JP6695297B2 - 自律走行システム - Google Patents

自律走行システム Download PDF

Info

Publication number
JP6695297B2
JP6695297B2 JP2017060087A JP2017060087A JP6695297B2 JP 6695297 B2 JP6695297 B2 JP 6695297B2 JP 2017060087 A JP2017060087 A JP 2017060087A JP 2017060087 A JP2017060087 A JP 2017060087A JP 6695297 B2 JP6695297 B2 JP 6695297B2
Authority
JP
Japan
Prior art keywords
work vehicle
inertial measurement
measurement device
tractor
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060087A
Other languages
English (en)
Other versions
JP2018163507A (ja
Inventor
宮窪 孝富
孝富 宮窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2017060087A priority Critical patent/JP6695297B2/ja
Publication of JP2018163507A publication Critical patent/JP2018163507A/ja
Application granted granted Critical
Publication of JP6695297B2 publication Critical patent/JP6695297B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、自律走行システムに関する。
従来から、GNSS衛星から受信した電波に基づいて作業車両の位置情報を取得し、予め設定された経路に沿って作業車両を自律的に走行させる自律走行システムが知られている。特許文献1は、この種の自律走行システム(走行制御システム)を開示する。この特許文献1に記載の自律走行システムは、予め設定された経路の開始位置に対して、自律走行させる作業車両を、その前進方向を所定の方向に向けた状態で配置することで、自律走行を開始可能としている。このような自律走行を実現するためには、作業車両の向きが、作業車両を自律走行させる自律走行制御装置によって把握されていることが必要であると考えられる。
作業車両の向きを取得する方法の1つとして、3つのジャイロセンサ(角速度センサ)と3つの加速度センサを備える公知の慣性計測装置を作業車両に設けることが考えられる。この慣性計測装置は、互いに直交する3軸のそれぞれを中心とする回転の角速度をジャイロセンサで検知するとともに、当該3軸に沿う向きの加速度を加速度センサで検知することができる。慣性計測装置は、上記の3軸が、車両のピッチ軸、ロール軸、ヨー軸とそれぞれ平行となるように取り付けられる。この構成で、ある時点から現在までに得られた角速度を積分することで、当該時点に対する現在の作業車両の向きの変化量を取得することができる。
自律走行制御装置が自律走行を行う場合、作業車両の位置は、基本的にはGNSS測位により得られた位置情報により求められるが、GNSS電波の受信状況等によっては、測位を良好に行うことができない場合もある。しかしながら、上記の慣性計測装置が作業車両に備えられていれば、GNSS測位ができない場合でも、慣性計測装置の検出結果を用いた慣性航法によって作業車両の位置を得ることができる。
ところで、慣性計測装置のジャイロセンサは作業車両の向きの変化を検出することはできるが、向きそのものを検出することはできない。従って、ある時点での車両の姿勢、具体的にはピッチ角、ロール角、及びヨー角を、慣性計測装置が把握していることが必要である。なお、以下では、上記の3つの角度のうち少なくともヨー角を求める処理を、初期化処理と呼ぶことがある。
上述したとおり、慣性計測装置は加速度センサを備えている。そこで、重力加速度が常に地球の中心を向くことを利用し、例えば車両を静止させた状態として、加速度センサを用いて重力加速度の向きを求めることで、車両のピッチ角及びロール角を求めることができる。一方、車両のヨー角については、原則として、慣性計測装置が備えるセンサによって求めることができない。
なお、地球の自転をジャイロセンサで検出することによってヨー角を求める技術も実用化されているが(ジャイロコンパス)、この方式は高精度のジャイロセンサが必要になるため、慣性計測装置のコストが増大してしまう。また、特許文献1のように方位センサを作業車両に設けることも考えられるが、これもやはりコストが増大する原因となる。
そこで、GNSS衛星から電波を受信できる構成を作業車両が備えていることを利用し、作業車両を前進させるようにユーザに手動運転させ、このときの地球に対する車両の位置の変化をGNSS衛星の電波に基づいて検出し、この位置が変化した向きを車両の向きとみなして車両のヨー角を求めることが考えられる。
国際公開第2015/119265号
しかし、上記の構成では、ユーザが前記初期化処理のために作業車両を実際に移動させるときに、例えば前方に障害物が存在する等の種々の事情により、前進でなく一時的に後進しなければならない場合も考えられる。この場合には、作業車両の向きを実際とは180°異なる向きで把握してしまう誤った初期化がされてしまうおそれがあり、意図しない制御が行われる原因となる点で改善の余地があった。
本発明は以上の事情に鑑みてされたものであり、その目的は、自律走行システムにおいて作業車両の位置を意図的に変化させながら慣性計測装置の所定処理を行う場合に、作業車両の向きの誤検出を防止することにある。
課題を解決するための手段及び効果
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
本発明の第1の観点によれば、以下の構成の自律走行システムが提供される。即ち、この自律走行システムは、位置情報取得部と、自律走行制御部と、前後進検出部と、慣性計測装置と、を備える。前記位置情報取得部は、衛星から受信した電波に基づいて作業車両の位置情報を取得する。前記自律走行制御部は、前記位置情報に基づいて、予め設定された経路に沿って前記作業車両を自律走行させることが可能である。前記前後進検出部は、前記作業車両の前進又は後進を検出可能である。前記慣性計測装置は、前記作業車両の角速度及び加速度を検出する。前記慣性計測装置は、前記作業車両を移動させながら所定処理を実行することにより、当該所定処理の実行時点での前記作業車両の向きを、衛星から受信した電波に基づいて得られた前記作業車両の位置変化の向きに基づいて求めることが可能である。前記慣性計測装置は、前記前後進検出部により前記前進が検出された場合は前記所定処理を実行する一方、前記前後進検出部により前記後進が検出された場合は前記所定処理を実行しない。
これにより、作業車両の後進時は慣性計測装置が所定処理を実行しないので、作業車両の向きを実際の向きと180°異なって把握してしまう誤った所定処理を防止することができる。この結果、慣性計測装置による検出結果の信頼性を高めることができる。
本発明の第2の観点によれば、以下の構成の自律走行システムが提供される。即ち、この自律走行システムは、位置情報取得部と、自律走行制御部と、前後進検出部と、慣性計測装置と、を備える。前記位置情報取得部は、衛星から受信した電波に基づいて作業車両の位置情報を取得する。前記自律走行制御部は、前記位置情報に基づいて、予め設定された経路に沿って前記作業車両を自律走行させることが可能である。前記前後進検出部は、前記作業車両の前進又は後進を検出可能である。前記慣性計測装置は、前記作業車両の角速度及び加速度を検出する。前記慣性計測装置は、前記作業車両を移動させながら所定処理を実行することにより、当該所定処理の実行時点での前記作業車両の向きを、前記衛星から受信した前記電波に基づいて得られた前記作業車両の位置変化の向きに基づいて求めることが可能である。前記慣性計測装置は、前記所定処理の実行中において前記前後進検出部により前記前進が検出された場合は、前記位置変化の向きを前記作業車両の向きとする一方、前記所定処理の実行中において前記前後進検出部により前記後進が検出された場合は、前記位置変化の向きと反対の向きを前記作業車両の向きとする。
これにより、作業車両を前進させた場合でも、後進させた場合でも、慣性計測装置が作業車両の向きを正しく把握して所定処理を行うことができる。従って、ユーザの利便性を高めることができる。
前記の自律走行システムにおいては、以下の構成とすることが好ましい。即ち、この自律走行システムは、前記作業車両の旋回の度合いを検出する旋回検出部を備える。前記慣性計測装置は、前記旋回検出部により検出された旋回の度合いが閾値を超える場合に、前記所定処理を実行しない。
これにより、例えば障害物を回避するために旋回が行われて作業車両の向きが急激に変化し、作業車両の向きを精度よく得ることが難しい場合に、慣性計測装置が所定処理を行うのを防止することができる。従って、不正確な作業車両の向きに基づいた所定処理を防止することができる。
前記の自律走行システムにおいては、以下の構成とすることが好ましい。即ち、この自律走行システムは、前記作業車両の振動を検出する振動検出部を備える。前記慣性計測装置は、前記振動検出部により検出された前記振動が閾値を超える場合に、前記所定処理を実行しない。
これにより、作業車両に発生する振動が大きく、作業車両の向きを精度よく得ることが難しい場合に、慣性計測装置が所定処理を行うのを防止することができる。
前記の自律走行システムにおいては、以下の構成とすることが好ましい。即ち、この自律走行システムは、前記作業車両の車速を特定する車速特定部を備える。前記慣性計測装置は、前記車速特定部により特定された前記車速が閾値未満である場合に、前記所定処理を実行しない。
これにより、車速が遅く、作業車両の向きを精度よく得ることが難しい場合に、慣性計測装置が所定処理を行うのを防止することができる。
本発明の一実施形態に係る自律走行システムに備えられるロボットトラクタの全体的な構成を示す側面図。 ロボットトラクタの平面図。 ロボットトラクタの主要な電気的構成を示すブロック図。 第1実施形態において、慣性計測装置の初期化処理で行われる判定及び処理を説明するフローチャート。 第2実施形態において、慣性計測装置の初期化処理で行われる判定及び処理を説明するフローチャート。
次に、図面を参照して本発明の実施の形態を説明する。以下では、図面の各図において同一の部材には同一の符号を付し、重複する説明を省略することがある。また、同一の符号に対応する部材等の名称が、簡略的に言い換えられたり、上位概念又は下位概念の名称で言い換えられたりすることがある。
本発明は、例えば下記の実施形態に示すように、予め定められた圃場内で1台又は複数台の作業車両を走行させて、圃場内における農作業の全部又は一部を実行させるときに、作業車両を自律的に走行させる自律走行システムに適用される。本実施形態では、作業車両としてトラクタを例に説明するが、作業車両としては、トラクタの他、田植機、コンバイン、土木・建設作業装置、除雪車等、乗用型作業機に加え、歩行型作業機も含まれる。本明細書において自律走行とは、トラクタが備える制御部(ECU)によりトラクタが備える走行に関する構成が制御されて予め定められる経路に沿ってトラクタが走行することを意味し、自律作業とは、トラクタが備える制御部によりトラクタが備える作業に関する構成が制御されて、予め定められた経路に沿ってトラクタが作業を行うことを意味する。これに対して、手動走行・手動作業とは、トラクタが備える各構成がユーザにより操作され、走行・作業が行われることを意味する。
以下の説明では、自律走行・自律作業されるトラクタを「無人(の)トラクタ」又は「ロボットトラクタ」と称することがあり、手動走行・手動作業されるトラクタを「有人(の)トラクタ」と称することがある。圃場内において農作業の一部が無人トラクタにより実行される場合、残りの農作業は有人トラクタにより実行される。単一の圃場における農作業を無人トラクタ及び有人トラクタで実行することを、農作業の協調作業、追従作業、随伴作業等と称することがある。本明細書において無人トラクタと有人トラクタの違いは、ユーザによる操作の有無であり、各構成は基本的に共通であるものとする。即ち、無人トラクタであってもユーザが搭乗(乗車)して操作することが可能であり(即ち、有人トラクタとして使用することができ)、あるいは有人トラクタであってもユーザが降車して自律走行・自律作業させることが可能である(即ち、無人トラクタとして使用することができる)。なお、農作業の協調作業としては、「単一の圃場における農作業を無人車両及び有人車両で実行すること」に加え、「隣接する圃場等の異なる圃場における農作業を同時期に無人車両及び有人車両が実行すること」が含まれていてもよい。
<第1実施形態>
次に、図面を参照して本発明の第1実施形態を説明する。図1は、本発明の一実施形態に係る自律走行システム100に備えられるロボットトラクタ1の全体的な構成を示す側面図である。図2は、ロボットトラクタ1の平面図である。図3は、ロボットトラクタ1の主要な電気的構成を示すブロック図である。
本実施形態のロボットトラクタ1は、自律走行システム100において生成した自律走行経路(経路)に沿って自律走行しながら自律作業を行うように構成されている。
ロボットトラクタ1は、無線通信端末46との間で近距離無線網を介して無線通信を行うことにより操作される。ユーザが無線通信端末46のタッチパネル39を操作して、当該トラクタ1の制御部(自律走行制御部)4との間で信号のやり取りを適宜行うことにより、トラクタ1を自律走行・自律作業させることができる。
トラクタ1は、圃場内を自律走行することが可能な走行機体2を備える。走行機体2には、図1及び図2に示す作業機3が着脱可能に取り付けられている。この作業機3としては、例えば、耕耘機、プラウ、施肥機、草刈機、播種機等の種々の作業機があり、これらの中から必要に応じて所望の作業機3を選択して走行機体2に装着することができる。走行機体2は、装着された作業機3の高さ及び姿勢を変更可能に構成されている。
トラクタ1の構成について、図1及び図2を参照してより詳細に説明する。トラクタ1の走行機体2は、図1に示すように、その前部が左右1対の前輪7,7で支持され、その後部が左右1対の後輪8,8で支持されている。
走行機体2の前部にはボンネット9が配置されている。このボンネット9内には、トラクタ1の駆動源であるエンジン10等が収容されている。このエンジン10は、例えばディーゼルエンジンにより構成することができるが、これに限るものではなく、例えばガソリンエンジンにより構成してもよい。また、駆動源としては、エンジン10に加えて、又はこれに代えて、電気モータを使用してもよい。
ボンネット9の後方には、ユーザが搭乗するためのキャビン11が配置されている。このキャビン11の内部には、ユーザが操向操作するためのステアリングハンドル12と、ユーザが着座可能な座席13と、各種の操作を行うための様々な操作装置と、が主として設けられている。ただし、作業車両は、キャビン11付のものに限るものではなく、キャビン11を備えないものであってもよい。
上記の操作装置としては、図2に示すモニタ装置14、スロットルレバー15、主変速レバー27、複数の油圧操作レバー16、PTOスイッチ17、PTO変速レバー18、副変速レバー19、及び作業機昇降スイッチ28等を例として挙げることができる。これらの操作装置は、座席13の機能、又はステアリングハンドル12の近傍に配置されている。
モニタ装置14は、トラクタ1の様々な情報を表示可能に構成されている。スロットルレバー15は、エンジン10の出力回転数を設定するための操作具である。主変速レバー27は、トラクタ1の走行を無段階で変更するための操作具である。PTOスイッチ17は、トランスミッション22の後端から突出した図略のPTO軸(動力取出軸)への動力の伝達/遮断を切換操作するための操作具である。即ち、PTOスイッチ17がON状態であるときPTO軸に動力が伝達されてPTO軸が回転し、作業機3が駆動される一方、PTOスイッチ17がOFF状態であるときPTO軸への動力が遮断されてPTO軸が回転せず、作業機3が停止される。PTO変速レバー18は、作業機3に入力される動力の変更操作を行うものであり、具体的にはPTO軸の回転速度の変速操作を行うための操作具である。副変速レバー19は、トランスミッション22内の走行副変速ギア機構の変速比を切り換えるための操作具である。作業機昇降スイッチ28は、走行機体2に装着された作業機3の高さを所定範囲内で昇降操作するための操作具である。
図1に示すように、走行機体2の下部には、トラクタ1のシャーシ20が設けられている。当該シャーシ20は、機体フレーム21、トランスミッション22、フロントアクスル23、及びリアアクスル24等から構成されている。
機体フレーム21は、トラクタ1の前部における支持部材であって、直接、又は防振部材等を介してエンジン10を支持している。トランスミッション22は、エンジン10からの動力を変化させてフロントアクスル23及びリアアクスル24に伝達する。フロントアクスル23は、トランスミッション22から入力された動力を前輪7に伝達するように構成されている。リアアクスル24は、トランスミッション22から入力された動力を後輪8に伝達するように構成されている。
図3に示すように、トラクタ1は、走行機体2の動作(前進、後進、停止及び旋回等)並びに作業機3の動作(昇降、駆動及び停止等)を制御するための制御部4を備える。制御部4は、図示しないCPU、ROM、RAM、I/O等を備えて構成されており、CPUは、各種プログラム等をROMから読み出して実行することができる。制御部4には、トラクタ1が備える各構成(例えば、エンジン10等)を制御するためのコントローラ、及び他の無線通信機器と無線通信するための無線通信機等がそれぞれ、CAN等の規格によって電気的に接続されている。
上記のコントローラとして、トラクタ1は少なくとも、エンジンコントローラ41、車速コントローラ42、操向コントローラ43及び昇降コントローラ44を備える。それぞれのコントローラは、制御部4からの電気信号に応じて、トラクタ1の各構成を制御することができる。
エンジンコントローラ41は、エンジン10の回転数等を制御するものである。エンジンコントローラ41は、エンジン10に設けられる燃料噴射装置としてのコモンレール装置(図略)と電気的に接続されている。コモンレール装置は、エンジン10の各気筒に燃料を噴射するものである。この場合、エンジン10の各気筒に対するインジェクタの燃料噴射バルブが開閉制御されることによって、燃料供給ポンプによって燃料タンクからコモンレール装置に圧送された高圧の燃料が各インジェクタからエンジン10の各気筒に噴射され、各インジェクタから供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。エンジンコントローラ41は、コモンレール装置を制御することで、例えばエンジン10への燃料の供給を停止させ、エンジン10の駆動を停止させることができる。
車速コントローラ42は、トラクタ1の車速を制御するものである。具体的には、トランスミッション22には、例えば可動斜板式の油圧式無段変速装置(図略)が設けられている。車速コントローラ42は、油圧式無段変速装置の斜板の角度をアクチュエータによって変更することで、トランスミッション22の変速比を変更し、所望の車速を実現することができる。
操向コントローラ(走行装置)43は、ステアリングハンドル12の回動角度を制御するものである。具体的には、ステアリングハンドル12の回転角(ステアリングシャフト)の中途部には、操向アクチュエータが設けられている。この構成で、予め定められた経路をトラクタ1が(無人トラクタとして)走行する場合、制御部4は、当該経路に沿ってトラクタ1が走行するようにステアリングハンドル12の適切な回動角度を計算し、得られた回動角度となるように操向コントローラ43に制御信号を出力する。操向コントローラ43は、制御部4から入力された制御信号に基づいて操向アクチュエータを駆動し、ステアリングハンドル12の回動角度(操舵角)を制御する。なお、操向コントローラ43はステアリングハンドル12の回動角度を調整するものではなくトラクタ1の前輪7の舵角を直接的に調整するものであってもよく、その場合、旋回走行を行ったとしてもステアリングハンドル12は回転しない。
昇降コントローラ44は、作業機3の昇降を制御するものである。具体的には、トラクタ1は、作業機3を走行機体2に連結している3点リンク機構の近傍に、油圧シリンダ等からなる昇降アクチュエータ(図略)を備えている。この構成で、昇降コントローラ44は、制御部4から入力された制御信号に基づいて昇降アクチュエータを駆動して作業機3を適宜に昇降動作させることにより、所望の高さで作業機3により農作業を行わせることができる。この制御により、作業機3を、退避高さ(農作業を行わない高さ)及び作業高さ(農作業を行う高さ)等の所望の高さで支持することができる。
なお、上述した複数のコントローラ41,42,43,44は、制御部4から入力される信号に基づいてエンジン10等の各部を制御していることから、制御部4が実質的に各部を把握していると把握することができる。
上述のような制御部4を備えるトラクタ1は、ユーザがキャビン11内に搭乗して各種操作をすることにより、当該制御部4によりトラクタ1の各部(走行機体2、作業機3等)を制御して、圃場内を走行しながら農作業を行うことができるように構成されている。加えて、本実施形態のトラクタ1は、ユーザがトラクタ1に搭乗しなくても、無線通信端末46により出力される所定の制御信号に基づいて自律走行及び自律作業をさせることが可能となっている。
具体的には、図3等に示すように、トラクタ1は、自律走行・自律作業を可能とするための各種構成を備えている。例えば、トラクタ1は、衛星(測位衛星)105,105,・・・から受信した電波に基づいて自ら(走行機体2)の位置情報を時々刻々と取得するために必要な測位用アンテナ6等を備える。このような構成により、トラクタ1は、衛星105,105,・・・から受信した電波に基づいて自らの位置情報を取得して、圃場の予め設定された経路上を自律走行することが可能となっている。
次に、自律走行を可能とするためにトラクタ1が備える構成について、より詳細に説明する。具体的には、本実施形態のトラクタ1は、図3等に示すように、測位用アンテナ6、位置情報取得部52、無線通信用アンテナ48、近距離無線通信機51、カメラ56、慣性計測装置54、及び記憶部55等を備える。
測位用アンテナ6は、衛星測位システム(GNSS)を構成する衛星105,105,・・・からの電波を受信するものである。なお、本実施形態では、GNSSとして全地球測位システム(GPS)が用いられている。図1に示すように、測位用アンテナ6は、トラクタ1のキャビン11のルーフ26の上面に取り付けられている。
位置情報取得部52は、入力された測位信号に基づいて、公知のGNSS−RTK法を利用することにより位置情報(緯度・経度情報)を取得する。GNSS−RTK法は公知であるので詳細な説明は省略するが、位置情報取得部52は、自らが測位することにより位置情報を取得するとともに、位置が既知の基準局で取得(計算)された測位補正情報を無線通信により時々刻々と受信し、この測位補正情報に基づいて前記位置情報を補正する。また、位置情報取得部52及び基準局においては、GNSS電波で受信したデータ(航法メッセージ)に基づく計測だけでなく、波としてのGNSS電波(搬送波)の位相の検出に基づく計測が行われる。これにより、走行機体2の位置情報を通常のGNSS測位よりも相当に高い精度で、具体的には誤差数センチメートル程度の精度で取得することができる。位置情報取得部52で取得された位置情報は、記憶部55に記憶されるとともに、適時に記憶部55から読み出されて制御部4に入力されて、自律走行に利用される。
無線通信用アンテナ48は、ユーザが使用する無線通信端末46との通信に用いられる近距離無線網の規格に対応したアンテナである。無線通信用アンテナ48は、トラクタ1のキャビン11が備えるルーフ26の上面に配置されている。無線通信用アンテナ48で受信した無線通信端末46からの信号は、近距離無線通信機51で信号処理された後、制御部4に入力される。また、制御部4等から無線通信端末46に送信する信号は、近距離無線通信機51で信号処理された後、無線通信用アンテナ48から送信されて無線通信端末46で受信される。
近距離無線通信機51は、無線通信用アンテナ48で受信された無線通信端末46からの信号を復調処理して取り出し、制御部4に入力する。これにより、無線通信端末46を用いてユーザが発した指示等が制御部4に入力されて、トラクタ1の各部を制御するのに用いられる。
カメラ56は、トラクタ1の周辺の環境を撮影するものである。図1及び図2には示していないが、カメラ56はトラクタ1のルーフ26に取り付けられている。カメラ56で撮影された映像データは、近距離無線通信機51で変調処理された後、無線通信用アンテナ48から送信され、無線通信端末46で受信される。この受信された映像データに基づいて、無線通信端末46の表示制御部31により表示用データが生成され、当該表示用データに基づいて、カメラ56で撮影された映像がディスプレイ37に表示される。
記憶部55は、トラクタ1を自律走行させるために予め定められた経路(走行経路)を記憶したり、トラクタ1(厳密には、測位用アンテナ6)の位置情報(位置情報、速度ベクトル情報等)を記憶したりするメモリである。
慣性計測装置54は、トラクタ1の走行機体2の姿勢や加速度等を特定することが可能なセンサユニットである。具体的には、慣性計測装置54は、互いに直交する第1軸、第2軸、及び第3軸のそれぞれに対して、角速度センサと加速度センサとを取り付けたセンサ群を備える。
詳述すると、慣性計測装置54は、第1軸方向の加速度を検出する第1加速度センサと、第2軸方向の加速度を検出する第2加速度センサと、第3軸方向の加速度を検出する第3加速度センサと、前記第1軸回りの角速度を検出する第1角速度センサと、前記第2軸回りの角速度を検出する第2角速度センサと、第3軸回りの角速度を検出する第3角速度センサと、を備えるものである。
慣性計測装置54は、第1角速度センサがトラクタ1のロール角速度を、第2角速度センサがトラクタ1のピッチ角速度を、第3角速度センサがトラクタ1のヨー角速度を検出できるように、トラクタ1の走行機体2に対して方向が定められて、走行機体2の重心位置に取り付けられている。言い換えれば、第1軸は、走行機体2の前後方向と一致するように、即ちロール回転軸となるように配置される。第2軸は、走行機体2の左右方向と一致するように、即ちピッチ回転軸となるように配置される。第3軸は、走行機体2の上下方向と一致するように、即ちヨー回転軸となるように配置される。
このような構成の慣性計測装置54の検出結果により、トラクタ1の走行機体2の姿勢変化の角速度(ロール角速度、ピッチ角速度、及びヨー角速度)、並びに、前後方向、左右方向、及び上下方向の加速度を特定できるようになっている。そして、得られた角速度を積分した結果が、走行機体2の姿勢を取得するために用いられる。走行機体2の姿勢に関する情報は制御部4に入力されて、位置情報取得部52が取得した位置情報を補正するのに用いたり、その他の制御に用いられたりする。
また、慣性計測装置54で取得された走行機体2の姿勢変化及び加速度に関する情報を用いて公知の慣性航法演算を行うことにより、衛星105,105,・・・からの電波が一時的に途切れる等して位置情報を算出できなくなった場合に、その間のトラクタ1の位置を求めることができる。
このような構成のトラクタ1に適切に自律走行を行わせるためには、トラクタ1の位置情報が制御部4によって正確に把握されているだけでは足りず、トラクタ1(走行機体2)の向きが制御部4によって正確に把握されていることが必要である。この点、慣性計測装置54の角速度センサは、トラクタ1の向きの変化を検出することはできるが、トラクタ1の向きそのものを検出することはできない。
ここで、前述したとおり、走行機体2のロール角とピッチ角に関しては、トラクタ1が停止中(静止中)に作用する重力加速度の方向を3つの加速度センサで検出することにより求めることができるが、ヨー角に関しては重力加速度を手掛かりにして求めることができない。なお、ヨー角を求めるために例えば電子コンパスや機械ジンバル式コンパス等の公知のコンパスをトラクタ1に備えることも考えられるが、この場合はコストが上昇する原因となる。
そこで、本実施形態では、ユーザの手動操作によりトラクタ1を実際に前進させるとともに、GNSS電波を用いてこのときのトラクタ1の位置変化を求め、当該位置変化の向きに基づいてヨー角を求めることとしている。なお、この所定処理(以下、初期化処理と呼ぶことがある。)の処理の詳細は後述する。
このようにトラクタ1の姿勢(ロール角、ピッチ角及びヨー角)の初期値が与えられれば、その後のトラクタ1の向きの変化を角速度センサで継続的に検出している限り、前記初期値に対して角速度センサの検出値の積分結果を加算することで、当該トラクタ1の現在の姿勢をリアルタイムで得ることができる。そして、GNSS測位ができない場合でも、トラクタ1の姿勢と、加速度センサの検出結果と、に基づいて、公知の慣性航法によりトラクタ1の位置を推定することができる。
以下では、慣性計測装置54の初期化処理に伴う種々の判定を行うために、自律走行システム100に備えられる構成について、図3を参照して詳細に説明する。具体的には、本実施形態の自律走行システム100は、前後進検出部53、操舵角検出部(旋回検出部)57、振動検出部58、及び車速検出部59を備える。
前後進検出部53は、前輪7の回転を検出することにより、トラクタ1が前向きに進んでいる場合、後ろ向きに進んでいる場合、及び中立状態の場合(前向きにも後ろ向きにも進んでいない場合)を検出できるものである。前後進検出部53の検出結果は、制御部4に入力される。
操舵角検出部57は、ステアリングハンドル12の操舵角を検出するものである。操舵角検出部57としては、公知の様々なセンサを採用し得るが、例えばロータリポテンショメータにより構成することができる。操舵角検出部57の検出結果は、制御部4に入力される。
振動検出部58は、トラクタ1の走行機体2の振動を検出するものである。具体的には、本実施形態の振動検出部58は、慣性計測装置54の3つの加速度センサの検出値を記憶部55から読み出し、これを総合的に評価することにより走行機体2の振動を検出する。振動検出部58の検出結果は、制御部4に入力される。
車速検出部(車速特定部)59は、トラクタ1の車速(走行速度)を検出するものである。車速を検出する方法は様々であるが、例えば、トランスミッション22の内部に配置される図示しないギアの外周に対向するように図略の回転センサを設け、この回転センサがギア歯を検出して出力するパルス信号をカウントすることが考えられる。車速検出部59が取得した車速の情報は、制御部4に入力される。
以下では、本実施形態の自律走行システム100で行われる慣性計測装置54の初期化処理について、図4を参照して詳細に説明する。図4は、本実施形態の慣性計測装置54の初期化処理で行われる判定及び処理を説明するフローチャートである。なお、図4に示す一連の判定及び処理は、トラクタ1が起動されたこと(具体的には、図示しないエンジンスイッチがONされたこと)をきっかけにして行われる。言い換えれば、図4に示す一連の判定及び処理は、トラクタ1の起動毎に行われる。これにより、例えば慣性計測装置54への電力供給が無い状態でトラクタ1の向きが運搬等によって変化した場合でも、変化後のトラクタ1の向きに対して慣性計測装置54を適切に初期化することができる。
トラクタ1が起動されると、制御部4は、トラクタ1が備えるモニタ装置14に、「初期化のため、トラクタをできるだけ真っ直ぐ前進させて下さい」というメッセージを表示させる。これを見たユーザは、スロットルレバー15及び主変速レバー27等を操作し、トラクタ1を前進させる。
初めに、制御部4は、前後進検出部53の検出結果を取得して、走行機体2の前進が検出されているか否かを判定する(ステップS101)。
ステップS101の判定の結果、前後進検出部53で走行機体2の前進が検出されていなかった場合(ステップS101、No)、制御部4は、走行機体2の前進が検出されるまで、当該判定を繰り返し行って待機する。
ステップS101の判定の結果、前後進検出部53で走行機体2の前進が検出されていた場合(ステップS101、Yes)、続いて制御部4は、車速検出部59の検出結果を取得して、走行機体2の車速が閾値を上回っているか否かを判定する(ステップS102)。
ステップS102の判定の結果、車速検出部59で検出された車速が閾値以下である場合(ステップS102、No)、検出される車速の向きに対する後述の誤差の影響が相対的に大きくなるので、走行機体2の向きを正確に得ることができないと考えられる。この場合、制御部4はステップS101に戻って上述の判定を繰り返す。
ステップS102の判定の結果、振動検出部58で検出された車速が閾値を上回る場合(ステップS102、Yes)、続いて制御部4は、振動検出部58の検出結果を取得して、走行機体2の振動の大きさが閾値未満であるか否かを判定する(ステップS103)。
ステップS103の判定の結果、振動検出部58で検出された振動の大きさが閾値以上である場合(ステップS103、No)、走行機体2の挙動が不安定であるために、当該走行機体2の向きを正確に得ることができない可能性がある。この場合、制御部4はステップS101に戻って上述の判定を繰り返す。
ステップS103の判定の結果、振動検出部58で検出された振動の大きさが閾値未満である場合(ステップS103、Yes)、続いて制御部4は、操舵角検出部57の検出結果を取得して、ステアリングハンドル12の操舵角が閾値未満であるか否かを判定する(ステップS104)。
ステップS104の判定の結果、操舵角検出部57で検出された操舵角が閾値以上であった場合(ステップS104、No)、走行機体2の向きが急激に変化しているために、当該走行機体2の向きを正確に得ることができない可能性がある。この場合、制御部4はステップS101に戻って上述の判定を繰り返す。
ステップS104の判定の結果、操舵角検出部57で検出された操舵角の大きさが閾値未満であった場合(ステップS104、Yes)、走行機体2の向きを正確に検出できる条件が揃ったと言うことができる。そこで、制御部4は初期化処理を行う(ステップS105)。
ステップS105の処理を具体的に説明すると、制御部4は、衛星105,105,・・・から受信したGNSS電波に乗せられた航法メッセージの衛星軌道情報から求めた衛星105,105,・・・の速度と、GNSS電波の受信時にドップラー効果によって生じる搬送波の周波数変化を計測することにより求めた衛星105,105,・・・に対する走行機体2の相対速度と、に基づいて、走行機体2の速度ベクトルを計算する。
GNSSとしてGPSを用いた場合、GPSの搬送波は複数種類あるが、例えばL1と呼ばれる搬送波(1575.42MHz)を計測する場合、その波長は約19センチメートルである。従って、上記のように搬送波の波としての性質(ドップラー効果)を測定することで、衛星105,105,・・・と走行機体2との距離の変化を、誤差が数センチメートル毎秒というような高い精度で計測することができる。従って、ある程度以上の車速で走行機体2を走行させていれば(ステップS102)、その速度ベクトルを十分に高い精度で得ることができる。
ここで、上述したように、本来ユーザがモニタ装置14の表示に従ってトラクタ1を前進させるべきところ、障害物の回避等の事情で後進させる場合も考えられる。しかし、本実施形態では、後進が検出された場合は初期化処理が行われないように制御部4が制御するので(ステップS101)、速度ベクトルの向きと走行機体2の向きが逆の状態で初期化処理がされることはない。従って、慣性計測装置54の検出結果の信頼性を高めることができる。
得られた速度ベクトルは、北方向の速度成分と、東方向の速度成分と、下方向の速度成分と、により表すことができる。北方向の速度成分に対する東方向の速度成分の比について、逆正接を計算することにより、慣性計測装置54を初期化するためのヨー角(初期ヨー角)を計算することができる。
このように、本実施形態では、慣性計測装置54を初期化するためのヨー角を、GPS電波のドップラー効果を利用して、高い精度で得ることができる。従って、これを基準として慣性計測装置54が出力する走行機体2の姿勢も高精度となることが期待され、GNSS−RTK測位ができなくなった場合に行われる慣性航法での位置特定を、GNSS−RTK測位に代替可能な精度で行うことができる。
以上に説明したように、本実施形態の自律走行システム100は、位置情報取得部52と、制御部4と、前後進検出部53と、慣性計測装置54と、を備える。位置情報取得部52は、衛星105,105,・・・から受信した電波に基づいてトラクタ1の位置情報を取得する。制御部4は、前記位置情報に基づいて、予め設定された経路に沿ってトラクタ1を自律走行させることが可能である。前後進検出部53は、トラクタ1の前進又は後進を検出可能である。慣性計測装置54は、トラクタ1の角速度及び加速度を検出する。慣性計測装置54は、トラクタ1を移動させながら初期化処理を実行することにより、当該初期化処理の実行時点でのトラクタ1の向きを、衛星105,105,・・・から受信した前記電波に基づいて得られたトラクタ1の位置変化の向きに基づいて求めることが可能である。慣性計測装置54は、前後進検出部53により前進が検出された場合は初期化処理を実行する一方、前後進検出部53により後進が検出された場合は初期化処理を実行しない。
これにより、トラクタ1の後進時は慣性計測装置54が初期化処理を実行しないので、トラクタ1の向きを実際の向きと180°異なって把握してしまう誤った初期化処理を防止することができる。この結果、慣性計測装置54による検出結果の信頼性を高めることができる。
また、本実施形態の自律走行システム100は、トラクタ1の旋回の度合いを検出する操舵角検出部57を備える。慣性計測装置54は、操舵角検出部57により検出された旋回の度合い(具体的には、操舵角)が閾値を超える場合に、初期化処理を実行しない。
これにより、例えば障害物を回避するために旋回が行われてトラクタ1の向きが急激に変化し、トラクタ1の向きを精度よく得ることが難しい場合に、慣性計測装置54が初期化処理を行うことを防止することができる。従って、不正確な作業車両の向きに基づいた初期化処理を防止することができる。
また、本実施形態の自律走行システム100は、トラクタ1の振動を検出する振動検出部58を備える。慣性計測装置54は、振動検出部58により検出された振動が閾値を超える場合に、初期化処理を実行しない。
これにより、トラクタ1に発生する振動が大きく、トラクタ1の向きを精度よく得ることが難しい場合に、慣性計測装置54が初期化処理を行うのを防止することができる。
また、本実施形態の自律走行システム100は、トラクタ1の車速を特定する車速検出部(車速特定部)59を備える。慣性計測装置54は、車速検出部59により特定された車速が閾値未満である場合に、初期化処理を実行しない。
これにより、車速が遅く、トラクタ1の位置変化の向きを精度よく得ることが難しい場合に、慣性計測装置54が初期化処理を行うのを防止することができる。
<第2実施形態>
次に、図5を参照して、本発明の第2実施形態を説明する。図5は、第2実施形態において、慣性計測装置54の初期化処理で行われる判定及び処理を説明するフローチャートである。なお、本実施形態の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。
第2実施形態に係る自律走行システム100では、ユーザが走行機体2を前向きに移動させた場合だけでなく、後ろ向きに移動させた場合にも初期化処理を行えるようにしている点で、第1実施形態に係る自律走行システム100とは異なっている。
図5に示す一連の判定及び処理は、前記第1実施形態と同様に、トラクタ1が起動する度に行われる。
初めに、制御部4は、初期化処理の開始条件を満たすか否かを判定するために、ステップS201からステップS203までの処理を行う。ステップS201は上記のステップS102と、ステップS202は上記のステップS103と、ステップS203は上記のステップS104と、それぞれ同様であるため、説明を省略する。
ステップS204において、制御部4は、第1実施形態(ステップS105)で説明したのと同様に、GNSS電波のドップラー効果による搬送波の周波数変化を利用して、走行機体2の速度ベクトルを計算する。
次に、制御部4は、前後進検出部53の検出結果を取得して、走行機体2の前進が検出されているか否かを判定する(ステップS205)。
ステップS205の判定の結果、前後進検出部53で走行機体2の後進が検出されていた場合(ステップS205、No)、ステップS204で生じていた走行機体2の位置の変化は後ろ向きだったことになる。従って、制御部4は、ステップS204で得られた速度ベクトルの向きを反転させる(ステップS206)。一方、前後進検出部53で走行機体2の前進が検出されていた場合(ステップS205、Yes)、上記のステップS206の処理はスキップされる。その後、制御部4は、前記速度ベクトルに基づいてヨー角を求める(ステップS207)。
本実施形態では、ユーザが走行機体2を前向きに移動させた場合だけではなく、後ろ向きに移動させた場合にも、初期化処理を適切に行うことができる。よって、慣性計測装置54の初期化処理を圃場の状態等に合わせて臨機応変に行うことが可能となり、ユーザの利便性を向上させることができる。
以上に説明したように、本実施形態の自律走行システム100は、位置情報取得部52と、制御部4と、前後進検出部53と、慣性計測装置54と、を備える。位置情報取得部52は、衛星105,105,・・・から受信した電波に基づいてトラクタ1の位置情報を取得する。制御部4は、前記位置情報に基づいて、予め設定された経路に沿ってトラクタ1を自律走行させることが可能である。前後進検出部53は、トラクタ1の前進又は後進を検出可能である。慣性計測装置54は、トラクタ1の角速度及び加速度を検出する。慣性計測装置54は、トラクタ1を移動させながら初期化処理を実行することにより、当該初期化処理の実行時点でのトラクタ1の向きを、衛星105,105,・・・から受信した前記電波に基づいて得られたトラクタ1の位置変化の向きに基づいて求めることが可能である。慣性計測装置54は、初期化処理の実行中において前後進検出部53により前進が検出された場合は、前記位置変化の向きをトラクタ1の向きとする一方、初期化処理の実行中において前後進検出部53により後進が検出された場合は、前記位置変化と反対の向きをトラクタ1の向きとする。
これにより、トラクタ1を前進させた場合でも、後進させた場合でも、慣性計測装置54がトラクタ1の向きを正しく把握して初期化処理を行うことができる。従って、ユーザの利便性を高めることができる。
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
慣性計測装置54の初期化処理は、上記のようにドップラー効果に基づいて速度ベクトルを求める方法に代えて、トラクタ1の移動前と移動後の位置情報をそれぞれGNSS測位により求め、2つの位置情報の推移から位置変化の向きを求めてトラクタ1の向きを得る方法で行ってもよい。GNSS−RTK法を用いることで移動前と移動後の位置は精度よく求められるので、上記の方法によっても、トラクタ1の正確な向きを求めて慣性計測装置54の初期化処理を行うことができる。ただし、上記の実施形態のようにドップラー効果を用いる方法は、基準局を用いずに、かつ、GNSS−RTK法でいわゆる整数バイアスを決定する処理を待たずに、トラクタ1の速度を高精度にかつ早期に得られる点で有利である。
前後進検出部53は、前輪7の回転を検出する構成に代えて、前後進を指示する操作部材の操作位置を検出する構成に変更することができる。
上記の実施形態では、車速検出部(車速特定部)59は、図略のギアの回転を検出することによりトラクタ1の車速を特定するものとしたが、必ずしもこれに限るものではない。例えばこれに代えて、車速特定部を、前輪7又は後輪8の回転数を検出することにより車速を検出する車速センサ等としてもよい。
図4のステップS105で説明したようなトラクタの速度ベクトルの算出処理を短い時間間隔で反復して行うように構成し、トラクタ1に振動が発生しているか否かを、速度ベクトルの変化が閾値以上であるか否かによって判定してもよい。また、旋回の度合いも、速度ベクトルの変化によって判定することができる。
トラクタ1の旋回の度合いは、ステアリングハンドル12の操舵角を検出することに代えて、前輪7の舵角を切れ角センサにより検出することで判定してもよい。
上記の実施形態で示した慣性計測装置54の初期化処理の開始条件は、一例に過ぎず、これらの開始条件のうちの一部が省略されてもよい。或いは、他の開始条件が更に加えられていてもよい。例えば、トラクタ1に、ユーザが慣性計測装置54の初期化処理を開始したいときに操作する所定の操作具を備える構成とし、この操作具が操作されることを開始条件の1つに加えてもよい。
また、上記の実施形態で示した慣性計測装置54の初期化処理の開始条件の判定の順序は、一例に過ぎず、順序が入れ替わってもよい。
慣性計測装置54による慣性航法は、時間の経過により位置の検出誤差が累積していく性質を有する。これを考慮して、慣性計測装置54の初期化処理を、トラクタ1の起動直後に限らず、起動後の適宜のタイミングで随時行うように構成してもよい。
上記の実施形態では、GNSS法で得られる位置情報に対して適宜補正を加えるいわゆるGNSS−RTK法を利用した高精度の衛星測位システムが用いられているが、これに限られるものではなく、高精度の位置座標が得られる限りにおいて他の測位システムを用いてもよい。例えば、相対測位方式(DGPS)、又は静止衛星型衛星航法補強システム(SBAS)を使用することが考えられる。
エンジン10がONにされてから一定の時間以上が経っても前記所定処理が行われない場合に、表示制御部31によって無線通信端末46のディスプレイ37に警告画面を表示させること等により、ユーザに対して慣性計測装置54の初期化処理を促すこととしてもよい。
上記の実施形態において図4及び図5の判定及び処理は、トラクタ1の起動をトリガとして行われることとしたが、トリガはこれに限られるものではない。例えば、第1実施形態では、トラクタ1の起動後、前後進検出部53によりトラクタ1の前進が検出されることをトリガとし、第2実施形態では、トラクタ1の起動後、前後進検出部53によりトラクタ1の前進又は後進が検出されることをトリガとしてもよい。この場合、図4のフローチャートでは、その後、ステップS102〜S104の判定を行ったのち、これら初期化処理の開始条件が揃うことで初期化処理が実行され、図5のフローチャートでは、その後、ステップS201〜S203の判定を行ったのち、これら初期化処理の開始条件が揃うことで前後進検出部53の検出結果が前進であるか後進であるかに応じて適切に初期化処理が実行される。トラクタ1を起動した後、後進しなければならない場合や、移動せずに所定の作業を行う場合等にIMU初期化処理を開始しないことで、制御部4はIMU初期化処理以外の各種処理を優先して実行することが可能となる。
1 トラクタ(ロボットトラクタ、作業車両)
4 制御部(自律走行制御部)
52 位置情報取得部
53 前後進検出部
54 慣性計測装置
100 自律走行システム
105 衛星(測位衛星)

Claims (7)

  1. 衛星から受信した電波に基づいて作業車両の位置情報を取得する位置情報取得部と、
    前記位置情報に基づいて、予め設定された経路に沿って前記作業車両を自律走行させることが可能な自律走行制御部と、
    前記作業車両の前進又は後進を検出可能な前後進検出部と、
    前記作業車両の角速度及び加速度を検出する慣性計測装置と、
    を備え、
    前記慣性計測装置は、前記作業車両を移動させながら所定処理を実行することにより、当該所定処理の実行時点での前記作業車両の向きを、衛星から受信した電波に基づいて得られた前記作業車両の位置変化の向きに基づいて求めることが可能であって、
    前記慣性計測装置は、前記前後進検出部により前記前進が検出された場合は前記所定処理を実行する一方、前記前後進検出部により前記後進が検出された場合は前記所定処理を実行しないことを特徴とする自律走行システム。
  2. 請求項に記載の自律走行システムであって、
    前記作業車両の旋回の度合いを検出する旋回検出部を備え、
    前記慣性計測装置は、前記旋回検出部により検出された旋回の度合いが閾値を超える場合に、前記所定処理を実行しないことを特徴とする自律走行システム。
  3. 請求項1又は2に記載の自律走行システムであって、
    前記作業車両の振動を検出する振動検出部を備え、
    前記慣性計測装置は、前記振動検出部により検出された前記振動が閾値を超える場合に、前記所定処理を実行しないことを特徴とする自律走行システム。
  4. 請求項1からまでの何れか一項に記載の自律走行システムであって、
    前記作業車両の車速を特定する車速特定部を備え、
    前記慣性計測装置は、前記車速特定部により特定された前記車速が閾値未満である場合に、前記所定処理を実行しないことを特徴とする自律走行システム。
  5. 衛星から受信した電波に基づいて作業車両の位置情報を取得する位置情報取得部と、
    前記位置情報に基づいて、予め設定された経路に沿って前記作業車両を自律走行させることが可能な自律走行制御部と、
    前記作業車両の前進又は後進を検出可能な前後進検出部と、
    前記作業車両の角速度及び加速度を検出する慣性計測装置と、
    を備え、
    前記慣性計測装置は、前記作業車両を移動させながら所定処理を実行することにより、当該所定処理の実行時点での前記作業車両の向きを、前記衛星から受信した前記電波に基づいて得られた前記作業車両の位置変化の向きに基づいて求めることが可能であって、
    前記慣性計測装置は、前記所定処理の実行中において前記前後進検出部により前記前進が検出された場合は、前記位置変化の向きを前記作業車両の向きとする一方、前記所定処理の実行中において前記前後進検出部により前記後進が検出された場合は、前記位置変化の向きと反対の向きを前記作業車両の向きとし、
    前記作業車両の旋回の度合いを検出する旋回検出部を備え、
    前記慣性計測装置は、前記旋回検出部により検出された旋回の度合いが閾値を超える場合に、前記所定処理を実行しないことを特徴とする自律走行システム。
  6. 衛星から受信した電波に基づいて作業車両の位置情報を取得する位置情報取得部と、
    前記位置情報に基づいて、予め設定された経路に沿って前記作業車両を自律走行させることが可能な自律走行制御部と、
    前記作業車両の前進又は後進を検出可能な前後進検出部と、
    前記作業車両の角速度及び加速度を検出する慣性計測装置と、
    を備え、
    前記慣性計測装置は、前記作業車両を移動させながら所定処理を実行することにより、当該所定処理の実行時点での前記作業車両の向きを、前記衛星から受信した前記電波に基づいて得られた前記作業車両の位置変化の向きに基づいて求めることが可能であって、
    前記慣性計測装置は、前記所定処理の実行中において前記前後進検出部により前記前進が検出された場合は、前記位置変化の向きを前記作業車両の向きとする一方、前記所定処理の実行中において前記前後進検出部により前記後進が検出された場合は、前記位置変化の向きと反対の向きを前記作業車両の向きとし、
    前記作業車両の振動を検出する振動検出部を備え、
    前記慣性計測装置は、前記振動検出部により検出された前記振動が閾値を超える場合に、前記所定処理を実行しないことを特徴とする自律走行システム。
  7. 衛星から受信した電波に基づいて作業車両の位置情報を取得する位置情報取得部と、
    前記位置情報に基づいて、予め設定された経路に沿って前記作業車両を自律走行させることが可能な自律走行制御部と、
    前記作業車両の前進又は後進を検出可能な前後進検出部と、
    前記作業車両の角速度及び加速度を検出する慣性計測装置と、
    を備え、
    前記慣性計測装置は、前記作業車両を移動させながら所定処理を実行することにより、当該所定処理の実行時点での前記作業車両の向きを、前記衛星から受信した前記電波に基づいて得られた前記作業車両の位置変化の向きに基づいて求めることが可能であって、
    前記慣性計測装置は、前記所定処理の実行中において前記前後進検出部により前記前進が検出された場合は、前記位置変化の向きを前記作業車両の向きとする一方、前記所定処理の実行中において前記前後進検出部により前記後進が検出された場合は、前記位置変化の向きと反対の向きを前記作業車両の向きとし、
    前記作業車両の車速を特定する車速特定部を備え、
    前記慣性計測装置は、前記車速特定部により特定された前記車速が閾値未満である場合に、前記所定処理を実行しないことを特徴とする自律走行システム。
JP2017060087A 2017-03-24 2017-03-24 自律走行システム Active JP6695297B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060087A JP6695297B2 (ja) 2017-03-24 2017-03-24 自律走行システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060087A JP6695297B2 (ja) 2017-03-24 2017-03-24 自律走行システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020075005A Division JP7083445B2 (ja) 2020-04-20 2020-04-20 自律走行システム

Publications (2)

Publication Number Publication Date
JP2018163507A JP2018163507A (ja) 2018-10-18
JP6695297B2 true JP6695297B2 (ja) 2020-05-20

Family

ID=63860218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060087A Active JP6695297B2 (ja) 2017-03-24 2017-03-24 自律走行システム

Country Status (1)

Country Link
JP (1) JP6695297B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227070B2 (ja) * 2019-05-17 2023-02-21 ヤンマーパワーテクノロジー株式会社 自律走行システム
JP7368966B2 (ja) * 2019-07-12 2023-10-25 イームズロボティクス株式会社 自律制御装置、自律制御方法、自律制御プログラム
KR102431627B1 (ko) * 2022-03-29 2022-08-12 주식회사 긴트 자율 주행을 지원하는 농기계의 셔틀 레버의 위치에 따라서 구동부를 제어하기 위한 장치
JP2024094536A (ja) * 2022-12-28 2024-07-10 株式会社クボタ 作業車両、作業車両の制御システムおよび制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238308B2 (ja) * 1995-09-22 2001-12-10 株式会社クボタ 作業車の誘導制御装置
JP4791316B2 (ja) * 2006-10-05 2011-10-12 アルパイン株式会社 車載用ナビゲーション装置及び車両進行方向検出方法
JP6371137B2 (ja) * 2014-06-27 2018-08-08 株式会社クボタ 植播系圃場作業機
JP2016024540A (ja) * 2014-07-17 2016-02-08 株式会社クボタ 走行作業機及びそれに用いられる自動操舵システム
DE102014215570B4 (de) * 2014-08-06 2021-12-30 Elektrobit Automotive Gmbh Fahrzeugnavigationssystem
JP2017000095A (ja) * 2015-06-11 2017-01-05 井関農機株式会社 作業車両
JP6502221B2 (ja) * 2015-09-14 2019-04-17 株式会社クボタ 作業車支援システム
JP6422912B2 (ja) * 2016-04-06 2018-11-14 株式会社クボタ 測位検出装置及び測位検出装置を備えた作業機

Also Published As

Publication number Publication date
JP2018163507A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
KR102121098B1 (ko) 작업 차량 제어 장치
KR102287412B1 (ko) 병주 작업 시스템
US11650599B2 (en) Positioning detection device and working machine having positioning detection device
JP7083445B2 (ja) 自律走行システム
JP6594805B2 (ja) 作業車両
JP6339427B2 (ja) 併走作業システム
JP6695297B2 (ja) 自律走行システム
JP2017161987A (ja) 作業車両の走行領域形状登録システム
CN106164799A (zh) 自主行驶作业车辆
KR20210054073A (ko) 병주 작업 시스템
JP2017174229A (ja) 経路生成装置
JP7227070B2 (ja) 自律走行システム
JP6078025B2 (ja) 併走作業システム
JP2019133701A (ja) 走行領域形状登録システム
US20220413504A1 (en) Area Registration System
US20230004161A1 (en) System and method for groundtruthing and remarking mapped landmark data
JP2024094536A (ja) 作業車両、作業車両の制御システムおよび制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200421

R150 Certificate of patent or registration of utility model

Ref document number: 6695297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350