WO2017150308A1 - Machining method and apparatus using radical adsorbing transportation - Google Patents

Machining method and apparatus using radical adsorbing transportation Download PDF

Info

Publication number
WO2017150308A1
WO2017150308A1 PCT/JP2017/006628 JP2017006628W WO2017150308A1 WO 2017150308 A1 WO2017150308 A1 WO 2017150308A1 JP 2017006628 W JP2017006628 W JP 2017006628W WO 2017150308 A1 WO2017150308 A1 WO 2017150308A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
radical
workpiece
processing
plasma
Prior art date
Application number
PCT/JP2017/006628
Other languages
French (fr)
Japanese (ja)
Inventor
泰久 佐野
和人 山内
俊亘 宮崎
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2018503072A priority Critical patent/JP6692010B2/en
Publication of WO2017150308A1 publication Critical patent/WO2017150308A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a processing method and apparatus using radical adsorption transport, and more specifically, it is possible to flatten or process an arbitrary shape of wide band gap semiconductor substrates such as Si, SiC, GaN, and diamond.
  • the present invention relates to a processing method and apparatus using radical adsorption transport.
  • Si is mainly used in semiconductor devices, but its performance is approaching the limit due to the physical properties of Si. Therefore, wide band gap semiconductors represented by silicon carbide (SiC), gallium nitride (GaN), and diamond are attracting attention. These power semiconductor device materials have physical properties such as band gap, dielectric breakdown electric field value, thermal conductivity, and electron mobility several times to several tens of times larger than Si, so power devices can be fabricated using these materials. In this case, it is possible to achieve high voltage resistance, low power consumption, high speed operation, and the like. Because of these advantages, wide band gap semiconductors are expected as materials that will drive the field of next-generation power semiconductor devices.
  • P-CVM Pullasma Chemical Vaporization Machining
  • plasma is essentially isotropic etching, and the entire surface direction is processed, so that it is not suitable for flattening the surface of an uneven workpiece with high efficiency.
  • the Water-CARE method is capable of processing difficult-to-work products such as solid oxide, wide band gap semiconductor substrates such as SiC and GaN, etc. by the processing principle of removing the decomposition products from the workpiece surface and proceeding with the processing. It has been proposed (Patent Documents 4 and 5). However, these Water-CARE methods are excellent processing methods that do not use any abrasives or abrasive grains, and are easy to treat waste liquid, but the processing speed is slow, especially the processing speed for diamond is almost low. Can not process. Moreover, since the process is basically performed in a wet state, there is a particular problem as compared with the process in a dry state.
  • the present invention intends to solve difficult-to-work products such as wide band gap semiconductor substrates such as Si, SiC, GaN, and diamond using radicals rich in chemical reactivity.
  • a processing method and apparatus that uses radical adsorption transport that is simple and easy to handle because it is a process in a dry state despite the fact that it can be processed with high efficiency. In the point.
  • the present invention has constituted a processing method and a processing apparatus using the following radical adsorption transport.
  • Plasma composed of a reactive gas in which a gas containing at least the above-described element or substituent that generates radicals and a rare gas are mixed in the vicinity of a movable tool having a surface having corrosion resistance and adsorption ability for radicals rich in chemical reactivity.
  • the radicals generated in the plasma generation region are adsorbed to the tool surface to give reactive active species, and the reactive active species are transported to the workpiece surface by the movement of the tool and contact with the tool.
  • Radiation adsorption transport characterized in that the workpiece surface is etched using the tool surface as a processing reference plane by removing a reaction product generated by a chemical reaction between an atom and a reactive species on the workpiece surface. Is a processing method.
  • the tool is a spherical rotary tool having a rotary shaft, and plasma is generated in the vicinity of the outer peripheral portion of the spherical rotary tool, and radicals are adsorbed on the outer peripheral portion of the spherical rotary tool, thereby generating plasma of the spherical rotary tool.
  • the outer peripheral portion different from the region is rotated while being brought into contact with the workpiece surface at a predetermined pressure, and the contact portion is numerically scanned on the workpiece surface to be processed into an arbitrary shape (1). Is a processing method.
  • a rotating surface plate tool having a surface with corrosion resistance and adsorption capacity for radicals rich in chemical reactivity;
  • An electrode head disposed with a predetermined gap with respect to the surface of the rotating surface plate tool;
  • a gas supply means for supplying a reactive gas obtained by mixing a gas containing at least an element that generates radicals or a substituent and a rare gas to the electrode head;
  • a high frequency power source that generates a plasma in the gap by applying a high frequency electric field to the electrode head;
  • the workpiece is held in front of the rotating surface of the rotating surface plate tool to which the radicals generated in the plasma generation region are adsorbed and the reactive species are applied, and the workpiece is placed on the surface of the rotating surface plate tool at a predetermined pressure.
  • a work holder to be contacted, And processing the surface of the workpiece using the rotary surface plate tool surface as a processing reference surface.
  • a spherical rotary tool that has a rotary shaft and has corrosion resistance and adsorption capacity for radicals rich in chemical reactivity on at least the outer peripheral surface;
  • An electrode arranged with a predetermined gap with respect to the outer periphery of the spherical rotary tool;
  • a gas supply means for supplying a reactive gas obtained by mixing a gas containing an element or substituent that generates at least the radical to the electrode and a rare gas;
  • a high frequency power source for generating a plasma in the gap by applying a high frequency electric field to the electrode;
  • the spherical rotation is performed in a state where an outer peripheral portion different from the plasma generation region of the spherical rotary tool to which the reactive species are attached by adsorbing radicals generated in the plasma generation region is in contact with the workpiece surface at a predetermined pressure.
  • Scanning means for relatively numerically controlling scanning of the tool and the workpiece; Radical adsorbing and transporting, wherein the contact portion between the spherical rotary tool and the workpiece is numerically controlled and scanned on the surface of the workpiece to process the spherical rotary tool surface into a desired shape Assisted processing equipment.
  • the present invention can perform uniform processing by the effect of the processing reference surface. There is a possibility that it can be realized.
  • the plasma does not directly contact the surface of the workpiece, it is considered that processing is possible even for a material having a low heat-resistant temperature.
  • FIG. 1 It is a conceptual diagram of the processing apparatus which used the radical adsorption transport of this invention. It is the simplified perspective view of the processing apparatus which also used the radical adsorption transport of this invention. It is a simple perspective view of the planarization processing apparatus of 1st Embodiment of this invention. Similarly, a part of the flattening apparatus of the first embodiment is shown, (a) is a perspective view of the electrode head, (b) is a partial cross-sectional view showing the relationship between the electrode head and the workpiece. The concept of the numerical control processing apparatus of 2nd Embodiment of this invention is shown, (a) is a front view, (b) is a side view.
  • the processing experiment 1 is a white interferometer image showing a result of a planarization processing experiment of a Si substrate and showing a surface state under conditions where plasma is not generated for each place and time.
  • the processing experiment 1 is a white interferometer image showing a result of a planarization processing experiment using an F radical of a Si substrate, and showing a surface state under conditions where plasma is generated for each place and time. It is the white interferometer image which showed the result of the planarization process experiment of a SiC substrate as the process experiment 2, and showed the surface state before a process and after a process.
  • processing experiment 3 the result of the flattening processing experiment of the Si substrate is shown, and is a white interferometer image showing the surface state under conditions where plasma is not generated for each place and time.
  • processing experiment 3 the result of the flattening processing experiment by the OH radical of the Si substrate is shown, and it is a white interferometer image showing the surface state under the condition where plasma is generated for each place and time.
  • processing experiment 4 the result of the flattening processing experiment of the Si substrate using the rotating surface plate tool in which the alumina coating layer is formed is shown, and is a white interferometer image of the surface state under the condition that plasma is not generated.
  • 1 and 2 are conceptual diagrams of a processing apparatus using radical adsorption transport according to the present invention, where W is a workpiece, 1 is a rotating surface plate tool, 2 is an electrode head, 3 is a gas supply means, 4 is A high frequency power source and 5 indicate work holders.
  • the processing principle of the present invention is as follows. First, in the vicinity of a movable tool (rotary surface plate tool 1) having a surface having corrosion resistance and adsorption ability against free radicals with high chemical reactivity (hereinafter simply referred to as “radicals”), at least the radicals are introduced. A plasma composed of a reaction gas in which a gas containing an element or substituent to be generated and a rare gas are mixed is generated, and a radical R is generated in the plasma generation region P. When the surface of the movable tool passes through the plasma generation region P, the radical R is highly coordinated to atoms on the tool surface or excessively adsorbed to become a reactive species, and the workpiece is processed by the movement of the tool. It is transported to the surface of the object W.
  • a movable tool rotary surface plate tool 1 having a surface having corrosion resistance and adsorption ability against free radicals with high chemical reactivity
  • the reactive species transported to the surface of the workpiece W in contact with the tool moves to the surface atom side of the workpiece W, weakens the back bonds of the surface atoms, and bonds to the reaction product. Become.
  • This reaction product is removed from the surface of the workpiece W, whereby surface atoms of the workpiece W are removed, that is, etched.
  • examples of the element that generates the radical include a halogen element of F or Cl.
  • the halogen element-containing gas includes SF 6 , CF 4 , NF 3, and the like that contain the F element. there are Cl 2, CCl 4, PCl 4 such as those containing the element Cl.
  • O 2 gas may be used as the gas for generating the radical.
  • the substituent for generating the radical it includes OH groups, typically as a gas containing OH groups is H 2 O.
  • the said substituent shows the partial structure of a molecule
  • helium gas and argon gas are mentioned.
  • a small amount of a third gas may be added to the reaction gas in addition to the radical generating gas and the rare gas.
  • the pressure P G in the reaction gas is a basic atmospheric pressure may be reduced pressure state or a vacuum state, but in this case, reactive species which radicals R are formed on the tool surface by adsorption Immediate removal from the tool surface must be avoided.
  • the surface of the rotary surface plate tool 1 is a processing reference surface.
  • the material that can be used for the surface of the rotary surface plate tool 1 is required to have corrosion resistance and adsorption ability against radicals, and various metal materials such as Ni can be used.
  • a coating layer may be formed by spraying alumina or yttria.
  • the surface of the rotary surface plate tool 1 is formed by forming a 20 ⁇ m thick Ni layer 6 by electroless Ni plating, or by forming an alumina coating layer by thermal spraying.
  • the Ni layer 6 may be formed by electrolytic plating or vacuum deposition in addition to electroless plating.
  • the tool 1 itself may be made of bulk Ni.
  • An electrode head 2 is arranged with a predetermined gap G with respect to the surface of the rotary surface plate tool 1, and at least radicals are generated from the gas supply means 3 in the gap between the electrode head 2 and the surface of the rotary surface plate tool 1.
  • a reactive gas in which a gas containing an element or a substituent to be mixed with a rare gas is supplied.
  • the electrode head 2 forms a gas flow path constituting the gas supply means 3 at the center, is connected to a gas cylinder (not shown) by a gas supply pipe, and injects a reactive gas toward the tip.
  • a high-frequency electric field is applied to the electrode head 2 from a high-frequency power source 4 to generate atmospheric pressure plasma composed of the reaction gas in the gap G.
  • the rotating surface plate tool 1 and the electrode head 2 may be housed in a chamber and plasma may be generated in a reduced pressure atmosphere.
  • the high frequency power source 4 uses an RF power source having a frequency of 13.56 MHz, but a frequency up to about 200 MHz can be used.
  • the radical R generated in the plasma generation region P is highly coordinated to Ni atoms in the Ni layer 6 on the surface when the surface of the rotary platen tool 1 passes through the plasma generation region P. Or it adsorb
  • a workpiece W held by a work holder 5 is brought into contact with a surface in front of the rotation direction of the plasma generation region of the rotary surface plate tool 1 at a predetermined pressure. This was the contact pressure P L, it distinguishes a pressure P G in the processing atmosphere.
  • the reactive species derived from the radicals R adsorbed on the Ni layer 6 in the plasma generation region and transported by the rotation of the rotary platen tool 1 are formed on the surface of the workpiece W and the rotary platen tool 1.
  • the reaction product is generated by weakening and bonding the back bonds of the constituent atoms of the workpiece W at the contact portion with the workpiece, and the reaction product is volatilized or removed by an appropriate method.
  • the surface of the object W is processed. Since the workpiece W is selectively processed from the convex portion that is in contact with the surface of the rotary surface plate tool 1, the workpiece W is flattened using the Ni layer 6 as a processing reference surface. In this case, if the work holder 5 is rotated about an axis in the same direction as the rotation axis of the rotary platen tool 1, the processing is averaged, so that the flatness is further increased.
  • the main configuration of the present invention includes plasma generation means (electrode head 2, gas supply means 3, high-frequency power supply 4) for generating radicals, and a tool (rotary surface plate tool) for transporting radicals by adsorbing them on the surface. 1) and a work holder 5 that holds the workpiece W and keeps contact with the tool.
  • plasma generation means electrode head 2, gas supply means 3, high-frequency power supply 4
  • a tool rotary surface plate tool
  • F radicals, Cl radicals, O radicals, OH radicals and the like which are the main reactive species in atmospheric pressure plasma etching, are generated in the plasma generation region and adsorbed on the surface of the tool (rotating platen tool).
  • the surface on which these radicals are adsorbed is in a highly coordinated state rich in reactivity. Then, reactive species derived from radicals adsorbed by the movement of the tool are transported to the surface of the workpiece W, and the surface atoms of the workpiece W in contact with the tool react with the reactive species on the tool surface by a chemical reaction. The surface of the workpiece is etched by becoming a product and being removed.
  • the flattening apparatus of the present embodiment is provided with an opening 7 at the center, a horizontal rotary surface plate tool 1 having a surface having corrosion resistance and adsorption ability against radicals, and the surface of the rotary surface plate tool 1
  • An electrode head 2 arranged with a predetermined gap with respect to the gas head, a gas supply means 3 for supplying a reactive gas in which a gas containing at least a radical generating element or a substituent and a rare gas are mixed to the electrode head 2;
  • a high-frequency power source 4 that generates a plasma in the gap by applying a high-frequency electric field to the electrode head 2, and a surface of the surface of the rotating surface plate tool 1 to which radicals generated in the plasma generation region P are adsorbed and reactive species are applied.
  • the work holder 5 is brought into contact with the workpiece W on the rotating surface plate surface of the tool 1 at a predetermined pressure (contact pressure P L), comprising a workpiece The surface of those to be processed flattened.
  • a predetermined pressure contact pressure P L
  • the pressure P G in the processing atmosphere is the basic atmospheric pressure, may be a reduced pressure atmosphere.
  • the Ni layer 6 is formed on the surface of the rotary surface plate tool 1 by electroless Ni plating.
  • the rotary surface plate tool 1 is grounded, and the Ni layer 6 serving as a machining reference surface is at ground potential.
  • a base portion of the electrode head 2 is supported by a vertical shaft at the center of the opening 7 of the rotary surface plate tool 1 so that the head portion can be swung horizontally.
  • the electrode head 2 holds the base portion of the horizontal arm portion 8 with a rotary joint 9, and the head portion 10 is placed on the surface of the rotary surface plate tool 1 with a predetermined amount. Arranged in a gap.
  • the electrode head 2 has a gas flow path 11 formed continuously from the rotary joint 9 to the arm portion 8 and the head portion 10, and constitutes a part of the gas supply means 3. Since the head portion 10 of the electrode head 2 is worn out by being exposed to plasma, it is preferable to have a replaceable structure.
  • the electrode head 2 can adjust the distance from the workpiece W held by the work holder 5 by changing the rotation angle around the rotary joint 9.
  • the rotational drive mechanism of the rotary surface plate tool 1 and the drive mechanism of the work holder 5 have the same structure as a conventional polishing apparatus, and the conventional polishing apparatus includes the electrode head 2, the gas supply means 3, and the high-frequency power source 4.
  • the planarization apparatus of the present invention can be configured only by adding. In addition, since the present invention is dry etching, a structure around water is unnecessary, and the apparatus configuration can be simplified.
  • the numerically controlled processing apparatus includes a rotary shaft 20, a spherical rotary tool 21 that has corrosion resistance and adsorption ability against radicals at least on the outer peripheral surface, and an outer peripheral portion 22 of the spherical rotary tool 21. And an electrode 23 arranged with a predetermined gap G, and a gas supply means (not shown) for supplying a reactive gas obtained by mixing a rare gas and a gas containing at least a radical generating element or a substituent to the electrode 23.
  • a plasma of the high-frequency power source 24 that generates a plasma in the gap G by applying a high-frequency electric field to the electrode 23 and a plasma of the spherical rotary tool 21 to which a radical generated in the plasma generation region P is adsorbed and a reactive species is applied.
  • the outer peripheral portion 22 which is different from the generation region P being in contact with a predetermined pressure to the surface of the workpiece W (contact pressure P L), and the spherical rotary tool 21 Scanning means (not shown) for relatively numerically scanning the workpiece W, and numerically scanning the contact portion C between the spherical rotary tool 21 and the workpiece W on the surface of the workpiece W Then, it is processed into an arbitrary shape.
  • the pressure P G in the processing atmosphere in the present embodiment although the basic atmospheric pressure, may be a reduced pressure atmosphere.
  • the spherical rotating tool 21 is not limited to a literal spherical shape, but may be any shape as long as the outer peripheral portion 22 of a disk shape or a tire shape has an arc surface.
  • a profile of the unit machining trace formed at the contact portion C by the spherical rotary tool 21 is acquired, and local machining on the surface of the workpiece W is performed.
  • the staying time of the contact portion C is defined. Actually, since the scanning is repeated, the staying time is controlled by changing the scanning speed.
  • the numerical control scanning is performed by driving either the spherical rotary tool 21 or the workpiece W.
  • FIG. 6 shows the result of processing in a state where plasma is not generated (no voltage applied, no reaction gas supplied).
  • the sample was processed under a rotational speed of 10 rpm and a pressure of 3 kPa, and the surface roughness was measured every hour.
  • Figure 6 shows white interferometers (Zygo's NewView 200) from four points before and after three hours of processing at the center, top, right, and left of the substrate indicated by a circle in the left column of Fig. 6. Show.
  • the upper part of the Si substrate is a part close to the electrode head 2, and so on. Since no improvement in surface roughness was observed at any of the observation points, it was confirmed that there was no machining effect under the processing conditions of a rotational speed of 10 rpm and a contact pressure of 3 kPa.
  • FIG. 7 shows the result of processing in a state in which plasma is generated (with voltage applied and with reactive gas supplied).
  • the sample was processed under a rotational speed of 10 rpm and a contact pressure of 3 kPa, and the surface roughness was measured every hour.
  • Fig. 7 shows white interferometers (Zygo's NewView 200) from 4 points before and after 3 hours of processing at the center, top, right and left of the substrate, indicated by a circle in the left column of Fig. 7. Show. Due to the action of reactive species derived from F radicals, the surface roughness (rms) at any observation point has been reduced from more than 400 nm before processing to 10 nm or less after processing for 3 hours, and a significant improvement is seen. It was.
  • FIG. 8 shows the results of a similar experiment using a SiC substrate as a workpiece using the planarization apparatus.
  • Plasma generation conditions are the same as those shown in Table 1, the contact pressure P L of the SiC substrate in this case is 5 kPa.
  • the surface roughness (rms) of the SiC substrate was planarized from more than 100 nm before the process to 10 nm or less. It was confirmed that the SiC substrate was flattened similarly to the Si substrate by the action of the F radical.
  • a reactive gas pressure P G : atmospheric pressure
  • He and H 2 O water vapor
  • the Si substrate area: 0.59 cm
  • Table 2 shows plasma generation conditions and processing conditions.
  • a rotating surface plate tool with electroless Ni plating applied to a thickness of 20 ⁇ m was used.
  • Contact pressure P L of the Si substrate is 3.4 kPa.
  • the reaction gas containing water vapor was used by putting water in a sealed container, blowing out He gas in water, and collecting the reaction gas of He and water vapor in the gas phase.
  • the gap G between the rotary platen tool 1 and the electrode head 2 was 200 ⁇ m
  • the distance L from the electrode head 2 to the downstream Si substrate was 15 mm.
  • FIG. 10 shows the result of processing in a state where plasma is not generated (no voltage application, no reaction gas supply).
  • the upper row is the white interferometer (Zygo NewView 200) image of the upper part of the Si substrate and the lower row is the center of the Si substrate. It shows after processing. Also in this case, it can be seen that there is almost no change in the surface of the Si substrate even after 1 hour.
  • FIG. 11 shows a result of processing in a state where plasma is generated (with voltage applied and with reactive gas supplied).
  • the upper row is the upper part of the Si substrate
  • the lower row is a white interferometer (Zygo's NewView 200) image of the central portion of the Si substrate. It shows after processing, after processing for 1.5 hours, after processing for 2 hours, and after processing for 3 hours.
  • the surface roughness (rms) before processing was 167 nm before processing, but it is improved to 22 nm after processing for 1 hour and 16 nm after processing for 3 hours. .
  • the surface roughness (rms) before processing was 184 nm before processing, but improved to 48 nm after processing for 1 hour and 16 nm after processing for 3 hours. I understand that. It is considered that the generation of water vapor plasma generated OH radicals, which contributed to the processing of the Si substrate surface.
  • a rotating surface plate tool in which alumina (Al 2 O 3 ) is coated on the surface of a conductive substrate is used, and a Si substrate (area: 0.78 cm 2 ) is processed as a workpiece.
  • the surface was processed.
  • Table 3 shows plasma generation conditions and processing conditions. In this case is substantially the same as the conditions shown in Table 1, it is as large as 5.1kPa contact pressure P L of the Si substrate with respect to the rotating surface plate tool.
  • the gap G between the rotary surface plate tool and the electrode head was 600 ⁇ m, and the distance L from the electrode head to the downstream Si substrate was 15 mm.
  • FIG. 12 shows the result of processing in a state where plasma is not generated (no voltage application, no reaction gas supply).
  • the contact pressure P L is mechanical processing line is generated even 1 kPa, was found not able to completely flattening. It can be inferred that the reason why the processing line is generated is that the fine Si scrap generated by chipping the edge of the Si substrate is sandwiched between the rotary surface plate tool and the Si substrate and damages the surface of the Si substrate.
  • FIG. 13 shows the result of processing in a state where plasma is generated (with voltage applied and with reactive gas supplied).
  • the top is the white interferometer (Zygo's NewView 200) image of the top of the Si substrate and the bottom is the bottom of the Si substrate.
  • the surface roughness (rms) before processing was 547 nm before processing, but it was greatly improved to 72 nm after processing for 30 minutes, and after processing for 1 hour, 21 nm, 1. It turns out that it has improved to 24 nm after processing for 5 hours.
  • the surface roughness (rms) before processing was 592 nm before processing, but it has not improved much to 470 nm after processing for 30 minutes, but after processing for 1 hour. It can be seen that after processing at 80 nm for 1.5 hours, the thickness is improved to 40 nm.
  • This machining experiment shows that the Si substrate could be planarized even using an alumina tool.
  • An alumina tool is advantageous in practical use because it has excellent surface stability and little deterioration with time.
  • P L of the Si substrate with respect to the rotating surface plate tool the mechanical machining line does not occur, the fine Si debris adhering to the rotating platen tool plasma generation region When passing, it can be assumed that it was removed by plasma etching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

[Problem] To provide a machining method and a machining apparatus using radical adsorbing transportation, which enable highly efficient machining of a wideband gap semiconductor, etc., such as Si, SiC, GaN, and diamond, by using a chemically reactive radical, and which achieves a simple apparatus configuration because a process is carried out in a dry state, and also achieves easy and safe handling of the apparatus. [Solution] The present invention comprises: generating plasma of a reactive gas obtained by mixing a rare gas with a gas containing an element or a substituent group that generates at least a radical, near a movable tool having a surface having corrosive resistance and adsorption performance with respect to the radical; causing the radical generated in the plasma generation region to be adsorbed in the surface of the tool to provide reaction active species; transporting the reaction active species to the surface of an object to be machined by moving the tool; and etching the surface of the object to be machined with the tool surface set as a machining reference surface by removing a reaction product generated by chemical reaction between the reaction active species and atoms on the surface of the object to be machined, which has been brought into contact with the tool.

Description

ラジカル吸着輸送を援用した加工方法及びその装置Processing method and apparatus using radical adsorption transport
 本発明は、ラジカル吸着輸送を援用した加工方法及びその装置に係わり、更に詳しくはSiを始めSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等を平坦化加工若しくは任意形状加工することが可能なラジカル吸着輸送を援用した加工方法及びその装置に関するものである。 The present invention relates to a processing method and apparatus using radical adsorption transport, and more specifically, it is possible to flatten or process an arbitrary shape of wide band gap semiconductor substrates such as Si, SiC, GaN, and diamond. The present invention relates to a processing method and apparatus using radical adsorption transport.
 現在、半導体デバイスには主にSiが使用されているが、その性能はSiの物性値による限界に近づきつつある。そのため、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンドに代表されるワイドバンドギャップ半導体が注目されている。これらのパワー半導体デバイス材料はバンドギャップ、絶縁破壊電界値、熱伝導率、電子移動度といった物性値がSiと比較して数倍~数十倍大きいため、これらの材料を用いてパワーデバイスを作製した場合、高耐圧で消費電力の低減,高速動作等の実現が可能になる。これらの利点から、ワイドバンドギャップ半導体は次世代パワー半導体デバイス分野を牽引する材料として期待されている。 Currently, Si is mainly used in semiconductor devices, but its performance is approaching the limit due to the physical properties of Si. Therefore, wide band gap semiconductors represented by silicon carbide (SiC), gallium nitride (GaN), and diamond are attracting attention. These power semiconductor device materials have physical properties such as band gap, dielectric breakdown electric field value, thermal conductivity, and electron mobility several times to several tens of times larger than Si, so power devices can be fabricated using these materials. In this case, it is possible to achieve high voltage resistance, low power consumption, high speed operation, and the like. Because of these advantages, wide band gap semiconductors are expected as materials that will drive the field of next-generation power semiconductor devices.
 しかし、半導体パワーデバイスを作製する上で表面の結晶性が重要となる半導体基板の平坦化は必須であり、SiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板は硬く脆いことから、従来の機械的加工ではダメージを与えることなく高効率な平坦化は困難である。P-CVM(Plasma Chemical Vaporization Machining)は、大気圧雰囲気下でのプラズマを用いた化学的な加工方法であり、その高いラジカル密度から高効率で且つ結晶にダメージを与えることない加工が可能である(特許文献1、2)。しかし、プラズマによる加工は本質的に等方性エッチングであり、面方向全体を加工してしまうため、凹凸のある被加工物表面を高能率に平坦化には向かない。 However, planarization of a semiconductor substrate where surface crystallinity is important in manufacturing a semiconductor power device is essential, and wide band gap semiconductor substrates such as SiC, GaN, and diamond are hard and brittle. High-efficiency flattening is difficult in processing without causing damage. P-CVM (Plasma Chemical Vaporization Machining) is a chemical processing method using plasma in an atmospheric pressure atmosphere, and it can be processed efficiently from its high radical density without damaging crystals. (Patent Documents 1 and 2). However, processing by plasma is essentially isotropic etching, and the entire surface direction is processed, so that it is not suitable for flattening the surface of an uneven workpiece with high efficiency.
 そこで我々は、化学的研磨法の表面粗さの悪化という欠点を研磨定盤に基準面となる触媒を用いることで改善させた触媒表面基準エッチング(Catalyst-Referred Etching; CARE)法を提案している(特許文献3)。CARE法では基準面となる研磨定盤にNiやPtを用いることで触媒作用を付加し、研磨定盤近傍でのみ発生したハロゲンラジカルの助けを借りてエッチング反応が誘起されるため、凸部のみを選択的に加工することができる。さらに、エッチング反応のみによって加工が進行するため原理的にダメージは入り得ず、化学的に基準面形状の転写が可能である。現在までに、CARE加工によってSiCやGaNのステップテラス構造が実現されており、基板表面を原子レベルに平坦化可能であることが確認されている。しかし、特許文献3に記載のCARE法は、ハロゲンを含む分子が溶けた加工液、例えばフッ化水素酸を用いていたため、その取り扱いには細心の注意が必要であり、廃液や排気ガスの処理が必要になって装置構成も複雑になるといった課題があった。 Therefore, we proposed the Catalyst-Referred Etching (CARE) method, which improved the disadvantage of chemical polishing by the use of a reference surface catalyst for the polishing surface plate. (Patent Document 3). In the CARE method, a catalytic action is added by using Ni or Pt for the polishing surface plate serving as a reference surface, and an etching reaction is induced with the help of halogen radicals generated only in the vicinity of the polishing surface plate. Can be selectively processed. Further, since the processing proceeds only by the etching reaction, no damage can be entered in principle, and the reference surface shape can be transferred chemically. To date, SiC or GaN step terrace structures have been realized by CARE processing, and it has been confirmed that the substrate surface can be planarized to the atomic level. However, since the CARE method described in Patent Document 3 uses a processing liquid in which halogen-containing molecules are dissolved, for example, hydrofluoric acid, it must be handled with great care. However, there is a problem that the apparatus configuration is complicated.
 また、本質的に加工液として水のみを用い、加工液に対する被加工物の電位を制御し、触媒の作用で水分子が解離して生成したOHラジカルが被加工物表面に吸着し、加水分解による分解生成物を被加工物表面から除去して加工を進行させる加工原理により、固体酸化物やSiCやGaN等のワイドバンドギャップ半導体基板等の難加工物を加工が可能なWater-CARE法が提案されている(特許文献4,5)。しかし、これらWater-CARE法は、研磨剤や砥粒を一切使用せず、廃液の処理も容易であるという優れた加工法であるが、加工速度が遅く、とりわけダイヤモンドに対する加工速度が遅く、殆ど加工できなかった。しかも基本的にウェット状態での処理であるので、ドライ状態での処理に比べて特有の問題も存在する。 In addition, essentially using only water as the working fluid, the potential of the workpiece relative to the working fluid is controlled, and OH radicals generated by the dissociation of water molecules by the action of the catalyst are adsorbed on the surface of the workpiece, resulting in hydrolysis. The Water-CARE method is capable of processing difficult-to-work products such as solid oxide, wide band gap semiconductor substrates such as SiC and GaN, etc. by the processing principle of removing the decomposition products from the workpiece surface and proceeding with the processing. It has been proposed (Patent Documents 4 and 5). However, these Water-CARE methods are excellent processing methods that do not use any abrasives or abrasive grains, and are easy to treat waste liquid, but the processing speed is slow, especially the processing speed for diamond is almost low. Could not process. Moreover, since the process is basically performed in a wet state, there is a particular problem as compared with the process in a dry state.
特許第2521127号公報Japanese Patent No. 2521127 特許第2962583号公報Japanese Patent No. 2962583 特開2006-114632号公報JP 2006-114632 A 国際公開第2013/084934号International Publication No. 2013/084934 特開2015-173216号公報Japanese Patent Laying-Open No. 2015-173216
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、化学反応性に富んだラジカルを利用し、Siを始めSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等の難加工物を高能率に加工することができるにも係わらず、ドライ状態での処理であるので装置構成が簡単であり、その取り扱いも容易且つ安全であるラジカル吸着輸送を援用した加工方法及びその装置を提供する点にある。 Therefore, in view of the above-described situation, the present invention intends to solve difficult-to-work products such as wide band gap semiconductor substrates such as Si, SiC, GaN, and diamond using radicals rich in chemical reactivity. Disclosed is a processing method and apparatus that uses radical adsorption transport that is simple and easy to handle because it is a process in a dry state despite the fact that it can be processed with high efficiency. In the point.
 本発明は、前述の課題解決のために、以下のラジカル吸着輸送を援用した加工方法及び加工装置を構成した。 In order to solve the above-mentioned problems, the present invention has constituted a processing method and a processing apparatus using the following radical adsorption transport.
(1)
 化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する可動工具の近傍で、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスからなるプラズマを発生させて、該プラズマ発生領域で生成したラジカルを前記工具表面に吸着させて反応活性種を付与し、該工具の移動によって前記反応活性種を被加工物表面まで輸送し、該工具と接触した被加工物表面の原子と反応活性種との化学反応によって生成した反応生成物を除去することにより、該工具表面を加工基準面として被加工物表面をエッチングすることを特徴とするラジカル吸着輸送を援用した加工方法。
(1)
Plasma composed of a reactive gas in which a gas containing at least the above-described element or substituent that generates radicals and a rare gas are mixed in the vicinity of a movable tool having a surface having corrosion resistance and adsorption ability for radicals rich in chemical reactivity. The radicals generated in the plasma generation region are adsorbed to the tool surface to give reactive active species, and the reactive active species are transported to the workpiece surface by the movement of the tool and contact with the tool. Radiation adsorption transport, characterized in that the workpiece surface is etched using the tool surface as a processing reference plane by removing a reaction product generated by a chemical reaction between an atom and a reactive species on the workpiece surface. Is a processing method.
(2)
 前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである(1)記載のラジカル吸着輸送を援用した加工方法。
(2)
The processing method using radical adsorption transport according to (1), wherein the element that generates the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical.
(3)
 前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである(1)記載のラジカル吸着輸送を援用した加工方法。
(3)
The processing method using radical adsorption transport according to (1), wherein the substituent that generates the radical is an OH group, and the radical is an OH radical.
(4)
 前記工具の少なくとも表面がNiで形成されている(1)~(3)何れか1に記載のラジカル吸着輸送を援用した加工方法。
(4)
A processing method using radical adsorption transport according to any one of (1) to (3), wherein at least a surface of the tool is formed of Ni.
(5)
 前記工具の表面がアルミナ又はイットリアのコーティング層となっている(1)~(3)何れか1に記載のラジカル吸着輸送を援用した加工方法。
(5)
The processing method using radical adsorption transport according to any one of (1) to (3), wherein the surface of the tool is an alumina or yttria coating layer.
(6)
 前記工具が回転定盤工具であり、該回転定盤工具表面を加工基準面として被加工物表面を平坦化加工する(1)記載のラジカル吸着輸送を援用した加工方法。
(6)
The processing method according to (1), wherein the tool is a rotary surface plate tool, and the surface of the workpiece is flattened using the surface of the rotary surface plate tool as a processing reference surface.
(7)
 前記工具が回転軸を備えた球状回転工具であり、該球状回転工具の外周部の近傍においてプラズマを発生させて、該球状回転工具の外周部にラジカルを吸着させ、該球状回転工具のプラズマ発生領域とは異なる外周部を被加工物表面に所定圧力で接触させながら回転させるとともに、該接触部を被加工物表面上で数値制御走査して任意形状に加工する(1)記載のラジカル吸着輸送を援用した加工方法。
(7)
The tool is a spherical rotary tool having a rotary shaft, and plasma is generated in the vicinity of the outer peripheral portion of the spherical rotary tool, and radicals are adsorbed on the outer peripheral portion of the spherical rotary tool, thereby generating plasma of the spherical rotary tool. The outer peripheral portion different from the region is rotated while being brought into contact with the workpiece surface at a predetermined pressure, and the contact portion is numerically scanned on the workpiece surface to be processed into an arbitrary shape (1). Is a processing method.
(8)
 化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する回転定盤工具と、
 前記回転定盤工具の表面に対して所定ギャップを設けて配置した電極ヘッドと、
 前記電極ヘッドに少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
 前記電極ヘッドに高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
 プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具表面の回転方向前方に被加工物を保持し、該被加工物を所定圧力で回転定盤工具表面に接触させるワークホルダーと、
を備え、前記回転定盤工具表面を加工基準面として被加工物表面を平坦化加工することを特徴とするラジカル吸着輸送を援用した加工装置。
(8)
A rotating surface plate tool having a surface with corrosion resistance and adsorption capacity for radicals rich in chemical reactivity;
An electrode head disposed with a predetermined gap with respect to the surface of the rotating surface plate tool;
A gas supply means for supplying a reactive gas obtained by mixing a gas containing at least an element that generates radicals or a substituent and a rare gas to the electrode head;
A high frequency power source that generates a plasma in the gap by applying a high frequency electric field to the electrode head;
The workpiece is held in front of the rotating surface of the rotating surface plate tool to which the radicals generated in the plasma generation region are adsorbed and the reactive species are applied, and the workpiece is placed on the surface of the rotating surface plate tool at a predetermined pressure. A work holder to be contacted,
And processing the surface of the workpiece using the rotary surface plate tool surface as a processing reference surface.
(9)
 回転軸を備えるとともに、少なくとも外周部表面に化学反応性に富んだラジカルに対して耐食性と吸着能を備えている球状回転工具と、
 前記球状回転工具の外周部に対して所定ギャップを設けて配置した電極と、
 前記電極に少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
 前記電極に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
 プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記球状回転工具のプラズマ発生領域とは異なる外周部を、被加工物表面に所定圧力で接触させた状態で、前記球状回転工具と被加工物とを相対的に数値制御走査する走査手段と、
を備え、前記球状回転工具と被加工物の接触部を被加工物表面上で数値制御走査して該球状回転工具表面を加工基準面として任意形状に加工することを特徴とするラジカル吸着輸送を援用した加工装置。
(9)
A spherical rotary tool that has a rotary shaft and has corrosion resistance and adsorption capacity for radicals rich in chemical reactivity on at least the outer peripheral surface;
An electrode arranged with a predetermined gap with respect to the outer periphery of the spherical rotary tool;
A gas supply means for supplying a reactive gas obtained by mixing a gas containing an element or substituent that generates at least the radical to the electrode and a rare gas;
A high frequency power source for generating a plasma in the gap by applying a high frequency electric field to the electrode;
The spherical rotation is performed in a state where an outer peripheral portion different from the plasma generation region of the spherical rotary tool to which the reactive species are attached by adsorbing radicals generated in the plasma generation region is in contact with the workpiece surface at a predetermined pressure. Scanning means for relatively numerically controlling scanning of the tool and the workpiece;
Radical adsorbing and transporting, wherein the contact portion between the spherical rotary tool and the workpiece is numerically controlled and scanned on the surface of the workpiece to process the spherical rotary tool surface into a desired shape Assisted processing equipment.
(10)
 前記前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(10)
The processing apparatus using radical adsorption transport according to (8) or (9), wherein the element that generates the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical.
(11)
 前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(11)
The processing apparatus using radical adsorption transport according to (8) or (9), wherein the substituent that generates the radical is an OH group, and the radical is an OH radical.
(12)
 前記回転定盤工具又は球状回転工具の少なくとも表面がNiで形成されている(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(12)
The processing apparatus using radical adsorption transport according to (8) or (9), wherein at least a surface of the rotary surface plate tool or the spherical rotary tool is formed of Ni.
(13)
 前記回転定盤工具又は球状回転工具の表面がアルミナ又はイットリアのコーティング層となっている(8)又は(9)記載のラジカル吸着輸送を援用した加工装置。
(13)
The processing apparatus using radical adsorption transport according to (8) or (9), wherein a surface of the rotary surface plate tool or the spherical rotary tool is an alumina or yttria coating layer.
 以上にしてなる本発明のラジカル吸着輸送を援用した加工方法及びその装置によれば、ラジカルを吸着させる工具表面を加工基準面としたドライエッチングが実現する。ドライエッチング技術において、このような加工基準面を有する技術は他に存在しない。本発明によって高能率に単結晶材料の無歪平坦化が期待でき、例えばSiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体基板等の次世代半導体基板の高品質化、低価格化が期待できる。更に、従来技術では均一な加工が困難であった、結晶成長に起因する結晶性の不均一性を有するような基板や多結晶基板等も、本発明では加工基準面の効果によって均一な加工が実現できる可能性がある。また、本発明ではプラズマは直接被加工物表面に接触しないため、耐熱温度の低い材料に対しても加工が可能と考えられる。 According to the above-described processing method and apparatus using the radical adsorption transport of the present invention, dry etching using the tool surface on which radicals are adsorbed as a processing reference surface is realized. There is no other technique having such a processing reference surface in the dry etching technique. According to the present invention, it is possible to expect a strain-free flattening of a single crystal material with high efficiency. For example, it is possible to expect higher quality and lower cost of next-generation semiconductor substrates such as wide band gap semiconductor substrates such as SiC, GaN, and diamond. Furthermore, even in the case of a substrate or a polycrystalline substrate having a crystallinity non-uniformity caused by crystal growth, which is difficult to process uniformly in the prior art, the present invention can perform uniform processing by the effect of the processing reference surface. There is a possibility that it can be realized. In the present invention, since the plasma does not directly contact the surface of the workpiece, it is considered that processing is possible even for a material having a low heat-resistant temperature.
本発明のラジカル吸着輸送を援用した加工装置の概念図である。It is a conceptual diagram of the processing apparatus which used the radical adsorption transport of this invention. 同じく本発明のラジカル吸着輸送を援用した加工装置の簡略斜視図である。It is the simplified perspective view of the processing apparatus which also used the radical adsorption transport of this invention. 本発明の第1実施形態の平坦化加工装置の簡略斜視図である。It is a simple perspective view of the planarization processing apparatus of 1st Embodiment of this invention. 同じく第1実施形態の平坦化加工装置の一部を示し、(a)は電極ヘッドの斜視図、(b)は電極ヘッドと被加工物の関係を示す部分断面図である。Similarly, a part of the flattening apparatus of the first embodiment is shown, (a) is a perspective view of the electrode head, (b) is a partial cross-sectional view showing the relationship between the electrode head and the workpiece. 本発明の第2実施形態の数値制御加工装置の概念を示し、(a)は正面図、(b)は側面図である。The concept of the numerical control processing apparatus of 2nd Embodiment of this invention is shown, (a) is a front view, (b) is a side view. 加工実験1として、Si基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態を場所と時間毎に示した白色干渉計像である。The processing experiment 1 is a white interferometer image showing a result of a planarization processing experiment of a Si substrate and showing a surface state under conditions where plasma is not generated for each place and time. 加工実験1として、Si基板のFラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。The processing experiment 1 is a white interferometer image showing a result of a planarization processing experiment using an F radical of a Si substrate, and showing a surface state under conditions where plasma is generated for each place and time. 加工実験2として、SiC基板の平坦化加工実験の結果を示し、加工前と加工後の表面状態を示した白色干渉計像である。It is the white interferometer image which showed the result of the planarization process experiment of a SiC substrate as the process experiment 2, and showed the surface state before a process and after a process. 反応ガスとしてHeと水蒸気の混合ガスを用いる場合の加工装置の概念図である。It is a conceptual diagram of the processing apparatus in the case of using the mixed gas of He and water vapor | steam as reaction gas. 加工実験3として、Si基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態を場所と時間毎に示した白色干渉計像である。As processing experiment 3, the result of the flattening processing experiment of the Si substrate is shown, and is a white interferometer image showing the surface state under conditions where plasma is not generated for each place and time. 加工実験3として、Si基板のOHラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。As processing experiment 3, the result of the flattening processing experiment by the OH radical of the Si substrate is shown, and it is a white interferometer image showing the surface state under the condition where plasma is generated for each place and time. 加工実験4として、アルミナコーティング層を形成した回転定盤工具を用いたSi基板の平坦化加工実験の結果を示し、プラズマを発生させない条件での表面状態の白色干渉計像である。As processing experiment 4, the result of the flattening processing experiment of the Si substrate using the rotating surface plate tool in which the alumina coating layer is formed is shown, and is a white interferometer image of the surface state under the condition that plasma is not generated. 加工実験4として、アルミナコーティング層を形成した回転定盤工具を用いたSi基板のFラジカルによる平坦化加工実験の結果を示し、プラズマを発生させた条件での表面状態を場所と時間毎に示した白色干渉計像である。As the processing experiment 4, the result of the planarization processing experiment by the F radical of the Si substrate using the rotating surface plate tool on which the alumina coating layer is formed is shown, and the surface condition under the condition where the plasma is generated is shown for each place and time. White interferometer image.
 次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1及び図2は、本発明のラジカル吸着輸送を援用した加工装置の概念図を示し、Wは被加工物、1は回転定盤工具、2は電極ヘッド、3はガス供給手段、4は高周波電源、5はワークホルダーをそれぞれ示している。 Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. 1 and 2 are conceptual diagrams of a processing apparatus using radical adsorption transport according to the present invention, where W is a workpiece, 1 is a rotating surface plate tool, 2 is an electrode head, 3 is a gas supply means, 4 is A high frequency power source and 5 indicate work holders.
 本発明の加工原理は、以下に示す通りである。先ず、化学反応性に富んだフリーラジカル(以下、単に「ラジカル」と表わす)に対して耐食性と吸着能を備えた表面を有する可動工具(回転定盤工具1)の近傍で、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスからなるプラズマを発生させて、該プラズマ発生領域PでラジカルRを生成する。このプラズマ発生領域Pを前記可動工具表面が通過する際に、前記ラジカルRが、該工具表面の原子に高配位し、あるいは過剰に吸着して反応活性種となり、該工具の移動によって被加工物Wの表面まで輸送される。前記工具と接触した被加工物Wの表面まで輸送された反応活性種は、該被加工物Wの表面原子側に移動し、該表面原子のバックボンドを弱めて結合して、反応生成物となる。この反応生成物が、被加工物Wの表面から除去されることにより、被加工物Wの表面原子が除去され、つまりエッチングされるというものである。 The processing principle of the present invention is as follows. First, in the vicinity of a movable tool (rotary surface plate tool 1) having a surface having corrosion resistance and adsorption ability against free radicals with high chemical reactivity (hereinafter simply referred to as “radicals”), at least the radicals are introduced. A plasma composed of a reaction gas in which a gas containing an element or substituent to be generated and a rare gas are mixed is generated, and a radical R is generated in the plasma generation region P. When the surface of the movable tool passes through the plasma generation region P, the radical R is highly coordinated to atoms on the tool surface or excessively adsorbed to become a reactive species, and the workpiece is processed by the movement of the tool. It is transported to the surface of the object W. The reactive species transported to the surface of the workpiece W in contact with the tool moves to the surface atom side of the workpiece W, weakens the back bonds of the surface atoms, and bonds to the reaction product. Become. This reaction product is removed from the surface of the workpiece W, whereby surface atoms of the workpiece W are removed, that is, etched.
 ここで、前記ラジカルを生成する元素として、F又はClのハロゲン元素が挙げられ、具体的にはハロゲン元素含有ガスは、F元素を含有するものとしてSF、CF、NF等があり、Cl元素を含有するものとしてCl、CCl、PCl等がある。ここで、前記ラジカルを生成するガスとして、Oガスを用いることも可能である。また、前記ラジカルを生成する置換基として、OH基が挙げられ、OH基を含むガスとして代表的にはHOがある。尚、前記置換基は、分子の部分構造を示し、前記フリーラジカルに対応している。そして、希ガスとしては、ヘリウムガスやアルゴンガスが挙げられる。反応ガスには、これらラジカル生成ガスと希ガスの他に、第3のガスを微量添加することもある。ここで、反応ガスの圧力Pは、大気圧を基本とするが、減圧状態若しくは真空状態であっても良いが、この場合、ラジカルRが吸着して工具表面に形成された反応活性種が工具表面から速やかに離脱することは避けなければならない。 Here, examples of the element that generates the radical include a halogen element of F or Cl. Specifically, the halogen element-containing gas includes SF 6 , CF 4 , NF 3, and the like that contain the F element. there are Cl 2, CCl 4, PCl 4 such as those containing the element Cl. Here, O 2 gas may be used as the gas for generating the radical. Further, as the substituent for generating the radical, it includes OH groups, typically as a gas containing OH groups is H 2 O. In addition, the said substituent shows the partial structure of a molecule | numerator and respond | corresponds to the said free radical. And as a noble gas, helium gas and argon gas are mentioned. A small amount of a third gas may be added to the reaction gas in addition to the radical generating gas and the rare gas. Here, the pressure P G in the reaction gas is a basic atmospheric pressure may be reduced pressure state or a vacuum state, but in this case, reactive species which radicals R are formed on the tool surface by adsorption Immediate removal from the tool surface must be avoided.
 前記回転定盤工具1の表面は、加工基準面となっている。前記回転定盤工具1の表面に用いることが可能な材料は、ラジカルに対して耐食性と吸着能を備えていることが要求され、Ni等の各種金属材料を用いることができ、また基体の表面にアルミナやイットリア等を溶射してコーティング層を形成したものでも良い。本実施形態では、前記回転定盤工具1の表面に、無電解Niめっきによって厚さ20μmのNi層6を形成したものや、溶射によってアルミナのコーティング層を形成したものを用いている。ここで、Ni層6は、無電解めっきの他に、電解めっきや真空蒸着により形成してもよい。また、前記工具1自体をバルクのNiで作製しても良い。 The surface of the rotary surface plate tool 1 is a processing reference surface. The material that can be used for the surface of the rotary surface plate tool 1 is required to have corrosion resistance and adsorption ability against radicals, and various metal materials such as Ni can be used. Alternatively, a coating layer may be formed by spraying alumina or yttria. In this embodiment, the surface of the rotary surface plate tool 1 is formed by forming a 20 μm thick Ni layer 6 by electroless Ni plating, or by forming an alumina coating layer by thermal spraying. Here, the Ni layer 6 may be formed by electrolytic plating or vacuum deposition in addition to electroless plating. Further, the tool 1 itself may be made of bulk Ni.
 前記回転定盤工具1の表面に対して所定ギャップGを設けて電極ヘッド2を配置し、該電極ヘッド2と回転定盤工具1の表面とのギャップにガス供給手段3から、少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給する。前記電極ヘッド2は、中心にガス供給手段3を構成するガス流路を形成し、図示しないガスボンベにガス供給管で接続され、反応ガスを先端に向けて噴射するようになっている。 An electrode head 2 is arranged with a predetermined gap G with respect to the surface of the rotary surface plate tool 1, and at least radicals are generated from the gas supply means 3 in the gap between the electrode head 2 and the surface of the rotary surface plate tool 1. A reactive gas in which a gas containing an element or a substituent to be mixed with a rare gas is supplied. The electrode head 2 forms a gas flow path constituting the gas supply means 3 at the center, is connected to a gas cylinder (not shown) by a gas supply pipe, and injects a reactive gas toward the tip.
 そして、前記電極ヘッド2に高周波電源4から高周波電界を印加して前記ギャップGで、前記反応ガスからなる大気圧プラズマを発生させる。尚、これら回転定盤工具1と電極ヘッド2等をチャンバー内に収容し、減圧雰囲気でプラズマを発生させても良い。通常、前記高周波電源4は、周波数が13.56MHzのRF電源を用いるが、周波数は200MHz程度までのものを用いることができる。 Then, a high-frequency electric field is applied to the electrode head 2 from a high-frequency power source 4 to generate atmospheric pressure plasma composed of the reaction gas in the gap G. The rotating surface plate tool 1 and the electrode head 2 may be housed in a chamber and plasma may be generated in a reduced pressure atmosphere. Usually, the high frequency power source 4 uses an RF power source having a frequency of 13.56 MHz, but a frequency up to about 200 MHz can be used.
 ここで、前記プラズマ発生領域P中で生成されたラジカルRは、前記回転定盤工具1の表面がプラズマ発生領域Pを通過する際に、表面のNi層6のNi原子に高配位し、あるいは過剰に吸着して反応活性種となり、その回転に伴って回転方向前方へ輸送される。前記回転定盤工具1のプラズマ発生領域の回転方向前方の表面には、ワークホルダー5で保持された被加工物Wを所定圧力で接触させている。これを接触圧力Pとし、加工雰囲気の圧力Pと区別する。それにより、プラズマ発生領域でNi層6に吸着し、前記回転定盤工具1の回転によって輸送されてきたラジカルRに由来する反応活性種が、前記被加工物Wと回転定盤工具1の表面との接触部で該被加工物Wの構成原子のバックボンドを弱めて結合して、反応生成物を生成し、この反応生成物が揮発し若しくは適宜な方法で除去されることにより、被加工物Wの表面が加工される。被加工物Wは、回転定盤工具1の表面に接触した凸部から選択的に加工されるので、Ni層6を加工基準面として平坦化加工される。この場合、前記ワークホルダー5を前記回転定盤工具1の回転軸と同方向の軸で回転させれば、加工が平均化されるのでより平坦度が高まる。 Here, the radical R generated in the plasma generation region P is highly coordinated to Ni atoms in the Ni layer 6 on the surface when the surface of the rotary platen tool 1 passes through the plasma generation region P. Or it adsorb | sucks excessively and it becomes a reactive species, and it is transported to the rotation direction front with the rotation. A workpiece W held by a work holder 5 is brought into contact with a surface in front of the rotation direction of the plasma generation region of the rotary surface plate tool 1 at a predetermined pressure. This was the contact pressure P L, it distinguishes a pressure P G in the processing atmosphere. Thereby, the reactive species derived from the radicals R adsorbed on the Ni layer 6 in the plasma generation region and transported by the rotation of the rotary platen tool 1 are formed on the surface of the workpiece W and the rotary platen tool 1. The reaction product is generated by weakening and bonding the back bonds of the constituent atoms of the workpiece W at the contact portion with the workpiece, and the reaction product is volatilized or removed by an appropriate method. The surface of the object W is processed. Since the workpiece W is selectively processed from the convex portion that is in contact with the surface of the rotary surface plate tool 1, the workpiece W is flattened using the Ni layer 6 as a processing reference surface. In this case, if the work holder 5 is rotated about an axis in the same direction as the rotation axis of the rotary platen tool 1, the processing is averaged, so that the flatness is further increased.
 このように、本発明の主要構成は、ラジカル生成のためのプラズマ発生手段(電極ヘッド2、ガス供給手段3、高周波電源4)と、ラジカルを表面に吸着させて輸送する工具(回転定盤工具1)、そして被加工物Wを保持し当該工具との接触を保つワークホルダー5からなる。本発明によれば、ラジカル吸着工具と接触した部分のみを選択的にドライエッチングすることが可能となり、極めて革新的である。大気圧プラズマエッチングにおいて主となる反応種であるFラジカル、Clラジカル、Oラジカル、OHラジカル等をプラズマ発生領域で生成させ、工具(回転定盤工具)表面に吸着させる。これらラジカルが吸着した表面は反応性に富んだ高配位状態となっている。そして、工具の運動によって吸着したラジカルに由来する反応活性種を被加工物Wの表面まで輸送し、工具と接触した被加工物Wの表面原子と工具表面の反応活性種とが化学反応によって反応生成物となり、除去されることにより、被加工物表面をエッチングする。 As described above, the main configuration of the present invention includes plasma generation means (electrode head 2, gas supply means 3, high-frequency power supply 4) for generating radicals, and a tool (rotary surface plate tool) for transporting radicals by adsorbing them on the surface. 1) and a work holder 5 that holds the workpiece W and keeps contact with the tool. According to the present invention, it is possible to selectively dry-etch only the portion in contact with the radical adsorption tool, which is extremely innovative. F radicals, Cl radicals, O radicals, OH radicals and the like, which are the main reactive species in atmospheric pressure plasma etching, are generated in the plasma generation region and adsorbed on the surface of the tool (rotating platen tool). The surface on which these radicals are adsorbed is in a highly coordinated state rich in reactivity. Then, reactive species derived from radicals adsorbed by the movement of the tool are transported to the surface of the workpiece W, and the surface atoms of the workpiece W in contact with the tool react with the reactive species on the tool surface by a chemical reaction. The surface of the workpiece is etched by becoming a product and being removed.
 本発明の第1実施形態の平坦化加工装置を図3及び図4に示す。本実施形態の平坦化加工装置は、中心部に開口7を設けるとともに、ラジカルに対して耐食性と吸着能を備えた表面を有する水平な回転定盤工具1と、前記回転定盤工具1の表面に対して所定ギャップを設けて配置した電極ヘッド2と、前記電極ヘッド2に少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段3と、前記電極ヘッド2に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源4と、プラズマ発生領域Pで生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具1の表面の回転方向前方に被加工物Wを保持し、該被加工物Wを所定圧力(接触圧力P)で回転定盤工具1の表面に接触させるワークホルダー5と、を備え、被加工物Wの表面を平坦化加工するものである。ここで、加工雰囲気の圧力Pは、大気圧を基本とするが、減圧雰囲気であっても良い。 A planarization processing apparatus according to the first embodiment of the present invention is shown in FIGS. The flattening apparatus of the present embodiment is provided with an opening 7 at the center, a horizontal rotary surface plate tool 1 having a surface having corrosion resistance and adsorption ability against radicals, and the surface of the rotary surface plate tool 1 An electrode head 2 arranged with a predetermined gap with respect to the gas head, a gas supply means 3 for supplying a reactive gas in which a gas containing at least a radical generating element or a substituent and a rare gas are mixed to the electrode head 2; A high-frequency power source 4 that generates a plasma in the gap by applying a high-frequency electric field to the electrode head 2, and a surface of the surface of the rotating surface plate tool 1 to which radicals generated in the plasma generation region P are adsorbed and reactive species are applied. holding the workpiece W forward in the rotational direction, the work holder 5 is brought into contact with the workpiece W on the rotating surface plate surface of the tool 1 at a predetermined pressure (contact pressure P L), comprising a workpiece The surface of those to be processed flattened. Here, the pressure P G in the processing atmosphere is the basic atmospheric pressure, may be a reduced pressure atmosphere.
 前記回転定盤工具1の表面には、無電解NiめっきによってNi層6を形成している。ここで、前記回転定盤工具1は接地され、加工基準面となるNi層6はアース電位となっている。前記回転定盤工具1の開口7の中心部に、前記電極ヘッド2の基部が垂直軸により支持され、ヘッド部が水平首振り可能になっている。前記電極ヘッド2は、図4(a)、(b)に示すように、水平なアーム部8の基部をロータリージョイント9で保持し、ヘッド部10が前記回転定盤工具1の表面に所定のギャップで配置されている。更に、前記電極ヘッド2は、ロータリージョイント9からアーム部8及びヘッド部10に連続してガス流路11が形成され、前記ガス供給手段3の一部を構成している。前記電極ヘッド2のヘッド部10は、プラズマに曝されて損耗するので、交換可能な構造にすることが好ましい。前記電極ヘッド2は、ロータリージョイント9を中心に回転角度を変えることにより、前記ワークホルダー5に保持された被加工物Wとの間隔を調節できるようになっている。 The Ni layer 6 is formed on the surface of the rotary surface plate tool 1 by electroless Ni plating. Here, the rotary surface plate tool 1 is grounded, and the Ni layer 6 serving as a machining reference surface is at ground potential. A base portion of the electrode head 2 is supported by a vertical shaft at the center of the opening 7 of the rotary surface plate tool 1 so that the head portion can be swung horizontally. As shown in FIGS. 4A and 4B, the electrode head 2 holds the base portion of the horizontal arm portion 8 with a rotary joint 9, and the head portion 10 is placed on the surface of the rotary surface plate tool 1 with a predetermined amount. Arranged in a gap. Further, the electrode head 2 has a gas flow path 11 formed continuously from the rotary joint 9 to the arm portion 8 and the head portion 10, and constitutes a part of the gas supply means 3. Since the head portion 10 of the electrode head 2 is worn out by being exposed to plasma, it is preferable to have a replaceable structure. The electrode head 2 can adjust the distance from the workpiece W held by the work holder 5 by changing the rotation angle around the rotary joint 9.
 前記回転定盤工具1の回転駆動機構や前記ワークホルダー5の駆動機構は、従来の研磨装置と同様な構造であり、従来の研磨装置に前記電極ヘッド2とガス供給手段3及び高周波電源4を追加するだけで、本発明の平坦化加工装置を構成できる。しかも、本発明は、ドライエッチングであるので、水周りの構造は不要であり、装置構成を簡単にできる。 The rotational drive mechanism of the rotary surface plate tool 1 and the drive mechanism of the work holder 5 have the same structure as a conventional polishing apparatus, and the conventional polishing apparatus includes the electrode head 2, the gas supply means 3, and the high-frequency power source 4. The planarization apparatus of the present invention can be configured only by adding. In addition, since the present invention is dry etching, a structure around water is unnecessary, and the apparatus configuration can be simplified.
 本発明の第2実施形態の数値制御加工装置を図5に示す。本実施形態の数値制御加工装置は、回転軸20を備えるとともに、少なくとも外周部表面にラジカルに対して耐食性と吸着能を備えている球状回転工具21と、前記球状回転工具21の外周部22に対して所定ギャップGを設けて配置した電極23と、前記電極23に少なくともラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段(図示せず)と、前記電極23に高周波電界を印加して前記ギャップGでプラズマを発生させる高周波電源24と、プラズマ発生領域Pで生成したラジカルを吸着して反応活性種が付与された前記球状回転工具21のプラズマ発生領域Pとは異なる外周部22を、被加工物Wの表面に所定圧力(接触圧力P)で接触させた状態で、前記球状回転工具21と被加工物Wとを相対的に数値制御走査する走査手段(図示せず)と、を備え、前記球状回転工具21と被加工物Wの接触部Cを被加工物Wの表面上で数値制御走査して任意形状に加工するものである。この場合、球状回転工具21の外周部22に吸着したラジカルに由来する反応活性種が、該球状回転工具21の回転に伴って前記被加工物Wとの接触部Cに輸送されるのである。本実施形態でも加工雰囲気の圧力Pは、大気圧を基本とするが、減圧雰囲気であっても良い。 A numerically controlled machining apparatus according to the second embodiment of the present invention is shown in FIG. The numerically controlled processing apparatus according to the present embodiment includes a rotary shaft 20, a spherical rotary tool 21 that has corrosion resistance and adsorption ability against radicals at least on the outer peripheral surface, and an outer peripheral portion 22 of the spherical rotary tool 21. And an electrode 23 arranged with a predetermined gap G, and a gas supply means (not shown) for supplying a reactive gas obtained by mixing a rare gas and a gas containing at least a radical generating element or a substituent to the electrode 23. A plasma of the high-frequency power source 24 that generates a plasma in the gap G by applying a high-frequency electric field to the electrode 23 and a plasma of the spherical rotary tool 21 to which a radical generated in the plasma generation region P is adsorbed and a reactive species is applied. the outer peripheral portion 22 which is different from the generation region P, being in contact with a predetermined pressure to the surface of the workpiece W (contact pressure P L), and the spherical rotary tool 21 Scanning means (not shown) for relatively numerically scanning the workpiece W, and numerically scanning the contact portion C between the spherical rotary tool 21 and the workpiece W on the surface of the workpiece W Then, it is processed into an arbitrary shape. In this case, reactive species derived from radicals adsorbed on the outer peripheral portion 22 of the spherical rotary tool 21 are transported to the contact portion C with the workpiece W as the spherical rotary tool 21 rotates. The pressure P G in the processing atmosphere in the present embodiment, although the basic atmospheric pressure, may be a reduced pressure atmosphere.
 前記球状回転工具21は、文字通りの球状に限定されず、円板状若しくはタイヤ状の外周部22が円弧面を有する形状であれば良い。そして、被加工物Wの表面を任意形状に加工するには、前記球状回転工具21によって接触部Cで形成される単位加工痕のプロファイルを取得し、被加工物Wの表面における局所的な加工量のデータに基づき、前記接触部Cの滞在時間を規定するのである。実際には、繰り返し走査するので、走査速度を変えることによって、滞在時間を制御する。尚、数値制御走査は、前記球状回転工具21と被加工物Wの何れか一方を駆動することによって行う。 The spherical rotating tool 21 is not limited to a literal spherical shape, but may be any shape as long as the outer peripheral portion 22 of a disk shape or a tire shape has an arc surface. In order to machine the surface of the workpiece W into an arbitrary shape, a profile of the unit machining trace formed at the contact portion C by the spherical rotary tool 21 is acquired, and local machining on the surface of the workpiece W is performed. Based on the amount data, the staying time of the contact portion C is defined. Actually, since the scanning is repeated, the staying time is controlled by changing the scanning speed. The numerical control scanning is performed by driving either the spherical rotary tool 21 or the workpiece W.
<加工原理を実証するための加工実験1>
 次に、前記平坦化加工装置を用いて、本発明の加工原理を実証する実験を行った。つまり、プラズマで発生したラジカルが回転定盤に吸着して、回転定盤の表面に付与された反応活性種が被加工物との接触部に供給されているかを確認するために行った基礎実験の結果を示す。
<Processing experiment 1 to verify the processing principle>
Next, an experiment for demonstrating the processing principle of the present invention was performed using the flattening apparatus. In other words, a basic experiment was conducted to confirm whether radicals generated in the plasma were adsorbed on the rotating platen and the reactive species provided on the surface of the rotating platen were supplied to the contact area with the workpiece. The results are shown.
 ラジカル吸着工具として無電解Niめっきを20μm厚で施した回転定盤工具を用い、試料(シリコン基板)の上流約15mmの位置でHe:SF=99:1の反応ガス(圧力P:大気圧)のプラズマを発生させたときと発生させなかったときの試料表面の変化を比較した。試料はSiの10mm四方の基板の表面粗さの悪い面を用いた。試料は回転させずに回転定盤工具のみを回転させ、その回転速度は10rpmで、試料を回転定盤工具に押し付ける接触圧力Pは3kPaである。プラズマを発生させる際の実験条件を表1に示す。1時間毎に試料表面の表面粗さを評価した。表面粗さの評価方法としては、白色干渉計(Zygo社製 NewView 200)によって64×48(μm)の範囲で4つの観測点を計測した。 Using a rotating plate tool with electroless Ni plating applied to a thickness of 20 μm as a radical adsorption tool, He: SF 6 = 99: 1 reaction gas (pressure P G : large) at a position about 15 mm upstream of the sample (silicon substrate). The change in the surface of the sample when the plasma (atmospheric pressure) was generated and when it was not generated was compared. As a sample, a surface having a poor surface roughness of a 10 mm square substrate of Si was used. Sample rotates only the rotating platen tool without rotating, in that the rotational speed is 10 rpm, the contact pressure P L for pressing the sample into rotary platen tool is 3 kPa. Table 1 shows experimental conditions for generating plasma. The surface roughness of the sample surface was evaluated every hour. As an evaluation method of the surface roughness, four observation points were measured in a range of 64 × 48 (μm 2 ) using a white interferometer (NewView 200 manufactured by Zygo).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図6に示す。試料を回転速度10rpm、圧力3kPa下で加工を行い、1時間毎に表面粗さを計測した。図6中の左欄に○で表示した基板中央部・上部・右部・左部の4点の加工前から3時間加工後までの白色干渉計(Zygo社製 NewView 200)像を図6に示す。尚、Si基板の上部とは、前記電極ヘッド2に近い部分であり、以下同様とする。いずれの観測点においても表面粗さの改善が見られないことから、回転速度10rpm、接触圧力3kPaの加工条件では機械加工の作用がないことを確認できた。 First, FIG. 6 shows the result of processing in a state where plasma is not generated (no voltage applied, no reaction gas supplied). The sample was processed under a rotational speed of 10 rpm and a pressure of 3 kPa, and the surface roughness was measured every hour. Figure 6 shows white interferometers (Zygo's NewView 200) from four points before and after three hours of processing at the center, top, right, and left of the substrate indicated by a circle in the left column of Fig. 6. Show. The upper part of the Si substrate is a part close to the electrode head 2, and so on. Since no improvement in surface roughness was observed at any of the observation points, it was confirmed that there was no machining effect under the processing conditions of a rotational speed of 10 rpm and a contact pressure of 3 kPa.
 次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図7に示す。プラズマを表1の条件で発生させた状態で、試料を回転速度10rpm、接触圧力3kPa下で加工を行い、1時間毎に表面粗さを計測した。図7中の左欄に○で表示した基板中央部・上部・右部・左部の4点の加工前から3時間加工後までの白色干渉計(Zygo社製 NewView 200)像を図7に示す。Fラジカルに由来する反応活性種の作用により、いずれの観測点においても、表面粗さ(rms)が、加工前の400nm超から、3時間の加工後に10nm以下になり、大幅な改善が見られた。 Next, FIG. 7 shows the result of processing in a state in which plasma is generated (with voltage applied and with reactive gas supplied). With the plasma generated under the conditions shown in Table 1, the sample was processed under a rotational speed of 10 rpm and a contact pressure of 3 kPa, and the surface roughness was measured every hour. Fig. 7 shows white interferometers (Zygo's NewView 200) from 4 points before and after 3 hours of processing at the center, top, right and left of the substrate, indicated by a circle in the left column of Fig. 7. Show. Due to the action of reactive species derived from F radicals, the surface roughness (rms) at any observation point has been reduced from more than 400 nm before processing to 10 nm or less after processing for 3 hours, and a significant improvement is seen. It was.
 プラズマを発生させない場合の加工では表面粗さが改善されなかったことから、機械加工の作用は働いてないと考えられるため、プラズマ発生領域で生成したラジカルが研磨定盤の表面に吸着し、それが研磨定盤の回転に伴って試料表面に供給されていることが確認できた。試料表面をプラズマに直接曝すプラズマエッチングでは、除去レートが等方的であるため平坦化はできないが、回転定盤工具と電極間でプラズマを発生させることで、回転定盤工具にFラジカルを吸着させ、そのFラジカルに由来する反応活性種を回転定盤工具の回転に伴って試料表面に供給することで、試料表面の平坦化加工を実現した。今回の実験で、Fラジカルに由来する反応活性種が試料表面に供給されており、それによってSi基板の平坦化が行われていることが明らかとなった。 Since the surface roughness was not improved in the processing without plasma generation, it is considered that the machining action does not work, so the radicals generated in the plasma generation region are adsorbed on the surface of the polishing platen, It was confirmed that was supplied to the sample surface with the rotation of the polishing platen. In plasma etching where the sample surface is directly exposed to plasma, the removal rate is isotropic, so flattening is not possible. However, by generating plasma between the rotating platen tool and the electrode, F radicals are adsorbed to the rotating platen tool. The surface of the sample was flattened by supplying the reactive species derived from the F radicals to the sample surface as the rotary surface plate tool rotated. In this experiment, it became clear that reactive species derived from F radicals were supplied to the sample surface, and that the Si substrate was planarized.
<加工原理を実証するための加工実験2>
 次に、前記平坦化加工装置を用いて、被加工物としてSiC基板を用いて同様の実験を行った結果を図8に示す。プラズマ発生条件は表1に示したものと同じであるが、この場合のSiC基板の接触圧力Pは5kPaである。3時間の平坦化加工により、SiC基板の表面粗さ(rms)は、加工前の100nm超から10nm以下に平坦化された。Fラジカルの作用により、SiC基板もSi基板と同様に平坦化加工されることが確認された。
<Processing experiment 2 to verify the processing principle>
Next, FIG. 8 shows the results of a similar experiment using a SiC substrate as a workpiece using the planarization apparatus. Plasma generation conditions are the same as those shown in Table 1, the contact pressure P L of the SiC substrate in this case is 5 kPa. By the planarization process for 3 hours, the surface roughness (rms) of the SiC substrate was planarized from more than 100 nm before the process to 10 nm or less. It was confirmed that the SiC substrate was flattened similarly to the Si substrate by the action of the F radical.
<加工原理を実証するための加工実験3>
 次に、反応ガスとして、HeとHO(水蒸気)の反応ガス(圧力P:大気圧)を用い、前記平坦化加工装置を用いて、被加工物としてSi基板(面積:0.59cm)の表面を加工した。プラズマ発生条件と加工条件は、表2に示している。この場合も、無電解Niめっきを20μm厚で施した回転定盤工具を用いた。Si基板の接触圧力Pは3.4kPaである。水蒸気を含む反応ガスは、図9に示すように、密閉容器に水を入れ、水中でHeガスを噴出し、気相中でHeと水蒸気の反応ガスを回収して使用した。回転定盤工具1と電極ヘッド2とのギャップGは200μm、該電極ヘッド2から下流側のSi基板までの距離Lを15mmとした。
<Processing experiment 3 to verify the processing principle>
Next, a reactive gas (pressure P G : atmospheric pressure) of He and H 2 O (water vapor) is used as a reactive gas, and the Si substrate (area: 0.59 cm) is processed using the planarization apparatus. The surface of 2 ) was processed. Table 2 shows plasma generation conditions and processing conditions. In this case as well, a rotating surface plate tool with electroless Ni plating applied to a thickness of 20 μm was used. Contact pressure P L of the Si substrate is 3.4 kPa. As shown in FIG. 9, the reaction gas containing water vapor was used by putting water in a sealed container, blowing out He gas in water, and collecting the reaction gas of He and water vapor in the gas phase. The gap G between the rotary platen tool 1 and the electrode head 2 was 200 μm, and the distance L from the electrode head 2 to the downstream Si substrate was 15 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図10に示す。図10中、上段はSi基板の上部、下段はSi基板の中央部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後を示している。この場合も、1時間経過してもSi基板の表面に殆ど変化がないことが分かる。 First, FIG. 10 shows the result of processing in a state where plasma is not generated (no voltage application, no reaction gas supply). In FIG. 10, the upper row is the white interferometer (Zygo NewView 200) image of the upper part of the Si substrate and the lower row is the center of the Si substrate. It shows after processing. Also in this case, it can be seen that there is almost no change in the surface of the Si substrate even after 1 hour.
 次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図11に示す。図11中、上段はSi基板の上部、下段はSi基板の中央部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後、1.5時間の加工後、2時間の加工後、3時間の加工後を示している。Si基板の上部では、加工前の表面粗さ(rms)が、加工前の167nmであったのが、1時間の加工後には22nm、3時間の加工後には16nmに改善していることが分かる。一方、Si基板の中央部では、加工前の表面粗さ(rms)が、加工前の184nmであったのが、1時間の加工後には48nm、3時間の加工後には16nmに改善していることが分かる。水蒸気プラズマを発生させたことにより、OHラジカルが生成し、このOHラジカルがSi基板表面の加工に寄与したものと考えられる。 Next, FIG. 11 shows a result of processing in a state where plasma is generated (with voltage applied and with reactive gas supplied). In FIG. 11, the upper row is the upper part of the Si substrate, and the lower row is a white interferometer (Zygo's NewView 200) image of the central portion of the Si substrate. It shows after processing, after processing for 1.5 hours, after processing for 2 hours, and after processing for 3 hours. In the upper part of the Si substrate, the surface roughness (rms) before processing was 167 nm before processing, but it is improved to 22 nm after processing for 1 hour and 16 nm after processing for 3 hours. . On the other hand, in the central part of the Si substrate, the surface roughness (rms) before processing was 184 nm before processing, but improved to 48 nm after processing for 1 hour and 16 nm after processing for 3 hours. I understand that. It is considered that the generation of water vapor plasma generated OH radicals, which contributed to the processing of the Si substrate surface.
<加工原理を実証するための加工実験4>
 最後に、前記平坦化加工装置を用いて、導電性の基体表面にアルミナ(Al)をコーティングした回転定盤工具を用い、被加工物としてSi基板(面積:0.78cm)の表面を加工した。プラズマ発生条件と加工条件は、表3に示している。この場合、表1の条件と略同じであるが、回転定盤工具に対するSi基板の接触圧力Pを5.1kPaと大きくしている。また、回転定盤工具と電極ヘッドとのギャップGは600μm、該電極ヘッドから下流側のSi基板までの距離Lを15mmとした。
<Processing experiment 4 to prove the processing principle>
Finally, using the planarizing apparatus, a rotating surface plate tool in which alumina (Al 2 O 3 ) is coated on the surface of a conductive substrate is used, and a Si substrate (area: 0.78 cm 2 ) is processed as a workpiece. The surface was processed. Table 3 shows plasma generation conditions and processing conditions. In this case is substantially the same as the conditions shown in Table 1, it is as large as 5.1kPa contact pressure P L of the Si substrate with respect to the rotating surface plate tool. The gap G between the rotary surface plate tool and the electrode head was 600 μm, and the distance L from the electrode head to the downstream Si substrate was 15 mm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 先ず、先ず、プラズマを発生させない状態(電圧印加無し、反応ガスの供給無し)で加工した結果を図12に示す。この場合、接触圧力Pが1kPaでも機械的な加工ラインが発生し、全く平坦化加工ができないことが分かった。加工ラインが発生した原因は、Si基板のエッジが欠けて発生した微細なSi屑が、前記回転定盤工具とSi基板の間に挟まってSi基板の表面を傷付けているからと推測できる。 First, FIG. 12 shows the result of processing in a state where plasma is not generated (no voltage application, no reaction gas supply). In this case, the contact pressure P L is mechanical processing line is generated even 1 kPa, was found not able to completely flattening. It can be inferred that the reason why the processing line is generated is that the fine Si scrap generated by chipping the edge of the Si substrate is sandwiched between the rotary surface plate tool and the Si substrate and damages the surface of the Si substrate.
 次に、プラズマを発生させた状態(電圧印加有り、反応ガスの供給有り)で加工した結果を図13に示す。図13中、上段はSi基板の上部、下段はSi基板の下部の白色干渉計(Zygo社製 NewView 200)像であり、それぞれ左から順に、加工前、30分間の加工後、1時間の加工後、1.5時間の加工後を示している。Si基板の上部では、加工前の表面粗さ(rms)が、加工前の547nmであったのが、30分の加工後には72nmと大幅に改善し、1時間の加工後には21nm、1.5時間の加工後には24nmに改善していることが分かる。一方、Si基板の下部では、加工前の表面粗さ(rms)が、加工前の592nmであったのが、30分の加工後では470nmとあまり改善していないが、1時間の加工後には80nm、1.5時間の加工後には40nmに改善していることが分かる。 Next, FIG. 13 shows the result of processing in a state where plasma is generated (with voltage applied and with reactive gas supplied). In FIG. 13, the top is the white interferometer (Zygo's NewView 200) image of the top of the Si substrate and the bottom is the bottom of the Si substrate. After, 1.5 hours after processing is shown. On the upper part of the Si substrate, the surface roughness (rms) before processing was 547 nm before processing, but it was greatly improved to 72 nm after processing for 30 minutes, and after processing for 1 hour, 21 nm, 1. It turns out that it has improved to 24 nm after processing for 5 hours. On the other hand, in the lower part of the Si substrate, the surface roughness (rms) before processing was 592 nm before processing, but it has not improved much to 470 nm after processing for 30 minutes, but after processing for 1 hour. It can be seen that after processing at 80 nm for 1.5 hours, the thickness is improved to 40 nm.
 この加工実験によって、アルミナ工具を用いてもSi基板が平坦化加工できたことを示している。アルミナ工具は、表面の安定性に優れており、経時劣化が少ないので、実用化において有利である。尚、回転定盤工具に対するSi基板の接触圧力Pを5.1kPaとしても、機械的な加工ラインが発生しないのは、回転定盤工具に付着していた微細なSi屑がプラズマ発生領域を通過する際に、プラズマエッチングにより除去されたものと推測できる。 This machining experiment shows that the Si substrate could be planarized even using an alumina tool. An alumina tool is advantageous in practical use because it has excellent surface stability and little deterioration with time. Incidentally, even 5.1kPa contact pressure P L of the Si substrate with respect to the rotating surface plate tool, the mechanical machining line does not occur, the fine Si debris adhering to the rotating platen tool plasma generation region When passing, it can be assumed that it was removed by plasma etching.
 以上の実施例では平坦化加工と、球状回転工具による数値制御加工への適用例を示したが、他にもワイヤー走行工具による溝加工等、ラジカル吸着工具の形状によって種々の応用が可能と考えられる。また、ダイヤモンド工具や宝石も平面加工あるいは鋭角形状に加工することも可能になる。 In the above examples, examples of application to flattening processing and numerical control processing using a spherical rotating tool have been shown, but other applications such as grooving using a wire traveling tool are also possible depending on the shape of the radical adsorption tool. It is done. In addition, diamond tools and gemstones can be processed into a flat surface or an acute angle shape.
1 回転定盤工具、
2 電極ヘッド、
3 ガス供給手段、
4 高周波電源、
5 ワークホルダー、
6 Ni層、
7 開口、
8 アーム部、
9 ロータリージョイント、
10 ヘッド部、
11 ガス流路、
20 回転軸、
21 球状回転工具、
22 外周部、
23 電極、
24 高周波電源、
W 被加工物、
G ギャップ、
P プラズマ発生領域、
R ラジカル、
C 接触部、
1 rotary surface plate tool,
2 electrode heads,
3 gas supply means,
4 High frequency power supply,
5 Work holder,
6 Ni layer,
7 opening,
8 Arm part,
9 Rotary joint,
10 head,
11 Gas flow path,
20 rotation axis,
21 Spherical rotary tool,
22 outer periphery,
23 electrodes,
24 high frequency power supply,
W Workpiece,
G gap,
P plasma generation region,
The R radical,
C contact part,

Claims (13)

  1.  化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する可動工具の近傍で、少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスからなるプラズマを発生させて、該プラズマ発生領域で生成したラジカルを前記工具表面に吸着させて反応活性種を付与し、該工具の移動によって前記反応活性種を被加工物表面まで輸送し、該工具と接触した被加工物表面の原子と反応活性種との化学反応によって生成した反応生成物を除去することにより、該工具表面を加工基準面として被加工物表面をエッチングすることを特徴とするラジカル吸着輸送を援用した加工方法。 Plasma composed of a reactive gas in which a gas containing at least the above-described element or substituent that generates radicals and a rare gas are mixed in the vicinity of a movable tool having a surface having corrosion resistance and adsorption ability for radicals rich in chemical reactivity. The radicals generated in the plasma generation region are adsorbed to the tool surface to give reactive active species, and the reactive active species are transported to the workpiece surface by the movement of the tool and contact with the tool. Radiation adsorption transport, characterized in that the workpiece surface is etched using the tool surface as a processing reference plane by removing a reaction product generated by a chemical reaction between an atom and a reactive species on the workpiece surface. Is a processing method.
  2.  前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである請求項1記載のラジカル吸着輸送を援用した加工方法。 The processing method using radical adsorption transport according to claim 1, wherein the element that generates the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical.
  3.  前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである請求項1記載のラジカル吸着輸送を援用した加工方法。 The processing method using radical adsorption transport according to claim 1, wherein the substituent that generates the radical is an OH group, and the radical is an OH radical.
  4.  前記工具の少なくとも表面がNiで形成されている請求項1~3何れか1項に記載のラジカル吸着輸送を援用した加工方法。 The processing method using radical adsorption transport according to any one of claims 1 to 3, wherein at least a surface of the tool is formed of Ni.
  5.  前記工具の表面がアルミナ又はイットリアのコーティング層となっている請求項1~3何れか1項に記載のラジカル吸着輸送を援用した加工方法。 The processing method using radical adsorption transport according to any one of claims 1 to 3, wherein the surface of the tool is an alumina or yttria coating layer.
  6.  前記工具が回転定盤工具であり、該回転定盤工具表面を加工基準面として被加工物表面を平坦化加工する請求項1記載のラジカル吸着輸送を援用した加工方法。 The processing method using radical adsorption transport according to claim 1, wherein the tool is a rotary surface plate tool, and the surface of the workpiece is flattened using the surface of the rotary surface plate tool as a processing reference surface.
  7.  前記工具が回転軸を備えた球状回転工具であり、該球状回転工具の外周部の近傍においてプラズマを発生させて、該球状回転工具の外周部にラジカルを吸着させ、該球状回転工具のプラズマ発生領域とは異なる外周部を被加工物表面に所定圧力で接触させながら回転させるとともに、該接触部を被加工物表面上で数値制御走査して任意形状に加工する請求項1記載のラジカル吸着輸送を援用した加工方法。 The tool is a spherical rotary tool having a rotary shaft, and plasma is generated in the vicinity of the outer peripheral portion of the spherical rotary tool, and radicals are adsorbed on the outer peripheral portion of the spherical rotary tool, thereby generating plasma of the spherical rotary tool. 2. The radical adsorption transport according to claim 1, wherein an outer peripheral portion different from the region is rotated while being brought into contact with the workpiece surface at a predetermined pressure, and the contact portion is numerically scanned on the workpiece surface to be processed into an arbitrary shape. Is a processing method.
  8.  化学反応性に富んだラジカルに対して耐食性と吸着能を備えた表面を有する回転定盤工具と、
     前記回転定盤工具の表面に対して所定ギャップを設けて配置した電極ヘッドと、
     前記電極ヘッドに少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
     前記電極ヘッドに高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
     プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記回転定盤工具表面の回転方向前方に被加工物を保持し、該被加工物を所定圧力で回転定盤工具表面に接触させるワークホルダーと、
    を備え、前記回転定盤工具表面を加工基準面として被加工物表面を平坦化加工することを特徴とするラジカル吸着輸送を援用した加工装置。
    A rotating surface plate tool having a surface with corrosion resistance and adsorption capacity for radicals rich in chemical reactivity;
    An electrode head disposed with a predetermined gap with respect to the surface of the rotating surface plate tool;
    A gas supply means for supplying a reactive gas obtained by mixing a gas containing at least an element that generates radicals or a substituent and a rare gas to the electrode head;
    A high frequency power source that generates a plasma in the gap by applying a high frequency electric field to the electrode head;
    The workpiece is held in front of the rotating surface of the rotating surface plate tool to which the radicals generated in the plasma generation region are adsorbed and the reactive species are applied, and the workpiece is placed on the surface of the rotating surface plate tool at a predetermined pressure. A work holder to be contacted,
    And processing the surface of the workpiece using the rotary surface plate tool surface as a processing reference surface.
  9.  回転軸を備えるとともに、少なくとも外周部表面に化学反応性に富んだラジカルに対して耐食性と吸着能を備えている球状回転工具と、
     前記球状回転工具の外周部に対して所定ギャップを設けて配置した電極と、
     前記電極に少なくとも前記ラジカルを生成する元素若しくは置換基を含むガスと希ガスを混合した反応ガスを供給するガス供給手段と、
     前記電極に高周波電界を印加して前記ギャップでプラズマを発生させる高周波電源と、
     プラズマ発生領域で生成したラジカルを吸着して反応活性種が付与された前記球状回転工具のプラズマ発生領域とは異なる外周部を、被加工物表面に所定圧力で接触させた状態で、前記球状回転工具と被加工物とを相対的に数値制御走査する走査手段と、
    を備え、前記球状回転工具と被加工物の接触部を被加工物表面上で数値制御走査して該球状回転工具表面を加工基準面として任意形状に加工することを特徴とするラジカル吸着輸送を援用した加工装置。
    A spherical rotary tool that has a rotary shaft and has corrosion resistance and adsorption capacity for radicals rich in chemical reactivity on at least the outer peripheral surface;
    An electrode arranged with a predetermined gap with respect to the outer periphery of the spherical rotary tool;
    A gas supply means for supplying a reactive gas obtained by mixing a gas containing an element or substituent that generates at least the radical to the electrode and a rare gas;
    A high frequency power source for generating a plasma in the gap by applying a high frequency electric field to the electrode;
    The spherical rotation is performed in a state where an outer peripheral portion different from the plasma generation region of the spherical rotary tool to which the reactive species are attached by adsorbing radicals generated in the plasma generation region is in contact with the workpiece surface at a predetermined pressure. Scanning means for relatively numerically controlling scanning of the tool and the workpiece;
    Radical adsorbing and transporting, wherein the contact portion between the spherical rotary tool and the workpiece is numerically controlled and scanned on the surface of the workpiece to process the spherical rotary tool surface into a desired shape Assisted processing equipment.
  10.  前記前記ラジカルを生成する元素がF又はClのハロゲン元素であり、前記ラジカルがFラジカル又はClラジカルである請求項8又は9記載のラジカル吸着輸送を援用した加工装置。 10. The processing apparatus using radical adsorption transport according to claim 8, wherein the element that generates the radical is a halogen element of F or Cl, and the radical is an F radical or a Cl radical.
  11.  前記ラジカルを生成する置換基がOH基であり、前記ラジカルがOHラジカルである請求項8又は9記載のラジカル吸着輸送を援用した加工装置。 The processing apparatus using radical adsorption transport according to claim 8 or 9, wherein the substituent that generates the radical is an OH group, and the radical is an OH radical.
  12.  前記回転定盤工具又は球状回転工具の少なくとも表面がNiで形成されている請求項8又は9記載のラジカル吸着輸送を援用した加工装置。 10. The processing apparatus using radical adsorption transport according to claim 8 or 9, wherein at least a surface of the rotary surface plate tool or the spherical rotary tool is formed of Ni.
  13.  前記回転定盤工具又は球状回転工具の表面がアルミナ又はイットリアのコーティング層となっている請求項8又は9記載のラジカル吸着輸送を援用した加工装置。 10. The processing apparatus using radical adsorption transport according to claim 8 or 9, wherein a surface of the rotary surface plate tool or the spherical rotary tool is an alumina or yttria coating layer.
PCT/JP2017/006628 2016-02-29 2017-02-22 Machining method and apparatus using radical adsorbing transportation WO2017150308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503072A JP6692010B2 (en) 2016-02-29 2017-02-22 Processing method and apparatus using radical adsorption transport

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016036513 2016-02-29
JP2016-036513 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150308A1 true WO2017150308A1 (en) 2017-09-08

Family

ID=59742838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006628 WO2017150308A1 (en) 2016-02-29 2017-02-22 Machining method and apparatus using radical adsorbing transportation

Country Status (2)

Country Link
JP (1) JP6692010B2 (en)
WO (1) WO2017150308A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931670A (en) * 1995-07-12 1997-02-04 Yuzo Mori High-efficiency machining method by high-density free radical reaction using rotary electrode and device therefor
JPH10256233A (en) * 1997-03-12 1998-09-25 Sharp Corp Manufacture and manufacture device for semiconductor element, and plasma processor for flattening process
JP2002043298A (en) * 2000-07-28 2002-02-08 Mitsubishi Heavy Ind Ltd Method for manufacturing semiconductor device and semiconductor device
JP2004241510A (en) * 2003-02-04 2004-08-26 Sharp Corp Plasma processor
JP2005011827A (en) * 2002-07-17 2005-01-13 Sekisui Chem Co Ltd Method and device for supplying atmospheric pressure plasma etching gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931670A (en) * 1995-07-12 1997-02-04 Yuzo Mori High-efficiency machining method by high-density free radical reaction using rotary electrode and device therefor
JPH10256233A (en) * 1997-03-12 1998-09-25 Sharp Corp Manufacture and manufacture device for semiconductor element, and plasma processor for flattening process
JP2002043298A (en) * 2000-07-28 2002-02-08 Mitsubishi Heavy Ind Ltd Method for manufacturing semiconductor device and semiconductor device
JP2005011827A (en) * 2002-07-17 2005-01-13 Sekisui Chem Co Ltd Method and device for supplying atmospheric pressure plasma etching gas
JP2004241510A (en) * 2003-02-04 2004-08-26 Sharp Corp Plasma processor

Also Published As

Publication number Publication date
JP6692010B2 (en) 2020-05-13
JPWO2017150308A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
Yamamura et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing
KR101002250B1 (en) Method for manufacturing epitaxial wafer
JP5614677B2 (en) Precision processing method and apparatus for difficult-to-process materials
JP6348725B2 (en) Ductile mode machining method for hard brittle components of plasma processing equipment
US9498866B2 (en) Polishing pad cleaning with vacuum apparatus
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
JP5916513B2 (en) Processing method of plate
JP6598150B2 (en) Method for producing single crystal SiC substrate
JP2008181953A (en) Manufacturing method of group iii-v compound semiconductor substrate
TWI430336B (en) Method of fabricating epitaxial silicon wafer
JP2016182669A (en) Processing device for tabular article
JP5772635B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP4752072B2 (en) Polishing method and polishing apparatus
JP2009043969A (en) Processing method for semiconductor wafer outer peripheral part, and device therefor
JP2003203899A (en) Method and device for manufacturing epitaxial wafer silicon single-crystal substrate
WO2017150308A1 (en) Machining method and apparatus using radical adsorbing transportation
JP6547100B2 (en) Combined processing apparatus and workpiece processed by the apparatus
JP6145761B2 (en) Processing method and processing apparatus
JP5151059B2 (en) Outline processing method of silicon carbide single crystal wafer
JP2004006997A (en) Manufacturing method of silicon wafer
JP2007075951A (en) Outer shape machining method of single-crystal ingot
JP2013026314A (en) Manufacturing method of nitride semiconductor substrate
JP2013094924A (en) Grinding method for ceramic substrate with through electrode
JP2022133198A (en) Plasma assisted processing method and plasma assisted processing device
JP3750083B2 (en) Diamond coating industrial blade manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503072

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759774

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759774

Country of ref document: EP

Kind code of ref document: A1