JP6699592B2 - 無人フォークリフトの操舵制御方法 - Google Patents

無人フォークリフトの操舵制御方法 Download PDF

Info

Publication number
JP6699592B2
JP6699592B2 JP2017034255A JP2017034255A JP6699592B2 JP 6699592 B2 JP6699592 B2 JP 6699592B2 JP 2017034255 A JP2017034255 A JP 2017034255A JP 2017034255 A JP2017034255 A JP 2017034255A JP 6699592 B2 JP6699592 B2 JP 6699592B2
Authority
JP
Japan
Prior art keywords
steering
target
unmanned forklift
traveling
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017034255A
Other languages
English (en)
Other versions
JP2018140843A (ja
Inventor
昇一 家岡
昇一 家岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017034255A priority Critical patent/JP6699592B2/ja
Publication of JP2018140843A publication Critical patent/JP2018140843A/ja
Application granted granted Critical
Publication of JP6699592B2 publication Critical patent/JP6699592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

この発明は、無人フォークリフトの操舵制御方法に関する。
無人フォークリフトの操舵制御方法に関係する従来の技術としては、例えば、特許文献1に開示された無人車の走行制御装置が知られている。特許文献1では、左側駆動輪および右側駆動輪がそれぞれの電動機により独立して駆動されるバッテリー式無人フォークリフト(以下「無人フォークリフト」と表記する)が開示されている。この無人フォークリフトは車体後部に操舵輪を備える三輪式フォークリフトである。
無人フォークリフトが備えるステアリングコントローラは、無人フォークリフトと軌道線との位置関係を割り出し、軌道線に沿って無人フォークリフトが走行するために最適な操舵輪の操舵角となるように、サーボモータを制御して操舵輪を回動させる。
ところで、左右の駆動輪が電動モータにより独立して駆動されるフォークリフトの中には、操舵輪を電動モータでなく油圧シリンダーにより作動させるフォークリフトが存在する。この種のフォークリフトでは、オペレータが運転する有人運転を前提しており、オペレータの判断によって操舵や荷役が行われるため、操舵輪や荷役装置を作動させるための油圧回路装置は、運転中においては常に作動させた状態である。
特開平01−78304号公報
しかしながら、油圧操舵によるバッテリー式フォークリフトを無人フォークリフトとする場合、無人運転では、通常、予め決められた位置にて操舵や荷役を行う。このため、無人フォークリフトの運転中に油圧回路装置を常に作動させることはエネルギーを無駄に消費するという問題がある。
本発明は上記の問題点に鑑みてなされたもので、本発明の目的は、運転中における無駄なエネルギーの消費を低減することができる無人フォークリフトの操舵制御方法の提供にある。
上記の課題を解決するために、本発明は、車体と、前記車体に設けた荷役装置を作動する油圧回路装置と、前記車体に設けた左右一対の駆動輪と、前記左右一対の駆動輪をそれぞれ独立して駆動する一対の走行用モータと、前記車体に設けられ、前記油圧回路装置により操舵可能な操舵輪と、前記走行用モータと前記油圧回路装置を制御する制御装置と、を備え、走行時の現在位置を取得しつつ、目標走行経路を走行する無人フォークリフトの操舵制御方法において、前記制御装置は、走行時の前記目標走行経路に対する前記車体の位置ずれ量を取得し、前記位置ずれ量に基づいて算出される目標操舵量が予め設定した閾値以下のとき、前記油圧回路装置を停止させ、前記左右一対の走行用モータを制御し、前記左右一対の駆動輪の回転速度差により操舵し、前記目標操舵量が前記閾値を越えるとき、前記油圧回路装置の作動による前記操舵輪により操舵することを特徴とする。
本発明によれば、走行時における目標走行経路に対する車体の位置ずれ量に基づいて算出される目標操舵量が予め設定した閾値以下のとき、無人フォークリフトは、左右一対の走行用モータの制御による左右一対の駆動輪の回転速度差により操舵される。このとき、油圧回路装置は起動されず、操舵輪による操舵は行われない。従って、走行中に油圧回路装置を停止することにより、運転中における運転中のエネルギーの無駄な消費を低減することができる。
また、上記の無人フォークリフトの操舵制御方法において、前記制御装置は、前記目標操舵量が前記閾値を越えるとき、前記左右一対の走行用モータを制御し、前記操舵輪により操舵するとともに、前記左右一対の駆動輪の回転速度差により操舵するようにしてもよい。
この場合、操舵輪の操舵に合わせて左右一対の駆動輪に回転速度差が生じることにより、無人フォークリフトは、操舵輪による操舵の際にいずれかの駆動輪がスリップすることなく安定して走行することができる。
また、上記の無人フォークリフトの操舵制御方法において、前記制御装置は、前記目標操舵量が予め設定した閾値以下であって、前記操舵輪の操舵角が0°のとき、前記油圧回路装置を停止するようにしてもよい。
この場合、操舵輪の操舵角が0°となるとき、操舵輪による操舵は必要ないため、油圧回路装置を停止することにより、エネルギーの無駄をより低減することができる。
本発明によれば、運転中における無駄なエネルギーの消費を低減することができる無人フォークリフトの操舵制御方法を提供することができる。
本発明の実施形態に係る無人フォークリフトの概要を示す平面図である。 無人フォークリフトの制御系を模式的に示すブロック図である。 無人フォークリフトの電気的構成を示すブロック図である。 無人フォークリフトの操舵制御方法を説明するフロー図である。 (a)は目標操舵量が閾値を越えるときの作用説明図であり、(b)は目標操舵量が閾値以下のときの作用説明図である。
以下、本発明の実施形態に係る無人フォークリフトと無人フォークリフトの操舵制御方法について図面を参照して説明する。本実施形態の無人フォークリフトは、車体前部に左右一対の駆動輪を備え、車体後部に操舵輪を備える三輪式バッテリーフォークリフトである。
図1に示す無人フォークリフト10は、車体11の前部に備えられた左右一対の駆動輪12R、12Lと、車体11の後部に備えられた操舵輪13と、車体11の前部に設けられた荷役装置14を備えている。車体11には、駆動輪12Rの走行用モータ15Rおよび駆動輪12Lの走行用モータ15Lが収容されている。走行用モータ15R、15Lはバッテリ(図示せず)の電力により駆動される電動モータである。従って、駆動輪12R、12Lは、対応する走行用モータ15R、15Lによってそれぞれ独立して駆動可能である。
車体11にはステアリングシリンダ16および油圧ポンプ17が設けられている。ステアリングシリンダ16は復動型であって、油圧ポンプ17によって供給される作動油により作動され、操舵輪13を操舵する。図示はされないが、ステアリングシリンダ16のピストンロッドにはラックが設けられ、操舵輪13を支持する支持軸にはピストンロッドのラックと噛合するピニオンが設けられている。ラックおよびピニオンは、ピストンロッドの往復運動を操舵輪13の回転運動に変換する。油圧ポンプ17は、ポンプモータ18により駆動され、ステアリングシリンダ16のほか荷役装置14を作動させるための作動油をドレンタンク27から荷役装置14へ供給する。ステアリングシリンダ16および油圧ポンプ17は油圧回路装置の一部を構成する。従って、油圧回路装置は操舵輪13を操舵可能であり、荷役装置14を制御する。
荷役装置14は、マスト19と、マスト19に対して昇降するリフトブラケット20と、リフトブラケット20に備えられた左右一対のフォーク21を備えている。リフトブラケット20およびフォーク21は、マスト19に設けられたリフトシリンダ(図示せず)により昇降する。マスト19は、車体11とマスト19を連結したティルトシリンダ(図示せず)により前後に傾動する。リフトシリンダおよびティルトシリンダは、油圧ポンプ17によって供給される作動油により作動され、油圧回路装置の一部を構成する。
本実施形態の車体11には、運転シート22およびステアリングホイール23が備えられている。これは、本実施形態の無人フォークリフト10が有人運転用のフォークリフトの改造により無人走行を可能とする構成を有するためである。車体11にはステアリングホイール23の作動させる操舵用モータ24が備えられている。操舵用モータ24はステアリングホイール23を作動させる電動モータである。図2に示すように、ステアリングホイール23には、オービットロール25が備えられている。オービットロール25は、油圧ポンプ17から作動油の供給を受け、油圧配管26を通じてステアリングホイール23の回転に応じた作動油をステアリングシリンダ16へ供給する。ステアリングシリンダ16のピストンロッドは、オービットロール25から供給される作動油により往復動する。なお、車体11にはドレンタンク27が設けられており、油圧ポンプ17はドレンタンク27の作動油を汲み上げ、荷役装置14およびオービットロール25へ作動油を供給する。荷役装置14およびオービットロール25から戻る作動油はドレンタンク27に回収される。
車体11には、制御装置としてのコントローラ30が設けられている。コントローラ30は、走行用モータ15R、15L、操舵用モータ24および油圧回路装置と接続されおり、走行用モータ15R、15L、操舵用モータ24および油圧回路装置を制御する。図2に示すように、コントローラ30は、各部に設けた検出器(センサ)類と接続されている。ステアリングホイール23にはステアリングホイール23の角度(ステアリング角)を検出するステアリング角検出器31が設けられている。操舵輪13には、操舵輪13の操舵角を検知する操舵角検出器32が設けられている。また、走行用モータ15Rの回転数を検出する回転数検出器33Rが走行用モータ15Rに設けられ、走行用モータ15Lの回転数を検出する回転数検出器33Lが走行用モータ15Lに設けられている。コントローラ30はステアリング角検出器31、操舵角検出器32および回転数検出器33R、33Lと電気的に接続され、各検出器32、33R、33Lの信号を受信する。
図3に示すように、コントローラ30は、プログラム実行や各種演算を行う演算処理部(CPU)34と、データやプログラムを格納して保持する記憶部35と、上位コンピュータ(図示せず)と通信する通信部36を備えている。上位コンピュータは、無人フォークリフト10とは別に設置されており、無人フォークリフト10の運行や荷を管理するコンピュータである。
コントローラ30は、無人フォークリフト10の予め設定された目標走行経路Lに対する無人フォークリフト10の位置ずれ量を、現在位置および走行速度(車速)に基づいて取得する。無人フォークリフト10の目標走行経路Lの生成および現在位置を取得するため、例えば、誘導線、磁気テープ、GPS(Global Positioning System)、SLAM(Simultaneous Localization and Mapping)といった公知の技術を用いればよい。なお、無人フォークリフト10の車速は、回転数検出器33R、33Lにより検出される回転数、走行用モータ15R、15Lと駆動輪12R、12Lとの減速比および駆動輪12R、12Lのタイヤ半径に基づいてコントローラ30により算出される。
コントローラ30は、取得した位置ずれ量に基づいて無人フォークリフト10が目標走行経路Lへ復帰するための目標操舵量を算出する。目標操舵量とは、無人フォークリフト10が目標走行経路Lに沿って走行するために必要な車体11の向きの変更量に相当し、無人フォークリフト10の操舵により走行する旋回円の曲率半径と対応する。コントローラ30は、算出された目標操舵量が予め設定された閾値以下の場合には、駆動輪12R、12Lの回転速度差による操舵を行い、算出された目標操舵量が予め設定された閾値を越える場合には、操舵輪13による操舵を行う。具体的には、コントローラ30は、図4のフロー図に示す一連のステップS1〜S13を行う操舵制御プログラムを実行し、無人フォークリフト10の操舵制御を行う。
本実施形態の閾値は、駆動輪12R、12Lの中心と操舵輪13の中心までの距離(ホイールベース)の3〜5倍の曲率半径(設定曲率半径)と対応する。従って、コントローラ30は、目標操舵量が設定曲率半径を越える場合は、駆動輪12R、12Lの回転速度差による操舵を行い、目標操舵量が設定曲率半径以下の場合には、操舵輪13による操舵を行う。駆動輪12R、12Lの回転速度差による操舵が好適な範囲と、操舵輪13による操舵が好適な範囲との境界である設定曲率半径が目標操舵量の閾値と対応する。
図4に示す一連のステップS1〜S13について説明する。コントローラ30は、走行時の駆動輪13R、13Lのそれぞれの走行駆動力を計算する(ステップS1を参照)。駆動輪13R、13Lのそれぞれの走行駆動力は、走行用モータ15Rの回転数検出器33Rおよび走行用モータ15Lの回転数検出器33Lの検出信号に基づいて計算される。
次に、コントローラ30は、目標操舵量が閾値を越えているか否かを判別する(ステップS2を参照)。目標操舵量は、走行時の車体11の目標走行経路Lに対する位置ずれ量に基づいて算出される。この位置ずれ量は、目標走行経路Lと現在位置における無人フォークリフト10の状態(位置、車速、姿勢等)とを比較し、無人フォークリフト10の現在位置および車速に基づき取得される。因みに、目標操舵量が閾値を越えるときは、目標操舵量に対応する曲率半径は設定曲率半径より小さい。目標操舵量が閾値以下のときは、目標操舵量に対応する曲率半径は設定曲率半径以上である。
コントローラ30は、目標操舵量が閾値を越えると判別すると、操舵輪13の目標操舵角を計算する(ステップS3を参照)。目標操舵角は、無人フォークリフト10に要求されている目標操舵量を達成するために必要な操舵輪13の操舵角度である。従って、操舵輪13を目標操舵角まで操舵すると、無人フォークリフト10は目標操舵量に対応して車体11の向きを変えて走行する。
目標操舵角が計算されると、次に、コントローラ30は、油圧ポンプ17が停止中か否かを判別する(ステップS4を参照)。コントローラ30が、油圧ポンプ17が停止中であると判別すると、コントローラ30はポンプモータ18を制御して油圧ポンプ17を駆動させる(ステップS5を参照)。油圧ポンプ17が駆動されることにより、作動油が各部へ供給可能な状態となる。コントローラ30が、油圧ポンプ17が停止中でない(駆動中である)と判別すると、コントローラ30は操舵用モータ24を駆動する(ステップS6を参照)。操舵用モータ24が駆動されることにより、オービットロール25からステアリング角度に応じた作動油がステアリングシリンダ16へ供給される。そして、操舵輪13は、ステアリングシリンダ16の作動により、操舵遅れが生じることなく目標操舵角となるように操舵される。
コントローラ30は、操舵輪13が操舵されると、操舵角に応じて走行駆動力を補正する(ステップS7を参照)。因みに、駆動輪12R、12Lがそれぞれ同じ回転速度のままで操舵輪13による操舵が行われると、駆動輪12R、12Lのいずれかが操舵中にスリップするおそれがある。操舵角に応じた走行駆動力を補正は、駆動輪12R、12Lに回転速度差を生じさせ、操舵輪13の操舵中における駆動輪12R、12Lのいずれかのスリップのおそれを解消する。操舵輪13の操舵により無人フォークリフト10は目標操舵量に応じて向きを変えて走行する。
一方、ステップS2において、コントローラ30は、目標操舵量が閾値以下であると判別すると、操舵輪13の目標操舵角を0°にする(ステップS8を参照)。操舵輪13の目標操舵角が0°に設定されると、コントローラ30は、油圧ポンプ17が駆動中か否かを判別する(ステップS9を参照)。コントローラ30は、油圧ポンプ17が駆動中であると判別すると、操舵角が0°であるか否かを判別する(ステップS10を参照)。コントローラ30は、操舵角が0°(操舵角=0°)と判別したとき、ポンプモータ18を制御して油圧ポンプ17を停止する(ステップS11を参照)。
油圧ポンプ17が停止されると、コントローラ30は目標操舵量に応じた走行駆動力を計算する(ステップS12を参照)。コントローラ30は、算出された目標操舵量に応じた走行駆動力が駆動輪12R、12Lに反映されるように、走行用モータ15R、15Lを制御する。そして、駆動輪12R、12Lには、目標操舵量に応じた走行駆動力に基づいて回転速度差が生じ、無人フォークリフト10は操舵遅れが生じることなく駆動輪12R、12Lにより操舵される。
ところで、ステップS9で油圧ポンプ17が駆動中でない(停止中である)ことは、操舵角が0°であって操舵輪13が操舵されていない状態である。この場合はステップS12へ進む。ステップS9で油圧ポンプ17が駆動中と判別されることは、目標操舵角が0°であって操舵角が0°になるように操舵輪13が操舵されている状態である。従って、ステップS10で操舵角は0°ではないと判別されるとき、コントローラ30は操舵角が0°になるまで操舵用モータ24を駆動する(ステップS13を参照)。図4に示す一連のステップS1〜S13に係る操舵制御プログラムは、無人フォークリフト10の走行中において常に実行される。
次に、本実施形態の無人フォークリフト10の操舵制御方法について説明する。コントローラ30は、無人フォークリフト10の走行中において目標走行経路Lと現在位置を比較する。無人フォークリフト10が目標走行経路Lを外れることなく走行している場合、コントローラ30が取得する位置ずれ量は許容範囲内であり無いに等しい。従って、目標操舵量は0であって閾値を越えないため、目標操舵角および操舵角はいずれも0°であり、油圧ポンプ17は停止される。油圧ポンプ17が停止されることで、無人フォークリフト10の走行時のエネルギーの無駄な消費が抑制される。
ところで、無人フォークリフト10は、走行時に現在位置を見失う等、何らかの理由により目標走行経路Lから外れる場合がある。無人フォークリフト10が目標走行経路Lから外れたとき、コントローラ30は目標走行経路Lに対する無人フォークリフト10の位置ずれ量を取得する。コントローラ30はこの位置ずれ量から目標操舵量を算出する。この位置ずれ量は、無人フォークリフト10の現在位置および車速に基づいて取得される。
図5(a)に示す無人フォークリフト10は、位置ずれ量から算出された目標操舵量が閾値を越える状態である。この場合、コントローラ30は、目標操舵量に応じた目標操舵角を算出し、油圧ポンプ17を駆動し、さらに操舵用モータ24を駆動する。油圧ポンプ17および操舵用モータ24の駆動により、ステアリングシリンダ16が目標操舵角になるように作動され、操舵輪13が目標操舵角まで操舵される。コントローラ30は、操舵輪13が操舵されると、操舵角に応じて走行駆動力を補正し、駆動輪12R、12Lに回転速度差を生じさせるように走行用モータ15R、15Lを駆動する。駆動輪12R、12Lに回転速度差が生じることにより、無人フォークリフト10は、操舵輪13による操舵の際に駆動輪12R、12Lのいずれかがスリップすることなく安定して走行し、操舵輪13の操舵により目標走行経路Lに復帰する。
図5(b)に示す無人フォークリフト10は、目標操舵量が閾値以下の状態である。この場合、コントローラ30は目標操舵角を0°とする。さらに、コントローラ30は、操舵輪13の操舵角が0°で油圧ポンプ17が停止されている状態であれば、目標操舵量に応じて走行駆動力を計算し、駆動輪12R、12Lによる操舵を行う。駆動輪12R、12Lによる操舵時には、油圧ポンプ17が停止されているため、走行時のエネルギーの無駄な消費が抑制される。
なお、図5(a)の場合では、無人フォークリフト10が操舵輪13の操舵によって目標走行経路Lに復帰する際には、目標操舵量が閾値以下となる。このとき、コントローラ30は目標操舵角を0°とし、操舵輪13の操舵角が0°になると油圧ポンプ17を停止する。そして、コントローラ30は、目標操舵量に応じて走行駆動力を計算し、駆動輪12R、12Lによる操舵を行う。駆動輪12R、12Lによる操舵時には、油圧ポンプ17が停止されるため、走行時のエネルギーの無駄な消費が抑制される。
本実施形態の無人フォークリフト10の操舵制御方法は以下の作用効果を奏する。
(1)走行時における目標走行経路Lに対する車体11の位置ずれ量に基づいて算出される目標操舵量が予め設定した閾値以下のとき、無人フォークリフト10は、左右一対の走行用モータ15R、15Lの制御による駆動輪12R、12Lの回転速度差により操舵される。このとき、油圧ポンプ17を含む油圧回路装置は駆動されず、操舵輪13の操舵は行われない。従って、走行中に油圧回路装置を駆動し続ける場合と比較すると、コントローラ30は走行中に油圧回路装置を停止するため、運転中におけるエネルギーの無駄な消費を低減することができる。
(2)コントローラ30は、操舵輪13が操舵されると、操舵角に応じて走行駆動力を補正し、駆動輪12R、12Lに回転速度差が生じるように、走行用モータ15R、15Lを制御する。駆動輪12R、12Lに回転速度差が生じることにより、操舵輪13による操舵の際に駆動輪12R、12Lと路面との摩擦力が低減される。このため、無人フォークリフト10は、操舵輪13による操舵の際に駆動輪12R、12Lのいずれかがスリップすることなく安定して走行することができる。
(3)操舵輪13による操舵では、操舵後に無人フォークリフト10が目標走行経路Lに復帰する際に目標操舵量は閾値より小さくなる。目標操舵角が0°となり、操舵輪13の操舵角が0°となるとき、操舵輪13による操舵は必要ないため、油圧回路装置を停止することにより、エネルギーの無駄をより低減することができる。
(4)閾値は、駆動輪12R、12Lの中心と操舵輪13の中心までの距離(ホイールベース)の3〜5倍の曲率半径とする設定曲率半径に対応する。駆動輪12R、12Lの回転速度差による操舵が好適な範囲と、操舵輪13による操舵が好適な範囲との境界である設定曲率半径が目標操舵量の閾値と対応して設定できる。このため、無人フォークリフト10の旋回性能に適した閾値を設定することができる。
(5)目標走行経路Lにおいて無人フォークリフト10が直進する直進区間が占める割合が高くなるほど、無人フォークリフト10の全走行時間に占める油圧回路装置の停止時間の割合が高くなり、無人フォークリフト10の電費(Wh/km)が向上する。
本発明は、上記の実施形態に限定されるものではなく発明の趣旨の範囲内で種々の変更が可能であり、例えば、次のように変更してもよい。
○ 上記の実施形態では、無人フォークリフトとして三輪式バッテリーフォークリフトを例示したが、無人フォークリフトは四輪式バッテリーフォークリフトであってもよい。また、無人フォークリフトは、カウンタウエイト式フォークリフトやリーチ式フォークリフトであってもよい。
○ 上記の実施形態では、直線状の目標走行経路に対する無人フォークリフトの操舵制御方法について説明したが、カーブとなっている目標走行経路を走行する際の無人フォークリフトの操舵に対して適用されることは言うまでもない。
○ 上記の実施形態では、閾値と対応する設定曲率半径については、好ましい例として、左右一対の駆動輪の中心と操舵輪の中心までの距離(ホイールベース)の3〜5倍の曲率半径としたが、この限りではない。設定曲率半径については、左右一対の駆動輪の中心と操舵輪の中心までの距離(ホイールベース)の3〜5倍の曲率半径を除く曲率半径を設定してもよい。
○ 上記の実施形態では、無人フォークリフトであるが、無人運転と有人運転の切替装置の搭載により有人運転可能としてもよい。因みに、有人運転の場合には、オペレータの体感による操作遅れを防止するため、油圧回路装置は常に作動される。
10 フォークリフト
11 車体
12R、12L 駆動輪
13 操舵輪
14 荷役装置
15R、15L 走行用モータ
16 ステアリングシリンダ
17 油圧ポンプ
24 操舵用モータ
30 コントローラ
31 ステアリング角検出器
32 操舵角検出器
L 目標走行経路

Claims (3)

  1. 車体と、
    前記車体に設けた荷役装置を作動する油圧回路装置と、
    前記車体に設けた左右一対の駆動輪と、
    前記左右一対の駆動輪をそれぞれ独立して駆動する一対の走行用モータと、
    前記車体に設けられ、前記油圧回路装置により操舵可能な操舵輪と、
    前記走行用モータと前記油圧回路装置を制御する制御装置と、を備え、
    走行時の現在位置を取得しつつ、目標走行経路を走行する無人フォークリフトの操舵制御方法において、
    前記制御装置は、
    走行時の前記目標走行経路に対する前記車体の位置ずれ量を取得し、
    前記位置ずれ量に基づいて算出される目標操舵量が予め設定した閾値以下のとき、前記油圧回路装置を停止させ、
    前記左右一対の走行用モータを制御し、
    前記左右一対の駆動輪の回転速度差により操舵し、
    前記目標操舵量が前記閾値を越えるとき、前記油圧回路装置の作動による前記操舵輪により操舵することを特徴とする無人フォークリフトの操舵制御方法。
  2. 前記制御装置は、前記目標操舵量が前記閾値を越えるとき、前記左右一対の走行用モータを制御し、
    前記操舵輪により操舵するとともに、前記左右一対の駆動輪の回転速度差により操舵することを特徴とする請求項1記載の無人フォークリフトの操舵制御方法。
  3. 前記制御装置は、前記目標操舵量が予め設定した閾値以下であって、前記操舵輪の操舵角が0°のとき、前記油圧回路装置を停止することを特徴とする請求項1又は2記載の無人フォークリフトの操舵制御方法。
JP2017034255A 2017-02-27 2017-02-27 無人フォークリフトの操舵制御方法 Active JP6699592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034255A JP6699592B2 (ja) 2017-02-27 2017-02-27 無人フォークリフトの操舵制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034255A JP6699592B2 (ja) 2017-02-27 2017-02-27 無人フォークリフトの操舵制御方法

Publications (2)

Publication Number Publication Date
JP2018140843A JP2018140843A (ja) 2018-09-13
JP6699592B2 true JP6699592B2 (ja) 2020-05-27

Family

ID=63526378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034255A Active JP6699592B2 (ja) 2017-02-27 2017-02-27 無人フォークリフトの操舵制御方法

Country Status (1)

Country Link
JP (1) JP6699592B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000370A1 (zh) * 2019-07-01 2021-01-07 上海快仓智能科技有限公司 控制方法和自动引导车
CN111845935B (zh) * 2020-07-31 2021-06-15 安徽泗州拖拉机制造有限公司 一种无人驾驶拖拉机自动导航转向系统
JP7439724B2 (ja) * 2020-10-12 2024-02-28 株式会社豊田自動織機 無人産業車両
KR102409528B1 (ko) * 2020-11-18 2022-06-20 (주)엠텍 무인 팔레트트럭 자율주행시스템

Also Published As

Publication number Publication date
JP2018140843A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6699592B2 (ja) 無人フォークリフトの操舵制御方法
US6827176B2 (en) Vehicle with offset extendible axles and independent four-wheel steering control
JP7100699B2 (ja) 車両のステアリングシステムを制御する方法
JP4062085B2 (ja) 電気式産業車両の操舵装置
EP1950171B1 (en) Travel control apparatus for industrial vehicle
US20110224872A1 (en) System And Method To Control Vehicle Steering
US6793036B1 (en) Working vehicle with transverse system
US6675927B1 (en) Fork lift with laterally travelling system
US10207736B2 (en) Steering control device for working vehicle
CN111619699A (zh) Agv移动平台及其控制方法和控制装置
JP3536785B2 (ja) 産業車両の走行制御装置
JP4264399B2 (ja) 無人搬送車
JP7188449B2 (ja) 産業車両
EP1354844A1 (en) Fork lift with traverse motion system
KR102275211B1 (ko) 조향식 듀얼 드라이브 유닛을 구비한 3륜 전동 지게차 및, 그 구동방법
JP3384725B2 (ja) リーチ型フォークリフト
JP7439724B2 (ja) 無人産業車両
EP3437973B1 (en) Vehicle
JP7024637B2 (ja) 産業車両
JP2015192570A (ja) 電動フォークリフトおよびその走行用モータ駆動装置
JP2012076651A (ja) 車両用操舵装置
JP4066624B2 (ja) 車両用のハンドル位置補正装置及び車両
JP2019034816A (ja) 無人リーチ式フォークリフト及び無人リーチ式フォークリフトの操舵指示角度の補正方法
JP3198056B2 (ja) 荷役車両
JP2022176534A (ja) 走行支援装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151