JP6690528B2 - Conductive film - Google Patents

Conductive film Download PDF

Info

Publication number
JP6690528B2
JP6690528B2 JP2016502559A JP2016502559A JP6690528B2 JP 6690528 B2 JP6690528 B2 JP 6690528B2 JP 2016502559 A JP2016502559 A JP 2016502559A JP 2016502559 A JP2016502559 A JP 2016502559A JP 6690528 B2 JP6690528 B2 JP 6690528B2
Authority
JP
Japan
Prior art keywords
conductive film
conductive
film
rubber
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016502559A
Other languages
Japanese (ja)
Other versions
JPWO2016114278A1 (en
Inventor
今橋 聰
聰 今橋
弘倫 米倉
弘倫 米倉
近藤 孝司
孝司 近藤
万紀 木南
万紀 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2016114278A1 publication Critical patent/JPWO2016114278A1/en
Application granted granted Critical
Publication of JP6690528B2 publication Critical patent/JP6690528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/32Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • C08L23/34Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur by chlorosulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D109/00Coating compositions based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09D109/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D111/00Coating compositions based on homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/32Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • C09D123/34Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur by chlorosulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Description

本願第1の発明は、導電性が高く、伸長、捻りおよび圧縮の外力が作用しても、高い導電率を維持できるために、伸縮性の電極や配線に好適な導電性膜に関する。
本願第2の発明は、高導電率であり、繰返し伸縮後の導電率の変化が小さく、かつ基板との密着性に優れた、電極や配線に好適な導電性膜に関する。
The first invention of the present application relates to a conductive film suitable for stretchable electrodes and wiring because it has high conductivity and can maintain high conductivity even when an external force such as extension, twist, and compression acts.
The second invention of the present application relates to a conductive film having a high conductivity, a small change in conductivity after repeated expansion and contraction, and excellent adhesion to a substrate, which is suitable for an electrode or wiring.

高性能エレクトロニクスのほとんどは、基本的に剛直で平面の形態で、シリコンやガリウム砒素などの単結晶無機材料を使用している。一方、フレキシブルな基板を用いた場合、配線の耐屈曲性が要求される。さらに、アクチュエーターやトランスデューサーの電極や、皮膚センサーなどの用途では、エラストマーなどからなる基材や誘電膜などの変形に、電極や配線が追随可能であることが要求される。すなわち、例えば、アクチュエーターでは、印加電圧の大小により誘電膜が伸縮する。このため、誘電膜の表裏に配置される電極は、誘電膜の動きを妨げないように、誘電膜の伸縮に応じて伸縮可能であることが必要である。また、伸縮可能であることに加えて、伸縮された時に電気抵抗の変化が小さいことが求められる。   Most high performance electronics are essentially rigid, planar forms and use single crystal inorganic materials such as silicon and gallium arsenide. On the other hand, when a flexible substrate is used, the wiring must have bending resistance. Further, in applications such as electrodes of actuators and transducers, and skin sensors, it is required that the electrodes and wiring be able to follow the deformation of the base material made of an elastomer or the like and the dielectric film. That is, for example, in the actuator, the dielectric film expands and contracts depending on the magnitude of the applied voltage. Therefore, the electrodes arranged on the front and back sides of the dielectric film need to be able to expand and contract according to the expansion and contraction of the dielectric film so as not to hinder the movement of the dielectric film. Further, in addition to being stretchable, it is required that the change in electric resistance when stretched is small.

また、ロボットやウェアラブル電子機器には、動力供給用や信号伝送用の電線が多数使用されているが、一般に電線自体に伸縮性がほとんどないので、ロボットや人間の動きを妨げないように余裕を持たせて電線を配置する必要があり、実用上障害となっている。したがって、伸縮可能な電線に対する要求が高まっている。
ヘルスケアの分野においても、高い伸縮性を示す導電材料が望まれる。例えば、伸縮性の導電材料の膜を用いることによって、柔軟で曲線状である人体に密着して適合できるデバイスを開発することが可能となる。これらのデバイスの用途は、電気生理学的信号の測定から、先進治療のデリバリや、人と機械のインターフェースにまで及ぶ。
In addition, many electric wires for power supply and signal transmission are used in robots and wearable electronic devices, but since the electric wires themselves generally have little elasticity, there is a margin so that they do not interfere with the movement of the robot or human. It is necessary to arrange the electric wires by holding them, which is a practical obstacle. Therefore, the demand for a stretchable electric wire is increasing.
Also in the field of healthcare, a conductive material exhibiting high elasticity is desired. For example, by using a film of a stretchable conductive material, it is possible to develop a device that can be fitted in close contact with a human body that is flexible and curved. Applications for these devices range from measuring electrophysiological signals to delivering advanced treatments and human-machine interfaces.

伸縮性の導電材料の開発における解決方法の一つは、有機導電材料の使用であるが、これまでの材料はフレキシブルであるが、伸縮可能とは言えず、曲線状の表面を覆うことができない。そのために、性能や、複雑な集積回路への集積化に対する信頼性に欠ける。他の材料、例えば金属ナノワイヤやカーボンナノチューブなどの膜はある程度有望であるが、信頼性に欠け、かつ高価であるために開発は難しい。   One of the solutions in the development of stretchable conductive materials is the use of organic conductive materials, which have been flexible, but are not stretchable and cannot cover curved surfaces. . Therefore, it lacks performance and reliability for integration into a complicated integrated circuit. Films of other materials, such as metal nanowires and carbon nanotubes, are promising to some extent, but are difficult to develop because they are unreliable and expensive.

伸縮可能な導電性膜に必要な伸長率は使われる用途によって異なる。想定されるヘルスケア、ディスプレイ、太陽電池、PFIDなどの分野での配線、アンテナ、電極などの用途では、比抵抗が1×10−3Ωcm未満であり、かつ100%程度の伸長が可能であること望まれている。一般に、塗布や印刷が可能な、樹脂中に導電性金属粉が均一に分散された導電性ペーストを塗布または印刷により成膜した導電性膜では、伸長作用を受けると、比抵抗が大きく増加してしまう。伸長時での比抵抗は、1×10−2Ωcm未満であることが望まれる。The stretch ratio required for the stretchable conductive film depends on the application. In applications such as wiring, antennas, and electrodes in the fields of supposed healthcare, displays, solar cells, PFIDs, etc., the specific resistance is less than 1 × 10 −3 Ωcm and the extension of about 100% is possible. That is desired. Generally, in a conductive film formed by applying or printing a conductive paste in which conductive metal powder is uniformly dispersed in a resin, which can be applied or printed, the specific resistance greatly increases when subjected to an elongation action. Will end up. It is desired that the specific resistance during extension is less than 1 × 10 −2 Ωcm.

また、実際の用途を想定すると、伸縮作用のみならず、捻りや圧縮などの外力が作用した時においても、比抵抗の変化が小さいことが望まれる。例えば、人体に直接、または着用する衣服に密着した配線や、ロボットの屈曲部分の配線やセンサーを想定すると、あらゆる動きにたいして、部位により、色々な方向にかつ、色々な形の外力を受け、部位によっては、繰り返し変形し、それに伴い配線自体も繰返し伸縮作用を受ける。このような状況においても、比抵抗が小さいことが望まれる。また、基材上の配線や電極は、繰返し伸縮作用を受けている間に、基材と導電性膜との密着性が小さくなり、断線などを起こす可能性がある。   Further, in consideration of the actual application, it is desired that the change in the specific resistance is small not only when the expansion and contraction action but also when an external force such as twisting or compression acts. For example, assuming wiring that is in direct contact with the human body or that is in close contact with the clothes to be worn, or wiring and sensors in the bent part of the robot, the body receives various external forces in various directions and in various directions, in response to any movement. Depending on the shape, the wire is repeatedly deformed, and the wiring itself is repeatedly expanded and contracted accordingly. Even in such a situation, it is desired that the specific resistance be small. Further, the wirings and electrodes on the base material may have a small adhesiveness between the base material and the conductive film during repeated expansion and contraction, and may cause wire breakage or the like.

伸縮可能なフレキシブル配線を開発するアプローチとして、主として2つの方法が報告されている。   Two main methods have been reported as approaches for developing stretchable flexible wiring.

1つは、波状構造を構築して、脆い材料でも伸縮性を持たせる方法である(非特許文献1参照)。この方法では、蒸着やメッキ、フォトレジスト処理などを行ってシリコーンゴム上に金属薄膜を作製する。金属薄膜は数%の伸縮しか示さないが、形状をジグザグ状または連続馬蹄状、波状の金属薄膜、または予め伸長したシリコーンゴム上に金属薄膜を形成することにより得られる皺状の金属薄膜などが伸縮性を示す。しかし、いずれも数10%伸長させると導電率が2桁以上低下する。また、シリコーンゴムは表面エネルギーが低いために、配線と基板との密着性が弱いので、伸長時に剥離し易いという欠点がある。従って、この方法では、安定した高い導電率と高い伸長性を両立するのが困難である。しかも、製造コストが高いという問題もある。   One is a method of constructing a corrugated structure so that even a brittle material can be stretched (see Non-Patent Document 1). In this method, a metal thin film is produced on silicone rubber by performing vapor deposition, plating, photoresist treatment, and the like. Although the metal thin film shows only a few percent expansion and contraction, a zigzag-shaped or continuous horseshoe-shaped, corrugated metal thin film, or a wrinkled metal thin film obtained by forming a metal thin film on a pre-stretched silicone rubber, etc. Shows elasticity. However, in both cases, the electrical conductivity decreases by two digits or more when elongated by several tens of percent. Further, since the surface energy of silicone rubber is low, the adhesion between the wiring and the substrate is weak, so that silicone rubber has a drawback that it is easily peeled off during expansion. Therefore, with this method, it is difficult to achieve both stable high conductivity and high extensibility. Moreover, there is a problem that the manufacturing cost is high.

もう一つは、導電材料とエラストマーの複合材料である。この材料の有利な点は、優れた印刷性と伸縮性である。電極や配線に使われている市販の銀ペーストは、高弾性率のバインダー樹脂に銀粉末が高充填配合されており、柔軟性に乏しく高弾性率である。伸長すると、クラックが発生し、著しく導電率が低下してしまう。そこで柔軟性を付与するために、バインダーとしてのゴムやエラストマーの検討、導電材料の充填度を下げるために、導電材料としてのアスペクト比が大きくて導電率の高い銀フレーク、カーボンナノチューブ、金属ナノワイヤなどが検討されている。銀粒子とシリコ−ンゴムの組合せ(特許文献1参照)では、シリコーンゴム基板上の導電性膜をさらにシリコーンゴムで被覆する包持部を設けることにより、伸長時のマイクロクラック発生や導電率低下を抑制している。実施例において、包持部を設けない場合には、80〜100%伸長時にマイクロクラックが発生すると記している。銀粒子とポリウレタンエマルジョンの組合せ(特許文献2参照)では、基材上に導電性膜を設けた場合に、高導電率でかつ高伸長率が報告されているが、100%伸長時の比抵抗が大きくなり、自然状態の比抵抗に対して30倍を越える増加比を示す。さらに、水系であるために、銀粒子の分散方法が限定され、十分に銀粒子の分散した導電性膜が得られにくい。一般的には、伸縮性の基材上に設けた導電性膜は、伸長時に基材自身がある程度引張応力を緩和するために、導電性膜のマイクロクラック発生が抑制され、さらに導電性膜を包持する伸縮性のカバーコートなどの包持部を設けると、より大きな伸長度においても導電性膜の損傷が抑制できる。また、カーボンナノチューブとイオン液体とフッ化ビニリデンの組合せ(特許文献3、4参照)が報告されているが、導電率が低すぎて、用途が限定される。このように、高導電率と高伸縮性の両立は難しいのが現状である。一方、ミクロンサイズの銀粉と、自己組織化した銀ナノ粒子で表面修飾したカーボンナノチューブおよびポリフッ化ビニリデンの組合せにより、印刷可能で高導電性でかつ伸縮可能な複合材料が報告されている(非特許文献2参照)。しかし、伸長率35%で破断し、しかもアスペクト比の大きいカーボンナノチューブを配合するために、塗布などにより成膜する時に、塗布方向と、それと直角方向で、導電性および機械的性質の異方性を生じる可能性があり実用上好ましくない。さらに、カーボンナノチューブの銀ナノ粒子による表面修飾は、製造が煩雑で、コストアップの要因となり好ましくない。また、実用上、導電性膜の異方性、捻り作用や圧縮作用を加えた場合の導電率の変化も重要であるが、ほとんど報告はない。   The other is a composite material of a conductive material and an elastomer. The advantages of this material are its excellent printability and stretchability. Commercially available silver pastes used for electrodes and wirings have a high elastic modulus because the binder resin having a high elastic modulus is highly filled with silver powder. When stretched, cracks occur and the conductivity is significantly reduced. Therefore, in order to give flexibility, consider rubber or elastomer as a binder, and to reduce the filling degree of the conductive material, silver flakes, carbon nanotubes, metal nanowires, etc. with a large aspect ratio and high conductivity as the conductive material Is being considered. In the combination of silver particles and silicone rubber (see Patent Document 1), by providing a holding portion that further coats the conductive film on the silicone rubber substrate with the silicone rubber, the occurrence of microcracks and a decrease in electrical conductivity at the time of extension. It's suppressed. In the examples, it is noted that microcracks are generated at 80 to 100% elongation when the holding portion is not provided. With a combination of silver particles and a polyurethane emulsion (see Patent Document 2), when a conductive film is provided on a substrate, high conductivity and high elongation rate have been reported, but the specific resistance at 100% elongation is reported. Becomes larger and shows an increase ratio of more than 30 times the specific resistance in the natural state. Furthermore, since it is water-based, the method of dispersing silver particles is limited, and it is difficult to obtain a conductive film in which silver particles are sufficiently dispersed. In general, the conductive film provided on the stretchable base material relaxes tensile stress to some extent by the base material itself when it is stretched, so that the occurrence of microcracks in the conductive film is suppressed. By providing a wrapping portion such as a stretchable cover coat for wrapping, damage to the conductive film can be suppressed even at a higher degree of extension. Also, a combination of carbon nanotubes, an ionic liquid, and vinylidene fluoride (see Patent Documents 3 and 4) has been reported, but its electrical conductivity is too low, and its use is limited. As described above, it is currently difficult to achieve both high conductivity and high elasticity. On the other hand, a printable, highly conductive and stretchable composite material has been reported by combining micron-sized silver powder, carbon nanotubes surface-modified with self-assembled silver nanoparticles, and polyvinylidene fluoride. Reference 2). However, in order to mix carbon nanotubes which have a high elongation and breakage at 35% and have a large aspect ratio, the anisotropy of electrical conductivity and mechanical properties is different between the application direction and the direction perpendicular to it when forming a film by application. May occur, which is not preferable in practical use. Further, the surface modification of carbon nanotubes with silver nanoparticles is not preferable because it complicates the production and increases the cost. Further, practically, the anisotropy of the conductive film and the change in conductivity when a twisting action or a compressing action is applied are important, but almost no report has been made.

特開2007−173226号公報JP, 2007-173226, A 特開2012−54192号公報JP 2012-54192 A 国際公開WO2009/102077号International publication WO2009 / 102077 特開2011−216562号公報JP, 2011-216562, A

Jong−Hyun Ahn and Jung Ho Je,“Stretchable electronics:materials,architectures and integrations“J.Phys.D:Appl.Phys.45(2012)103001Jong-Hyun Ahn and Jung Ho Je, "Stretchable electronics: materials, architectures and integrations" J. Phys. D: Appl. Phys. 45 (2012) 103001 Kyoung−Yong Chun,Youngseok Oh,Jonghyun Rho,Jong−Hyun Ahn,Young−Jin Kim,Hyoung Ryeol Choi and Seunghyun Baik,“Highly conductive,printable and stretchable composite films of carbon nanotubes and silver”Nature Nanotechnology,5,853(2010)Kyoung-Yong Chun, Youngseok Oh, Jonghyun Rho, Jong-Hyun Ahn, Young-Jin Kim, Hyoung Ryeol Choi and Seunghyun Baik, "Highly conductive, printable and stretchable composite films of carbon nanotubes and silver" Nature Nanotechnology, 5,853 ( 2010)

本発明は、かかる従来技術の課題を背景になされたものであり、本願第1の発明の目的は、高導電率で、基材および導電性膜を包持する包持部を設けない自立膜の状態でも、伸縮、捻り、圧縮可能でしかも均質で異方性のない導電性膜を提供することにある。
本願第2の発明の目的は、高導電率で、伸縮可能でしかも繰返し伸縮後においても導電率の低下の小さく、基板との密着性の優れる導電性膜を提供することにある。
The present invention has been made against the background of the problems of the prior art, and an object of the first invention of the present application is a self-supporting film having high conductivity and not including a wrapping part for wrapping a base material and a conductive film. In order to provide a conductive film that can be expanded, contracted, twisted, and compressed even in this state, and that is homogeneous and has no anisotropy.
It is an object of the second invention of the present application to provide a conductive film having high conductivity, capable of expanding and contracting, having a small decrease in conductivity even after repeated expansion and contraction, and having excellent adhesion to a substrate.

本発明者は、かかる目的を達成するために鋭意検討した結果、以下の手段により上記課題を解決できることを見出し、本発明に到達した。
すなわち、本願第1の発明は以下の(1)〜(7)の構成からなる。
(1)導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が 1.0×10−3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、基材および導電性膜を包持する包持部を設けない自立膜の状態で、元の長さの100%伸長した時の比抵抗増加比が10未満であることを特徴とする導電性膜。
(2)直交する2つの方向においていずれも元の長さの36%以上伸張可能であり、直交する2つの方向で元の長さの100%伸長した時、同じ伸長率における両者の比抵抗の差が10%未満であることを特徴とする(1)に記載の導電性膜。
(3)導電性膜の捻り試験において、導電性膜平面に対して、捻り角3600°まで膜破断を起こさず導電性膜を捻ることが可能であり、捻り角が0°から3600°の場合に比抵抗が1.0×10−2Ωcm未満であることを特徴とする(1)〜(2)のいずれかに記載の導電性膜。
(4)導電性膜の厚み方向に10%圧縮した時に、比抵抗が1.0×10−3Ωcm未満であることを特徴とする(1)〜(3)のいずれかに記載の導電性膜。
(5)導電性金属粉(A)が少なくとも銀、金、白金、パラジウム、銅、ニッケル、及びアルミニウムからなる群より選ばれる少なくとも1種以上であることを特徴とする(1)〜(4)のいずれかに記載の導電性膜。
(6)樹脂(B)が、少なくともニトリル基を含有するゴム、アクリルゴム、ブチルゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムからなる群より選ばれる少なくとも1種以上であることを特徴とする(1)〜(5)のいずれかに記載の導電性膜。
(7)塗布または印刷により作製されることを特徴とする(1)〜(6)のいずれかに記載の導電性膜。
The present inventor, as a result of extensive studies aimed at achieving such an object, found that the above-mentioned problems can be solved by the following means, and arrived at the present invention.
That is, the first invention of the present application comprises the following configurations (1) to (7).
(1) A conductive film containing a conductive metal powder (A) and a resin (B), having a specific resistance of less than 1.0 × 10 −3 Ωcm and having an original length of 36 in at least one direction. % Or more, and the specific resistance increase ratio is less than 10 when stretched by 100% of the original length in the state of the self-supporting film without the wrapping part for wrapping the base material and the conductive film. A conductive film characterized by.
(2) Both of the two directions that are orthogonal to each other can be expanded by 36% or more of the original length. When 100% of the original length is expanded in the two directions that are orthogonal to each other, The conductive film according to (1), wherein the difference is less than 10%.
(3) In the twist test of the conductive film, the conductive film can be twisted with respect to the plane of the conductive film up to a twist angle of 3600 ° without causing film breakage, and the twist angle is from 0 ° to 3600 °. 2. The conductive film according to any one of (1) to (2), which has a specific resistance of less than 1.0 × 10 −2 Ωcm.
(4) The electrical conductivity according to any one of (1) to (3), which has a specific resistance of less than 1.0 × 10 −3 Ωcm when compressed by 10% in the thickness direction of the electrically conductive film. film.
(5) The conductive metal powder (A) is at least one selected from the group consisting of at least silver, gold, platinum, palladium, copper, nickel, and aluminum (1) to (4). The conductive film according to any one of 1.
(6) The resin (B) is at least one selected from the group consisting of rubber containing at least a nitrile group, acrylic rubber, butyl rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber (1) The conductive film according to any one of to (5).
(7) The conductive film as described in any one of (1) to (6), which is produced by coating or printing.

本願第2の発明は以下の(8)〜(16)の構成からなる。
(8)導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が1.0×10−3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、元の長さの20%伸長後に元の長さに戻す伸縮を1000回繰り返した後の比抵抗が1.0×10−2Ωcm未満であることを特徴とする導電性膜。
(9)元の長さの3倍に伸長した時に、比抵抗が1.0×10Ωcm未満となることを特徴とする(8)に記載の導電性膜。
(10)元の長さの10倍に伸長した時に、破断しないことを特徴とする(8)〜(9)のいずれかに記載の導電性膜。
(11)導電性金属粉(A)が少なくとも銀、金、白金、パラジウム、銅、ニッケル、及びアルミニウムからなる群より選ばれる少なくとも1種以上であることを特徴とする(8)〜(10)のいずれかに記載の導電性膜。
(12)樹脂(B)が、少なくともニトリル基を含有するゴム、アクリルゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種以上であることを特徴とする(8)〜(11)のいずれかに記載の導電性膜。
(13)塗布または印刷により作製されることを特徴とする(8)〜(12)のいずれかに記載の導電性膜。
(14)前記(8)〜(13)のいずれかに記載の導電性膜と基材層からなり、元の長さの36%以上伸長した状態において、100升目による碁盤目試験法において、95/100以上が残存することを特徴とする導電性複合膜。
(15)100升目による碁盤目試験法において、100/100が残存することを特徴とする(14)に記載の導電性複合膜。
(16)元の長さの20%伸長後に、元の長さに戻す伸縮を1000回繰り返した後に、100升目による碁盤目試験法において、95/100以上が残存することを特徴とする(14)〜(15)のいずれかに記載の導電性複合膜。
The second invention of the present application has the following configurations (8) to (16).
(8) A conductive film containing a conductive metal powder (A) and a resin (B), having a specific resistance of less than 1.0 × 10 −3 Ωcm and having an original length of 36 in at least one direction. % Or more, and the specific resistance after repeating expansion and contraction 1000 times of returning to the original length after extending 20% of the original length is less than 1.0 × 10 −2 Ωcm. Membrane.
(9) The conductive film according to (8), which has a specific resistance of less than 1.0 × 10 3 Ωcm when extended to three times the original length.
(10) The conductive film according to any one of (8) to (9), which does not break when extended to 10 times the original length.
(11) The conductive metal powder (A) is at least one selected from the group consisting of at least silver, gold, platinum, palladium, copper, nickel, and aluminum (8) to (10). The conductive film according to any one of 1.
(12) The resin (B) is at least one selected from the group consisting of rubber containing at least a nitrile group, acrylic rubber, butyl rubber, chlorosulfonated polyethylene rubber, and chloroprene rubber (8) )-(11) The conductive film according to any one of.
(13) The conductive film as described in any of (8) to (12), which is produced by coating or printing.
(14) The conductive film according to any one of (8) to (13) and the base material layer, and in a state of being extended by 36% or more of the original length, in a cross-cut test method with 100 squares, 95 / 100 or more remains, The electroconductive composite film characterized by the above-mentioned.
(15) The conductive composite film as described in (14), wherein 100/100 remains in the cross-cut test method with 100 squares.
(16) It is characterized in that 95/100 or more remain in the cross-cut test method with 100 squares after repeating expansion and contraction to return to the original length 1000 times after extending 20% of the original length (14 ) To (15), the conductive composite film according to any one of (1) to (15).

本発明の導電性膜によれば、樹脂(A)中に導電性金属粉(B)が均一に分散された導電性ペーストを塗布または印刷により作製でき、導電性膜中に有効な導電性ネットワークが形成されているために、伸長作用、捻り作用、圧縮作用、繰返し伸縮作用を受けても、導電性ネットワークが破断しないので導電率の低下が小さく、また導電率や伸長性に異方性も小さい。   According to the conductive film of the present invention, a conductive paste in which the conductive metal powder (B) is uniformly dispersed in the resin (A) can be prepared by coating or printing, and an effective conductive network in the conductive film can be obtained. Due to the formation of the structure, even if subjected to elongation, twisting, compression, or repeated expansion and contraction, the conductivity network does not break, so the decrease in conductivity is small, and the conductivity and extensibility are anisotropic. small.

以下、本発明の実施形態の導電性膜について説明する。
本発明の導電性膜は、導電性金属粉(A)が及び樹脂(B)を含有した導電性膜であり、その導電性は、絶縁性の樹脂(B)中における、導電性金属粉(A)の導電性ネットワークの形成に依存する。一般に導電性金属粉(A)の配合量を増加させると、ある閾値以上で導電性ネットワークを形成し始める。導電性膜に外力がかかって、この導電性ネットワークが切断または破壊されると、膜の導電性が減少または喪失する。従って、導電性ネットワークの外力に対する抵抗力を付与することが重要である。以下に、本発明の導電性膜の外力に対する性能について述べる。
Hereinafter, the conductive film according to the embodiment of the present invention will be described.
The conductive film of the present invention is a conductive film in which the conductive metal powder (A) and the resin (B) are contained, and the conductivity is the conductive metal powder (in the insulating resin (B) ( It depends on the formation of the conductive network of A). Generally, when the compounding amount of the conductive metal powder (A) is increased, a conductive network starts to be formed at a certain threshold value or more. When an external force is applied to the conductive film to break or break the conductive network, the conductivity of the film is reduced or lost. Therefore, it is important to impart resistance to the external force of the conductive network. The performance of the conductive film of the present invention against external force will be described below.

(1)伸長性
伸縮可能な導電性膜に必要な伸長率は使われる用途によって異なる。想定されるヘルスケア、ディスプレイ、太陽電池、PFIDなどの分野での配線、アンテナ、電極などの用途では、比抵抗が1.0×10−3Ωcm未満で、かつ5%から100%程度の伸長率が望まれている。本発明の伸縮可能な導電性膜は、少なくとも一方向において元の長さの36%以上伸張可能であり、36%以上伸長しても導電率の低下が小さい。本発明の導電性膜は導電性膜を包持する保持部を設けない自立膜の状態で100%伸張時でも、後述の評価方法による比抵抗増加比は10未満であり、好ましくは8未満、より好ましくは5未満であり、好ましくは、100%伸長時でも、比抵抗は、1.0×10−2Ωcm未満である。
(1) Stretchability The stretch rate required for a stretchable conductive film varies depending on the intended use. In applications such as wiring, antennas, and electrodes in the fields of supposed healthcare, displays, solar cells, PFIDs, etc., the specific resistance is less than 1.0 × 10 −3 Ωcm, and the growth is from 5% to 100%. Rate is desired. The stretchable conductive film of the present invention can be stretched by 36% or more of the original length in at least one direction, and even if it is stretched by 36% or more, the decrease in conductivity is small. The conductive film of the present invention has a specific resistance increase ratio of less than 10 according to the evaluation method described below, preferably less than 8, even when 100% stretched in a state of a self-supporting film that does not have a holding portion that encloses the conductive film. It is more preferably less than 5, and preferably, even at 100% elongation, the specific resistance is less than 1.0 × 10 −2 Ωcm.

(2)均質性
本発明の導電性膜は、導電性ペーストを塗布またはスクリーン印刷などの印刷手段によって作製され、多くの用途において、異方性がないことが望まれる。方向により、導電性および機械的性質が異なると、配線や電極としては好ましくない。カーボンナノチューブやカーボンナノフォーン等の高アスペクト比の導電性フィラーや非導電性フィラーを配合すると、例えば塗布の場合、塗布方向に導電性フィラーや非導電性フィラーが配向してしまい、導電性や機械的性質が、塗布方向とそれと直角方向の間で異なることになり、好ましくない。本発明の導電性膜は、直交する2つの方向においていずれも36%以上伸張可能であり、直交する2つの方向で元の長さの36%以上伸長した時の、同じ伸張率における両者の比抵抗の差は10%以内が好ましく、5%以内がより好ましい。
(2) Homogeneity The conductive film of the present invention is produced by a printing means such as coating a conductive paste or screen printing, and is desired to have no anisotropy in many applications. If the conductivity and mechanical properties are different depending on the direction, it is not preferable as a wiring or an electrode. When a conductive filler or a non-conductive filler having a high aspect ratio such as carbon nanotubes or carbon nanophones is mixed, for example, in the case of coating, the conductive filler or the non-conductive filler is oriented in the coating direction, so that the conductive or mechanical The physical properties differ between the application direction and the direction perpendicular thereto, which is not preferable. The conductive film of the present invention can be stretched by 36% or more in each of the two directions orthogonal to each other, and the ratio of the two at the same stretch rate when stretched by 36% or more of the original length in the two directions orthogonal to each other. The difference in resistance is preferably within 10%, more preferably within 5%.

(3)捻り性
導電性膜は伸長作用の他に、用途によっては捻り作用を外力として受ける。導電性膜を捻る試験において、例えば幅20mm、長さ50mm、厚さ100μmの導電膜の場合に、下端を固定し、上端を10回転(3600°)捻った時に捻り角3600°まで膜破断を起こさず導電性膜を捻ることが可能であり、比抵抗が1.0×10−2Ωcm未満であることが好ましい。
(3) Twistability The conductive film receives a twisting action as an external force depending on its use in addition to the stretching action. In a test of twisting a conductive film, for example, in the case of a conductive film having a width of 20 mm, a length of 50 mm and a thickness of 100 μm, the lower end is fixed, and when the upper end is twisted 10 times (3600 °), the film is broken up to a twist angle of 3600 °. The conductive film can be twisted without causing it, and the specific resistance is preferably less than 1.0 × 10 −2 Ωcm.

(4)圧縮性
導電性膜は伸長作用の他に、用途によっては圧縮作用を外力として受ける。厚み方向に10%圧縮時に比抵抗が1.0×10−3Ωcm未満であることが好ましい。
(4) Compressibility In addition to the stretching action, the conductive film receives a compression action as an external force depending on the application. The specific resistance is preferably less than 1.0 × 10 −3 Ωcm when compressed by 10% in the thickness direction.

(5)繰返し伸縮性
導電性膜を所定の割合だけ伸長させて、次に元の長さに戻す操作を繰り返した場合の導電率の変化も重要である。所定の伸長(例えば20%伸長率)時に導電性膜内では引張応力は主として絶縁性の樹脂が歪むことにより導電性ネットワークに切断や破壊が生じない場合、その後に元の長さに戻した時でも導電性ネットワークが変化せず、導電性膜の比抵抗は最初の自然状態の比抵抗とあまり変わらない。しかし、実際には、繰返し伸縮作用を受けると、導電性ネットワーク構造が全体または部分的に壊れてしまい、伸縮回数とともに比抵抗が増加したり、場合によっては、マイクロクラックが発生したり、遂には破断に至る。本発明の導電性膜は、繰返し伸縮に対する高度な耐性を有する導電性膜であり、20%伸長を1000回繰り返した後の比抵抗は、比抵抗が1.0×10−2Ωcm未満であり、好ましくは5.0×10−3Ωcm未満である。
(5) Repeatable Stretchability It is also important to change the conductivity when the operation of stretching the conductive film by a predetermined ratio and then returning it to the original length is repeated. When the tensile stress in the conductive film at a predetermined elongation (for example, 20% elongation) does not break or break the conductive network due to the distortion of the insulating resin, when the original length is restored. However, the conductive network does not change, and the specific resistance of the conductive film is not so different from the initial specific resistance. However, in actuality, when subjected to repeated expansion and contraction, the conductive network structure is broken in whole or in part, the specific resistance increases with the number of expansions and contractions, and in some cases, microcracks occur, and finally, To break. The conductive film of the present invention is a conductive film having a high resistance to repeated expansion and contraction, and the specific resistance after repeating 20% elongation 1000 times is less than 1.0 × 10 −2 Ωcm. , Preferably less than 5.0 × 10 −3 Ωcm.

(6)基板への密着性
本発明の導電性複合膜は、導電性膜と基材層からなる導電性複合膜であって、自然状態のみならず、伸長作用を受けている時も導電性膜と基材がとの密着性に優れる。密着性が悪いと、伸長時に基材上の配線や電極が断線やショートという問題を生じる可能性がある。密着性試験としては、一般に碁盤目試験、剥離試験、鉛筆引っかき法、エリクセン試験、屈曲試験などが知られているが、この中で、100升目による碁盤目試験は操作が極めて簡単で、塗膜の実際の損傷脱落機構に類似しており、評価法として好ましい。塗膜にカミソリで基材まで届く直角に交差する11本の直線をカットして碁盤目100個を描き、碁盤目上に粘着テープを強く圧着し、テープをはがした後の碁盤目のはがれ状態を観察する。本発明の導電性複合膜は、100升目による碁盤目試験において、(試験で剥離せず残存した枡目数)/(試験前の枡目数)としたときに、95/100以上が残存し、好ましくは100/100が残存する。
(6) Adhesion to Substrate The conductive composite film of the present invention is a conductive composite film composed of a conductive film and a base material layer, and is not only in a natural state but also in a stretched state. Excellent adhesion between the film and substrate. If the adhesion is poor, there is a possibility that the wiring and electrodes on the base material may be broken or short-circuited during extension. As the adhesion test, generally, a cross-cut test, a peeling test, a pencil scratching method, an Erichsen test, a bending test and the like are known. Among them, the cross-cut test with 100 squares is extremely easy to operate and the coating film It is similar to the actual mechanism of loss of damage and is preferable as an evaluation method. Cut the 11 straight lines that cross at right angles to the base material with a razor on the coating film, draw 100 crosses, strongly press the adhesive tape on the cross, peel off the cross after peeling the tape Observe the condition. The conductive composite film of the present invention, in a cross-cut test with 100 squares, 95/100 or more remained when (the number of squares remaining without peeling in the test) / (the number of squares before the test) , Preferably 100/100 remains.

(7)高伸長時の導電率および機械的特性
伸縮可能な導電性膜は、用途によってはまれに大きな伸長作用をうける可能性があり、その際にも、破断することなく、好ましくは導電性をある程度維持することが要求される。本発明の導電性膜は3倍伸長しても、比抵抗が1.0×10Ωcm未満であることが好ましく、また10倍伸長しても破断しないことがより好ましい。
(7) Electrical Conductivity and Mechanical Properties at High Elongation The stretchable conductive film may be subjected to a large elongation action in rare cases depending on the application, and at that time, it is preferably conductive without breaking. Is required to be maintained to some extent. The conductive film of the present invention preferably has a specific resistance of less than 1.0 × 10 3 Ωcm even when stretched 3 times, and more preferably does not break even when stretched 10 times.

以下、本発明の導電性膜の実施形態について、順に説明する。
本発明の導電性膜は、導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、好ましくは導電性金属粉(A)が樹脂(B)中に均一に分散された導電性膜であって、導電性金属粉(A)および樹脂(B)は特に限定されないが、以下に好ましい実施形態を示す。
Hereinafter, embodiments of the conductive film of the present invention will be described in order.
The conductive film of the present invention is a conductive film containing a conductive metal powder (A) and a resin (B), and preferably the conductive metal powder (A) is uniformly dispersed in the resin (B). In the case of a conductive film, the conductive metal powder (A) and the resin (B) are not particularly limited, but preferred embodiments will be shown below.

導電性金属粉(A)は形成される導電性膜や導電性パターンにおいて導電性を付与するために用いられる。   The conductive metal powder (A) is used for imparting conductivity to the conductive film or conductive pattern to be formed.

導電性金属粉(A)としては、銀粉、金粉、白金粉、パラジウム粉等の貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉等の卑金属粉が好ましい。また、卑金属やシリカ等の無機物からなる異種粒子を銀等の貴金属でめっきしためっき粉、銀等の貴金属で合金化した卑金属粉等が挙げられる。これらの金属粉は、単独で用いてもよく、また、併用してもよい。これらの中で、銀粉および/または銅粉を主成分(50重量%以上)とするものが、高い導電性を示す塗膜を得やすい点および価格の点で特に好ましい。銀粉は導電性、加工性、信頼性などから特に好ましい。   The conductive metal powder (A) is preferably a noble metal powder such as silver powder, gold powder, platinum powder or palladium powder, or a base metal powder such as copper powder, nickel powder, aluminum powder or brass powder. Further, there may be mentioned a plating powder obtained by plating different particles made of an inorganic substance such as a base metal or silica with a noble metal such as silver, a base metal powder alloyed with a noble metal such as silver, and the like. These metal powders may be used alone or in combination. Among these, those containing silver powder and / or copper powder as a main component (50% by weight or more) are particularly preferable from the viewpoint of easily obtaining a coating film having high conductivity and the cost. Silver powder is particularly preferable in terms of conductivity, processability, reliability and the like.

導電性金属粉(A)の形状の例としては、公知のフレーク状(リン片状)、球状、樹枝状(デンドライト状)、凝集状(球状の1次粒子が3次元状に凝集した形状)などを挙げることができる。これらの中で、例えば銀粉の場合、不定形凝集銀粉やフレーク状銀粉が好ましく、形成される導電性膜や導電性パターンにおいて導電性を付与するために用いられる。不定形凝集銀粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集銀粉およびフレーク状銀粉は、球状銀粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成でき、導電性膜が伸長、捻り、あるいは圧縮などの外力を受けた状態でも導電性ネットワークを維持できるので好ましい。不定形凝集銀粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。   Examples of the shape of the conductive metal powder (A) are known flakes (scaly particles), spherical particles, dendritic particles (dendritic particles), and aggregates (spherical primary particles are three-dimensionally aggregated). And so on. Among these, for example, in the case of silver powder, irregular-shaped agglomerated silver powder and flake-shaped silver powder are preferable, and they are used to impart conductivity to the conductive film or conductive pattern to be formed. The irregular-shaped aggregated silver powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles. Amorphous agglomerated silver powder and flake-shaped silver powder have a larger specific surface area than spherical silver powder, etc., so that a conductive network can be formed even with a low filling amount, and the conductive film is subjected to external forces such as stretching, twisting, or compression. However, it is preferable because the conductive network can be maintained. Since the irregular-shaped agglomerated silver powder is not in a monodisperse form, the particles are in physical contact with each other, so that a conductive network work is easily formed, which is more preferable.

導電性金属粉(A)の粒子径は特に限定されないが、微細パターン性を付与するという観点から、平均径が0.5〜10μmであるものが好ましい。平均径が10μmより大きい金属粉を用いた場合には、形成されたパターンの形状が悪く、パターン化した細線の解像力が低下する可能性がある。平均径が0.5μmより小さくなると、大量配合すると、金属粉の凝集力が増加して印刷性が悪くなる場合があり、また高価であるためにコスト的に好ましくない。   The particle diameter of the conductive metal powder (A) is not particularly limited, but an average diameter of 0.5 to 10 μm is preferable from the viewpoint of imparting fine patternability. When a metal powder having an average diameter of more than 10 μm is used, the shape of the formed pattern is bad and the resolution of the patterned fine line may be reduced. If the average diameter is smaller than 0.5 μm, when a large amount is mixed, the cohesive force of the metal powder may be increased to deteriorate the printability, and it is expensive, which is not preferable in terms of cost.

導電性ペースト中の導電性金属粉(A)の配合量は、導電率と伸縮性を考慮して決定される。固形分中の体積%が大きいと、導電率は高くなるが、ゴムの量が少なくなって伸縮性が悪くなる。体積%が小さいと、伸縮性は良くなるが、導電性ネットワークが形成し難くなって導電率は低下する。従って、導電性ペーストの固形分中の導電性金属粉(A)の配合量は20〜50体積%(70〜90重量%)であり、25〜40体積%(78〜88重量%)が好ましい。なお、該固形分中の体積%は、ペーストに含まれる各成分の各固形分の重量を計測し、(各固形分の重量÷各固形分の比重)を計算して各成分の固形分の体積を算出することによって求めることができる。   The blending amount of the conductive metal powder (A) in the conductive paste is determined in consideration of conductivity and elasticity. When the volume% in the solid content is large, the conductivity is high, but the amount of rubber is small and the elasticity is poor. When the volume% is small, the elasticity is improved, but it is difficult to form a conductive network and the conductivity is lowered. Therefore, the content of the conductive metal powder (A) in the solid content of the conductive paste is 20 to 50% by volume (70 to 90% by weight), preferably 25 to 40% by volume (78 to 88% by weight). . The volume% of the solid content is determined by measuring the weight of each solid content of each component contained in the paste and calculating (weight of each solid content / specific gravity of each solid content). It can be determined by calculating the volume.

本発明における導電性膜には、導電率の向上や印刷性の改良などの目的で、導電性金属粉として金属ナノ粒子をさらに配合することができる。金属ナノ粒子は、導電性ネットワーク間での導電性付与の機能があるために導電率の向上が期待できる。また、印刷性改良のための導電性ペーストのレオロジー調節の目的にも配合することができる。金属ナノ粒子の平均粒径は2〜100nmが好ましい。具体的には、銀、ビスマス、白金、金、ニッケル、スズ、銅、亜鉛が挙げられ、導電性の観点から、銅、銀、白金、金が好ましく、銀及び/又は銅を主成分(50重量%以上)とするものが特に好ましい。   The conductive film of the present invention may further contain metal nanoparticles as a conductive metal powder for the purpose of improving conductivity and printability. Since the metal nanoparticles have a function of imparting conductivity between the conductive networks, improvement in conductivity can be expected. Further, it can be blended for the purpose of adjusting the rheology of the conductive paste for improving printability. The average particle size of the metal nanoparticles is preferably 2 to 100 nm. Specific examples thereof include silver, bismuth, platinum, gold, nickel, tin, copper, and zinc. From the viewpoint of conductivity, copper, silver, platinum, and gold are preferable, and silver and / or copper are the main components (50 It is particularly preferable that the amount is at least wt%.

金属ナノ粒子も一般に高価であるために、できるだけ少量であることが好ましい。導電性ペーストの固形分中の金属ナノ粒子の配合量は0.5〜5体積%が好ましい。   Since metal nanoparticles are also generally expensive, it is preferable that the amount is as small as possible. The compounding amount of the metal nanoparticles in the solid content of the conductive paste is preferably 0.5 to 5% by volume.

樹脂(B)としては、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられるが、膜の伸縮性を発現させるためには、ゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、アクリルゴム、ブチルゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。   Examples of the resin (B) include a thermoplastic resin, a thermosetting resin, rubber and the like, but rubber is preferable in order to exhibit the stretchability of the film. Examples of the rubber include urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfide rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene. Examples thereof include rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, acrylic rubber, butyl rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.

樹脂(B)は、導電性金属粉(A)の均一な分散を実現するために、導電性金属粉(B)との良好な親和性が求められる。ニトリル基は金属との高い親和性を有し、ニトリル基の金属粒子への強い親和性のために、導電性金属粉(B)とも親和性が増して、導電性発現に有効で、かつ外力に切断または破壊されにくい導電性ネットワークを形成できる。したがって樹脂(B)としてニトリル基を含有するゴムを含有することが好ましい。その結果、本発明の導電性膜は、高導電率であり、伸長、捻り、圧縮などの外力に強いために、外力の作用時にも高導電率を保持できる。金属粉(B)は、平均粒径0.5μm〜10μmであることが好ましく、フレーク状金属粉、または凝集状金属粉から選ばれることが好ましい。それに加えて、さらに平均粒径が100nm以下の金属ナノ粒子を含むことができる。   The resin (B) is required to have good affinity with the conductive metal powder (B) in order to achieve uniform dispersion of the conductive metal powder (A). The nitrile group has a high affinity for metals, and the strong affinity of the nitrile group for metal particles also increases the affinity for the conductive metal powder (B), which is effective for developing conductivity and exerts an external force. It is possible to form a conductive network that is not easily cut or destroyed. Therefore, it is preferable to contain a rubber containing a nitrile group as the resin (B). As a result, the conductive film of the present invention has high conductivity and is strong against external force such as extension, twist, and compression, so that it can maintain high conductivity even when an external force acts. The metal powder (B) preferably has an average particle size of 0.5 μm to 10 μm, and is preferably selected from flake-shaped metal powder or agglomerated metal powder. In addition, metal nanoparticles having an average particle size of 100 nm or less can be further included.

ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、アクリロニトリルブタジエン共重合体ゴム中の結合アクリロニトリル量は18〜50重量%が好ましく、40〜50重量%が特に好ましい。   The nitrile group-containing rubber is not particularly limited as long as it is a nitrile group-containing rubber or elastomer, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile. When the amount of bound acrylonitrile is large, the affinity with metals increases, but the rubber elasticity that contributes to stretchability decreases conversely. Therefore, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by weight, particularly preferably 40 to 50% by weight.

導電性ペースト中の樹脂(B)の配合量において、固形分中の体積%が小さいと、導電率は高くなるが、伸縮性が悪くなる。一方、体積%が大きいと、伸縮性は良くなるが、導電率は低下する。従って、導電性ペーストの固形分中の樹脂(A)の配合量は50〜80体積%(10〜30重量%)であり、60〜75体積%(12〜22重量%)が好ましい。   In the amount of the resin (B) blended in the conductive paste, when the volume% in the solid content is small, the conductivity is high, but the elasticity is poor. On the other hand, when the volume% is large, the elasticity is improved, but the conductivity is lowered. Therefore, the compounding amount of the resin (A) in the solid content of the conductive paste is 50 to 80% by volume (10 to 30% by weight), and preferably 60 to 75% by volume (12 to 22% by weight).

なお、本発明の導電性膜を形成する導電性ペーストには、伸縮可能な導電性膜としての性能や塗布性や印刷性を損なわない範囲で他の樹脂が配合されていても良い。   It should be noted that the conductive paste forming the conductive film of the present invention may be blended with other resins within a range that does not impair the performance of the stretchable conductive film, the coating property and the printability.

本発明の導電性膜には、導電性および伸縮性、均質性、捻り性、圧縮性を損なわない範囲で無機物を添加することができる。無機物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブテン、炭化カルシウム、ダイヤモンドカーボンラクタム等の各種炭化物;窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物;酸化チタン(チタニア)、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、シリカ、コロイダルシリカ等の各種酸化物;チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物;二硫化モリブデン等の硫化物;フッ化マグネシウム、フッ化炭素等の各種フッ化物;ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸;その他、滑石、ベントナイト、タルク、炭酸カルシウム、ベントナイト、カオリン、ガラス繊維、雲母等を用いることができる。これらの無機物を添加することによって、印刷性や耐熱性、さらには機械的特性や長期耐久性を向上させることが可能となる場合がある。   An inorganic substance can be added to the conductive film of the present invention within a range that does not impair the conductivity, stretchability, homogeneity, twistability, and compressibility. As the inorganic substance, various carbides such as silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide and diamond carbon lactam; boron nitride , Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; various oxidations such as titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica and colloidal silica Compounds; various titanic acid compounds such as calcium titanate, magnesium titanate and strontium titanate; sulfides such as molybdenum disulfide; various fluorides such as magnesium fluoride and carbon fluoride; aluminum stearate, calcium stearate Um, zinc stearate, various metal soaps such as magnesium stearate and the like; may be used talc, bentonite, talc, calcium carbonate, bentonite, kaolin, glass fiber, mica or the like. By adding these inorganic substances, it may be possible to improve printability, heat resistance, mechanical properties and long-term durability.

また、チキソ性付与剤、消泡剤、難燃剤、粘着付与剤、加水分解防止剤、レベリング剤、可塑剤、酸化防止剤、紫外線吸収剤、レーザー光吸収剤、難燃剤、顔料、染料などを配合することができる。   Also, thixotropic agents, defoamers, flame retardants, tackifiers, hydrolysis inhibitors, leveling agents, plasticizers, antioxidants, ultraviolet absorbers, laser light absorbers, flame retardants, pigments, dyes, etc. It can be blended.

本発明の導電性膜を形成する導電性ペーストには有機溶剤を含有することが好ましい。使用する有機溶剤は、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が150℃以上、290℃未満である。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、低温乾燥工程が求められる場合(例えば150℃以下)において、溶剤が塗膜中に多量に残存する可能性があり、塗膜の信頼性低下を引き起こす懸念がある。   The conductive paste forming the conductive film of the present invention preferably contains an organic solvent. The organic solvent used preferably has a boiling point of 100 ° C or higher and lower than 300 ° C, more preferably 150 ° C or higher and lower than 290 ° C. If the boiling point of the organic solvent is too low, the solvent may volatilize during the paste manufacturing process or the paste is used, and the component ratio of the conductive paste may change. On the other hand, if the boiling point of the organic solvent is too high, a large amount of the solvent may remain in the coating film when a low temperature drying step is required (for example, 150 ° C. or lower), which lowers the reliability of the coating film. I have a concern.

このような高沸点溶剤としては、シクロヘキサノン、トルエン、イソホロン、γ−ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン(沸点:260〜280℃)、トリアミルベンゼン(沸点:300〜320℃)、n−ドデカノール(沸点:255〜29℃)、ジエチレングリコール(沸点:245℃)、エチレングリコールモノエチルエーテルアセテート(沸点:145℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)、ジエチレングリコールジブチルエーテル(沸点:255℃)、ジエチレングリコールモノアセテート(沸点:250℃)、トリエチレングリコールジアセテート(沸点:300℃)トリエチレングリコール(沸点:276℃)、トリエチレングリコールモノメチルエーテル(沸点:249℃)、トリエチレングリコールモノエチルエーテル(沸点:256℃)、トリエチレングリコールモノブチルエーテル(沸点:271℃)、テトラエチレングリコール(沸点:327℃)、テトラエチレングリコールモノブチルエーテル(沸点:304℃)、トリプロピレングリコール(沸点:267℃)、トリプロピレングリコールモノメチルエーテル(沸点:243℃)、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート(沸点:253℃)などが挙げられる。また、石油系炭化水素類としては、新日本石油社製のAFソルベント4号(沸点:240〜265℃)、5号(沸点:275〜306℃)、6号(沸点:296〜317℃)、7号(沸点:259〜282℃)、および0号ソルベントH(沸点:245〜265℃)なども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、導電性ペーストが印刷などに適した粘度となるように適宜含有される。   Examples of such a high boiling point solvent include cyclohexanone, toluene, isophorone, γ-butyrolactone, benzyl alcohol, Solvesso 100, 150, 200 manufactured by Exxon Chemical, propylene glycol monomethyl ether acetate, terpionel, butyl glycol acetate, and diamylbenzene ( Boiling point: 260-280 ° C), triamylbenzene (boiling point: 300-320 ° C), n-dodecanol (boiling point: 255-29 ° C), diethylene glycol (boiling point: 245 ° C), ethylene glycol monoethyl ether acetate (boiling point: 145) ° C), diethylene glycol monoethyl ether acetate (boiling point 217 ° C), diethylene glycol monobutyl ether acetate (boiling point: 247 ° C), diethylene glycol dibutyl ether (boiling point) : 255 ° C.), diethylene glycol monoacetate (boiling point: 250 ° C.), triethylene glycol diacetate (boiling point: 300 ° C.) triethylene glycol (boiling point: 276 ° C.), triethylene glycol monomethyl ether (boiling point: 249 ° C.), triethylene Glycol monoethyl ether (boiling point: 256 ° C), triethylene glycol monobutyl ether (boiling point: 271 ° C), tetraethylene glycol (boiling point: 327 ° C), tetraethylene glycol monobutyl ether (boiling point: 304 ° C), tripropylene glycol (boiling point) : 267 ° C.), tripropylene glycol monomethyl ether (boiling point: 243 ° C.), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (boiling point: 253 ° C.) and the like. Further, as petroleum hydrocarbons, AF solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corp. , No. 7 (boiling point: 259 to 282 ° C.), and No. 0 solvent H (boiling point: 245 to 265 ° C.) and the like, and two or more of them may be included as necessary. Such an organic solvent is appropriately contained so that the conductive paste has a viscosity suitable for printing and the like.

導電性ペースト中の有機溶剤の含有量は、導電性金属粉の分散方法や、導電性膜形成方法に適合する導電性ペーストの粘度や乾燥方法などによって決められる。本発明の導電性膜を形成するための導電性ペーストは、粉体を液体に分散させる従来公知の方法を用いることによって樹脂中に導電性金属粉を均一に分散することができる。例えば、金属粉、導電材料の分散液、樹脂溶液を混合した後、超音波法、ミキサー法、3本ロールミル法、ボールミル法などで均一に分散することができる。これらの手段は、複数を組み合わせて使用することも可能である。   The content of the organic solvent in the conductive paste is determined by the method of dispersing the conductive metal powder, the viscosity of the conductive paste suitable for the method of forming the conductive film, the drying method, and the like. The conductive paste for forming the conductive film of the present invention can uniformly disperse the conductive metal powder in the resin by using a conventionally known method of dispersing powder in a liquid. For example, metal powder, a dispersion liquid of a conductive material, and a resin solution can be mixed and then uniformly dispersed by an ultrasonic method, a mixer method, a three-roll mill method, a ball mill method, or the like. It is also possible to use a plurality of these means in combination.

本発明の導電性膜を形成するための導電性ペーストを基材上に塗布または印刷して塗膜を形成し、次いで塗膜に含まれる有機溶剤を揮散させ乾燥させることにより、導電性膜または導電性パターンを形成することができる。また、塗膜をレーザーエッチング加工により導電性パターンを形成することもできる。膜厚の範囲は特に限定されないが、1μm〜1mmが好ましい。1μm未満の場合はピンホール等の膜欠陥が生じやすくなり、問題になる場合がある。1mmを超える場合は膜内部に溶剤が残留しやすくなり、膜物性の再現性に劣る場合がある。   The conductive paste for forming the conductive film of the present invention is applied or printed on a substrate to form a coating film, and then the organic solvent contained in the coating film is volatilized and dried to give a conductive film or A conductive pattern can be formed. Further, a conductive pattern can be formed by laser etching the coating film. Although the range of the film thickness is not particularly limited, it is preferably 1 μm to 1 mm. If it is less than 1 μm, film defects such as pinholes are likely to occur, which may cause a problem. If it exceeds 1 mm, the solvent tends to remain inside the film, and the reproducibility of the film physical properties may be poor.

導電性ペーストが塗布される基材は特に限定されないが、伸縮性の導電膜の伸縮性を生かすために、可とう性または伸縮性のある基材が好ましい。一般的には、伸縮性の基材上に設けた導電性膜は、伸長時に基材自身がある程度引張応力を緩和するために、導電性膜のマイクロクラック発生が抑制される。可とう性基材の例として、紙、布、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリイミドなどが挙げられる。伸縮性の基材としては、ポリウレタン、ポリジメチルシロキサン(PDMS)、ニトリルゴム、ブタジエンゴム、SBSエラストマー、SEBSエラストマー、スパンデックス布、ニット布などが挙げられる。これらの基材は、折り目を付けることが可能で、面方向に伸縮可能であることが好ましい。その点でゴムやエラストマーからなる基材が好ましい。   The base material to which the conductive paste is applied is not particularly limited, but a flexible or elastic base material is preferable in order to take advantage of the elasticity of the elastic conductive film. Generally, in a conductive film provided on a stretchable base material, the base material itself relaxes tensile stress to some extent during stretching, so that generation of microcracks in the conductive film is suppressed. Examples of the flexible substrate include paper, cloth, polyethylene terephthalate, polyvinyl chloride, polyethylene and polyimide. Examples of the stretchable base material include polyurethane, polydimethylsiloxane (PDMS), nitrile rubber, butadiene rubber, SBS elastomer, SEBS elastomer, spandex cloth, and knit cloth. It is preferable that these base materials can be creased and can be expanded and contracted in the plane direction. In that respect, a base material made of rubber or elastomer is preferable.

本発明において、特に本願第2の発明において、導電性複合膜は導電性膜と基材との密着性が良好であることが好ましい。密着性が悪いと伸長作用や繰返し伸縮作用により、導電性膜で出来た配線が基材より剥離して断線やショートする問題を引き起こす場合がある。   In the present invention, particularly in the second aspect of the present invention, the conductive composite film preferably has good adhesion between the conductive film and the substrate. If the adhesiveness is poor, the wiring made of the conductive film may be peeled off from the substrate due to the stretching action or the repeated stretching action to cause a problem such as disconnection or short circuit.

導電性ペーストを基材上に塗布する工程は、特に限定されないが、例えば、コーティング法、印刷法などによって行うことができる。印刷法としては、スクリーン印刷法、平版オフセット印刷法、インクジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ディスペンス法、スキージ印刷などが挙げられる。   The step of applying the conductive paste onto the base material is not particularly limited, but can be performed by, for example, a coating method, a printing method, or the like. Examples of the printing method include a screen printing method, a lithographic offset printing method, an inkjet method, a flexographic printing method, a gravure printing method, a gravure offset printing method, a stamping method, a dispensing method and a squeegee printing method.

導電性ペーストを塗布された基材を加熱する工程は、大気下、真空雰囲気下、不活性ガス雰囲気下、還元性ガス雰囲気下などで行うことができる。加熱温度は20〜200℃の範囲で行い、要求される導電率や基材の耐熱性などを考慮して選択される。有機溶剤が揮散され、場合により加熱下で硬化反応が進行し、乾燥後の導電性膜の導電性や密着性、表面硬度が良好となる。20℃未満では溶剤が塗膜中に残留し、導電性が得られない場合がある。長時間処理すれば導電性を発現するが、比抵抗が大幅に劣る場合がある。好ましい加熱温度は70〜180℃である。70℃未満では塗膜の熱収縮が小さくなり、塗膜中の銀粉の導電ネットワークが十分に形成できず、比抵抗が高くなる場合がある。塗膜の緻密性から伸長率、繰返し伸縮性も悪化する場合がある。180℃を超える場合は耐熱性から基材が限定され、長時間処理するとニトリル基を含有するゴム(B)が熱劣化し、伸長率、繰返し伸縮性が悪化する場合がある。   The step of heating the base material coated with the conductive paste can be performed in the air, a vacuum atmosphere, an inert gas atmosphere, a reducing gas atmosphere, or the like. The heating temperature is in the range of 20 to 200 ° C. and is selected in consideration of the required conductivity and heat resistance of the base material. The organic solvent is volatilized, the curing reaction proceeds under heating in some cases, and the conductivity, adhesion and surface hardness of the conductive film after drying are improved. If the temperature is lower than 20 ° C., the solvent may remain in the coating film and the conductivity may not be obtained. Although it exhibits conductivity when treated for a long time, the specific resistance may be significantly inferior. The preferred heating temperature is 70 to 180 ° C. If the temperature is lower than 70 ° C, the heat shrinkage of the coating film becomes small, the conductive network of silver powder in the coating film cannot be sufficiently formed, and the specific resistance may increase. In some cases, due to the denseness of the coating film, the elongation rate and the repeated stretchability also deteriorate. If the temperature exceeds 180 ° C., the base material is limited due to heat resistance, and if treated for a long time, the rubber (B) containing a nitrile group may be thermally deteriorated, and the elongation rate and the cyclic stretchability may be deteriorated.

基材上の導電性膜の上に伸縮性のカバーコートなどの包持部を設けても良い。包持部を設けると、より大きな伸長度においても導電性膜の損傷が抑制でき、また防水性や絶縁性などの機能を付与できる。カバーコート材料としては、導電性膜と密着性が良い伸縮性の材料であれば特に限定されない。好ましい材料として、本発明の樹脂(B)が挙げられる。   A wrapping portion such as a stretchable cover coat may be provided on the conductive film on the base material. By providing the holding portion, damage to the conductive film can be suppressed even at a higher degree of extension, and functions such as waterproofness and insulation can be imparted. The cover coat material is not particularly limited as long as it is a stretchable material having good adhesion to the conductive film. As a preferable material, the resin (B) of the present invention can be mentioned.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの限定されるものではない。なお実施例3を比較例12に、実施例4を比較例13に、実施例7を比較例14に、実施例8を比較例15に、実施例9を比較例16に、実施例12を比較例17に読み替える。 The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. In addition, Example 3 is Comparative Example 12, Example 4 is Comparative Example 13, Example 7 is Comparative Example 14, Example 8 is Comparative Example 15, Example 9 is Comparative Example 16, and Example 12 is Example 12. Read as Comparative Example 17.

[導電ペーストの作製]
(実施例1〜4、比較例1〜5)
樹脂をソルベッソに溶解させた。ただし、溶剤として、NBR(ニトリルゴム)の場合はイソホロン、PVDF(フッ化ビニリデンコポリマー)の場合は4−メチルー2−ペンタノンを用いた。各成分が表1に記載の固形分中の体積%となるように、この溶液に銀粒子、場合によりさらにカーボンナノチューブまたは気相成長炭素繊維を配合して、3本ロールミルにて混練して、導電性ペーストを得た。
(実施例5〜12、比較例6〜11)
樹脂をエチレングリコールモノメチルエーテルアセテートに溶解させて、この溶液に銀粒子を均一に分散した液を、各成分が表2又は表3に記載の固形分中の体積%となるように配合し、3本ロールミルにて混練して、導電性ペーストを得た。
[Preparation of conductive paste]
(Examples 1 to 4, Comparative Examples 1 to 5)
The resin was dissolved in Solvesso. However, as the solvent, isophorone was used for NBR (nitrile rubber), and 4-methyl-2-pentanone was used for PVDF (vinylidene fluoride copolymer). Silver particles, and optionally carbon nanotubes or vapor-grown carbon fibers were further added to this solution so that each of the components had a volume% in the solid content shown in Table 1, and the mixture was kneaded with a three-roll mill, A conductive paste was obtained.
(Examples 5-12, Comparative Examples 6-11)
The resin was dissolved in ethylene glycol monomethyl ether acetate, and a liquid in which silver particles were uniformly dispersed in this solution was blended so that each component had a volume% in the solid content shown in Table 2 or Table 3, and 3 It kneaded with this roll mill to obtain a conductive paste.

[導電性膜の作製]
(実施例1〜7、比較例6〜7)
導電性ペーストをテフロン(登録商標)シートの上にワイヤーバーにて製膜し、150℃で30分間乾燥して、厚み100μmのシート状の導電性膜を作製した。導電性膜を用いて比抵抗、均質性、捻り性、圧縮性の試験を実施した。
導電性膜は、後述する方法で自然状態および外力が作用した時の比抵抗を評価した。実施例1〜4、比較例1〜5の導電性膜の組成とその評価結果を表1に示す。また、導電性膜は、後述する方法で伸長試験および繰り返し伸縮試験を実施した。実施例5〜7、比較例6〜7の導電性膜の組成とその評価結果を表2に示す。
[Preparation of conductive film]
(Examples 1 to 7, Comparative Examples 6 to 7)
The conductive paste was formed on a Teflon (registered trademark) sheet with a wire bar and dried at 150 ° C. for 30 minutes to prepare a sheet-like conductive film having a thickness of 100 μm. Tests of specific resistance, homogeneity, twistability and compressibility were conducted using a conductive film.
The specific resistance of the conductive film was evaluated by the method described below when a natural state and an external force acted. Table 1 shows the compositions of the conductive films of Examples 1 to 4 and Comparative Examples 1 to 5 and the evaluation results thereof. Further, the conductive film was subjected to an elongation test and a repeated expansion and contraction test by the method described below. Table 2 shows the compositions of the conductive films of Examples 5 to 7 and Comparative Examples 6 to 7 and the evaluation results thereof.

[導電性複合膜の作製]
(実施例8〜12、比較例8〜11)
厚さ1mmの伸縮性のウレタンシートまたはシリコンシート上にワイヤーバーにて導電ペーストを塗布し、150℃で30分間乾燥して、100μmの導電性膜を含有する導電性複合膜を作製した。この導電性複合膜を用いて、後述する方法で伸長試験、繰返し伸縮試験、100升目による碁盤目試験、3倍伸長試験、10倍伸長試験を実施した。実施例8〜12、比較例8〜11の導電性複合膜の組成とその評価結果を表3に示す。
[Preparation of conductive composite film]
(Examples 8-12, Comparative Examples 8-11)
A conductive paste was applied on a stretchable urethane sheet or silicon sheet having a thickness of 1 mm with a wire bar and dried at 150 ° C. for 30 minutes to prepare a conductive composite film containing a 100 μm conductive film. Using this conductive composite film, an elongation test, a repeated expansion and contraction test, a cross-cut test by 100 squares, a 3 times extension test, and a 10 times extension test were carried out by the methods described below. Table 3 shows the compositions of the conductive composite films of Examples 8 to 12 and Comparative Examples 8 to 11 and the evaluation results thereof.

Figure 0006690528
Figure 0006690528

表1中の1)〜11)の詳細は以下の通りである。
1)凝集銀粉:G−35(平均粒径5.9μm、DOWAエレクトロニクス社製)
2)フレーク状銀粉:FA−D−3(平均粒径1.6μm、DOWAエレクトロニクス社製)
3)VGCF:気相法炭素繊維(繊維径150nm、繊維長15μm、昭和電工社製)
4)CNT−A:カーボンナノチューブ(SWeNT MW100(多層カーボンナノチューブ、直径6〜9nm、長さ5μm、アスペクト比556〜833、SouthWest Nano Technologies社製)
5)CNT−B:非特許文献2に記載の製造方法に準じて作製した。ベンジルメルカプタンと硝酸銀より作製した銀ナノ粒子ディスパージョン中でSWeNT MW100を超音波処理により分散させた。その後、ろ過、洗浄して銀ナノ粒子で修飾したカーボンナノチューブCNT-Bが得られる。
6)CSM:クロロスルホン化ポリエチレンゴム(CSM-TS530、東ソー社製)
7)NBR:ニトリルゴム(Nipol DN003、アクリロニトリル含量50重量%、日本ゼオン社製)
8)CR:クロロプレンゴム(DOR-40、デンカ社製)
9)UR:ウレタンゴム(コートロンKYU−1、三洋化成社製)
10)EPDM:エチレンプロピレンゴム(EP11、JSR社製)
11)PVDF/イオン液体:フッ化ビニリデンコポリマー(ダイエルG-801、ダイキン社製)/1−ブチルーメチルピリジニウム テトラフルオロボレート(50重量/50重量)
Details of 1) to 11) in Table 1 are as follows.
1) Aggregated silver powder: G-35 (average particle size 5.9 μm, manufactured by DOWA Electronics)
2) Flake silver powder: FA-D-3 (average particle size 1.6 μm, manufactured by DOWA Electronics Co., Ltd.)
3) VGCF: vapor grown carbon fiber (fiber diameter 150 nm, fiber length 15 μm, Showa Denko KK)
4) CNT-A: carbon nanotube (SWeNT MW100 (multi-wall carbon nanotube, diameter 6 to 9 nm, length 5 μm, aspect ratio 556 to 833, manufactured by Southwest Nano Technologies, Inc.)
5) CNT-B: Produced according to the production method described in Non-Patent Document 2. SWeNT MW100 was dispersed by sonication in a silver nanoparticle dispersion made from benzyl mercaptan and silver nitrate. Then, filtration and washing are performed to obtain carbon nanotubes CNT-B modified with silver nanoparticles.
6) CSM: Chlorosulfonated polyethylene rubber (CSM-TS530, manufactured by Tosoh Corporation)
7) NBR: Nitrile rubber (Nipol DN003, acrylonitrile content 50% by weight, manufactured by Zeon Corporation)
8) CR: Chloroprene rubber (DOR-40, manufactured by Denka)
9) UR: Urethane rubber (Coatlon KYU-1, manufactured by Sanyo Chemical Co., Ltd.)
10) EPDM: ethylene propylene rubber (EP11, manufactured by JSR)
11) PVDF / ionic liquid: vinylidene fluoride copolymer (Dayer G-801, manufactured by Daikin) / 1-butyl-methylpyridinium tetrafluoroborate (50 wt / 50 wt)

実施例1〜4及び比較例1〜5の導電性膜の評価方法は以下の通りである。
[比抵抗の評価]
導電性膜を幅20mm、長さ50mmにカットして試験片を作製した。自然状態(伸長率0%)の導電性膜試験片のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD−565L(TECLOCK社製)を用い、シート抵抗はLoresta−GP MCP−T610(三菱化学アナリテック社製)を用いて試験片4枚について測定し、その平均値を用いた。比抵抗は以下の式により算出した。
比抵抗(Ω・cm)=Rs(Ω/□)×t(cm)
ここで、Rsは各条件で測定されたシート抵抗、tは各条件で測定された膜厚を示す。
そして自然状態(伸長率0%)と同様にして、万能試験機( 島津製作所製、オートグラフAG−IS)を用いて、20%、35%、50%、100%に伸長した時(伸長速度60mm/分)の比抵抗を測定した。伸長率は以下の式により算出した。
なお、導電性膜の伸長評価は、導電性ペーストを塗布した方向を試験片の伸長方向としたものと、該塗布方向と直交する方向を試験片の伸長方向としたものとの2つの伸長方向にて実施した。
伸長率(%)=(ΔL/L)×100
ここで、Lは試験片の標線間距離、ΔLは試験片の標線韓距離の増加分を示す。なお、伸長時のシート抵抗は、所定の伸長度に達してから30秒後の値を読み取った。
また、100%伸長時の比抵抗増加比は以下の式により算出した。
比抵抗増加比=(R100/R)×100(%)
ここで、R100は100%伸長後の比抵抗、Rは自然状態の比抵抗を示す。
The evaluation methods of the conductive films of Examples 1 to 4 and Comparative Examples 1 to 5 are as follows.
[Evaluation of resistivity]
A test piece was prepared by cutting the conductive film into a width of 20 mm and a length of 50 mm. The sheet resistance and the film thickness of the conductive film test piece in the natural state (extension rate 0%) were measured, and the specific resistance was calculated. The film thickness was measured using a thickness gauge SMD-565L (manufactured by TECLOCK), and the sheet resistance was measured on four test pieces using Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech), and the average value was used. . The specific resistance was calculated by the following formula.
Specific resistance (Ω · cm) = Rs (Ω / □) × t (cm)
Here, Rs indicates the sheet resistance measured under each condition, and t indicates the film thickness measured under each condition.
Then, in the same manner as in the natural state (extension rate 0%), when using a universal testing machine (manufactured by Shimadzu Corporation, Autograph AG-IS), when extended to 20%, 35%, 50%, 100% (extension rate A specific resistance of 60 mm / min) was measured. The elongation rate was calculated by the following formula.
Note that the elongation evaluation of the conductive film is performed in two extending directions, one in which the direction in which the conductive paste is applied is the extending direction of the test piece and the other in which the direction orthogonal to the applying direction is the extending direction of the test piece. It was carried out in.
Elongation rate (%) = (ΔL 0 / L 0 ) × 100
Here, L 0 is the distance between the marked lines of the test piece, and ΔL 0 is the increase in the marked line Korean distance of the test piece. The sheet resistance during stretching was read 30 seconds after reaching a predetermined degree of stretching.
Further, the specific resistance increase ratio at 100% elongation was calculated by the following formula.
Specific resistance increase ratio = (R 100 / R 0 ) × 100 (%)
Here, R 100 is the resistivity after 100% elongation, and R 0 is the resistivity in the natural state.

[均質性の評価]
導電性膜を塗布方向と、塗布方向と直角の方向にそれぞれ幅20mm、長さ50mmにカットして試料片を作製した。それぞれの試験片を用いて、伸長率20%、35%、50%、100%時の比抵抗を測定した。塗布方向と塗布方向と直角の方向の試験片での比抵抗の差を比較して均質性の評価とした。
[Evaluation of homogeneity]
The conductive film was cut into a width of 20 mm and a length of 50 mm in the application direction and the direction perpendicular to the application direction to prepare a sample piece. Using each test piece, the specific resistance was measured at elongation rates of 20%, 35%, 50% and 100%. The homogeneity was evaluated by comparing the difference in the specific resistance between the test pieces in the application direction and the direction perpendicular to the application direction.

[捻り性の評価]
導電性膜を幅20mm、長さ50mmにカットして試料片とした。試料片の片端を固定し、もうひとつの片端を1回転(360°)および10回転(3600°)捻った時の比抵抗を測定した。
[Evaluation of twistability]
The conductive film was cut into a piece of 20 mm in width and 50 mm in length. The specific resistance was measured when one end of the sample piece was fixed and the other end was twisted once (360 °) and ten times (3600 °).

[圧縮性の評価]
導電性膜試験片(厚み100μm、直径200mm)を10枚重ねて試験片とした。圧縮操作は万能試験機(島津製作所製、オートグラフAG−IS)を用いた。試験片はフォームラバー用圧縮治具と試料受台にそれぞれ電極(銅箔)を介して取り付け、10%圧縮した時の電極間の抵抗より比抵抗を測定した。
[Evaluation of compressibility]
Ten conductive film test pieces (thickness 100 μm, diameter 200 mm) were stacked to obtain a test piece. A universal tester (manufactured by Shimadzu Corporation, Autograph AG-IS) was used for the compression operation. The test piece was attached to a compression jig for foam rubber and a sample holder via electrodes (copper foil) respectively, and the specific resistance was measured from the resistance between the electrodes when compressed by 10%.

Figure 0006690528
Figure 0006690528

Figure 0006690528
Figure 0006690528

表2、表3中の21)〜31)の詳細は以下の通りである。
21)凝集銀粉:G−35(平均粒径5.9μm、DOWAエレクトロニクス社製)
22)フレーク状銀粉:FA−D−3(平均粒径1.6μm、DOWAエレクトロニクス社製)
23)AR:アクリルゴム(Nipol AR51、日本ゼオン社製)
24)IIR:ブチルゴム(BUTYLO065、JSR社製)
25)NBR:ニトリルゴム(Nipol DN003、アクリロニトリル含量50重量%、日本ゼオン社製)
26)CSM:クロロスルホン化ポリエチレンゴム(CSM-TS530、東ソー社製)
27)CR:クロロプレンゴム(DOR-40、デンカ社製)
28)UR:ウレタンゴム(コートロンKYU−1、三洋化成社製)
29)EPDM:エチレンプロピレンゴム(EP11、JSR社製)
30)ウレタンゴムシート:厚み1mm、(タイガースポリマー社製)
31)シリコーンゴムシート:厚み1mm(アズワン社製)
Details of 21) to 31) in Tables 2 and 3 are as follows.
21) Aggregated silver powder: G-35 (average particle size 5.9 μm, manufactured by DOWA Electronics)
22) Flake silver powder: FA-D-3 (average particle size 1.6 μm, manufactured by DOWA Electronics Co., Ltd.)
23) AR: acrylic rubber (Nipol AR51, manufactured by Zeon Corporation)
24) IIR: Butyl rubber (BUTYLO065, manufactured by JSR)
25) NBR: Nitrile rubber (Nipol DN003, acrylonitrile content 50% by weight, manufactured by Zeon Corporation)
26) CSM: Chlorosulfonated polyethylene rubber (CSM-TS530, manufactured by Tosoh Corporation)
27) CR: Chloroprene rubber (DOR-40, manufactured by Denka)
28) UR: Urethane rubber (Coatlon KYU-1, Sanyo Kasei Co., Ltd.)
29) EPDM: ethylene propylene rubber (EP11, manufactured by JSR)
30) Urethane rubber sheet: thickness 1 mm, (manufactured by Tigers Polymer Co., Ltd.)
31) Silicone rubber sheet: thickness 1 mm (manufactured by AS ONE)

実施例5〜12及び比較例6〜12の導電性膜及び導電性複合膜の評価方法は、比抵抗の評価については実施例1〜4と同じ評価方法により行った。その他の評価方法については、以下の通りである。   The evaluation methods of the conductive films and the conductive composite films of Examples 5 to 12 and Comparative Examples 6 to 12 were the same as those of Examples 1 to 4 for the evaluation of the specific resistance. Other evaluation methods are as follows.

[繰り返し伸縮性の評価]
繰返し耐久試験機(レスカ社製、TIQ−100)を用い、導電性膜試験片および導電性複合膜試験片の両端を保持するチャック部に電極を設け、元の長さの20%伸長した状態、および元の長さに戻した状態でのシート抵抗を2端子法により測定した。伸長速度および元の長さに戻す速度は、ともに60mm/分とした。なお、シート抵抗測定の際には、自然状態(0%伸長度)および20%伸長度に達してから30秒後の値を読み取った。この伸縮操作を1000回繰り返した後の自然状態の比抵抗を測定した。
[Evaluation of repeatability]
Using a repeating durability tester (TIQ-100, manufactured by Lesca), electrodes were provided on the chuck portions holding both ends of the conductive film test piece and the conductive composite film test piece, and the electrode was extended by 20% of the original length. , And the sheet resistance in the state of returning to the original length was measured by the two-terminal method. The extension speed and the speed for returning to the original length were both 60 mm / min. During the sheet resistance measurement, the value was read 30 seconds after reaching the natural state (0% elongation) and 20% elongation. After repeating this stretching operation 1000 times, the specific resistance in the natural state was measured.

[密着性の評価]
100升目による碁盤目試験により実施した。導電性複合膜の導電性膜にカミソリで基材シートまで届く直角に交差する11本の直線を1mm間隔でカットして碁盤目100個を描き、碁盤目上に粘着テープ(セロテープ(登録商標)、(ニチバン(株)製))を強く圧着し、テープをはがした後の碁盤目のはがれ状態を観察した。表1の結果の数値は、(試験で剥離せず残存した枡目数)/(試験前の枡目数)を表す。
[Evaluation of adhesion]
It was conducted by a cross-cut test with 100 squares. Eleven straight lines that cross the conductive sheet of the conductive composite film and reach the base sheet with a razor are cut at 1 mm intervals to draw 100 squares, and adhesive tape (cellophane tape (registered trademark) is drawn on the squares. , (Manufactured by Nichiban Co., Ltd.) was strongly pressure-bonded, and after peeling off the tape, the peeled state of the grid pattern was observed. The numerical values of the results in Table 1 represent (the number of cells remaining without peeling in the test) / (the number of cells before the test).

[伸長性の評価]
導電性複合膜試験片を3倍伸長時(伸張率200%)の導電性膜の比抵抗を測定し、10倍伸長時(伸張率900%)の導電膜の外観を観察した。
[Evaluation of extensibility]
The conductive composite film test piece was measured for specific resistance of the conductive film when stretched 3 times (extension rate 200%), and the appearance of the conductive film when extended 10 times (extension rate 900%) was observed.

表1の結果から明らかなように、実施例1〜4の導電性膜は、自然状態の良好な導電性だけでなく36%以上の伸長時でも高い導電性を維持することができ、均質性、捻り性、圧縮性に優れている。一方、比較例1〜5の導電性膜は、実施例1〜4に比べて比抵抗が高いか、又は均質性が悪く、伸長作用、捻り作用、圧縮作用により比抵抗が大幅に増加する。   As is clear from the results in Table 1, the conductive films of Examples 1 to 4 can maintain not only good conductivity in a natural state but also high conductivity even when stretched by 36% or more, and thus the homogeneity can be improved. Excellent in twistability and compressibility. On the other hand, the conductive films of Comparative Examples 1 to 5 have higher specific resistance or poor homogeneity as compared with Examples 1 to 4, and the specific resistance is significantly increased by the stretching action, the twisting action, and the compression action.

表2の結果から明らかなように、実施例5〜7の導電性膜は、比較例6〜7に比べて、伸長時でも高い導電性を維持することができ、繰り返し伸縮後も導電性の低下は小さい。
また、表3の結果から明らかなように、実施例8〜12の導電性複合膜は、伸長時でも高い導電性を維持することができ、繰り返し伸縮後も導電性の低下は小さく、密着性の低下もほとんど見られない。一方、比較例8〜11の導電性膜は、実施例8〜12に比べて、伸長により破断を招くか、繰り返し伸縮により密着性が大きく低下する。
As is clear from the results of Table 2, the electroconductive films of Examples 5 to 7 can maintain high electroconductivity even at the time of elongation and have electroconductivity after repeated expansion and contraction as compared with Comparative Examples 6 to 7. The drop is small.
Further, as is clear from the results of Table 3, the conductive composite films of Examples 8 to 12 can maintain high conductivity even when stretched, the conductivity is not significantly reduced even after repeated expansion and contraction, and the adhesion is improved. Almost no decrease is seen. On the other hand, in the conductive films of Comparative Examples 8 to 11, compared with Examples 8 to 12, breakage occurs due to elongation, or adhesion is greatly reduced due to repeated expansion and contraction.

本発明の導電性ペーストは、高い導電率と高い伸縮性、優れた繰り返し伸縮性、基材との優れ多密着性を有するを有することから、ゴムやエラストマー材料を利用した折り曲げ可能なディスプレイ、伸縮性LEDアレイ、伸縮性太陽電池、伸縮性アンテナ、伸縮性バッテリ、アクチュエーター、ヘルスケアデバイスや医療用センサー、ウエアラブルコンピュータなどの電極や配線などに好適に利用することができる。   The conductive paste of the present invention has high conductivity and high stretchability, excellent repeat stretchability, and excellent multi-adhesiveness with the base material, so that a foldable display using a rubber or elastomer material, stretchable LED arrays, stretchable solar cells, stretchable antennas, stretchable batteries, actuators, healthcare devices and medical sensors, wearable computers, electrodes and wiring, and the like.

Claims (4)

導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が1.0×10−3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、基材および導電性膜を包持する包持部を設けない自立膜の状態で、元の長さの100%伸長した時の比抵抗増加比が10未満であることを特徴とする導電性膜において、
前記導電性金属粉(A)が、凝集状形状の銀粉であり、前記樹脂(B)がニトリル基含有ゴムまたはクロルスルホン化ポリエチレンゴムであり、
導電性膜の捻り試験において、導電性膜平面に対して、捻り角3600°まで膜破断を起こさず導電性膜を捻ることが可能であり、捻り角が0°から3600°の場合に比抵抗が1.0×10 −2 Ωcm未満であることを特徴とする導電性膜。
A conductive film containing a conductive metal powder (A) and a resin (B), having a specific resistance of less than 1.0 × 10 −3 Ωcm and extending by 36% or more of the original length in at least one direction. It is possible, and in a state of a self-supporting film in which a wrapping part for wrapping a base material and a conductive film is not provided, a specific resistance increase ratio at a time of 100% extension of the original length is less than 10. In the conductive film to
The conductive metal powder (A) is silver powder having an agglomerate shape, and the resin (B) is nitrile group-containing rubber or chlorosulfonated polyethylene rubber,
In the twist test of the conductive film, it is possible to twist the conductive film with respect to the plane of the conductive film up to a twist angle of 3600 ° without causing film breakage, and when the twist angle is from 0 ° to 3600 °, the specific resistance is Of less than 1.0 × 10 −2 Ωcm.
直交する2つの方向においていずれも元の長さの36%以上伸張可能であり、直交する2つの方向で元の長さの100%伸長した時、同じ伸長率における両者の比抵抗の差が10%未満であることを特徴とする請求項1に記載の導電性膜。   36% or more of the original length can be extended in each of the two directions orthogonal to each other. When 100% of the original length is extended in the two directions orthogonal to each other, the difference in specific resistance between the two is 10 at the same extension rate. %, The conductive film according to claim 1. 導電性膜の厚み方向に10%圧縮した時に、比抵抗が1.0×10−3Ωcm未満であることを特徴とする請求項1または2に記載の導電性膜。 When compressed by 10% in the thickness direction of the conductive film, a conductive film according to claim 1 or 2, wherein the resistivity is less than 1.0 × 10 -3 Ωcm. 塗布または印刷により作製されることを特徴とする請求項1〜のいずれかに記載の導電性膜。
Conductive film according to any one of claims 1 to 3, characterized in that is manufactured by coating or printing.
JP2016502559A 2015-01-14 2016-01-13 Conductive film Active JP6690528B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015004914 2015-01-14
JP2015004915 2015-01-14
JP2015004915 2015-01-14
JP2015004914 2015-01-14
PCT/JP2016/050764 WO2016114278A1 (en) 2015-01-14 2016-01-13 Electroconductive film

Publications (2)

Publication Number Publication Date
JPWO2016114278A1 JPWO2016114278A1 (en) 2017-10-26
JP6690528B2 true JP6690528B2 (en) 2020-04-28

Family

ID=56405821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016502559A Active JP6690528B2 (en) 2015-01-14 2016-01-13 Conductive film

Country Status (3)

Country Link
JP (1) JP6690528B2 (en)
TW (1) TWI684999B (en)
WO (1) WO2016114278A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054590A (en) * 2016-09-21 2018-04-05 東洋紡株式会社 Elastic capacitor and deformation sensor
WO2018074402A1 (en) * 2016-10-18 2018-04-26 東洋紡株式会社 Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity
JP6889902B2 (en) * 2016-12-27 2021-06-18 ナミックス株式会社 Resin composition, cured product, conductive film, conductive pattern and garment
CN111886292B (en) 2018-03-30 2022-11-29 松下知识产权经营株式会社 Conductive composition and conductive structure using same
KR102073319B1 (en) * 2018-11-02 2020-02-03 한국화학연구원 Stretchable conductive film
CN117683279B (en) * 2024-02-02 2024-04-05 比音勒芬服饰股份有限公司 Double-arch bridge type supporting shock-absorbing anti-skid sole and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173226A (en) * 2005-11-28 2007-07-05 Osaka Univ Rubber material and manufacturing method of the same
JP4771971B2 (en) * 2007-02-09 2011-09-14 東海ゴム工業株式会社 Flexible electrode and electronic device using the same
JP6098860B2 (en) * 2007-04-20 2017-03-22 シーエーエム ホールディング コーポレーション Composite transparent conductor and device
JP5448736B2 (en) * 2008-11-18 2014-03-19 東海ゴム工業株式会社 Conductive film, transducer including the same, and flexible wiring board
CN102483972B (en) * 2010-05-19 2013-10-23 东海橡塑工业株式会社 Conducting layer, and transducer and flexible wiring board using same
JP2012248399A (en) * 2011-05-27 2012-12-13 Tokai Rubber Ind Ltd Soft conductive material and method for producing the same
CN103764556B (en) * 2011-09-02 2016-01-06 独立行政法人产业技术综合研究所 Carbon nano tube compound material and electro-conductive material
JP5607187B2 (en) * 2013-01-15 2014-10-15 東海ゴム工業株式会社 Conductive material, method for manufacturing the same, and transducer using the same
JPWO2014178207A1 (en) * 2013-04-30 2017-02-23 昭和電工株式会社 Stretchable composite, stretchable composite paste, method for producing the same, and stretchable electrode

Also Published As

Publication number Publication date
TW201633328A (en) 2016-09-16
TWI684999B (en) 2020-02-11
WO2016114278A1 (en) 2016-07-21
JPWO2016114278A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6690528B2 (en) Conductive film
US9761349B2 (en) Electrically conductive paste
TWI682405B (en) Conductive silver paste
Hu et al. Direct pen writing of adhesive particle-free ultrahigh silver salt-loaded composite ink for stretchable circuits
US10590296B2 (en) Piezoresistive ink, methods and uses thereof
JP5876618B2 (en) Conductive material and transducer using the same
Ko et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics
JP2015079724A (en) Conductive paste
EP3397702A1 (en) Piezoresistive ink, methods and uses thereof
CN108885919B (en) Conductive film and method for producing same
Chae et al. 3D-stacked carbon composites employing networked electrical intra-pathways for direct-printable, extremely stretchable conductors
JP2011124029A (en) Transparent conductive film and its manufacturing method
Luo et al. A stretchable and printable PEDOT: PSS/PDMS composite conductors and its application to wearable strain sensor
JP2015079725A (en) Conductive paste
JP2015065139A (en) Conductive paste
Cui Silver Nanowire-based Flexible and Stretchable Devices: Applications and Manufacturing
KR102389903B1 (en) Paste composition for room temperature process, stretchable conductive electrode using the same and preparing method thereof
KR102402322B1 (en) Paste manufacturing method and flexible electrode manufacturing method using the same
Ramadan et al. Flexible, stretchable, and highly sensitive piezoresistive strain sensors based on modified PEDOT: PSS layers with nickel microparticles
Sloma et al. Graphene applications with printed electronics technology
김태훈 Electrical and Structural Properties of Inkjet-Printed Single-Walled Carbon Nanotube Thin Film, and Its Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R151 Written notification of patent or utility model registration

Ref document number: 6690528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350