JP6697767B2 - 水素生成装置及びそれを備えた燃料電池システム - Google Patents

水素生成装置及びそれを備えた燃料電池システム Download PDF

Info

Publication number
JP6697767B2
JP6697767B2 JP2016128644A JP2016128644A JP6697767B2 JP 6697767 B2 JP6697767 B2 JP 6697767B2 JP 2016128644 A JP2016128644 A JP 2016128644A JP 2016128644 A JP2016128644 A JP 2016128644A JP 6697767 B2 JP6697767 B2 JP 6697767B2
Authority
JP
Japan
Prior art keywords
reformer
gas
raw material
electric heater
hydrogen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128644A
Other languages
English (en)
Other versions
JP2018002508A (ja
Inventor
松本 聡
松本  聡
吉村 晃久
晃久 吉村
祐介 四十住
祐介 四十住
中村 彰成
彰成 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016128644A priority Critical patent/JP6697767B2/ja
Publication of JP2018002508A publication Critical patent/JP2018002508A/ja
Application granted granted Critical
Publication of JP6697767B2 publication Critical patent/JP6697767B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本開示は、水素生成装置及びそれを備えた燃料電池システムに関する。
改質器及び燃料電池を備えた燃料電池システムはよく知られている。改質器において、改質反応によって都市ガスなどの原料ガスから水素ガスが生成される。生成された水素ガスは、酸化剤ガスとしての酸素(空気)とともに燃料電池に供給される。燃料電池において、水素と酸素との電気化学反応によって電力が生成される。
水蒸気改質によって水素ガスを生成するために、改質器は加熱される。燃料電池システムの運転を停止又は一時停止するとき(例えば、貯湯タンクの湯量が規定値に達したとき)、改質器の加熱も中止する。改質器の加熱を中止すると、改質器の内部に残存する原料ガスが触媒に吸着し、改質器の内圧が下がる。すると、改質器の内部に空気が入り、空気が改質触媒などの触媒に吸着する。触媒に吸着した空気(特に、酸素)は触媒の劣化を促進する。空気の吸着による触媒の劣化を抑制するために、燃料電池システムの運転停止時に改質器の内部を原料ガスでパージ(purge)することが行われている(特許文献1)。
特開2005−162580号公報 特開2004−258767号公報
ところで、都市ガスインフラのような原料ガス源から改質器に原料ガスを供給するための経路上には、原料ガスの流量(詳細には、原料ガスの使用量)を計測するための流量計が設けられている。流量計の検出信号は、マイクロコンピュータを備えたガスメータに送られる。マイクロコンピュータを備えたガスメータは、しばしば、「マイコンメータ」と呼ばれている。マイコンメータは、単にガスの流量を記録する機能だけでなく、ガス漏れを検出する機能も備えている。
マイコンメータのガス漏れ検出機能は、燃料電池システムの長期使用、改質器の容量増大などを考慮に入れたものではない。そのため、マイコンメータがガス漏れを誤検出する可能性がある。
本開示の目的は、触媒の劣化を抑制しつつ、マイコンメータによるガス漏れの誤検出を回避するための技術を提供することにある。
すなわち、本開示は、
水素生成装置であって、
改質器と、
前記改質器を加熱する電気ヒータと、
前記改質器に接続され、前記改質器に原料ガスを供給するためのガス供給経路と、
前記ガス供給経路に設けられた弁と、
前記水素生成装置の運転を停止したとき、前記弁を閉じたまま、前記改質器が加熱されるように前記電気ヒータに通電する制御を実行する制御器と、
を備えた、水素生成装置を提供する。
本開示の技術によれば、触媒の劣化を抑制しつつ、マイコンメータによるガス漏れの誤検出を回避することができる。
図1は、本開示の一実施形態にかかる燃料電池システムの構成図である。 図2は、改質器の概略断面図である。 図3は、燃料電池システムの運転サイクルを示すタイムチャートである。 図4は、停止期間から待機期間への移り変わりのタイミングで制御器において実行されるべき待機開始処理を示すフローチャートである。 図5は、燃料電池システムの待機期間に実行されるべき待機中処理を示すフローチャートである。 図6は、本開示の変形例にかかる水素生成装置の構成図である。
(本開示の基礎となった知見)
マイコンメータのガス漏れ検出機能は、例えば、次のようなアルゴリズムによって成り立っている。マイコンメータは、流量計から取得した検出信号に基づき、ガス使用量を継続的に記録し続ける。併せて、単位時間(例えば、1時間)おきに、直近の単位時間あたりのガス使用量が実質的にゼロ(例えば、1.0リットル/h以下)かどうかを判断する。単位時間あたりのガス使用量が実質的にゼロの時間帯が所定期間(例えば、30日間)に1回も存在しないとき、マイコンメータは、ガスが漏れているものと判断し、警告を発する。
マイコンメータが上記のようなガス漏れ検出機能を備えている場合、燃料電池システムを長期間にわたって連続運転することは難しい。さらに、特許文献1に記載されているように、燃料電池システムの運転停止時において、改質器の内部を原料ガスでパージするために原料ガスを使用し続けると、ガス使用量が実質的にゼロの時間帯を作ることが難しい。ガス使用量が実質的にゼロの時間帯を所定期間内に作ることができない場合、たとえガスの使用が適切であったとしても、マイコンメータは、ガス漏れを検出する。この問題は、大きい容量を有する改質器を使用するとき、原料ガスが吸着しやすい触媒を使用するとき、触媒に吸着しやすい原料ガスを使用するときなどに顕在化する。
本開示の第1態様にかかる水素生成装置は、
改質器と、
前記改質器を加熱する電気ヒータと、
前記改質器に接続され、前記改質器に原料ガスを供給するためのガス供給経路と、
前記ガス供給経路に設けられた弁と、
前記水素生成装置の運転を停止したとき、前記弁を閉じたまま、前記改質器が加熱されるように前記電気ヒータに通電する制御を実行する制御器と、
を備えたものである。
本開示の第1態様によれば、電気ヒータによって改質器の内部の温度、言い換えれば、触媒の温度を高い温度に保つことができる。その結果、触媒の温度の低下に伴って触媒に原料ガスが吸着することを抑制できる。その結果、改質器の内圧の低下が抑制されるので、改質器の内部に空気が侵入することも抑制できる。原料ガスを改質器に大量にパージせずに済むので、ガスメータによるガス漏れの誤検出を回避できる。
本開示の第2態様において、例えば、第1態様にかかる水素生成装置の前記制御器は、所定の必須待機期間のみにおいて、前記弁を閉じたまま、前記改質器が加熱されるように前記電気ヒータに通電する制御を実行する一方、前記必須待機期間以外の前記水素生成装置の運転停止時においては、前記電気ヒータをオフに維持しつつ、前記弁を開き、前記改質器に前記原料ガスを充填する制御を実行する。このようにすれば、電気ヒータの使用頻度を減らすことができるので、電力消費をさらに抑制することができる。
本開示の第3態様において、例えば、第1又は第2態様にかかる前記水素生成装置の運転を停止したとき、前記制御器は、前記弁を閉じたまま、前記改質器が加熱されるように前記電気ヒータに通電する制御と、前記改質器への単位時間あたりの前記原料ガスの供給量が閾値を下回るように前記弁を開く制御とを実行する。このようにすれば、触媒に原料ガスが多少吸着したとしても、改質器の内圧の低下が確実に抑制されるので、改質器の内部に空気が侵入することを抑制できる。
本開示の第4態様において、例えば、第1〜第3態様のいずれか1つにかかる水素生成装置は、前記改質器の内部の温度を検出する温度センサをさらに備え、前記制御器は、前記温度センサの検出信号に基づいて前記電気ヒータのオンオフを制御する。このようにすれば、改質器の温度の低下を防止しつつ、電気ヒータによる電力消費を抑制することができる。
本開示の第5態様にかかる燃料電池システムは、
第1〜第4態様のいずれか1つの水素生成装置と、
前記水素生成装置の前記改質器で生成された水素ガスを用いて電力を生成する燃料電池と、
を備えたものである。
本開示の第6態様にかかる水素生成装置の運転方法は、
改質器に原料ガスを供給し、燃焼器で前記改質器を加熱しつつ前記原料ガスを改質して水素ガスを生成させることと、
前記改質器に前記原料ガスを供給するためのガス供給経路に設けられた弁を開状態から閉状態に切り替えて前記水素ガスの生成を停止させることと、
前記弁を閉じたまま、前記改質器に設けられた電気ヒータに通電して前記改質器を加熱することと、
を含むものである。
第5態様及び第6態様によれば、第1態様と同じ効果が得られる。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
図1に示すように、本開示の一実施形態にかかる燃料電池システム100は、改質器1及び燃料電池2を備えている。改質器1は、例えば、水蒸気改質反応(CH4+H2O→CO+3H2)などの改質反応によって水素ガスを生成するためのデバイスである。改質器1には、改質反応を進行させるための改質触媒が収められている。改質器1には、一酸化炭素を除去するための触媒(CO変成触媒及びCO選択酸化除去触媒)も収められている。改質器1は、水及び原料ガスを用いて、水素ガスを生成する。原料ガスは、例えば、都市ガス、LPガス(液化石油ガス)などの炭化水素ガスである。改質器1で生成された水素ガスが燃料電池2に供給される。燃料電池2は、酸化剤ガスと水素ガスとを用いて電力を生成する。燃料電池2は、例えば、固体高分子形燃料電池である。燃料電池2の排熱によって湯が生成される。生成された湯は貯湯タンク(図示省略)に貯められる。
改質器1には、ガス供給経路6及び給水経路22が接続されている。ガス供給経路6は、ガスメータ20に接続されている。ガス供給経路6は、都市ガスインフラ、ガスボンベなどの原料ガス源から改質器1に原料ガスを供給するための経路である。ガス供給経路6には、弁7、脱硫器8及びポンプ9が配置されている。弁7は、例えば、開閉弁である。弁7は、流量制御弁であってもよい。脱硫器8は、原料ガスに含まれた硫黄化合物を燃料から除去するためのデバイスである。ポンプ9は、原料ガスを昇圧するためのポンプである。ポンプ9を制御することによって原料ガスの流量を調節することができる。給水経路22は、貯水タンク(図示省略)などの水源から改質器1に水を供給するための経路である。給水経路22には、ポンプ10が配置されている。改質器1に供給された水は、改質器1に設けられた蒸発器3で加熱されて気化し、原料ガスとともに改質触媒層に導かれる。
ガスメータ20は、例えば、超音波流量計及びマイクロコンピュータを内蔵したマイコンメータである。超音波流量計で計測されたガス使用量がマイクロコンピュータに記録される。流量計の種類は特に限定されない。
改質器1は、燃料ガス供給経路11によって燃料電池2に接続されている。改質器1で生成された水素ガスは、燃料ガス供給経路11を経由して燃料電池2に供給される。
燃料電池システム100は、さらに、燃焼器4及び電気ヒータ5を備えている。燃焼器4は、燃料を燃焼させることによって改質器1を加熱するためのデバイスである。燃焼器4は、改質器1に隣接して設けられている。
電気ヒータ5の例は、改質器1に内蔵された抵抗加熱式のシースヒータ(sheathed heater)である。電気ヒータ5は、例えば、改質触媒などの触媒が配置された容器の外周面に取り付けられている。燃料器4と電気ヒータ5とを併用すれば、燃料電池システム100の起動時において、触媒の温度を素早く上昇させることができる。それぞれ独立してオン/オフを制御可能な複数の電気ヒータ5が改質器1に内蔵されていてもよい。この場合、段階的な温度調節が可能である。電気ヒータ5には、商用電源から電力が供給されうる。
触媒の温度は、改質器1の内部に配置された温度センサ21によって検出することが可能である。温度センサ21の例は、サーミスタ又は熱電対である。改質器1の内部には、複数の温度センサ21が設けられていてもよい。各温度センサ21によって、改質触媒の温度、CO変成触媒の温度、CO選択酸化除去触媒の温度などを個別に検出することが可能である。
燃料電池2には、酸化剤ガス供給経路14が接続されている。酸化剤ガス供給経路14は、酸素などの酸化剤ガスを燃料電池2に供給するための経路である。酸化剤ガス供給経路14には、ブロワ15、加湿器16及び弁17が配置されている。弁17は、例えば、開閉弁である。
燃料電池2には、さらに、燃料ガス排出経路12及び酸化剤ガス排出経路18が接続されている。燃料電池2で消費されなかった水素ガス及び未反応の原料ガスは、燃料ガス排出経路12を経由して燃焼器4に供給され、燃焼器4で燃やされる。燃料電池2で消費されなかった酸化剤ガスは、酸化剤ガス排出経路18を経由して外部に排出される。酸化剤ガス排出経路18には弁19が配置されている。弁19は、例えば、開閉弁である。
燃料電池システム100は、さらに、制御器30を備えている。制御器30は、燃焼器4、電気ヒータ5、弁7、ポンプ9、ポンプ10、ブロワ15、弁17、弁19などの制御対象を制御する。制御器30には、温度センサ21などの各種センサから検出信号が入力される。制御器30として、A/D変換回路、入出力回路、演算回路、記憶装置などを含むDSP(Digital Signal Processor)を使用できる。制御器30には、燃料電池システム100を適切に運転するためのプログラムが格納されている。
ガス供給経路6などの各経路は、金属配管、樹脂配管などの配管によって構成されうる。
次に、改質器1の構造の例を詳細に説明する。
図2に示すように、改質器1は、容器41、外筒42及び内筒43を備えている。容器41の内部に外筒42が配置されている。外筒42の内部に内筒43が配置されている。つまり、改質器1は、三層のシェル構造を有している。内筒43の外周面と外筒42の内周面との間には、ドーナツ状の横断面形状を有する流路61が形成されている。容器41の内周面と外筒42の外周面との間には、ドーナツ状の横断面形状を有する流路62が形成されている。流路61は、外筒42の底部に設けられた貫通孔42hを通じて、流路62に連通している。流路61の最上流部分には、原料ガス入口51を通じてガス供給経路6が接続され、改質水入口52を通じて給水経路22が接続されている。流路61の一部は、図1に示す蒸発器3の役割を果たす。流路61には、改質触媒45が配置されている。流路62には、CO変成触媒47及びCO選択酸化除去触媒49が配置されている。CO変成触媒47よりも下流側かつCO選択酸化除去触媒49よりも上流側において、流路62には、容器41に設けられた空気入口53を通じて空気供給経路60が接続されている。流路62の最下流部分には、燃料ガス出口54を通じて燃料ガス供給経路11が接続されている。
流路61には、改質触媒45の近傍において温度センサ21aが配置されている。流路62には、CO変成触媒47の近傍において温度センサ21bが配置され、CO選択酸化除去触媒49の近傍において温度センサ21cが配置されている。温度センサ21aによって改質触媒45の温度が検出される。温度センサ21bによってCO変成触媒47の温度が検出される。温度センサ21bによってCO選択酸化除去触媒49の温度が検出される。これらの温度センサ21a〜21cは、図1に示す温度センサ21に対応している。
内筒43の内部空間63には燃焼器4が配置されている。燃焼器4には燃料ガス排出経路12が接続されている。燃料ガス排出経路12は、残余の水素ガス及び未反応の原料ガスを燃料電池2から燃焼器4に導くための経路である。内筒43には、燃焼排ガス出口57を通じて排ガス経路65が接続されている。一点鎖線で示すように、燃焼排ガスは、排ガス経路65を通じて燃料電池システム100の外部に排出される。
電気ヒータ5は、CO変成触媒47及びCO選択酸化除去触媒49を包囲する形で容器41の周囲に配置されている。詳細には、電気ヒータ5が容器41に巻き付けられている。図2において、電気ヒータ5はCO変成触媒47及びCO選択酸化除去触媒49の周囲のみに配置されている。しかし、改質触媒45の周囲に電気ヒータ5が配置されていてもよい。また、流路61及び流路62から選ばれる少なくとも1つに電気ヒータ5が配置されていてもよい。
燃焼器4で水素ガス及び未反応の原料ガスを燃やすと、内筒43が加熱される。内筒43の熱が改質触媒45に伝わり、改質触媒45の温度を上昇させることができる。さらに、水素ガスを含む改質ガスが流路61から流路62に流れ、改質ガスの熱によってCO変成触媒47の温度及びCO選択酸化除去触媒49の温度も上昇する。電気ヒータ5に通電してCO変成触媒47及びCO選択酸化除去触媒49を電気ヒータ5で加熱することも可能である。改質触媒45の近傍に電気ヒータ5があるとき、電気ヒータ5に通電して改質触媒45を電気ヒータ5で加熱することができる。燃料電池システム100の起動期間において、触媒の温度が十分に上がっていないとき、大部分の原料ガスが未反応のまま改質器1及び燃料電池2を経由して燃焼器4に導かれる。触媒の温度が上昇するにつれて、改質反応が効率的に進み、改質ガス中の水素ガス濃度も上昇する。触媒の温度を素早く上げるために、燃料電池システム100の起動期間において、電気ヒータ5が使用されうる。
次に、燃料電池システム100の運転について説明する。
図3に示すように、燃料電池システム100は、主に、起動期間、発電期間、停止期間及び待機期間の4つの運転サイクルに従って運転されうる。「起動期間」は、燃料電池システム100を起動させるための運転期間である。詳細には、「起動期間」は、燃料電池システム100の出力を所定の定格出力(例えば、750W)まで徐々に上昇させるための運転期間である。起動期間において、改質器1への原料ガスの供給流量及び水の供給流量を徐々に増加させる。起動期間において、酸化剤ガスの流量及び水素ガスの流量が徐々に増加する。「発電期間」は、所定の定格出力で燃料電池システム100が運転される期間である。ただし、発電期間において、燃料電池システム100が常に定格出力で運転されることは必須ではない。一定の出力で燃料電池システム100が安定的に運転されている期間が「発電期間」である。発電期間において、改質器1への原料ガスの供給流量及び水の供給流量はそれぞれ一定に保たれる。酸化剤ガスの流量及び水素ガスの流量もそれぞれ一定に保たれる。「停止期間」は、燃料電池システム100を停止させるための運転期間である。詳細には、「停止期間」は、燃料電池システム100の出力をゼロまで徐々に低下させるための運転期間である。停止期間において、改質器1への原料ガスの供給流量及び水の供給流量を徐々に減少させる。停止期間において、酸化剤ガスの流量及び水素ガスの流量が徐々に減少する。「待機期間」は、燃料電池システム100の出力をゼロのまま保持している期間である。待機期間において、改質器1への原料ガスの供給流量及び水の供給流量は、基本的にはゼロである。ただし、後述するように、改質器1の劣化を抑制するために、改質器1を原料ガスで定期的にパージ(purge)することがある。制御器30は、待機期間にも所定の電気的処理を実行し続けている。そのような電気的処理の例は、貯湯タンクの湯量を監視するための処理である。
図3の例によれば、起動期間及び停止期間において、燃料電池システム100の出力は、連続的かつ一定のレートで上昇又は低下している。ただし、燃料電池システム100の出力を段階的に上昇又は低下させてもよい。さらに、出力の上昇又は低下のレートを変化させてもよい。
一例において、起動期間の長さ及び停止期間の長さは、それぞれ、10分〜90分の範囲にある。燃料電池システム100の起動又は停止に十分な時間を費やすことによって、改質器1の劣化、燃料電池2の劣化などを抑制することができる。発電期間の長さ及び待機期間の長さは、燃料電池システム100の連続運転可能な時間、貯湯タンクの容量などに応じて変化する。貯湯タンクに十分な量の湯が貯められた場合、燃料電池システム100は運転を自動的に停止し、待機期間に入る。貯湯タンクの湯量が閾値を下回ると、燃料電池システム100は、自動的に運転を開始する。湯の使用量が多い場合、1回の運転サイクルの中で待機期間がゼロの場合もありうる。
本実施形態において、燃料電池システム100の連続運転可能な最長時間は、例えば、24〜240時間である。連続運転可能な最長時間が十分に長い場合、起動期間及び停止期間が相対的に短くなることによって、燃料電池システム100の効率の向上を期待できる。改質器1、燃料電池2などのコンポーネントの劣化も抑制されうる。
先に説明したように、ガスメータ20は、ガス使用量を継続的に記録し続ける。単位時間(例えば、1時間)あたりのガス使用量が実質的にゼロ(例えば、1.0リットル/h以下)の時間帯が所定期間(例えば、30日間)に1回も存在しないとき、ガスメータ20は、ガスが漏れているものと判断し、警告を発する。たとえガスの使用が適切であったとしても、ガスメータ20は、ガス漏れを検出する。言い換えれば、ガスメータ20は、ガス漏れを誤検出する。以下に説明する方法によれば、改質器1における触媒の劣化を防ぎつつ、ガスメータ20によるガス漏れの誤検出を回避することができる。
図4は、停止期間から待機期間への移り変わりのタイミングで制御器30において実行されるべき待機開始処理を示している。ステップS1において、例えば燃焼器4への空気の供給を止め、燃焼器4を停止する(ステップS1)。つまり、燃焼器4による改質器1の加熱を停止する。ステップS2において、弁7を閉じる。言い換えれば、弁7を開状態から閉状態に切り替えて水素ガスの生成を停止させる。ステップS3において、電気ヒータ5をオンにする。ステップS1〜S3の処理の順序は限定されず、相互に入れ替わってもよいし、これらが同時に行われてもよい。電気ヒータ5は、例えば、次に燃料電池システム100を起動するまでオンに維持される。つまり、弁7を閉じたまま、電気ヒータ7に通電して改質器1を加熱する。なお、酸化剤ガス供給経路14に配置された弁17及び酸化剤ガス排出経路18に配置された弁19を閉じてもよい。
燃料電池システム100の運転を停止するとき(停止期間から待機期間に移行するとき)、弁7を閉じて改質器1への原料ガスの供給を停止する。弁7を閉じたとしても、例えば、燃焼器4、燃料ガス排出経路12、燃料電池2及び燃料ガス供給経路11を経由して改質器1の内部に空気が侵入できる。
本実施形態によれば、燃料器4による改質器1の加熱を停止したとしても、電気ヒータ5によって改質器1の内部の温度、言い換えれば、触媒の温度を高い温度に保つことができる。その結果、触媒の温度の低下に伴って触媒に原料ガスが吸着することを抑制できる。改質器1の内圧の低下が抑制されるので、上記の経路を経由して改質器1の内部に空気が侵入することも抑制できる。原料ガスを改質器1に大量にパージせずに済むので、ガスメータによるガス漏れの誤検出を回避できる。改質器1が図2に示す構造を有するとき、電気ヒータ5によって、主に、CO変成触媒47及びCO選択酸化除去触媒49が加熱される。ただし、電気ヒータ5の配置は、図2の例に限定されない。電気ヒータ5の働きによって高い温度に保たれるべき触媒は、改質触媒45、CO変成触媒47及びCO選択酸化除去触媒49から選ばれる少なくとも1つである。
待機期間において、電気ヒータ5が常にオンの状態であってもよいし、電気ヒータ5のオン/オフが周期的に切り替えられてもよい。
電気ヒータ5による電力消費を抑制するために、例えば、所定の必須待機期間に燃料電池システム100の運転を停止したとき、電気ヒータ5に通電する制御を実行してもよい。所定の必須待機期間は、ガスメータ20によるガス漏れの誤検出を防止できる頻度で確保されるべき期間である。所定の必須待機期間は、例えば、30日間に1回又は複数回確保される期間である。詳細には、必須待機期間のみにおいて、弁7を閉じたまま、電気ヒータ5に通電する制御が実行されうる。そして、必須待機期間以外の燃料電池システム100の運転停止時(待機期間)においては、電気ヒータ5をオフに維持しつつ、弁7を開き、改質器1に原料ガスを充填する制御が実行される。つまり、必須待機期間以外の待機期間では、改質器1を原料ガスでパージすることによって、改質器1への空気の侵入を防ぐ。このようにすれば、電気ヒータ5の使用頻度を減らすことができるので、電力消費をさらに抑制することができる。
また、ガスメータ20によるガス漏れの誤検出を防止できるのであれば、必須待機期間であったとしても、弁7を開いて原料ガスを改質器1に供給することが許容される。つまり、弁7を短時間開いて原料ガスで改質器1をパージする制御と、電気ヒータ5に通電する制御との両方を実行してもよい。具体的には、燃料電池システム100の運転を停止したとき、弁7を閉じたまま、改質器1が加熱されるように電気ヒータ5に通電する制御と、改質器1への単位時間あたりの原料ガスの供給量が閾値(例えば、1.0L/h)を下回るように弁7を開く(開閉する)制御とを実行する。このようにすれば、触媒に原料ガスが多少吸着したとしても、改質器1の内圧の低下が確実に抑制されるので、改質器1の内部に空気が侵入することを抑制できる。改質器1への単位時間あたりの原料ガスの供給量が閾値未満である限り、弁7の開閉制御は、待機期間において複数回にわたって実行されてもよい。
また、待機期間において、改質器1の内部の温度に応じて、電気ヒータ5のオン/オフを制御してもよい。具体的には、待機期間において、図5のフローチャートに示す待機中処理を定期的に実行する。ステップS11において、改質器1の温度Tを検出する。具体的には、制御器30は、温度センサ21から検出信号を取得する。温度センサ21の検出信号から改質器1の内部の温度Tを特定する。ステップS12において、温度Tが閾値温度TH以上かどうかを判断する。温度Tが閾値温度TH以上であれば、電気ヒータ5をオフにする(ステップS13)。温度Tが閾値温度TH未満であれば、電気ヒータ5をオンにする(ステップS14)。このようにすれば、改質器1の温度の低下を防止しつつ、電気ヒータ5による電力消費を抑制することができる。
温度Tは、温度センサ21a,21b及び21c(図2)から選ばれる1つの温度センサによって検出された温度であってもよいし、温度センサ21a,21b及び21cによって検出された3つの温度における最も低い温度であってもよいし、3つの温度の平均値であってもよい。また、改質触媒45、CO変成触媒47及びCO選択酸化除去触媒49の中で原料ガスを最も吸着しやすい触媒の温度を温度Tとして取り扱ってもよい。
閾値温度THは、触媒へのガス(原料ガス又は空気)の吸着を十分に抑制できる温度であることが望ましい。閾値温度THは、例えば、100〜120℃の範囲内に設定される。図5のフローチャートに示す制御は、先に説明した必須待機期間に実行されてもよいし、原料ガスのパージと電気ヒータ5の通電とを併用する場合に実行されてもよい。
(変形例)
燃料電池システム100の一部は、水素生成装置として利用できる。図6に示すように、水素生成装置200は、図1における燃料電池2が水素貯蔵設備32に置き換えられたこと、酸化剤ガス供給経路14が省略されたこと、燃料ガス排出経路12が省略されたことを除き、燃料電池システム100と同じ構成を有する。改質器1で生成された水素ガスは、液化され、液体水素が水素貯蔵設備32に貯められる。水素貯蔵設備32は、水素ガスを液化させるための液化器、液体水素を貯蔵するためのタンクなどを含む。
本明細書に開示された技術は、燃料電池システム、水素ステーション、水素製造プラントなどに有用である。本明細書に開示された技術は、特に、改質器の触媒として、原料ガスを吸着しやすい触媒を使用するときに有用である。
1 改質器
2 燃料電池
4 燃焼器
5 電気ヒータ
6 ガス供給経路
7 弁
21 温度センサ
30 制御器
100 燃料電池システム
200 水素生成装置

Claims (5)

  1. 水素生成装置であって、
    改質器と、
    前記改質器を加熱する電気ヒータと、
    前記改質器に接続され、前記改質器に原料ガスを供給するためのガス供給経路と、
    前記ガス供給経路に設けられた弁と、
    前記水素生成装置の運転を停止したとき、ガスメータによるガス漏れの誤検出を防止できる頻度で確保される期間である所定の必須待機期間のみにおいて、前記弁を閉じたまま、前記改質器が加熱されるように前記電気ヒータに通電する制御を実行する一方、前記必須待機期間以外の前記水素生成装置の運転停止時においては、前記電気ヒータをオフに維持しつつ、前記弁を開き、前記改質器に前記原料ガスを充填する制御を実行する制御器と、
    を備えた、水素生成装置。
  2. 前記必須待機期間において、前記制御器は、前記弁を閉じたまま、前記改質器が加熱されるように前記電気ヒータに通電する制御と、前記改質器への単位時間あたりの前記原料ガスの供給量が前記ガスメータによって前記原料ガスの使用ありと判断される閾値を下回るように前記弁を開く制御とを実行する、請求項1に記載の水素生成装置。
  3. 前記改質器の内部の温度を検出する温度センサをさらに備え、
    前記制御器は、前記温度センサの検出信号に基づいて前記電気ヒータのオンオフを制御する、請求項1又は2に記載の水素生成装置。
  4. 請求項1〜のいずれか1項に記載の水素生成装置と、
    前記水素生成装置の前記改質器で生成された水素ガスを用いて電力を生成する燃料電池と、
    を備えた、燃料電池システム。
  5. 水素生成装置の運転方法であって、
    改質器に原料ガスを供給し、燃焼器で前記改質器を加熱しつつ前記原料ガスを改質して水素ガスを生成させることと、
    前記改質器に前記原料ガスを供給するためのガス供給経路に設けられた弁を開状態から閉状態に切り替えて前記水素ガスの生成を停止させることと、
    前記水素生成装置の運転を停止したとき、ガスメータによるガス漏れの誤検出を防止できる頻度で確保される期間である所定の必須待機期間のみにおいて、前記弁を閉じたまま、前記改質器に設けられた電気ヒータに通電して前記改質器を加熱することと、
    前記必須待機期間以外の前記水素生成装置の運転停止時においては、前記電気ヒータをオフに維持しつつ、前記弁を開き、前記改質器に前記原料ガスを充填することと、
    を含む、水素生成装置の運転方法。
JP2016128644A 2016-06-29 2016-06-29 水素生成装置及びそれを備えた燃料電池システム Active JP6697767B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128644A JP6697767B2 (ja) 2016-06-29 2016-06-29 水素生成装置及びそれを備えた燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128644A JP6697767B2 (ja) 2016-06-29 2016-06-29 水素生成装置及びそれを備えた燃料電池システム

Publications (2)

Publication Number Publication Date
JP2018002508A JP2018002508A (ja) 2018-01-11
JP6697767B2 true JP6697767B2 (ja) 2020-05-27

Family

ID=60947558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128644A Active JP6697767B2 (ja) 2016-06-29 2016-06-29 水素生成装置及びそれを備えた燃料電池システム

Country Status (1)

Country Link
JP (1) JP6697767B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403772B (zh) * 2020-03-06 2020-11-17 电子科技大学 一种燃料电池冷启动装置及其控制方法

Also Published As

Publication number Publication date
JP2018002508A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5285946B2 (ja) 水素生成装置の運転方法、及び燃料電池システムの運転方法
JP7298535B2 (ja) エンジンシステム
WO2010082507A1 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の停止方法
JP5389167B2 (ja) 水素生成装置及びその運転方法
JP4912742B2 (ja) 水素生成装置および燃料電池システム
JP5049028B2 (ja) 水素生成装置とその運転方法及びそれを備える燃料電池システム
JP4030322B2 (ja) 燃料処理装置、燃料電池発電システム、燃料処理方法及び燃料電池発電方法
JP6697767B2 (ja) 水素生成装置及びそれを備えた燃料電池システム
JP5830667B2 (ja) 燃料電池システム及びその運転方法
JP2005174745A (ja) 燃料電池システムの運転方法及び燃料電池システム
JP2012204330A (ja) 燃料電池発電装置及びその停止方法
EP2977348B1 (en) Hydrogen generator, fuel cell system including hydrogen generator, method of operating hydrogen generator, and method of operating fuel cell system
JP5735606B2 (ja) 燃料電池システムの停止保管方法
JP3996834B2 (ja) 燃料電池式発電システムとその起動方法
JP6628153B2 (ja) 水素生成装置及びそれを備えた燃料電池システム
JP6731833B2 (ja) エネルギ供給システム
JP2005332834A (ja) 燃料電池発電システムおよび燃料電池発電システムの制御方法
JP2007051063A (ja) 改質装置及びその運転方法
JP2005093345A (ja) 燃料電池システム
JP2009217952A (ja) 燃料処理装置、燃料電池システムおよび燃料処理装置の運転方法
JP6124598B2 (ja) コージェネレーションシステム及びコージェネレーションシステムの運転方法
JP6448266B2 (ja) 燃料電池システム
JP2010150119A (ja) 水素生成装置及びそれを備える燃料電池システム
JP2010275164A (ja) 水素生成装置
JP2005071934A (ja) 燃料電池システム及びその起動停止保管方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R151 Written notification of patent or utility model registration

Ref document number: 6697767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151