JP6692010B2 - Processing method and apparatus using radical adsorption transport - Google Patents

Processing method and apparatus using radical adsorption transport Download PDF

Info

Publication number
JP6692010B2
JP6692010B2 JP2018503072A JP2018503072A JP6692010B2 JP 6692010 B2 JP6692010 B2 JP 6692010B2 JP 2018503072 A JP2018503072 A JP 2018503072A JP 2018503072 A JP2018503072 A JP 2018503072A JP 6692010 B2 JP6692010 B2 JP 6692010B2
Authority
JP
Japan
Prior art keywords
tool
radical
processing
workpiece
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503072A
Other languages
Japanese (ja)
Other versions
JPWO2017150308A1 (en
Inventor
泰久 佐野
泰久 佐野
和人 山内
和人 山内
俊亘 宮崎
俊亘 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEC Corp
Toho Engineering Co Ltd
Original Assignee
JTEC Corp
Toho Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEC Corp, Toho Engineering Co Ltd filed Critical JTEC Corp
Publication of JPWO2017150308A1 publication Critical patent/JPWO2017150308A1/en
Application granted granted Critical
Publication of JP6692010B2 publication Critical patent/JP6692010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、ラジカル吸着輸送を援用した加工方法及びその装置に係わり、更に詳しくはSiを始めSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等を平坦化加工若しくは任意形状加工することが可能なラジカル吸着輸送を援用した加工方法及びその装置に関するものである。   TECHNICAL FIELD The present invention relates to a processing method and apparatus using radical adsorption transport, and more specifically, it is possible to perform flattening processing or arbitrary shape processing on a wide band gap semiconductor substrate such as Si, SiC, GaN, diamond, etc. TECHNICAL FIELD The present invention relates to a processing method and an apparatus for the same, which makes use of radical adsorption transport.

現在、半導体デバイスには主にSiが使用されているが、その性能はSiの物性値による限界に近づきつつある。そのため、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンドに代表されるワイドバンドギャップ半導体が注目されている。これらのパワー半導体デバイス材料はバンドギャップ、絶縁破壊電界値、熱伝導率、電子移動度といった物性値がSiと比較して数倍〜数十倍大きいため、これらの材料を用いてパワーデバイスを作製した場合、高耐圧で消費電力の低減,高速動作等の実現が可能になる。これらの利点から、ワイドバンドギャップ半導体は次世代パワー半導体デバイス分野を牽引する材料として期待されている。   Currently, Si is mainly used in semiconductor devices, but the performance is approaching the limit due to the physical properties of Si. Therefore, wide band gap semiconductors typified by silicon carbide (SiC), gallium nitride (GaN), and diamond are drawing attention. These power semiconductor device materials have physical properties such as bandgap, dielectric breakdown electric field value, thermal conductivity, and electron mobility that are several times to several tens of times higher than those of Si, so power devices are manufactured using these materials. In this case, it is possible to realize high withstand voltage, reduced power consumption, and high-speed operation. Due to these advantages, wide band gap semiconductors are expected as a material to lead the field of next-generation power semiconductor devices.

しかし、半導体パワーデバイスを作製する上で表面の結晶性が重要となる半導体基板の平坦化は必須であり、SiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板は硬く脆いことから、従来の機械的加工ではダメージを与えることなく高効率な平坦化は困難である。P−CVM(Plasma Chemical Vaporization Machining)は、大気圧雰囲気下でのプラズマを用いた化学的な加工方法であり、その高いラジカル密度から高効率で且つ結晶にダメージを与えることない加工が可能である(特許文献1、2)。しかし、プラズマによる加工は本質的に等方性エッチングであり、面方向全体を加工してしまうため、凹凸のある被加工物表面を高能率に平坦化には向かない。   However, planarization of a semiconductor substrate whose surface crystallinity is important in manufacturing a semiconductor power device is essential, and wide bandgap semiconductor substrates such as SiC, GaN, and diamond are hard and fragile. In processing, it is difficult to achieve highly efficient flattening without causing damage. P-CVM (Plasma Chemical Vaporization Machining) is a chemical processing method using plasma under an atmospheric pressure atmosphere, and it is possible to perform processing with high efficiency and without damaging crystals due to its high radical density. (Patent Documents 1 and 2). However, plasma processing is essentially isotropic etching, and since the entire surface direction is processed, it is not suitable for highly efficient flattening of the surface of a workpiece having irregularities.

そこで我々は、化学的研磨法の表面粗さの悪化という欠点を研磨定盤に基準面となる触媒を用いることで改善させた触媒表面基準エッチング(Catalyst-Referred Etching; CARE)法を提案している(特許文献3)。CARE法では基準面となる研磨定盤にNiやPtを用いることで触媒作用を付加し、研磨定盤近傍でのみ発生したハロゲンラジカルの助けを借りてエッチング反応が誘起されるため、凸部のみを選択的に加工することができる。さらに、エッチング反応のみによって加工が進行するため原理的にダメージは入り得ず、化学的に基準面形状の転写が可能である。現在までに、CARE加工によってSiCやGaNのステップテラス構造が実現されており、基板表面を原子レベルに平坦化可能であることが確認されている。しかし、特許文献3に記載のCARE法は、ハロゲンを含む分子が溶けた加工液、例えばフッ化水素酸を用いていたため、その取り扱いには細心の注意が必要であり、廃液や排気ガスの処理が必要になって装置構成も複雑になるといった課題があった。   Therefore, we have proposed a catalyst-referenced etching (CARE) method, which has improved the disadvantage of the chemical polishing method that the surface roughness deteriorates by using a catalyst as a reference surface in the polishing platen. (Patent Document 3). In the CARE method, Ni or Pt is used for the polishing surface plate that serves as the reference surface to add a catalytic action, and the etching reaction is induced with the help of the halogen radicals generated only near the polishing surface plate. Can be selectively processed. Furthermore, since the processing proceeds only by the etching reaction, damage cannot occur in principle, and the reference surface shape can be chemically transferred. Until now, it has been confirmed that the step terrace structure of SiC or GaN has been realized by CARE processing, and the substrate surface can be flattened to the atomic level. However, since the CARE method described in Patent Document 3 uses a working fluid in which a molecule containing a halogen is dissolved, for example, hydrofluoric acid, it must be handled with extreme caution, and a waste fluid or an exhaust gas should be treated. However, there is a problem that the device configuration becomes complicated and the device configuration becomes complicated.

また、本質的に加工液として水のみを用い、加工液に対する被加工物の電位を制御し、触媒の作用で水分子が解離して生成したOHラジカルが被加工物表面に吸着し、加水分解による分解生成物を被加工物表面から除去して加工を進行させる加工原理により、固体酸化物やSiCやGaN等のワイドバンドギャップ半導体基板等の難加工物を加工が可能なWater−CARE法が提案されている(特許文献4,5)。しかし、これらWater−CARE法は、研磨剤や砥粒を一切使用せず、廃液の処理も容易であるという優れた加工法であるが、加工速度が遅く、とりわけダイヤモンドに対する加工速度が遅く、殆ど加工できなかった。しかも基本的にウェット状態での処理であるので、ドライ状態での処理に比べて特有の問題も存在する。   In addition, essentially only water is used as the working fluid, the potential of the workpiece is controlled with respect to the working fluid, and the OH radicals produced by the dissociation of water molecules by the action of the catalyst are adsorbed on the surface of the workpiece and hydrolyzed. The Water-CARE method that can process difficult-to-process products such as solid oxides and wide bandgap semiconductor substrates such as SiC and GaN by the processing principle of removing decomposition products from the surface of the work by progressing processing It has been proposed (Patent Documents 4 and 5). However, these Water-CARE methods are excellent processing methods that do not use abrasives or abrasive grains at all and can easily treat waste liquids, but have a low processing speed, especially a low processing speed for diamond, I couldn't process it. Moreover, since the treatment is basically performed in the wet state, there are specific problems as compared with the treatment in the dry state.

特許第2521127号公報Japanese Patent No. 2521127 特許第2962583号公報Japanese Patent No. 2962583 特開2006−114632号公報JP, 2006-114632, A 国際公開第2013/084934号International Publication No. 2013/084934 特開2015−173216号公報JP, 2005-173216, A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、化学反応性に富んだラジカルを利用し、Siを始めSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等の難加工物を高能率に加工することができるにも係わらず、ドライ状態での処理であるので装置構成が簡単であり、その取り扱いも容易且つ安全であるラジカル吸着輸送を援用した加工方法及びその装置を提供する点にある。   Therefore, in view of the above situation, the present invention intends to solve the problem by using radicals having a high chemical reactivity to obtain a difficult-to-processed material such as Si, SiC, GaN, or a wide bandgap semiconductor substrate such as diamond. Despite being capable of highly efficient processing, the processing is performed in a dry state, so that the apparatus configuration is simple, and its handling is easy and safe. A processing method and apparatus using radical adsorption transport are provided. There is a point.

本発明は、前述の課題解決のために、以下のラジカル吸着輸送を援用した加工方法及び加工装置を構成した。   In order to solve the above-mentioned problems, the present invention has constituted a processing method and a processing apparatus which incorporate the following radical adsorption transport.

(1)
化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する可動工具の該表面を、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを用いて発生させたプラズマの発生領域を通過させ、該プラズマ発生領域で生成したラジカルを前記工具表面に吸着させて反応活性種を付与し、該工具の移動によって該工具表面の前記反応活性種を前記プラズマ発生領域とは異なる位置に配置した被加工物表面まで輸送し、該工具と接触した被加工物表面の原子と反応活性種との化学反応によって生成した反応生成物を除去することにより、該工具表面を加工基準面として被加工物表面の該工具表面と接触した部分のみを選択的に加工することを特徴とするラジカル吸着輸送を援用した加工方法。
(1)
The surface of the movable tool having a surface with an adsorption ability and corrosion resistance to radicals rich in chemical reactivity, using a reaction gas obtained by mixing gas and a rare gas containing an element or substituent to produce at least the radical passed through a plasma generating region that caused Te, the radicals generated in the plasma generation region is adsorbed to the tool surface reactive species was granted, the said reactive species of the tool surface by movement of the tool By transporting to a workpiece surface arranged at a position different from the plasma generation region and removing a reaction product generated by a chemical reaction between atoms on the workpiece surface in contact with the tool and a reactive species, A processing method utilizing radical adsorption and transport, characterized in that only a portion of the surface of a workpiece which comes into contact with the tool surface is selectively processed using the tool surface as a processing reference surface.

(2)
前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである(1)記載のラジカル吸着輸送を援用した加工方法。
(2)
The processing method using the radical adsorption transport according to (1), wherein the element that generates the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical.

(3)
前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである(1)記載のラジカル吸着輸送を援用した加工方法。
(3)
The processing method incorporating the radical adsorption transport according to (1), wherein the substituent that produces the radical is an OH group, and the radical is an OH radical.

(4)
前記工具の少なくとも表面がNiで形成されている(1)〜(3)何れか1に記載のラジカル吸着輸送を援用した加工方法。
(4)
At least the surface of the tool is formed of Ni, (1) to (3) The processing method using the radical adsorption transport according to any one of (1) to (3).

(5)
前記工具の表面がアルミナ又はイットリアのコーティング層となっている(1)〜(3)何れか1に記載のラジカル吸着輸送を援用した加工方法。
(5)
The processing method using the radical adsorption transport according to any one of (1) to (3), wherein the surface of the tool is a coating layer of alumina or yttria.

(6)
前記工具が回転定盤工具であり、該回転定盤工具表面を加工基準面として被加工物表面を平坦化加工する(1)記載のラジカル吸着輸送を援用した加工方法。
(6)
The processing method using the radical adsorption transport according to (1), wherein the tool is a rotary surface plate tool, and the surface of the workpiece is flattened using the surface of the rotary surface plate tool as a processing reference plane.

(7)
前記工具が回転軸を備えた球状回転工具であり、該球状回転工具の外周部の近傍においてプラズマを発生させて、該球状回転工具の外周部にラジカルを吸着させ、該球状回転工具のプラズマ発生領域とは異なる外周部を被加工物表面に所定圧力で接触させながら回転させるとともに、該接触部を被加工物表面上で数値制御走査して任意形状に加工する(1)記載のラジカル吸着輸送を援用した加工方法。
(7)
The tool is a spherical rotary tool having a rotary shaft, plasma is generated in the vicinity of the outer peripheral portion of the spherical rotary tool, and radicals are adsorbed to the outer peripheral portion of the spherical rotary tool to generate plasma in the spherical rotary tool. Radical adsorption transport according to (1), in which an outer peripheral portion different from the region is rotated while being brought into contact with the surface of the workpiece at a predetermined pressure and the contact portion is numerically controlled and scanned on the surface of the workpiece to have an arbitrary shape. Processing method with the aid of.

(8)
化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する回転定盤工具と、
前記回転定盤工具の表面に対して所定ギャップを設けて配置した電極ヘッドと、
前記電極ヘッドに少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
前記電極ヘッドに高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具表面の回転方向前方に被加工物を保持し、該被加工物を所定圧力で回転定盤工具表面に接触させるワークホルダーと、
を備え、前記回転定盤工具表面を加工基準面として被加工物表面を平坦化加工することを特徴とするラジカル吸着輸送を援用した加工装置。
(8)
A rotary surface plate tool having a surface having corrosion resistance and adsorption ability for radicals rich in chemical reactivity,
An electrode head arranged with a predetermined gap provided on the surface of the rotary platen tool,
Gas supply means for supplying to the electrode head a reaction gas in which a gas containing at least the element generating the radical or a substituent and a rare gas are mixed,
A high-frequency power source that applies a high-frequency electric field to the electrode head to generate plasma in the gap,
A work piece is held in front of the rotating surface plate tool surface to which the radicals generated in the plasma generation region are adsorbed and reactive species are given, and the work piece is held on the rotating surface plate tool surface at a predetermined pressure. A work holder to contact
A processing apparatus assisting radical adsorption and transport, characterized in that the surface of a workpiece is flattened by using the surface of the rotary platen as a processing reference surface.

(9)
回転軸を備えるとともに、少なくとも外周部表面に化学反応性に富んだラジカルに対して耐食性と吸着能を備えている球状回転工具と、
前記球状回転工具の外周部に対して所定ギャップを設けて配置した電極と、
前記電極に少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
前記電極に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記球状回転工具のプラズマ発生領域とは異なる外周部を、被加工物表面に所定圧力で接触させた状態で、前記球状回転工具と被加工物とを相対的に数値制御走査する走査手段と、
を備え、前記球状回転工具と被加工物の接触部を被加工物表面上で数値制御走査して該球状回転工具表面を加工基準面として任意形状に加工することを特徴とするラジカル吸着輸送を援用した加工装置。
(9)
With a rotary shaft, a spherical rotary tool having corrosion resistance and adsorption ability for radicals rich in chemical reactivity at least on the outer peripheral surface,
An electrode arranged with a predetermined gap provided on the outer peripheral portion of the spherical rotary tool,
Gas supply means for supplying to the electrode a reaction gas obtained by mixing a gas containing at least the element generating the radical or a substituent and a rare gas,
A high-frequency power source that applies a high-frequency electric field to the electrodes to generate plasma in the gap,
The spherical rotation in a state in which the outer peripheral portion of the spherical rotary tool to which the radicals generated in the plasma generation area are adsorbed and the reactive species are applied is different from the plasma generation area in contact with the workpiece surface at a predetermined pressure. Scanning means for relatively numerically controlling the tool and the workpiece,
Radical adsorption transport, characterized in that the spherical rotary tool and the contact part of the workpiece are numerically controlled and scanned on the surface of the workpiece to process the spherical rotary tool surface into an arbitrary shape as a processing reference plane. Processing equipment incorporated.

(10)
前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(10)
The element that generates a radical is a halogen element F or Cl, the radical is F radicals or Cl radical (8) or (9) machining apparatus the aid of radical adsorption transport according.

(11)
前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(11)
The processing device incorporating the radical adsorption transport according to (8) or (9), wherein the radical-generating substituent is an OH group, and the radical is an OH radical.

(12)
前記回転定盤工具又は球状回転工具の少なくとも表面がNiで形成されている(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(12)
At least the surface of the rotary platen tool or the spherical rotary tool is formed of Ni. (8) or (9).

(13)
前記回転定盤工具又は球状回転工具の表面がアルミナ又はイットリアのコーティング層となっている(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(13)
The processing apparatus using the radical adsorption transport according to (8) or (9), wherein the surface of the rotary platen tool or the spherical rotary tool is a coating layer of alumina or yttria.

以上にしてなる本発明のラジカル吸着輸送を援用した加工方法及びその装置によれば、ラジカルを吸着させる工具表面を加工基準面としたドライエッチングが実現する。ドライエッチング技術において、このような加工基準面を有する技術は他に存在しない。本発明によって高能率に単結晶材料の無歪平坦化が期待でき、例えばSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等の次世代半導体基板の高品質化、低価格化が期待できる。更に、従来技術では均一な加工が困難であった、結晶成長に起因する結晶性の不均一性を有するような基板や多結晶基板等も、本発明では加工基準面の効果によって均一な加工が実現できる可能性がある。また、本発明ではプラズマは直接被加工物表面に接触しないため、耐熱温度の低い材料に対しても加工が可能と考えられる。   According to the processing method and apparatus using the radical adsorption transport of the present invention as described above, dry etching is realized with the tool surface for adsorbing radicals as the processing reference plane. There is no other dry etching technique having such a processing reference plane. According to the present invention, it is expected that the single crystal material can be flattened strain-freely with high efficiency, and next-generation semiconductor substrates such as wide bandgap semiconductor substrates made of SiC, GaN, diamond or the like can be improved in quality and reduced in price. Further, in the present invention, even a substrate having a non-uniform crystallinity due to crystal growth, a polycrystalline substrate, or the like, which has been difficult to perform uniform processing by the conventional technique, can be processed uniformly by the effect of the processing reference plane. It can be realized. Further, in the present invention, the plasma does not come into direct contact with the surface of the workpiece, so it is considered possible to process even a material having a low heat resistant temperature.

本発明のラジカル吸着輸送を援用した加工装置の概念図である。It is a conceptual diagram of the processing apparatus which assists the radical adsorption transport of this invention. 同じく本発明のラジカル吸着輸送を援用した加工装置の簡略斜視図である。It is a simplified perspective view of the processing apparatus which also used the radical adsorption transport of this invention. 本発明の第1実施形態の平坦化加工装置の簡略斜視図である。It is a simplified perspective view of the planarization processing apparatus of 1st Embodiment of this invention. 同じく第1実施形態の平坦化加工装置の一部を示し、(a)は電極ヘッドの斜視図、(b)は電極ヘッドと被加工物の関係を示す部分断面図である。Similarly, a part of the flattening apparatus of the first embodiment is shown, (a) is a perspective view of an electrode head, and (b) is a partial cross-sectional view showing the relationship between the electrode head and a workpiece. 本発明の第2実施形態の数値制御加工装置の概念を示し、(a)は正面図、(b)は側面図である。The concept of the numerical control processing apparatus of 2nd Embodiment of this invention is shown, (a) is a front view, (b) is a side view. 加工実験1として、Si基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態を場所と時間毎に示した白色干渉計像である。As the processing experiment 1, the result of the flattening processing experiment of the Si substrate is shown, and it is a white interferometer image showing the surface state under the condition that plasma is not generated at each place and every time. 加工実験1として、Si基板のFラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。As a processing experiment 1, a result of a flattening processing experiment of a Si substrate with F radicals is shown, and a white interferometer image showing a surface state under a condition where plasma is generated at each place and each time. 加工実験2として、SiC基板の平坦化加工実験の結果を示し、加工前と加工後の表面状態を示した白色干渉計像である。As the processing experiment 2, the result of the flattening processing experiment of the SiC substrate is shown, and it is a white interferometer image showing the surface condition before and after the processing. 反応ガスとしてHeと水蒸気の混合ガスを用いる場合の加工装置の概念図である。It is a conceptual diagram of a processing apparatus when using a mixed gas of He and water vapor as a reaction gas. 加工実験3として、Si基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態を場所と時間毎に示した白色干渉計像である。As a processing experiment 3, a result of a flattening processing experiment of a Si substrate is shown, and is a white interferometer image showing a surface state under a condition that plasma is not generated at each place and each time. 加工実験3として、Si基板のOHラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。As a processing experiment 3, a result of a flattening processing experiment of an Si substrate with OH radicals is shown, and is a white interferometer image showing a surface state under a condition where plasma is generated at each place and each time. 加工実験4として、アルミナコーティング層を形成した回転定盤工具を用いたSi基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態の白色干渉計像である。As the processing experiment 4, the result of the flattening processing experiment of the Si substrate using the rotary platen tool on which the alumina coating layer is formed is shown, and is a white interferometer image of the surface state under the condition that plasma is not generated. 加工実験4として、アルミナコーティング層を形成した回転定盤工具を用いたSi基板のFラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。As the processing experiment 4, the results of the flattening processing experiment by the F radical of the Si substrate using the rotary platen tool on which the alumina coating layer is formed are shown, and the surface condition under the condition that the plasma is generated is shown at each place and every hour. It is a white interferometer image.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1及び図2は、本発明のラジカル吸着輸送を援用した加工装置の概念図を示し、Wは被加工物、1は回転定盤工具、2は電極ヘッド、3はガス供給手段、4は高周波電源、5はワークホルダーをそれぞれ示している。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. 1 and 2 are conceptual views of a processing apparatus that employs radical adsorption and transport according to the present invention, where W is a workpiece, 1 is a rotary platen tool, 2 is an electrode head, 3 is gas supply means, and 4 is A high frequency power source and 5 respectively indicate work holders.

本発明の加工原理は、以下に示す通りである。先ず、化学反応性に富んだフリーラジカル(以下、単に「ラジカル」と表わす)に対して耐食性と吸着能を備えた表面を有する可動工具(回転定盤工具1)の近傍で、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスからなるプラズマを発生させて、該プラズマ発生領域PでラジカルRを生成する。このプラズマ発生領域Pを前記可動工具表面が通過する際に、前記ラジカルRが、該工具表面の原子に高配位し、あるいは過剰に吸着して反応活性種となり、該工具の移動によって被加工物Wの表面まで輸送される。前記工具と接触した被加工物Wの表面まで輸送された反応活性種は、該被加工物Wの表面原子側に移動し、該表面原子のバックボンドを弱めて結合して、反応生成物となる。この反応生成物が、被加工物Wの表面から除去されることにより、被加工物Wの表面原子が除去され、つまりエッチングされるというものである。   The processing principle of the present invention is as follows. First, at least in the vicinity of a movable tool (rotary platen tool 1) having a surface having corrosion resistance and adsorption ability to free radicals (hereinafter, simply referred to as “radicals”) rich in chemical reactivity, A radical R is generated in the plasma generation region P by generating a plasma of a reaction gas in which a gas containing a generated element or a substituent and a rare gas are mixed. When the surface of the movable tool passes through the plasma generation region P, the radicals R are highly coordinated with atoms on the surface of the tool or are excessively adsorbed to become reaction active species, and the workpiece is processed by the movement of the tool. It is transported to the surface of the object W. The reactive species that have been transported to the surface of the workpiece W that has come into contact with the tool move to the surface atom side of the workpiece W, weaken the back bonds of the surface atoms and bond to form a reaction product. Become. This reaction product is removed from the surface of the workpiece W, so that the surface atoms of the workpiece W are removed, that is, the surface atoms of the workpiece W are etched.

ここで、前記ラジカルを生成する元素として、F又はClのハロゲン元素が挙げられ、具体的にはハロゲン元素含有ガスは、F元素を含有するものとしてSF、CF、NF等があり、Cl元素を含有するものとしてCl、CCl、PCl等がある。ここで、前記ラジカルを生成するガスとして、Oガスを用いることも可能である。また、前記ラジカルを生成する置換基として、OH基が挙げられ、OH基を含むガスとして代表的にはHOがある。尚、前記置換基は、分子の部分構造を示し、前記フリーラジカルに対応している。そして、希ガスとしては、ヘリウムガスやアルゴンガスが挙げられる。反応ガスには、これらラジカル生成ガスと希ガスの他に、第3のガスを微量添加することもある。ここで、反応ガスの圧力Pは、大気圧を基本とするが、減圧状態若しくは真空状態であっても良いが、この場合、ラジカルRが吸着して工具表面に形成された反応活性種が工具表面から速やかに離脱することは避けなければならない。Here, as the element that generates the radical, a halogen element of F or Cl can be cited, and specifically, the halogen element-containing gas includes SF 6 , CF 4 , NF 3 and the like as the element that contains the F element. there are Cl 2, CCl 4, PCl 4 such as those containing the element Cl. Here, it is also possible to use O 2 gas as the gas that generates the radicals. Further, as the substituent for generating the radical, it includes OH groups, typically as a gas containing OH groups is H 2 O. The substituent represents a partial structure of the molecule and corresponds to the free radical. The rare gas may be helium gas or argon gas. In addition to these radical-producing gas and rare gas, a trace amount of a third gas may be added to the reaction gas. Here, the pressure P G of the reaction gas is basically atmospheric pressure, but it may be in a reduced pressure state or a vacuum state. In this case, the reactive active species formed on the tool surface by adsorption of the radical R are Rapid release from the tool surface must be avoided.

前記回転定盤工具1の表面は、加工基準面となっている。前記回転定盤工具1の表面に用いることが可能な材料は、ラジカルに対して耐食性と吸着能を備えていることが要求され、Ni等の各種金属材料を用いることができ、また基体の表面にアルミナやイットリア等を溶射してコーティング層を形成したものでも良い。本実施形態では、前記回転定盤工具1の表面に、無電解Niめっきによって厚さ20μmのNi層6を形成したものや、溶射によってアルミナのコーティング層を形成したものを用いている。ここで、Ni層6は、無電解めっきの他に、電解めっきや真空蒸着により形成してもよい。また、前記工具1自体をバルクのNiで作製しても良い。   The surface of the rotary platen tool 1 serves as a processing reference plane. The material that can be used for the surface of the rotary platen tool 1 is required to have corrosion resistance and adsorption ability for radicals, various metal materials such as Ni can be used, and the surface of the substrate can be used. A coating layer may be formed by spraying alumina, yttria, or the like on. In the present embodiment, the rotary platen tool 1 has a surface on which a Ni layer 6 having a thickness of 20 μm is formed by electroless Ni plating, or an alumina coating layer formed by thermal spraying. Here, the Ni layer 6 may be formed by electrolytic plating or vacuum vapor deposition in addition to electroless plating. Further, the tool 1 itself may be made of bulk Ni.

前記回転定盤工具1の表面に対して所定ギャップGを設けて電極ヘッド2を配置し、該電極ヘッド2と回転定盤工具1の表面とのギャップにガス供給手段3から、少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給する。前記電極ヘッド2は、中心にガス供給手段3を構成するガス流路を形成し、図示しないガスボンベにガス供給管で接続され、反応ガスを先端に向けて噴射するようになっている。   The electrode head 2 is arranged with a predetermined gap G provided on the surface of the rotary platen tool 1, and at least radicals are generated from the gas supply means 3 in the gap between the electrode head 2 and the surface of the rotary platen tool 1. A reaction gas obtained by mixing a rare gas with a gas containing an element or a substituent to be supplied is supplied. The electrode head 2 has a gas flow path forming a gas supply means 3 at the center, is connected to a gas cylinder (not shown) by a gas supply pipe, and is configured to inject a reaction gas toward the tip.

そして、前記電極ヘッド2に高周波電源4から高周波電界を印加して前記ギャップGで、前記反応ガスからなる大気圧プラズマを発生させる。尚、これら回転定盤工具1と電極ヘッド2等をチャンバー内に収容し、減圧雰囲気でプラズマを発生させても良い。通常、前記高周波電源4は、周波数が13.56MHzのRF電源を用いるが、周波数は200MHz程度までのものを用いることができる。   Then, a high-frequency electric field is applied to the electrode head 2 from a high-frequency power source 4 to generate atmospheric pressure plasma composed of the reaction gas in the gap G. The rotary surface plate tool 1, the electrode head 2 and the like may be housed in a chamber to generate plasma in a reduced pressure atmosphere. Normally, the high frequency power source 4 uses an RF power source with a frequency of 13.56 MHz, but a frequency up to about 200 MHz can be used.

ここで、前記プラズマ発生領域P中で生成されたラジカルRは、前記回転定盤工具1の表面がプラズマ発生領域Pを通過する際に、表面のNi層6のNi原子に高配位し、あるいは過剰に吸着して反応活性種となり、その回転に伴って回転方向前方へ輸送される。前記回転定盤工具1のプラズマ発生領域の回転方向前方の表面には、ワークホルダー5で保持された被加工物Wを所定圧力で接触させている。これを接触圧力Pとし、加工雰囲気の圧力Pと区別する。それにより、プラズマ発生領域でNi層6に吸着し、前記回転定盤工具1の回転によって輸送されてきたラジカルRに由来する反応活性種が、前記被加工物Wと回転定盤工具1の表面との接触部で該被加工物Wの構成原子のバックボンドを弱めて結合して、反応生成物を生成し、この反応生成物が揮発し若しくは適宜な方法で除去されることにより、被加工物Wの表面が加工される。被加工物Wは、回転定盤工具1の表面に接触した凸部から選択的に加工されるので、Ni層6を加工基準面として平坦化加工される。この場合、前記ワークホルダー5を前記回転定盤工具1の回転軸と同方向の軸で回転させれば、加工が平均化されるのでより平坦度が高まる。Here, when the surface of the rotary platen tool 1 passes through the plasma generation region P, the radical R generated in the plasma generation region P is highly coordinated with Ni atoms of the Ni layer 6 on the surface, Alternatively, it is excessively adsorbed to become a reactive species and is transported forward in the rotational direction with the rotation thereof. The workpiece W held by the work holder 5 is brought into contact with the surface of the rotary platen tool 1 in front of the plasma generation region in the rotation direction at a predetermined pressure. This is referred to as a contact pressure P L , which is distinguished from the processing atmosphere pressure P G. As a result, the reactive active species derived from the radicals R adsorbed to the Ni layer 6 in the plasma generation region and transported by the rotation of the rotary platen tool 1 are the surfaces of the workpiece W and the rotary platen tool 1. The back bond of the constituent atoms of the workpiece W is weakened and bonded at a contact portion with the workpiece W to form a reaction product, and the reaction product is volatilized or removed by an appropriate method to form a workpiece. The surface of the object W is processed. Since the workpiece W is selectively machined from the convex portion in contact with the surface of the rotary platen tool 1, it is planarized with the Ni layer 6 as a machining reference surface. In this case, if the work holder 5 is rotated about an axis in the same direction as the rotation axis of the rotary platen tool 1, the machining is averaged and the flatness is further increased.

このように、本発明の主要構成は、ラジカル生成のためのプラズマ発生手段(電極ヘッド2、ガス供給手段3、高周波電源4)と、ラジカルを表面に吸着させて輸送する工具(回転定盤工具1)、そして被加工物Wを保持し当該工具との接触を保つワークホルダー5からなる。本発明によれば、ラジカル吸着工具と接触した部分のみを選択的にドライエッチングすることが可能となり、極めて革新的である。大気圧プラズマエッチングにおいて主となる反応種であるFラジカル、Clラジカル、Oラジカル、OHラジカル等をプラズマ発生領域で生成させ、工具(回転定盤工具)表面に吸着させる。これらラジカルが吸着した表面は反応性に富んだ高配位状態となっている。そして、工具の運動によって吸着したラジカルに由来する反応活性種を被加工物Wの表面まで輸送し、工具と接触した被加工物Wの表面原子と工具表面の反応活性種とが化学反応によって反応生成物となり、除去されることにより、被加工物表面をエッチングする。   As described above, the main components of the present invention are plasma generation means (electrode head 2, gas supply means 3 and high frequency power source 4) for radical generation, and a tool for adsorbing and transporting radicals on the surface (rotary platen tool). 1) and a work holder 5 that holds the workpiece W and keeps contact with the tool. According to the present invention, it is possible to selectively dry-etch only a portion in contact with a radical adsorption tool, which is extremely innovative. F radicals, Cl radicals, O radicals, OH radicals, etc., which are the main reactive species in atmospheric pressure plasma etching, are generated in the plasma generation region and adsorbed on the surface of the tool (rotary surface plate tool). The surface on which these radicals are adsorbed is in a highly coordinated state with rich reactivity. Then, the reaction active species derived from the radicals adsorbed by the movement of the tool are transported to the surface of the workpiece W, and the surface atoms of the workpiece W in contact with the tool and the reactive species on the tool surface react by a chemical reaction. By becoming a product and being removed, the surface of the workpiece is etched.

本発明の第1実施形態の平坦化加工装置を図3及び図4に示す。本実施形態の平坦化加工装置は、中心部に開口7を設けるとともに、ラジカルに対して耐食性と吸着能を備えた表面を有する水平な回転定盤工具1と、前記回転定盤工具1の表面に対して所定ギャップを設けて配置した電極ヘッド2と、前記電極ヘッド2に少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段3と、前記電極ヘッド2に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源4と、プラズマ発生領域Pで生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具1の表面の回転方向前方に被加工物Wを保持し、該被加工物Wを所定圧力(接触圧力P)で回転定盤工具1の表面に接触させるワークホルダー5と、を備え、被加工物Wの表面を平坦化加工するものである。ここで、加工雰囲気の圧力Pは、大気圧を基本とするが、減圧雰囲気であっても良い。The flattening processing apparatus of the first embodiment of the present invention is shown in FIGS. 3 and 4. The flattening apparatus of the present embodiment is provided with an opening 7 in the center, and has a horizontal rotary platen tool 1 having a surface having corrosion resistance and adsorption ability for radicals, and a surface of the rotary platen tool 1. An electrode head 2 arranged with a predetermined gap therebetween, gas supply means 3 for supplying to the electrode head 2 a reaction gas obtained by mixing a rare gas with a gas containing at least a radical-producing element or a substituent, A high-frequency power source 4 for applying a high-frequency electric field to the electrode head 2 to generate plasma in the gap, and a surface of the rotary surface plate tool 1 to which radicals generated in the plasma generation region P are adsorbed and reactive reactive species are applied. holding the workpiece W forward in the rotational direction, the work holder 5 is brought into contact with the workpiece W on the rotating surface plate surface of the tool 1 at a predetermined pressure (contact pressure P L), comprising a workpiece The surface of those to be processed flattened. Here, the pressure P G of the processing atmosphere is basically atmospheric pressure, but may be a reduced pressure atmosphere.

前記回転定盤工具1の表面には、無電解NiめっきによってNi層6を形成している。ここで、前記回転定盤工具1は接地され、加工基準面となるNi層6はアース電位となっている。前記回転定盤工具1の開口7の中心部に、前記電極ヘッド2の基部が垂直軸により支持され、ヘッド部が水平首振り可能になっている。前記電極ヘッド2は、図4(a)、(b)に示すように、水平なアーム部8の基部をロータリージョイント9で保持し、ヘッド部10が前記回転定盤工具1の表面に所定のギャップで配置されている。更に、前記電極ヘッド2は、ロータリージョイント9からアーム部8及びヘッド部10に連続してガス流路11が形成され、前記ガス供給手段3の一部を構成している。前記電極ヘッド2のヘッド部10は、プラズマに曝されて損耗するので、交換可能な構造にすることが好ましい。前記電極ヘッド2は、ロータリージョイント9を中心に回転角度を変えることにより、前記ワークホルダー5に保持された被加工物Wとの間隔を調節できるようになっている。   A Ni layer 6 is formed on the surface of the rotary platen tool 1 by electroless Ni plating. Here, the rotary platen tool 1 is grounded, and the Ni layer 6 serving as a machining reference surface has a ground potential. The base of the electrode head 2 is supported by a vertical shaft in the center of the opening 7 of the rotary platen tool 1, and the head can be horizontally swung. As shown in FIGS. 4 (a) and 4 (b), the electrode head 2 holds the base of a horizontal arm portion 8 with a rotary joint 9, and the head portion 10 is provided on the surface of the rotary platen tool 1 in a predetermined manner. It is arranged with a gap. Further, in the electrode head 2, a gas flow path 11 is formed continuously from the rotary joint 9 to the arm portion 8 and the head portion 10, and constitutes a part of the gas supply means 3. Since the head portion 10 of the electrode head 2 is exposed to plasma and is worn away, it is preferable to have a replaceable structure. The electrode head 2 can adjust the distance from the workpiece W held by the work holder 5 by changing the rotation angle around the rotary joint 9.

前記回転定盤工具1の回転駆動機構や前記ワークホルダー5の駆動機構は、従来の研磨装置と同様な構造であり、従来の研磨装置に前記電極ヘッド2とガス供給手段3及び高周波電源4を追加するだけで、本発明の平坦化加工装置を構成できる。しかも、本発明は、ドライエッチングであるので、水周りの構造は不要であり、装置構成を簡単にできる。   The rotary drive mechanism of the rotary platen tool 1 and the drive mechanism of the work holder 5 have the same structure as a conventional polishing apparatus, and the conventional polishing apparatus includes the electrode head 2, the gas supply unit 3, and the high frequency power source 4. The flattening processing apparatus of the present invention can be constructed only by adding the flattening processing apparatus. Moreover, since the present invention is dry etching, a structure around water is unnecessary, and the device configuration can be simplified.

本発明の第2実施形態の数値制御加工装置を図5に示す。本実施形態の数値制御加工装置は、回転軸20を備えるとともに、少なくとも外周部表面にラジカルに対して耐食性と吸着能を備えている球状回転工具21と、前記球状回転工具21の外周部22に対して所定ギャップGを設けて配置した電極23と、前記電極23に少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段(図示せず)と、前記電極23に高周波電界を印加して前記ギャップGでプラズマを発生させる高周波電源24と、プラズマ発生領域Pで生成したラジカルを吸着して反応活性種が付与された前記球状回転工具21のプラズマ発生領域Pとは異なる外周部22を、被加工物Wの表面に所定圧力(接触圧力P)で接触させた状態で、前記球状回転工具21と被加工物Wとを相対的に数値制御走査する走査手段(図示せず)と、を備え、前記球状回転工具21と被加工物Wの接触部Cを被加工物Wの表面上で数値制御走査して任意形状に加工するものである。この場合、球状回転工具21の外周部22に吸着したラジカルに由来する反応活性種が、該球状回転工具21の回転に伴って前記被加工物Wとの接触部Cに輸送されるのである。本実施形態でも加工雰囲気の圧力Pは、大気圧を基本とするが、減圧雰囲気であっても良い。FIG. 5 shows a numerically controlled machining apparatus according to a second embodiment of the present invention. The numerical control machining apparatus of the present embodiment includes a rotary shaft 20 and a spherical rotary tool 21 having corrosion resistance and adsorption ability for radicals on at least the outer peripheral surface, and an outer peripheral portion 22 of the spherical rotary tool 21. On the other hand, an electrode 23 provided with a predetermined gap G, and a gas supply means (not shown) for supplying to the electrode 23 a reaction gas obtained by mixing a gas containing at least a radical-producing element or a substituent and a rare gas. A high-frequency power source 24 for generating a plasma in the gap G by applying a high-frequency electric field to the electrode 23, and a plasma for the spherical rotary tool 21 to which radicals generated in the plasma generation region P are adsorbed and reactive reactive species are added. the outer peripheral portion 22 which is different from the generation region P, being in contact with a predetermined pressure to the surface of the workpiece W (contact pressure P L), and the spherical rotary tool 21 Scanning means (not shown) for relatively numerically controlling the workpiece W to scan the contact portion C between the spherical rotary tool 21 and the workpiece W on the surface of the workpiece W by the numerical control. Then, it is processed into an arbitrary shape. In this case, the reactive species derived from the radicals adsorbed on the outer peripheral portion 22 of the spherical rotary tool 21 are transported to the contact portion C with the workpiece W as the spherical rotary tool 21 rotates. In this embodiment as well, the pressure P G of the processing atmosphere is basically atmospheric pressure, but it may be a reduced pressure atmosphere.

前記球状回転工具21は、文字通りの球状に限定されず、円板状若しくはタイヤ状の外周部22が円弧面を有する形状であれば良い。そして、被加工物Wの表面を任意形状に加工するには、前記球状回転工具21によって接触部Cで形成される単位加工痕のプロファイルを取得し、被加工物Wの表面における局所的な加工量のデータに基づき、前記接触部Cの滞在時間を規定するのである。実際には、繰り返し走査するので、走査速度を変えることによって、滞在時間を制御する。尚、数値制御走査は、前記球状回転工具21と被加工物Wの何れか一方を駆動することによって行う。   The spherical rotary tool 21 is not limited to a literal spherical shape, and may be a disk-shaped or tire-shaped outer peripheral portion 22 having a circular arc surface. Then, in order to process the surface of the workpiece W into an arbitrary shape, a profile of a unit processing mark formed at the contact portion C by the spherical rotary tool 21 is acquired, and local processing on the surface of the workpiece W is performed. The staying time of the contact portion C is defined based on the amount data. Actually, since the scanning is repeated, the dwell time is controlled by changing the scanning speed. The numerical control scanning is performed by driving either the spherical rotary tool 21 or the workpiece W.

<加工原理を実証するための加工実験1>
次に、前記平坦化加工装置を用いて、本発明の加工原理を実証する実験を行った。つまり、プラズマで発生したラジカルが回転定盤に吸着して、回転定盤の表面に付与された反応活性種が被加工物との接触部に供給されているかを確認するために行った基礎実験の結果を示す。
<Processing experiment 1 to verify the processing principle>
Next, an experiment for demonstrating the processing principle of the present invention was conducted using the flattening processing device. In other words, the basic experiment conducted to confirm whether the radicals generated by plasma are adsorbed on the rotating platen and the reactive species given to the surface of the rotating platen are supplied to the contact area with the workpiece. The result of is shown.

ラジカル吸着工具として無電解Niめっきを20μm厚で施した回転定盤工具を用い、試料(シリコン基板)の上流約15mmの位置でHe:SF=99:1の反応ガス(圧力P:大気圧)のプラズマを発生させたときと発生させなかったときの試料表面の変化を比較した。試料はSiの10mm四方の基板の表面粗さの悪い面を用いた。試料は回転させずに回転定盤工具のみを回転させ、その回転速度は10rpmで、試料を回転定盤工具に押し付ける接触圧力Pは3kPaである。プラズマを発生させる際の実験条件を表1に示す。1時間毎に試料表面の表面粗さを評価した。表面粗さの評価方法としては、白色干渉計(Zygo社製 NewView 200)によって64×48(μm)の範囲で4つの観測点を計測した。As a radical adsorption tool, a rotary platen tool with electroless Ni plating applied to a thickness of 20 μm was used, and a reaction gas of He: SF 6 = 99: 1 (pressure P G : large) at a position approximately 15 mm upstream of the sample (silicon substrate). The change of the surface of the sample was compared when the plasma of atmospheric pressure was generated and when it was not generated. As the sample, a 10 mm square substrate of Si having a poor surface roughness was used. The sample is not rotated but only the rotary platen tool is rotated, the rotation speed is 10 rpm, and the contact pressure P L for pressing the sample against the rotary platen tool is 3 kPa. Table 1 shows the experimental conditions for generating plasma. The surface roughness of the sample surface was evaluated every hour. As a method of evaluating the surface roughness, four observation points were measured in a range of 64 × 48 (μm 2 ) with a white light interferometer (NewView 200 manufactured by Zygo).

Figure 0006692010
Figure 0006692010

先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図6に示す。試料を回転速度10rpm、圧力3kPa下で加工を行い、1時間毎に表面粗さを計測した。図6中の左欄に○で表示した基板中央部・上部・右部・左部の4点の加工前から3時間加工後までの白色干渉計(Zygo社製 NewView 200)像を図6に示す。尚、Si基板の上部とは、前記電極ヘッド2に近い部分であり、以下同様とする。いずれの観測点においても表面粗さの改善が見られないことから、回転速度10rpm、接触圧力3kPaの加工条件では機械加工の作用がないことを確認できた。   First, FIG. 6 shows the result of processing in a state where plasma is not generated (no voltage is applied, no reaction gas is supplied). The sample was processed at a rotation speed of 10 rpm and a pressure of 3 kPa, and the surface roughness was measured every hour. Figure 6 shows the white interferometer (NewView 200 manufactured by Zygo Co., Ltd.) from the center of the substrate, the upper part, the right part, and the left part, which are marked with ○ in the left column in Fig. 6, from before processing to after 3 hours processing. Show. The upper portion of the Si substrate is a portion near the electrode head 2 and the same applies hereinafter. Since no improvement in surface roughness was observed at any of the observation points, it was confirmed that there was no mechanical working under the processing conditions of a rotation speed of 10 rpm and a contact pressure of 3 kPa.

次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図7に示す。プラズマを表1の条件で発生させた状態で、試料を回転速度10rpm、接触圧力3kPa下で加工を行い、1時間毎に表面粗さを計測した。図7中の左欄に○で表示した基板中央部・上部・右部・左部の4点の加工前から3時間加工後までの白色干渉計(Zygo社製 NewView 200)像を図7に示す。Fラジカルに由来する反応活性種の作用により、いずれの観測点においても、表面粗さ(rms)が、加工前の400nm超から、3時間の加工後に10nm以下になり、大幅な改善が見られた。   Next, FIG. 7 shows the result of processing in the state where plasma is generated (voltage applied, reaction gas supplied). While plasma was generated under the conditions shown in Table 1, the sample was processed at a rotation speed of 10 rpm and a contact pressure of 3 kPa, and the surface roughness was measured every hour. Figure 7 shows the white interferometer (NewView 200 by Zygo) from before processing to after processing for 3 hours at the four points of the center part, upper part, right part and left part of the substrate, which are marked with a circle in the left column of Fig. 7. Show. Due to the action of the reactive radicals derived from the F radical, the surface roughness (rms) at any of the observation points increased from more than 400 nm before processing to 10 nm or less after processing for 3 hours, showing a significant improvement. It was

プラズマを発生させない場合の加工では表面粗さが改善されなかったことから、機械加工の作用は働いてないと考えられるため、プラズマ発生領域で生成したラジカルが研磨定盤の表面に吸着し、それが研磨定盤の回転に伴って試料表面に供給されていることが確認できた。試料表面をプラズマに直接曝すプラズマエッチングでは、除去レートが等方的であるため平坦化はできないが、回転定盤工具と電極間でプラズマを発生させることで、回転定盤工具にFラジカルを吸着させ、そのFラジカルに由来する反応活性種を回転定盤工具の回転に伴って試料表面に供給することで、試料表面の平坦化加工を実現した。今回の実験で、Fラジカルに由来する反応活性種が試料表面に供給されており、それによってSi基板の平坦化が行われていることが明らかとなった。   Since the surface roughness was not improved by the processing without plasma generation, it is considered that the mechanical processing does not work, and the radicals generated in the plasma generation area are adsorbed on the surface of the polishing surface plate. It was confirmed that was supplied to the sample surface as the polishing surface plate rotated. In plasma etching in which the sample surface is directly exposed to plasma, the removal rate is isotropic, so flattening is not possible, but by generating plasma between the rotary surface plate tool and the electrodes, F radicals are adsorbed to the rotary surface plate tool. Then, the reaction-active species derived from the F radicals were supplied to the sample surface as the rotary platen tool was rotated, whereby the sample surface was flattened. In this experiment, it was clarified that reactive active species derived from F radicals were supplied to the surface of the sample, thereby planarizing the Si substrate.

<加工原理を実証するための加工実験2>
次に、前記平坦化加工装置を用いて、被加工物としてSiC基板を用いて同様の実験を行った結果を図8に示す。プラズマ発生条件は表1に示したものと同じであるが、この場合のSiC基板の接触圧力Pは5kPaである。3時間の平坦化加工により、SiC基板の表面粗さ(rms)は、加工前の100nm超から10nm以下に平坦化された。Fラジカルの作用により、SiC基板もSi基板と同様に平坦化加工されることが確認された。
<Processing experiment 2 to verify the processing principle>
Next, FIG. 8 shows the result of a similar experiment performed using the flattening apparatus using a SiC substrate as a workpiece. The plasma generation conditions are the same as those shown in Table 1, but the contact pressure P L of the SiC substrate in this case is 5 kPa. By the flattening process for 3 hours, the surface roughness (rms) of the SiC substrate was flattened from more than 100 nm before the process to 10 nm or less. It was confirmed that the SiC substrate is planarized similarly to the Si substrate by the action of the F radical.

<加工原理を実証するための加工実験3>
次に、反応ガスとして、HeとHO(水蒸気)の反応ガス(圧力P:大気圧)を用い、前記平坦化加工装置を用いて、被加工物としてSi基板(面積:0.59cm)の表面を加工した。プラズマ発生条件と加工条件は、表2に示している。この場合も、無電解Niめっきを20μm厚で施した回転定盤工具を用いた。Si基板の接触圧力Pは3.4kPaである。水蒸気を含む反応ガスは、図9に示すように、密閉容器に水を入れ、水中でHeガスを噴出し、気相中でHeと水蒸気の反応ガスを回収して使用した。回転定盤工具1と電極ヘッド2とのギャップGは200μm、該電極ヘッド2から下流側のSi基板までの距離Lを15mmとした。
<Processing experiment 3 to verify the processing principle>
Next, a reaction gas of He and H 2 O (water vapor) (pressure P G : atmospheric pressure) was used as a reaction gas, and the Si substrate (area: 0.59 cm) was used as a workpiece using the flattening processing apparatus. The surface of 2 ) was processed. Table 2 shows plasma generation conditions and processing conditions. Also in this case, a rotary platen tool having electroless Ni plating of 20 μm thick was used. The contact pressure P L of the Si substrate is 3.4 kPa. As shown in FIG. 9, the reaction gas containing water vapor was used by putting water in a closed container, ejecting He gas in the water, and collecting the reaction gas of He and water vapor in the gas phase. The gap G between the rotary platen tool 1 and the electrode head 2 was 200 μm, and the distance L from the electrode head 2 to the downstream Si substrate was 15 mm.

Figure 0006692010
Figure 0006692010

先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図10に示す。図10中、上段はSi基板の上部、下段はSi基板の中央部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後を示している。この場合も、1時間経過してもSi基板の表面に殆ど変化がないことが分かる。   First, FIG. 10 shows a result of processing in a state where plasma is not generated (no voltage applied, no reaction gas is supplied). In FIG. 10, the upper part is the upper part of the Si substrate, and the lower part is the image of the white interferometer (NewView 200 manufactured by Zygo Co.) in the central part of the Si substrate, respectively, from left to right, after processing for 30 minutes and after processing for 1 hour. It shows after processing. Also in this case, it can be seen that there is almost no change in the surface of the Si substrate even after 1 hour.

次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図11に示す。図11中、上段はSi基板の上部、下段はSi基板の中央部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後、1.5時間の加工後、2時間の加工後、3時間の加工後を示している。Si基板の上部では、加工前の表面粗さ(rms)が、加工前の167nmであったのが、1時間の加工後には22nm、3時間の加工後には16nmに改善していることが分かる。一方、Si基板の中央部では、加工前の表面粗さ(rms)が、加工前の184nmであったのが、1時間の加工後には48nm、3時間の加工後には16nmに改善していることが分かる。水蒸気プラズマを発生させたことにより、OHラジカルが生成し、このOHラジカルがSi基板表面の加工に寄与したものと考えられる。   Next, FIG. 11 shows the result of processing in a state where plasma is generated (voltage applied, reaction gas supplied). In FIG. 11, the upper part is the upper part of the Si substrate and the lower part is the image of the white interferometer (NewView 200 manufactured by Zygo Co.) in the center part of the Si substrate, respectively, from left to right, after processing for 30 minutes and after processing for 1 hour. It shows after processing, after processing for 1.5 hours, after processing for 2 hours, and after processing for 3 hours. At the upper part of the Si substrate, the surface roughness (rms) before processing was 167 nm before processing, but it was found to be improved to 22 nm after processing for 1 hour and to 16 nm after processing for 3 hours. .. On the other hand, in the central portion of the Si substrate, the surface roughness (rms) before processing was 184 nm before processing, but improved to 48 nm after processing for 1 hour and to 16 nm after processing for 3 hours. I understand. It is considered that the generation of steam plasma generated OH radicals, which contributed to the processing of the Si substrate surface.

<加工原理を実証するための加工実験4>
最後に、前記平坦化加工装置を用いて、導電性の基体表面にアルミナ(Al)をコーティングした回転定盤工具を用い、被加工物としてSi基板(面積:0.78cm)の表面を加工した。プラズマ発生条件と加工条件は、表3に示している。この場合、表1の条件と略同じであるが、回転定盤工具に対するSi基板の接触圧力Pを5.1kPaと大きくしている。また、回転定盤工具と電極ヘッドとのギャップGは600μm、該電極ヘッドから下流側のSi基板までの距離Lを15mmとした。
<Processing experiment 4 to verify the processing principle>
Finally, using the flattening apparatus, a rotary platen tool having a conductive substrate surface coated with alumina (Al 2 O 3 ) was used, and a Si substrate (area: 0.78 cm 2 ) was used as a workpiece. The surface was processed. Table 3 shows plasma generation conditions and processing conditions. In this case, the conditions are substantially the same as the conditions in Table 1, but the contact pressure P L of the Si substrate with respect to the rotary platen tool is increased to 5.1 kPa. The gap G between the rotary surface plate tool and the electrode head was 600 μm, and the distance L from the electrode head to the downstream Si substrate was 15 mm.

Figure 0006692010
Figure 0006692010

先ず、先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図12に示す。この場合、接触圧力Pが1kPaでも機械的な加工ラインが発生し、全く平坦化加工ができないことが分かった。加工ラインが発生した原因は、Si基板のエッジが欠けて発生した微細なSi屑が、前記回転定盤工具とSi基板の間に挟まってSi基板の表面を傷付けているからと推測できる。First, FIG. 12 shows a result of processing in a state where plasma is not generated (no voltage applied, no reaction gas is supplied). In this case, it was found that even if the contact pressure P L was 1 kPa, a mechanical processing line was generated and flattening processing could not be performed at all. It can be inferred that the reason why the processing line is generated is that the fine Si scraps generated by the chipping of the edge of the Si substrate are sandwiched between the rotary surface plate tool and the Si substrate and damage the surface of the Si substrate.

次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図13に示す。図13中、上段はSi基板の上部、下段はSi基板の下部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後、1.5時間の加工後を示している。Si基板の上部では、加工前の表面粗さ(rms)が、加工前の547nmであったのが、30分の加工後には72nmと大幅に改善し、1時間の加工後には21nm、1.5時間の加工後には24nmに改善していることが分かる。一方、Si基板の下部では、加工前の表面粗さ(rms)が、加工前の592nmであったのが、30分の加工後では470nmとあまり改善していないが、1時間の加工後には80nm、1.5時間の加工後には40nmに改善していることが分かる。   Next, FIG. 13 shows a result of processing in a state where plasma is generated (voltage is applied, reaction gas is supplied). In FIG. 13, the upper part is the upper part of the Si substrate and the lower part is the image of the white interferometer (NewView 200 manufactured by Zygo) of the lower part of the Si substrate, respectively, from left to right, before processing, after processing for 30 minutes, and after processing for 1 hour. After that, processing after 1.5 hours is shown. In the upper part of the Si substrate, the surface roughness (rms) before processing was 547 nm before processing, but it was significantly improved to 72 nm after processing for 30 minutes, and 21 nm after processing for 1 hour. It can be seen that it improved to 24 nm after processing for 5 hours. On the other hand, in the lower part of the Si substrate, the surface roughness (rms) before processing was 592 nm before processing, but it did not improve much to 470 nm after processing for 30 minutes, but after processing for 1 hour. It can be seen that after processing at 80 nm for 1.5 hours, it has improved to 40 nm.

この加工実験によって、アルミナ工具を用いてもSi基板が平坦化加工できたことを示している。アルミナ工具は、表面の安定性に優れており、経時劣化が少ないので、実用化において有利である。尚、回転定盤工具に対するSi基板の接触圧力Pを5.1kPaとしても、機械的な加工ラインが発生しないのは、回転定盤工具に付着していた微細なSi屑がプラズマ発生領域を通過する際に、プラズマエッチングにより除去されたものと推測できる。This processing experiment shows that the Si substrate could be planarized by using the alumina tool. Alumina tools have excellent surface stability and little deterioration over time, and are therefore advantageous in practical use. Even if the contact pressure P L of the Si substrate with respect to the rotary surface plate tool is set to 5.1 kPa, the mechanical processing line does not occur because the fine Si scraps attached to the rotary surface plate tool cause It can be inferred that it was removed by plasma etching when passing.

以上の実施例では平坦化加工と、球状回転工具による数値制御加工への適用例を示したが、他にもワイヤー走行工具による溝加工等、ラジカル吸着工具の形状によって種々の応用が可能と考えられる。また、ダイヤモンド工具や宝石も平面加工あるいは鋭角形状に加工することも可能になる。   In the above examples, the flattening process and the application example to the numerical control process by the spherical rotary tool are shown, but in addition, it is considered that various applications such as the groove process by the wire traveling tool and the shape of the radical adsorption tool are possible. Be done. Also, diamond tools and jewels can be machined into a flat surface or an acute angle.

1 回転定盤工具、
2 電極ヘッド、
3 ガス供給手段、
4 高周波電源、
5 ワークホルダー、
6 Ni層、
7 開口、
8 アーム部、
9 ロータリージョイント、
10 ヘッド部、
11 ガス流路、
20 回転軸、
21 球状回転工具、
22 外周部、
23 電極、
24 高周波電源、
W 被加工物、
G ギャップ、
P プラズマ発生領域、
R ラジカル、
C 接触部、
1 rotary surface plate tool,
2 electrode head,
3 gas supply means,
4 high frequency power supply,
5 work holders,
6 Ni layer,
7 openings,
8 arm parts,
9 rotary joint,
10 head part,
11 gas flow path,
20 rotation axis,
21 Spherical rotating tool,
22 outer periphery,
23 electrodes,
24 high frequency power supply,
W Workpiece,
G gap,
P plasma generation area,
R radical,
C contact part,

Claims (13)

化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する可動工具の該表面を、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを用いて発生させたプラズマの発生領域を通過させ、該プラズマ発生領域で生成したラジカルを前記工具表面に吸着させて反応活性種を付与し、該工具の移動によって該工具表面の前記反応活性種を前記プラズマ発生領域とは異なる位置に配置した被加工物表面まで輸送し、該工具と接触した被加工物表面の原子と反応活性種との化学反応によって生成した反応生成物を除去することにより、該工具表面を加工基準面として被加工物表面の該工具表面と接触した部分のみを選択的に加工することを特徴とするラジカル吸着輸送を援用した加工方法。 The surface of the movable tool having a surface with an adsorption ability and corrosion resistance to radicals rich in chemical reactivity, using a reaction gas obtained by mixing gas and a rare gas containing an element or substituent to produce at least the radical passed through a plasma generating region that caused Te, the radicals generated in the plasma generation region is adsorbed to the tool surface reactive species was granted, the said reactive species of the tool surface by movement of the tool By transporting to a workpiece surface arranged at a position different from the plasma generation region and removing a reaction product generated by a chemical reaction between atoms on the workpiece surface in contact with the tool and a reactive species, A processing method utilizing radical adsorption and transport, characterized in that only a portion of the surface of a workpiece which comes into contact with the tool surface is selectively processed using the tool surface as a processing reference surface. 前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである請求項1記載のラジカル吸着輸送を援用した加工方法。   The processing method using the radical adsorption transport according to claim 1, wherein the element generating the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical. 前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである請求項1記載のラジカル吸着輸送を援用した加工方法。   The processing method using radical adsorption and transport according to claim 1, wherein the substituent that generates the radical is an OH group, and the radical is an OH radical. 前記工具の少なくとも表面がNiで形成されている請求項1〜3何れか1項に記載のラジカル吸着輸送を援用した加工方法。   The processing method using the radical adsorption transport according to any one of claims 1 to 3, wherein at least a surface of the tool is made of Ni. 前記工具の表面がアルミナ又はイットリアのコーティング層となっている請求項1〜3何れか1項に記載のラジカル吸着輸送を援用した加工方法。   The processing method using the radical adsorption transport according to any one of claims 1 to 3, wherein the surface of the tool is a coating layer of alumina or yttria. 前記工具が回転定盤工具であり、該回転定盤工具表面を加工基準面として被加工物表面を平坦化加工する請求項1記載のラジカル吸着輸送を援用した加工方法。   The method according to claim 1, wherein the tool is a rotary platen tool, and the surface of the workpiece is flattened using the rotary platen tool surface as a machining reference surface. 前記工具が回転軸を備えた球状回転工具であり、該球状回転工具の外周部の近傍においてプラズマを発生させて、該球状回転工具の外周部にラジカルを吸着させ、該球状回転工具のプラズマ発生領域とは異なる外周部を被加工物表面に所定圧力で接触させながら回転させるとともに、該接触部を被加工物表面上で数値制御走査して任意形状に加工する請求項1記載のラジカル吸着輸送を援用した加工方法。   The tool is a spherical rotary tool having a rotary shaft, plasma is generated in the vicinity of the outer peripheral portion of the spherical rotary tool, and radicals are adsorbed to the outer peripheral portion of the spherical rotary tool to generate plasma in the spherical rotary tool. The radical adsorption transport according to claim 1, wherein an outer peripheral portion different from the area is rotated while being brought into contact with the surface of the workpiece at a predetermined pressure, and the contact portion is numerically controlled and scanned on the surface of the workpiece to be processed into an arbitrary shape. Processing method with the aid of. 化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する回転定盤工具と、
前記回転定盤工具の表面に対して所定ギャップを設けて配置した電極ヘッドと、
前記電極ヘッドに少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
前記電極ヘッドに高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具表面の回転方向前方に被加工物を保持し、該被加工物を所定圧力で回転定盤工具表面に接触させるワークホルダーと、
を備え、前記回転定盤工具表面を加工基準面として被加工物表面を平坦化加工することを特徴とするラジカル吸着輸送を援用した加工装置。
A rotary surface plate tool having a surface having corrosion resistance and adsorption ability for radicals rich in chemical reactivity,
An electrode head arranged with a predetermined gap provided on the surface of the rotary platen tool,
Gas supply means for supplying to the electrode head a reaction gas in which a gas containing at least the element generating the radical or a substituent and a rare gas are mixed,
A high-frequency power source that applies a high-frequency electric field to the electrode head to generate plasma in the gap,
A work piece is held in front of the rotating surface plate tool surface to which the radicals generated in the plasma generation region are adsorbed and reactive species are given, and the work piece is held on the rotating surface plate tool surface at a predetermined pressure. A work holder to contact
A processing apparatus assisting radical adsorption and transport, characterized in that the surface of a workpiece is flattened by using the surface of the rotary platen as a processing reference surface.
回転軸を備えるとともに、少なくとも外周部表面に化学反応性に富んだラジカルに対して耐食性と吸着能を備えている球状回転工具と、
前記球状回転工具の外周部に対して所定ギャップを設けて配置した電極と、
前記電極に少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
前記電極に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記球状回転工具のプラズマ発生領域とは異なる外周部を、被加工物表面に所定圧力で接触させた状態で、前記球状回転工具と被加工物とを相対的に数値制御走査する走査手段と、
を備え、前記球状回転工具と被加工物の接触部を被加工物表面上で数値制御走査して該球状回転工具表面を加工基準面として任意形状に加工することを特徴とするラジカル吸着輸送を援用した加工装置。
With a rotary shaft, a spherical rotary tool having corrosion resistance and adsorption ability for radicals rich in chemical reactivity at least on the outer peripheral surface,
An electrode arranged with a predetermined gap provided on the outer peripheral portion of the spherical rotary tool,
Gas supply means for supplying to the electrode a reaction gas obtained by mixing a gas containing at least the element generating the radical or a substituent and a rare gas,
A high-frequency power source that applies a high-frequency electric field to the electrodes to generate plasma in the gap,
The spherical rotation in a state in which the outer peripheral portion of the spherical rotary tool to which the radicals generated in the plasma generation area are adsorbed and the reactive species are applied is different from the plasma generation area in contact with the workpiece surface at a predetermined pressure. Scanning means for relatively numerically controlling the tool and the workpiece,
Radical adsorption transport, characterized in that the spherical rotary tool and the contact part of the workpiece are numerically controlled and scanned on the surface of the workpiece to process the spherical rotary tool surface into an arbitrary shape as a processing reference plane. Processing equipment incorporated.
前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである請求項8又は9記載のラジカル吸着輸送を援用した加工装置。 The processing device using the radical adsorption transport according to claim 8 or 9, wherein the element generating the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical. 前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである請求項8又は9記載のラジカル吸着輸送を援用した加工装置。   The processing device using the radical adsorption transport according to claim 8 or 9, wherein the substituent that generates the radical is an OH group, and the radical is an OH radical. 前記回転定盤工具又は球状回転工具の少なくとも表面がNiで形成されている請求項8又は9記載のラジカル吸着輸送を援用した加工装置。   10. The processing apparatus assisting radical adsorption and transport according to claim 8 or 9, wherein at least the surface of the rotary platen tool or the spherical rotary tool is made of Ni. 前記回転定盤工具又は球状回転工具の表面がアルミナ又はイットリアのコーティング層となっている請求項8又は9記載のラジカル吸着輸送を援用した加工装置。   The processing apparatus using the radical adsorption transport according to claim 8 or 9, wherein the surface of the rotary platen tool or the spherical rotary tool is a coating layer of alumina or yttria.
JP2018503072A 2016-02-29 2017-02-22 Processing method and apparatus using radical adsorption transport Active JP6692010B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016036513 2016-02-29
JP2016036513 2016-02-29
PCT/JP2017/006628 WO2017150308A1 (en) 2016-02-29 2017-02-22 Machining method and apparatus using radical adsorbing transportation

Publications (2)

Publication Number Publication Date
JPWO2017150308A1 JPWO2017150308A1 (en) 2018-12-20
JP6692010B2 true JP6692010B2 (en) 2020-05-13

Family

ID=59742838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503072A Active JP6692010B2 (en) 2016-02-29 2017-02-22 Processing method and apparatus using radical adsorption transport

Country Status (2)

Country Link
JP (1) JP6692010B2 (en)
WO (1) WO2017150308A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069271B2 (en) * 1995-07-12 2000-07-24 勇藏 森 High-efficiency processing method and device using high-density radical reaction using rotating electrode
JP3384705B2 (en) * 1997-03-12 2003-03-10 シャープ株式会社 Semiconductor device manufacturing method, plasma processing apparatus, and plasma processing apparatus for flattening process
JP2002043298A (en) * 2000-07-28 2002-02-08 Mitsubishi Heavy Ind Ltd Method for manufacturing semiconductor device and semiconductor device
JP4167542B2 (en) * 2002-07-17 2008-10-15 積水化学工業株式会社 Gas supply apparatus for plasma etching and plasma etching system and method
JP4083030B2 (en) * 2003-02-04 2008-04-30 シャープ株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JPWO2017150308A1 (en) 2018-12-20
WO2017150308A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
Yamamura et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing
TWI360529B (en) Methods of finishing quartz glass surfaces and com
US20200343102A1 (en) Wafer producing method and wafer producing apparatus
JP6206847B2 (en) Wide band gap semiconductor substrate processing method and apparatus
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
TW200805453A (en) Method for manufacturing epitaxial wafer
JP2011176243A (en) Precise processing method and device of hard-to-process material
JP6598150B2 (en) Method for producing single crystal SiC substrate
JP2006114632A (en) Catalyst-assisted chemical processing method
JP6692010B2 (en) Processing method and apparatus using radical adsorption transport
JP5772635B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP2009043969A (en) Processing method for semiconductor wafer outer peripheral part, and device therefor
JP6145761B2 (en) Processing method and processing apparatus
JP6547100B2 (en) Combined processing apparatus and workpiece processed by the apparatus
JPWO2007063873A1 (en) Polishing method and polishing apparatus
JP2013026314A (en) Manufacturing method of nitride semiconductor substrate
JP4154253B2 (en) Silicon plate for plasma processing
JP6515311B2 (en) Processing method and processing apparatus
JP2013094924A (en) Grinding method for ceramic substrate with through electrode
JP3750083B2 (en) Diamond coating industrial blade manufacturing method
JP6301157B2 (en) Processing method and processing apparatus, and workpiece processed by the processing method or processing apparatus
Oyama et al. Study on a novel CMP/P-CVM fusion processing system (Type B) and its basic characteristics
Isohashi et al. Planarization of 4H-SiC (0001) by catalyst-referred etching using pure water etchant
JP2000109989A (en) Inner wall protective member of plasma treatment device
JP2024022232A (en) Method and device for processing diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6692010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350