンベデッドコントローラ36と同様にモバイル端末12の電力管理を実行するための電力管理コントローラであり、リチウムイオン電池76の充電を制御する。モバイル端末12が充電器80に装着されると、充電端子78を介して充電器80からの充電電流がモバイル端末12に供給され、リチウムイオン電池76が充電される。エンベデッドコントローラ74は、リチウムイオン電池76からの電力に基づいて各コンポーネントへ動作電源を供給する。
(ストレス指標演算)
図4はストレス判定アプリケーションプログラム66bの機能ブロックの一例を示す。ストレス判定アプリケーションプログラム66bは、センサ端末10から送信された加速度データ、脈波データを入力する。ストレス判定アプリケーションプログラム66bは、体動データ処理モジュール112、体動検出モジュール114、覚醒/睡眠判定モジュール120、中途覚醒検出モジュール122、脈波データ処理モジュール126、脈拍間隔データ処理モジュール128、周波数スペクトル変換モジュール130、自律神経指標演算モジュール132、睡眠状態判定モジュール136等を含む。
体動データ処理モジュール112は、センサ端末10から送信された3軸方向の加速度データから、体動データの変動量および脈拍間隔内の体動データの変動量の平均である体動量を求める。
体動データ処理モジュール112が、体動データ変動量及び体動量を算出する手順の一例を図5に示す。加速度データは、X軸、Y軸、Z軸の3軸成分からなるが、説明の便宜上、図5はX軸成分を示す。他の軸(Y軸、Z軸)はX軸と同様であるので、図示は省略する。体動データ処理モジュール112は、図5(a)に示すX軸方向の加速度データの微分係数を算出する。図5(b)はX軸方向の加速度の微分係数の1分間の変移を示す。次に、体動データ処理モジュール112は、X軸方向の加速度の微分係数の2乗和の平方根を算出し、図5(c)に示す体動データの変動量を求める。体動データ処理モジュール112は、体動データの変動量から脈拍間隔内の体動データの変動量の平均である体動量を算出する。体動データの変動量は、例えば50ms毎のユーザの体動の変動量とする。体動データの変動量の1分間の平均値を体動量とする。体動データ処理モジュール112は、体動データの変動量および体動量を体動検出のためのデータとして体動検出モジュール114に提供する。体動検出モジュール114は、ユーザの体動を検出する。
覚醒/睡眠判定モジュール120は、体動検出モジュール114によって検出された体動の発生頻度からユーザが睡眠中か覚醒しているか判定する。体動検出モジュール114、覚醒/睡眠判定モジュール120による覚醒/睡眠判定の判定例を図6に示す。体動検出モジュール114は、体動データ処理モジュール112から取得した体動データの変動量が第1閾値(例えば、0.01G)以上か否かを判定し、第1閾値以上の場合、ユーザの体動を検出する。
覚醒/睡眠判定モジュール120は、設定区間、例えば1分間において体動検出モジュール114が体動を検出する頻度を測定し、体動発生頻度が第2閾値、例えば5回/1分以上である場合、ユーザは覚醒状態であると判定する。一方、体動発生頻度が第2閾値未満である場合、ユーザは睡眠状態であると判定する。あるいは、覚醒/睡眠判定モジュール120は、体動の発生頻度が第3閾値、例えば20回/分以上であり、かつ、後述する処理により得られる脈拍間隔データが過去の睡眠中の脈拍間隔データの平均値より短い場合、ユーザは覚醒中と判定してもよい。
中途覚醒検出モジュール122は、覚醒/睡眠判定モジュール120の判定結果から、中途覚醒の回数及び時間合計を取得する。中途覚醒とは、入眠後起床までの間の覚醒を示し、瞬間的な覚醒を含むものとする。なお、中途覚醒検出モジュール122は、中途覚醒の回数及び時間合計の両方を取得せずに、中途覚醒を示す値としていずれか一つを取得してもよい。中途覚醒検出モジュール122の検出結果は、覚醒/睡眠判定モジュール120にフィードバックされる。
このフィードバックに基づいて、覚醒/睡眠判定モジュール120は、中途覚醒検出モジュール122により検出された例えば30分間、1時間以下の短時間の中途覚醒は覚醒として見做さず、その間も睡眠中と見做す。例えば、第1入眠検出後、第1出眠を検出し、その後第2入眠を検出し、第2出眠を検出する場合がある。しかし、第1出眠の検出タイミングから第2入眠の検出タイミングまでの期間が閾値期間以下の場合、この期間は睡眠中と見做す。すなわち、第1出眠、第2入眠は無視して、第1入眠から第2出眠までが睡眠期間とする。
脈波データ処理モジュール126は、センサ端末10から送信された脈波データをサンプリングし、サンプリングした一連の脈波データを時間微分して一連の脈波データの直流変動成分を取得し、一連の脈波データから直流変動成分を除去する。そして、脈波データ処理モジュール126は、直流変動成分を除去された一連の脈波データの処理ポイントを中心とした前後約1秒の脈波データの最大値と最小値を取得し、最大値と最小値との間の所定の値を第4閾値と設定する。例えば、第4閾値は、最大値、最小値の差を振幅として、最小値から振幅の9割の値とする。さらに、脈波データ処理モジュール112は、直流変動成分を除去された一連の脈波データから第4閾値に一致する一連の脈波データの値が現れた時刻を算出し、算出された時刻の間隔から脈拍間隔データを取得する。
脈拍間隔データ処理モジュール128は、脈波データ処理モジュール126が取得した脈拍間隔データから一連の脈拍間隔データ、例えば、1分間のデータセットを生成し、一連の脈拍間隔データを高次の多項式で補間する。ここで、脈拍間隔データ処理モジュール113が一連の脈拍間隔データを補間する一例について説明する。
脈拍間隔データ処理モジュール128が一連の脈拍間隔データを補間する一例を図7に示す。脈拍間隔データ処理モジュール128は、不等間隔の脈拍間隔データを補間、再サンプリングし、等間隔の脈拍間隔データを生成する。例えば、脈拍間隔データ処理モジュール128は、3次の多項式補間法によって補間する点の前後それぞれ3点のサンプリング点を用いて等間隔の脈拍間隔データを生成する。
周波数スペクトル変換モジュール130は、脈拍間隔データ処理モジュール128によりデータ処理された一連の等間隔の脈拍間隔データを、FFT(Fast Fourier Transform)法などの周波数解析手法により周波数スペクトル分布に変換する。自律神経指標演算モジュール132は、図8に示すように、パワースペクトルの値からストレス指標としての自律神経指標LF、HFを取得する。例えば、自律神経指標演算モジュール132は、複数のパワースペクトルのピーク値とピーク値を中心として前後等間隔の1点との3点の合計値の算術平均をとってLF、HFとする。周波数解析法としてFFT法を用いることは、データ処理の負担が軽い利点があるが、これ以外のARモデル法、最大エントロピー法、ウェーブレット法等、どのような手法を用いても良い。LFはパワースペクトルの低周波数領域(0.05〜0,15Hz付近)の指標であり、HFは高周波数領域(0.15〜0.4Hz付近)の指標である。HFは、副交感神経の活動を反映し、LFは、交感神経の活動を反映する。LFとHFのパワーの比率であるLF/HFは、交感神経と副交感神経の全体のバランスを表す。この比が大きいと交感神経優位を、小さいと副交感神経優位を示す。そのため、自律神経指標をストレス指標とすることができる。ストレス指標は自律神経指標以外の指標も含むが、以下の説明では、自律神経指標はストレス指標と同義とする。
自律神経指標として脈拍間隔又は心拍間隔に関する情報LF、HFを説明したが、自律神経バランスに関する指標は、LF、HFに限らず、他の指標をストレス指標として用いてもよい。自律神経指標は、時間領域の指標と、周波数領域の指標に分類される。LF、HFは周波数領域の自律神経指標であり、周波数領域の自律神経指標の他の例は、VLF、トータルパワー等がある。VLFは超低周波数領域(0〜0.05Hz付近)の指標である。トータルパワーは、短時間(例えば、5分間)テストにおける周波数0〜0.4Hz(VLF、LF、HF)のパワースペクトルのトータルパワーの計算値である。この値は、交感神経活動が主に占める自律神経系活動全体を反映する。
時間領域の自律神経指標は、HRT(心拍数)、MeanNN(NN間隔平均)、SDNN(NN間隔標準偏差値)、RMS−SD(隣接NN間隔標準偏差)、PNN50(心拍間隔の割合)、TI(緊張指標)等がある。HRT(心拍数)は、テスト期間中の全心拍数の平均値であり、1分間の心拍数(BPM)で測定される。MeanNN(NN間隔平均)は、テスト期間中の全拍動感覚値を平均したものである。SDNN(NN間隔標準偏差値)は、NN間の標準偏差であり、NN間隔の分散の平方根である。RMS−SD(隣接NN間隔標準偏差)は、連続して隣接するNN間隔の標準偏差で、隣接NN間隔の分散の平均の平方根である。PNN50(心拍間隔の割合)は、テスト期間中の全心拍数の平均値であり、HRTは1分間の心拍数(BPM)で測定される。TI(緊張指標)は、基本的に精神的ストレスが原因でおこる自律神経調節メカニズムの機能的緊張指標である。
実施形態では、交感神経と副交感神経の活性状態のバランスによって脈拍数の変化に対するHFの変動波とLFの変動波の影響が異なることを利用して、自律神経指標LFとHFのパワーの比LF/HFをストレス指標とする。
図9は、一般的な成人のストレス指標(LF/HF)の変動の一例を示す。日中等の覚醒している間は、ストレス指標は非常に大きい値から非常に小さい値まで大きく変動するが、睡眠中は、ストレス指標は小さい値の前後で変動し、変動幅も小さい。そのため、覚醒期間のストレス指標ではなく、睡眠中のストレス指標を使うことによりストレスに関する安定した情報を得ることができる。
ストレス指標を睡眠中に常時演算して、多数のストレス指標に基づいてストレス状態を判定しても良いが、ストレスが解消されると、ストレス指標が減少することが知られている。そのため、実施形態は、睡眠中のストレス指標の変化に基づいてストレス状態を判定する。変化を求める2点のストレス指標としては、一番時間間隔が長いストレス指標である入眠直後T1のストレス指標(第1ストレス指標とも称する)と出眠直前T2のストレス指標(第2ストレス指標とも称する)とする。
このように、睡眠中常時ストレス指標を演算することはしていないので、消費電力が少なくて済む。また、ストレス指標を求めるための脈波データをセンサ端末10からモバイル端末12へ常時送信することはしていないので、やはり消費電力が少なくて済む。
入眠直後とは入眠(覚醒から睡眠への変化)時刻から第1所定時間の期間であり、第1所定時間は、数分(例えば、5分)でもよいし、数時間(例えば、1時間又は2〜3時間)でもよい。出眠直前とは出眠(睡眠から覚醒への変化)時刻から第2所定時間前までの期間であり、第2所定時間は数分(例えば、5分)でもよいし、数時間(例えば、1時間又は2〜3時間)でもよい。なお、第1と第2所定時間は異なっていても良い。
第1、第2のストレス指標は、入眠から第1所定時間後、出眠より第2所定時間前の2つの時刻の脈波データから求めても良いが、入眠直後期間、出眠直前期間内の一定間隔の複数の脈波データの演算値(例えば、平均値、最大値、最小値、中央値)から求めてもよい。後者の場合、複数の脈波データの演算をセンサ端末10で行わず、センサ端末10から複数の脈波データをモバイル端末12に送信し、モバイル端末12で演算してもよい。
第1ストレス指標と第2ストレス指標の差分(第2−第1)であるストレス指標の変化値の符号がプラス(指標が増加)、マイナス(指標が減少)又は±0(増減無し)かに基づいてストレスが蓄積又は解消されていることが判定できる。変化値の絶対値からはストレスがどの程度蓄積又は解消されているかが判定できる。さらに、単なる変化値ではなく、単位時間当たりの変化の割合である変化率に基づくとストレスがどの程度蓄積又は解消されているかが判定できる。変化率は、変化値を第1ストレス指標と第2ストレス指標を求めた時刻の差で割ったものである。さらに、出眠時の第2ストレス指標そのものの値に基づいてもストレス状態を判定できる。上述した判定例は、ストレス指標の一晩の変化に基づく判定例であるが、一晩ではなく長期間(例えば、1週間、1か月)のストレス指標の変化の傾向を調べると、慢性ストレスに関する健康状態が判定できる。
図4の睡眠状態判定モジュール136は、自律神経指標演算モジュール132が演算したLF/HFからユーザの睡眠状態を判定する。例えば、睡眠状態判定モジュール136は、LF/HFが第5閾値よりも小さく、かつ、HFが第6閾値よりも大きいときは、睡眠状態は深睡眠(ノンレム睡眠)であると判定し、また、LF/HFが第7閾値よりも大きく、かつ、HFが第8閾値より小さく、かつ、LF、HFの標準偏差の合計が第9閾値より大きいときは、睡眠状態はレム睡眠であると判定し、深睡眠(ノンレム睡眠)およびレム睡眠以外のときは浅睡眠(ノンレム睡眠)と判定する。
(動作例)
実施形態の種々の動作態様を説明する。
図9に示すように、入眠直後と出眠直前の2つのストレス指標が演算される。入眠直後と出眠直前のストレス指標を演算するためには、入眠直後と出眠直前の脈波データが必要である。このためには、センサ端末10又はモバイル端末12は、センサ端末10を装着しているユーザが現在睡眠中であるか覚醒中であるかを知る必要がある。睡眠時間が予め決まっている場合、入眠時刻、出眠時刻、第1所定時間、第2所定時間を予めセンサ端末10に入力し、センサ端末10が測定する時刻又は期間を予め設定することができる。これにより、センサ端末10は、予め設定された時刻または期間に脈波センサ24をオンして、第1、第2ストレス指標を計算するための脈波データをモバイル端末12に送信することができる。この場合、加速度センサ22は不要である。
睡眠時間が決まっていることは稀であるが、起床(出眠)時刻は決まっていることがある。この場合、出眠時刻と第2所定時間だけ予めセンタ端末10に入力し、センサ端末10が測定する時刻又は時間を予め設定してもよい。これにより、センサ端末10は、予め設定された時刻または期間に脈波センサ24をオンして、第2ストレス指標を計算するための脈波データをモバイル端末12に送信することができる。入眠時刻は覚醒/睡眠判定モジュール120が加速度センサ22の出力に基づき判定し、入眠時刻から第1所定時間の期間、あるいは入眠時刻から第1所定時間後に脈波センサ24がオンされ、第1ストレス指標を計算するための脈波データがモバイル端末12に送信される。
睡眠時間(入眠時刻及び出眠時刻)が決まっていない場合、入眠時刻も出眠時刻も覚醒/睡眠判定モジュール120が加速度センサ22の出力に基づき判定し、判定結果に応じてセンサ端末10が脈波センサ24等を制御する。出眠直前は出眠後に判明するので、センサ端末10は睡眠中に定期的に脈波データを収集して、一定期間の脈波データをメモリ30に常時格納しておく。モバイル端末12は、覚醒/睡眠判定モジュール120による出眠判定後、センサ端末10へ脈波データを要求する。この要求に応じて、センサ端末10は、メモリ30から第2ストレス指標を計算するための過去の脈波データを読出し、モバイル端末12に送信することができる。また、入眠時刻もその瞬間ではなく入眠の瞬間から多少遅れて判明することがあるので、センサ端末10が常時定期的に脈波データを収集して、一定期間の脈波データをメモリ30に常時格納しておく。モバイル端末12は、覚醒/睡眠判定モジュール120による入眠判定後又は出眠判定後、センサ端末10へ脈波データを要求する。この要求に応じて、センサ端末10は、メモリ30から第1又は第2ストレス指標を計算するための脈波データを読出し、モバイル端末12に送信することができる。
(センサ端末10の動作)
図10はセンサ端末10の動作を示すフローチャートである。ブロック202で、システムコントローラ42は、脈波センサ24が測定した脈波データをメモリ30に書込む。ブロック204で、システムコントローラ42は、加速度センサ22が測定した加速度データをブルーツースモジュール26によりモバイル端末12へ送信する。加速度センサ22は、一定間隔、例えば50ms毎に加速度データを測定するので、ブロック204は一定周期で実行される。ブロック206で、システムコントローラ42は、モバイル端末12から脈波データの送信が要求されたか否か判定する。
否の場合、処理はブロック202に戻り、脈波データのメモリ30への書き込みが繰り返される。メモリ30の脈波データの記憶容量は一定であり、空き容量が無くなると、時間的に古いデータは新しいデータにより順次上書きされる。このため、最新の所定期間、例えば1時間の脈波データがメモリ30に記憶される。
ブロック206で、モバイル端末12から脈波データの送信が要求された場合、システムコントローラ42は、要求された脈波データをメモリ30から読み出し、モバイル端末12へ送信する。
(モバイル端末12の動作)
図11、図12は、モバイル端末12の動作を示すフローチャートである。ブロック222で、システムコントローラ82は、センサ端末10から送信される加速度データをブルーツースモジュール60により受信する。加速度データは、センサ端末10から一定間隔、例えば50ms毎に送信されるので、モバイル端末12でも、ブロック222の加速度データ受信は一定周期で実行される。加速度データはストレス判定アプリケーション66bにより演算処理される。
ブロック224で、体動データ処理モジュール112は、図5に示すように、加速度データから体動データの変動量を求める。
ブロック226で、体動検出モジュール114は、図6に示すように、体動データの変動量から体動を検出する。ブロック228で、覚醒/睡眠判定モジュール120は、図6に示すように、体動の検出頻度を測定する。体動の検出頻度が求められると、ブロック232で、覚醒/睡眠判定モジュール120は、図6に示すように、体動の検出頻度に基づいてセンサ端末10を装着しているユーザが覚醒しているか睡眠中かを判定する。
すなわち、体動検出モジュール114は、体動データ処理モジュール112から取得した体動データの変動量が第1閾値以上の場合、ユーザの体動を検出する。覚醒/睡眠判定モジュール120は、設定区間、例えば1分間において検出された体動の数(頻度)を求め、体動の検出頻度が第2閾値以上である場合、ユーザは覚醒していると判定し、それ以外の場合、睡眠中である判定する。覚醒/睡眠の判定は、上述の例に限らず、どのような判定を行ってもよい。
ブロック232で睡眠中であると判定されると、ブロック233で、覚醒/睡眠判定モジュール120は、前回の判定結果は覚醒か否かをさらに判定する。前回の判定結果が睡眠中である場合、処理はブロック222に戻り、加速度データの受信が続けられる。
前回の判定結果が覚醒である場合、すなわち現在の状態が入眠直後である場合、ブロック234で、システムコントローラ82は、入眠直後の第1ストレス指標を演算するために必要な脈波データの送信をブルーツースモジュール60によりセンサ端末10に要求する。センサ端末10は、この要求に応じて、図10のブロック208に示すように、入眠直後の脈波データをモバイル端末12へ送信する。
ブロック236で、脈波データがブルーツースモジュール60により受信されると、第1ストレス指標が演算される。例えば、ブロック236で、脈波データ処理モジュール126は、センサ端末10から送信された脈波データをサンプリングし、サンプリングした一連の脈波データを時間微分して一連の脈波データから脈拍間隔データを取得する。脈拍間隔データ処理モジュール128は、脈拍間隔データから一連の脈拍間隔データを生成し、一連の脈拍間隔データを高次の多項式で補間する。周波数スペクトル変換モジュール130は、補間後の脈拍間隔データを、FFT(Fast Fourier Transform)法などの周波数解析手法により周波数スペクトル分布に変換する。自律神経指標演算モジュール132は、複数のパワースペクトルのピーク値とピーク値を中心とその前後の等間隔の2点との計3点の合計値の算術平均をとってLF、HFとする。この時のLF/HFが入眠直後の第1ストレス指標となる。
ブロック238で、システムコントローラ82は、第1ストレス指標を入眠時刻、指標測定時刻等とともに、メモリ66内のストレス指標テーブルに書込む。
ストレス指標テーブルの一例を図13に示す。ストレス指標テーブルは、ユーザ毎にストレス指標を管理する。ウェアラブル端末であるセンサ端末10はユーザ固有の端末であることが一般的であるが、間違えて他人のウェアラブル端末を使用することも起こり得る。ウェアラブル端末ではなく、ベッドに備え付けのセンサ端末10は、複数のユーザが使用することが多い。そのため、ストレス指標テーブルは、機器ID以外にユーザIDも有している。あるユーザが最初にセンサ端末10を使用する際、モバイル端末12はセンサ端末10のユーザ登録を行い、ストレス指標テーブルと機器ID/ユーザIDとを対応付ける。センサ端末10がユーザから取り外された後再度装着される時、ユーザIDが入力され、ユーザIDに対応付けられているストレス指標テーブルが特定される。これにより、同じセンサ端末10を複数のユーザが使用した場合でも、センサ端末からの脈波データに基づいて演算されたストレス指標を同一ユーザのストレス指標テーブルに書込むことができる。
指標変化値は(出眠直前の第2ストレス指標)−(入眠直後の第1ストレス指標)である。睡眠によりストレスが解消されると、ストレス指標の値は減少し、変化値はマイナスとなる。第2ストレス指標の値が第1ストレス指標の値より大きい場合、変化値はプラスとなり、ストレスが蓄積されていることになる。ストレス状態が変わらない場合、変化値は±0である。
指標変化率は単位時間当たりの変化値であり、指標変化値を第1ストレス指標に関する第1時刻から第2ストレス指標に関する第2時刻までの期間で割った値である。変化率の絶対値は解消度合い(マイナスの場合)/蓄積度合い(プラスの場合)を示す。変化率がマイナスでその値が大きい場合、ストレスに抗する力が強いと判定でき、変化率がプラスでその値が大きい場合、ストレスに抗する力が弱く、ストレスが溜まり易いと判定できる。
中途覚醒回数と中途覚醒時間は、図4の中途覚醒検出モジュール122により取得されるものである。
ブロック238の実行後、処理はブロック222に戻り、加速度データの受信が続けられる。
ブロック232で覚醒していると判定されると、ブロック243(図12)で、覚醒/睡眠判定モジュール120は、前回の判定結果が睡眠中か否かをさらに判定する。前回の判定結果が覚醒である場合、処理はブロック222(図11)に戻り、加速度データの受信が続けられる。
前回の判定結果が睡眠中である場合、すなわち現在の状態が出眠直後である場合、ブロック244で、システムコントローラ82は、出眠直前の第2ストレス指標を演算するために必要な脈波データの送信をブルーツースモジュール60によりセンサ端末10に要求する。センサ端末10は、この要求に応じて、図10のブロック208に示すように、出眠直前の脈波データをモバイル端末12へ送信する。
ブロック246で、脈波データがブルーツースモジュール60により受信されると、ブロック236と同様に自律神経指標が演算される。この時のLF/HFが出眠直前の第2ストレス指標となる。
ブロック248で、システムコントローラ82は、第2ストレス指標を出眠時刻、指標測定時刻等とともにメモリ66内のストレス指標テーブルに書込む。なお、ストレス指標テーブルは一回の睡眠毎にデータを管理するので、日付は就寝前の日付である。
ブロック250で、システムコントローラ82は、指標変化値、指標変化率、中途覚醒時間、中途覚醒回数をストレス指標テーブルに書き込み、図13に示す一日分のテーブルを完成させる。一日分のストレス指標テーブルはモバイル端末12のメモリ66に格納されるとともに、サーバ14にアップロードされ、図示しないサーバ14のストレージに格納される。サーバ14は全ユーザの過去の全ての日付のストレス指標テーブルを格納することができる。
一日分のストレス指標テーブルからでも一晩の睡眠によるストレスが解消されたか否か判定できる。例えば、睡眠によりストレスが解消されれば、変化値はマイナスの大きな値になるので、システムコントローラ82は、ブロック252で、変化値がマイナスで、その絶対値が閾値以上か否か判定する。イエスの場合、ブロック254で、システムコントローラ82は、ストレスが解消された状態であることを通知する。例えば、クライアント端末12のディスプレイ70で回復メッセージを表示させ、スピーカ72から回復音を出力させてもよい。あるいは、センサ端末10のディスプレイ43で回復メッセージを表示させ、スピーカ45から回復音を出力させてもよい。ノーの場合、ブロック253で、システムコントローラ82は、ストレスが解消されていない状態であることを警告する。例えば、クライアント端末12のディスプレイ70で警告メッセージを表示させてもよいし、スピーカ72から警告音を出力させてもよい。あるいは、センサ端末10のディスプレイ43で警告メッセージを表示させてもよいし、スピーカ45から警告音を出力させてもよい。
変化値の代わりに、出眠直前の第2ストレス指標単独でも一晩のストレス解消状況は判定できる。システムコントローラ82は、ブロック252で、第2ストレス指標が閾値以上であるか否か判定してもよい。第2ストレス指標が閾値以上の場合、ブロック253が実行され、第2ストレス指標が閾値以上でない場合、ブロック254が実行される。
ブロック256で、システムコントローラ82は、前日の測定値と現在の測定値との差を求め、前日との差が閾値以上か否か判定する。閾値以上と判定された場合、ユーザが昨日と違うセンサ端末を装着した可能性や、間違ってユーザ登録した可能性がある。したがって、前日との差が閾値以上の場合、ブロック258で、システムコントローラ82は、センサ端末10のユーザが昨日と同じかどうかの確認を要求するメッセージをモバイル端末12又はセンサ端末10から文字あるいは音として出力させる。これにより、他人のストレス指標との比較に基づく誤判定を防止することができる。ブロック258の実行後又はブロック256で差が閾値以上でないと判定された場合、処理はブロック222に戻り、加速度データの受信が続けられる。
図9では入眠から出眠までを1つの睡眠としたが、睡眠は、急速眼球運動(Rapid Eye Movement)を伴い脳が覚醒状態に近い浅い眠りのレム睡眠と、深い眠りのノンレム睡眠に分類される。ノンレム睡眠は、睡眠の深さにより4段階に分けられる。入眠すると、先ず、レム睡眠となり、次いで、最も浅い眠りのレベル1のノンレム睡眠となり、徐々に眠りの深さが増し、レベル4まで達すると、徐々に眠りの深さが減り、レベル1のノンレム睡眠、さらにはレム睡眠に戻る。レム睡眠からノンレム睡眠を経てレム睡眠に戻る周期が約90分間であり、この周期が繰り返される。殆どの場合、入眠直後の睡眠状態はレム睡眠であるが、出眠直前の睡眠状態は睡眠時間により異なる。レム睡眠とノンレム睡眠(レベル1、2の浅睡眠状態とレベル3、4の深睡眠状態を含む)では脳の覚醒状態が異なるので、出眠直前の睡眠状態がノンレム睡眠である場合、第1ストレス指標と第2ストレス指標は異なる睡眠状態での値となることもある。
ストレスの状態は、同じ睡眠状態での入眠直後の第1ストレス指標と出眠直前の第2ストレス指標との比較に基づくと、より正確に判定できる場合がある。そのため、第1ストレス指標を睡眠中の最初のレム睡眠又はノンレム睡眠時に求め、第2ストレス指標を睡眠中の最後のレム睡眠又はノンレム睡眠時に求めてもよい。
これに対応するためには、図11のフローチャートにおいて、ブロック233で入眠直後を検出後、最初のレム睡眠又はノンレム睡眠か否かを判定するブロックを追加し、最初のレム睡眠又はノンレム睡眠を検出した場合、ブロック234を実行するように変形すればよい。同様に、図12のフローチャートにおいて、ブロック243で出眠検出後のブロック244をメモリ30から直前のレム睡眠又はノンレム睡眠(睡眠期間中の最後のレム睡眠又はノンレム睡眠)時の脈波データを読出しモバイル端末12に送信するように変形すればよい。これにより、同じ睡眠状態での入眠直後の第1ストレス指標と出眠直前の第2ストレス指標とを比較することができ、ストレスの解消度合いをより正確に判定できる。
(サーバ14の動作)
図14はサーバ14の動作の一例を示すフローチャートである。ここでは、企業の従業員の健康を管理する産業医等がクライアント端末18を使ってサーバ14にアクセスして従業員のストレスに関する情報(ストレス指標の変化値、変化率等)を閲覧しストレス状態を診断する例を示す。前提として、従業員にウェアラブルのセンサ端末10を常時装着させ、従業員のスマートフォンであるモバイル端末12にセンサ端末10からの脈波データを収集させる。モバイル端末12は、毎日、入眠直後、出眠直前の脈波データから第1、第2ストレス指標、指標の変化値・変化率等を演算し、演算結果をサーバ14にアップロードする。サーバ14はユーザ毎のストレスに関する情報をストレージに蓄積する。
ブロック272で、ユーザのIDが入力される。ブロック274で、当該ユーザの比較的長期(例えば、1週間、1カ月)のストレス指標テーブルがサーバ14のストレージから読み出され、クライアント端末18で表示される。表示の一例を図15に示す。第1、第2ストレス指標の変化(破線)を示すグラフと、変化値と変化率を示す数値が表示される。第1ストレス指標のタイミングである入眠直後t1、t1、t1、t1と、第2ストレス指標のタイミングである出眠直前t2、t2、t2、t2の添え字は日にちを示す。図15、図16は、4日分の第1ストレス指標と第2ストレス指標を示す表示例であるが、実際には縮小してより多くの日数分が1画面に表示される。あるいは、サイズはそのままで、表示されない部分はスクロールにより表示される。図16は他のユーザの表示の一例を示す。なお、ブロック274のタイミングでは、変化値、変化率に☆マークや◎マークは表示されていない。ストレス指標の表示は図15、図16の態様に限らず、図13のようなテーブルそのものでも良い。
図15、図16の表示を見ることにより人間がストレス状態を診断することもできるが、サーバ14がストレス指標から判定した結果を併せて表示することにより、人間の診断に役立つ可能性がある。サーバ14の判定で使用する情報の例は、第2ストレス指標と、睡眠中のストレス指標の変化値・変化率である。
サーバ14は、ブロック276で第2ストレス指標に基づいた判定を行い、ブロック278でストレス指標の変化値・変化率に基づいた判定を行う。第2ストレス指標を使い判定例は以下がある。
・最も新しい日付の第2ストレス指標が閾値以上である場合、ストレスが溜まっていると判定し、それ以外の場合、ストレスが解消されたと判定する。
・過去の第2ストレス指標の平均値が閾値以上である場合、ストレスが溜まっていると判定し、それ以外の場合、ストレスが解消されたと判定する。
・過去の第2ストレス指標の変化が増加傾向である場合、ストレスが溜まっていると判定し、それ以外の場合、ストレスが解消されたと判定する。
サーバ14は、ブロック276で上記の3つの判定を行い、いずれかの判定結果でストレスが溜まっているとなった場合、ブロック282で慢性ストレス警告を出力する。警告の一例は、図15のストレス指標表示画面の変化値又は変化率の数値に☆マークを付加することである。警告の他の例は、クライアント端末18から産業医に対して文字又は音声・音で警告を出力することや、モバイル端末12やセンサ端末10からユーザに対して文字又は音声・音で警告を出力することを含む。警告の態様は慢性ストレスの重篤度に応じて変更しても良い。例えば、重篤度に応じて☆マークの数を増やしてもよいし、サイズを大きくしてもよい。
ブロック276の全ての判定結果がストレス解消されたとなった場合、サーバ14は、ブロック278でストレス指標の変化値・変化率に基づいた判定を行う。ストレス指標の変化値又は変化率に基づいた判定例は以下がある。以下は、ストレスが溜まっていると判定する例である。
・プラス又は±0の変化値が3日、1週間等の所定日数を継続する。
・所定日数の変化値の平均値がプラス又は±0である。
・変化率がプラスであり、その値が過去の所定日数前の変化率の値より大きい。
上記の判定がイエスの場合は、慢性ストレスにさらされていると判定でき、ノーの場合はストレスが解消されていると判定できる。
サーバ14は、ブロック278で上記の3つの判定を行い、いずれかの判定結果がイエスの場合、ブロック282で慢性ストレス警告を出力する。3つの判定の全てがノーの場合、ブロック280で慢性ストレス解消を通知する。通知の一例は、図16のストレス指標表示画面の変化値又は変化率の数値に◎マークを付加することである。通知の他の例は、慢性ストレス警告と同様にクライアント端末18やモバイル端末12から文字又は音声・音で通知することである。通知の形態も解消度合いに応じて変更しても良い。例えば、解消度に応じて◎マークの数を増やしてもよいし、サイズを大きくしてもよい。
なお、判定結果の表示(警告も含む)は、サーバ14やモバイル端末12に限らず、センサ端末10で行っても良い。
サーバ14へのアクセスはクライアント端末18に限らず、モバイル端末12がアクセスして、ユーザ自身が図15、図16の表示を閲覧してもよい。
(実施形態の纏め)
実施形態によれば、下記の電子機器が実現される。
(1)センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得する取得手段と、
入眠後の第1期間内にセンサにより測定された第1生体情報を用いて第1ストレス指標を決定し、出眠前の第2期間内にセンサにより測定された第2生体情報を用いて第2ストレス指標を決定する決定手段と、
入眠から出眠までの期間のストレス指標の変化の度合いを、少なくとも第1ストレス指標と第2ストレス指標を用いて判定する判定手段と、
判定手段により判定されたストレス指標の変化の度合いを用いて、ユーザのストレスに関する情報を出力する出力手段と、を具備する電子機器。
この電子機器によれば、入眠直後と出眠直前の2つのストレス指標を決定することにより、安定的に慢性ストレスの状態を判定できる。また、常時ストレス指標を決定するものではないので、消費電力が少なくて済む。
(2) (1)の電子機器において、センサはウェアラブル機器、ベッドに備え付けのセンサ機器である。
(3) (1)の電子機器において、生体情報は脈拍間隔又は心拍間隔の大小に関する。
(4) (1)の電子機器はセンサと有線または無線により接続され、センサによって測定された生体情報を取得する。無線の例は、ブルーツースである。この電子機器によれば、センサから電子機器へ生体情報を常時送信する必要が無く、送信の消費電力が少なくて済む。
(5) (1)の電子機器において、ストレス指標の例は、LF/HF、LF、HF、SDNN、PNN50である。
(6) (1)の電子機器において、第1、第2期間の長さの例は、数分又は1〜3時間である。
(7) (1)の電子機器において、判定手段は、第2ストレス指標が第1ストレス指標より小さい第1状態であるか、第2ストレス指標が第1ストレス指標と等しい第2状態であるか、又は第2ストレス指標が第1ストレス指標より大きい第3状態であるかを判定する。
(8) (1)の電子機器は、加速度センサによって測定された加速度に基づいてユーザが睡眠中か覚醒しているかを判定する第2判定手段をさらに具備する。この電子機器によれば、入眠後の第1期間と出眠前の第2期間をより正確に求めることができる、
(9) (8)の電子機器において、第2判定手段は、所定期間以下の覚醒は中途覚醒とし、睡眠中と判定する。この電子機器によれば、出眠前の第2期間をより正確に求めることができる。
(10) (1)の電子機器において、第1、第2期間はともにノンレム睡眠期間又はレム睡眠期間に含まれる。この電子機器によれば、同じ睡眠状態でのストレス指標の変化の度合いが判定されるので、ストレスに関するより正しい情報を得ることができる。
(11) (1)の電子機器において、ユーザのストレスに関する情報は電子機器自体又はセンサから出力される。
(変形例)
生体情報として脈拍を説明したが、心拍からも同様に自立神経指標を計算することができる。上述の実施形態の脈波センサの代わりに心電センサを用いてもよい。心電センサから心電位信号を取得し、一拍ごとの心拍を検出し、脈拍の代わりに心拍を用いれば、上述の実施形態と同様な作用効果を奏する。
脈拍又は心拍を検出するためにセンサを人体に装着する例を説明したが、センサの代わりにユーザを撮影するカメラを用いてもよい。カメラは、ユーザの動きを検出できる画像を撮像できればよく、例えばユーザに掛けられた布団の画像を撮影する。カメラで撮像された画像から時間方向のフレーム毎の差分を算出し、画素毎の差分値を合計することにより、変位量に応じた値を取得する。ユーザに掛けられた布団は、ユーザの呼吸や心拍に同期して微妙に変位しているので、撮像された布団の画像の差分から取得した変位量に応じた値は、ユーザの呼吸や心拍を示した値等に応じている。したがって、この変位量に応じた値を解析することで、心拍を計測することができる。
本実施形態の処理はコンピュータプログラムによって実現することができるので、このコンピュータプログラムを格納したコンピュータ読み取り可能な記憶媒体を通じてこのコンピュータプログラムをコンピュータにインストールして実行するだけで、本実施形態と同様の効果を容易に実現することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
10…センタ端末、12…モバイル端末、14…サーバ、16…ネットワーク、22…加速度センサ、24…脈波センサ、26,60…ブルーツースモジュール、114…体動検出モジュール、120…覚醒/睡眠判定モジュール、128…脈拍間隔データ処理モジュール、130…周波数スペクトル変換モジュール、132…自律神経指標演算モジュール、136…睡眠状態判定モジュール。

Claims (15)

  1. センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得する取得手段と、
    前記ユーザの入眠から出眠までの睡眠期間を検出し、前記センサによって測定された前記ユーザの脈拍又は心拍に関する前記生体情報を用いて、前記ユーザの睡眠期間がレム睡眠期間かを判定する判定手段と、
    睡眠期間の最初のレム睡眠期間の開始から第1期間内に前記センサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内に前記センサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内に前記センサにより測定された第3生体情報を用いて前記第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内に前記センサにより測定された第4生体情報を用いて前記第2ストレス指標を決定する決定手段と、
    前記第1ストレス指標と前記第2ストレス指標とを用いて定められた前記ユーザのストレスに関する情報を出力する出力手段と、
    を具備し、
    前記取得手段は、1つの睡眠期間において、前記第1期間と前記第2期間は、前記生体情報の入力を受け、前記第1期間の終了から前記第2期間の開始までの期間の少なくとも一部は、前記生体情報の入力受けない電子機器。
  2. 前記取得手段は、1つの睡眠期間において前記第1期間の終了から前記第2期間の開始までの期間は、前記生体情報を取得しない請求項1記載の電子機器。
  3. 前記ユーザのストレスに関する情報は、前記第2ストレス指標の値が前記第1ストレス指標の値より小さい第1状態と、前記第2ストレス指標の値が前記第1ストレス指標の値と等しい第2状態と、前記第2ストレス指標の値が前記第1ストレス指標の値より大きい第3状態のいずれかを示すものである請求項1又は請求項2記載の電子機器。
  4. 前記判定手段は、加速度センサによって測定された加速度に基づいて前記ユーザが睡眠中か覚醒しているかを判定する請求項1、請求項2又は請求項3記載の電子機器。
  5. センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得する取得手段と、
    加速度センサによって測定された加速度に基づいて前記ユーザが睡眠期間であるかを判定し、前記センサによって測定された前記ユーザの脈拍又は心拍に関する前記生体情報を用いて、前記ユーザの睡眠期間がレム睡眠期間かを判定する判定手段と、
    睡眠期間の最初のレム睡眠期間の開始から第1期間内に前記センサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内に前記センサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内に前記センサにより測定された第3生体情報を用いて前記第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内に前記センサにより測定された第4生体情報を用いて前記第2ストレス指標を決定する決定手段と、
    前記第1ストレス指標と前記第2ストレス指標とを用いて定められた前記ユーザのストレスに関する情報を出力する出力手段と、
    を具備する電子機器。
  6. センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得することと、
    前記ユーザの入眠から出眠までの睡眠期間を検出し、前記センサによって測定された前記ユーザの脈拍又は心拍に関する前記生体情報を用いて、前記ユーザの睡眠期間がレム睡眠期間かを判定することと、
    睡眠期間の最初のレム睡眠期間の開始から第1期間内に前記センサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内に前記センサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内に前記センサにより測定された第3生体情報を用いて前記第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内に前記センサにより測定された第4生体情報を用いて前記第2ストレス指標を決定することと、
    前記第1ストレス指標と前記第2ストレス指標とを用いて定められた前記ユーザのストレスに関する情報を出力することと、
    を具備し、
    1つの睡眠期間において、前記第1期間と前記第2期間は、前記生体情報の入力を受け、前記第1期間の終了から前記第2期間の開始までの期間の少なくとも一部は、前記生体情報の入力を受けない方法。
  7. 1つの睡眠期間において前記第1期間の終了から前記第2期間の開始までの期間は、前記生体情報を取得しない請求項6記載の方法。
  8. 前記ユーザのストレスに関する情報は、前記第2ストレス指標の値が前記第1ストレス指標の値より小さい第1状態と、前記第2ストレス指標の値が前記第1ストレス指標の値と等しい第2状態と、前記第2ストレス指標の値が前記第1ストレス指標の値より大きい第3状態のいずれかを示すものである請求項6又は請求項7記載の方法。
  9. 前記判定することは、加速度センサによって測定された加速度に基づいて前記ユーザが睡眠期間であるかを判定する請求項6、請求項7又は請求項8記載の方法。
  10. センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得することと、
    加速度センサによって測定された加速度に基づいて前記ユーザが睡眠期間であるかを判定し、前記センサによって測定された前記ユーザの脈拍又は心拍に関する前記生体情報を用いて、前記ユーザの睡眠期間がレム睡眠期間かを判定することと、
    睡眠期間の最初のレム睡眠期間の開始から第1期間内に前記センサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内に前記センサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内に前記センサにより測定された第3生体情報を用いて前記第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内に前記センサにより測定された第4生体情報を用いて前記第2ストレス指標を決定することと、
    前記第1ストレス指標と前記第2ストレス指標とを用いて定められた前記ユーザのストレスに関する情報を出力することと、
    を具備する方法。
  11. コンピュータにより実行されるプログラムであって、前記プログラムは前記コンピュータに、
    センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得することと、
    前記ユーザの入眠から出眠までの睡眠期間を検出し、前記センサによって測定された前記ユーザの脈拍又は心拍に関する前記生体情報を用いて、前記ユーザの睡眠期間がレム睡眠期間かを判定することと、
    睡眠期間の最初のレム睡眠期間の開始から第1期間内に前記センサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内に前記センサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内に前記センサにより測定された第3生体情報を用いて前記第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内に前記センサにより測定された第4生体情報を用いて前記第2ストレス指標を決定することと、
    前記第1ストレス指標と前記第2ストレス指標とを用いて定められた前記ユーザのストレスに関する情報を出力することと、
    を実行させるためのものであり、
    1つの睡眠期間において、前記第1期間と前記第2期間は、前記生体情報の入力を受け、前記第1期間の終了から前記第2期間の開始までの期間の少なくとも一部は、前記生体情報の入力を受けないプログラム。
  12. 1つの睡眠期間において前記第1期間の終了から前記第2期間の開始までの期間は、前記生体情報を取得しない請求項11記載のプログラム。
  13. 前記ユーザのストレスに関する情報は、前記第2ストレス指標の値が前記第1ストレス指標の値より小さい第1状態と、前記第2ストレス指標の値が前記第1ストレス指標の値と等しい第2状態と、前記第2ストレス指標の値が前記第1ストレス指標の値より大きい第3状態のいずれかを示すものである請求項11又は請求項12記載のプログラム。
  14. 前記判定することは、加速度センサによって測定された加速度に基づいて前記ユーザが睡眠中か覚醒しているかを判定する請求項11、請求項12又は請求項13記載のプログラム。
  15. コンピュータにより実行されるプログラムであって、前記プログラムは前記コンピュータに、
    センサによって測定されたユーザの脈拍又は心拍に関する生体情報を取得することと、
    加速度センサによって測定された加速度に基づいて前記ユーザが睡眠期間であるかを判定し、前記センサによって測定された前記ユーザの脈拍又は心拍に関する前記生体情報を用いて、前記ユーザの睡眠期間がレム睡眠期間かを判定することと、
    睡眠期間の最初のレム睡眠期間の開始から第1期間内に前記センサにより測定された第1生体情報を用いて第1ストレス指標を決定し、同じ睡眠期間の最後のレム睡眠期間の終了までの第2期間内に前記センサにより測定された第2生体情報を用いて第2ストレス指標を決定する、又は睡眠期間の最初のノンレム睡眠期間の開始から第3期間内に前記センサにより測定された第3生体情報を用いて前記第1ストレス指標を決定し、同じ睡眠期間の最後のノンレム睡眠期間の終了までの第4期間内に前記センサにより測定された第4生体情報を用いて前記第2ストレス指標を決定することと、
    前記第1ストレス指標と前記第2ストレス指標とを用いて定められた前記ユーザのストレスに関する情報を出力することと、
    を実行させるためのプログラム。
JP2017023016A 2017-02-10 2017-02-10 電子機器、方法及びプログラム Active JP6702559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023016A JP6702559B2 (ja) 2017-02-10 2017-02-10 電子機器、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023016A JP6702559B2 (ja) 2017-02-10 2017-02-10 電子機器、方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2018126422A JP2018126422A (ja) 2018-08-16
JP6702559B2 true JP6702559B2 (ja) 2020-06-03

Family

ID=63171720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023016A Active JP6702559B2 (ja) 2017-02-10 2017-02-10 電子機器、方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6702559B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200094344A (ko) * 2019-01-30 2020-08-07 삼성전자주식회사 렘 수면 단계 기반 회복도 인덱스 계산 방법 및 그 전자 장치
US20230101907A1 (en) 2020-03-31 2023-03-30 Nec Corporation Stress release degree calculation apparatus, stress release degree calculationmethod, and computer readable recording medium
JP7255580B2 (ja) * 2020-10-29 2023-04-11 株式会社村田製作所 心身調子表示装置、心身調子表示システム、心身調子表示方法、プログラムおよび記録媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351160B2 (ja) * 1995-03-24 2002-11-25 松下電器産業株式会社 生体評価装置
JP4357503B2 (ja) * 2006-06-28 2009-11-04 株式会社東芝 生体情報計測装置、生体情報計測方法および生体情報計測プログラム
JP5352814B2 (ja) * 2009-10-15 2013-11-27 株式会社スリープシステム研究所 自律神経成分指標推定装置及び自律神経成分指標推定方法
US8568330B2 (en) * 2011-03-08 2013-10-29 Pulsaw Informatics, Inc. Composite human physiological stress index based on heart beat and sleep and/or activity history data including actigraphy
CA2928197A1 (en) * 2013-10-23 2015-04-30 Quanttus, Inc. Consumer biometric devices
FI126631B (en) * 2014-07-28 2017-03-15 Murata Manufacturing Co Method and apparatus for monitoring stress
JP6757532B2 (ja) * 2014-12-05 2020-09-23 東京都公立大学法人 睡眠段階判定装置、睡眠段階判定方法、睡眠段階判定プログラム
WO2016201500A1 (en) * 2015-06-15 2016-12-22 Medibio Limited Method and system for monitoring stress conditions

Also Published As

Publication number Publication date
JP2018126422A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6516846B2 (ja) 睡眠監視のデバイス及び方法
US9655532B2 (en) Wearable physiological monitoring and notification system based on real-time heart rate variability analysis
JP4342455B2 (ja) 健康管理装置および健康管理システム
US7664606B2 (en) Apparatus and method for monitoring biological information, and computer program product
JP4023429B2 (ja) 携帯型生体情報モニタ装置
JP5904275B2 (ja) 保有活動量算出装置、保有活動量算出方法及び保有活動量算出システム
JP5740006B2 (ja) 呼吸測定システム及びrem睡眠判定システム
KR20180111926A (ko) 각성도 예측 시스템 및 방법
KR20150129765A (ko) 잠깨우기에 적합한 인간 수면 단계 결정 방법
JP2018524080A (ja) 被検者の生理学的状態を監視する装置及び方法
JP2006271897A (ja) 眠気予測装置及びその方法
JP5632986B2 (ja) 睡眠段階判定装置及び睡眠段階判定方法
JP2014050451A (ja) 生体情報処理システム、ウェアラブル装置、サーバーシステム及びプログラム
US10631739B2 (en) Monitoring vital signs
JP2006192152A (ja) 睡眠状態判定装置、睡眠状態判定方法および睡眠状態判定プログラム
JP6676499B2 (ja) 疲労度判定装置、疲労度判定方法、疲労度判定プログラム、及び、生体情報測定装置
US20230309830A1 (en) System and method for providing a remedial procedure
WO2017086798A1 (en) Measuring system, measuring device and watch
JP6702559B2 (ja) 電子機器、方法及びプログラム
JP2016016144A (ja) 生体情報処理システム及び生体情報処理システムの制御方法
JP6813837B2 (ja) 活動リズム判定方法および活動リズム判定装置
JP6800759B2 (ja) ユーザ端末
JP2004503282A (ja) 身体活動の測定及び分析用装置
JP2015131049A (ja) 生体情報処理システム、電子機器及びサーバーシステム
JP2016067811A (ja) 生体情報検出システム、生体情報検出装置及び生体情報検出システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6702559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150