WO2018074402A1 - Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity - Google Patents

Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity Download PDF

Info

Publication number
WO2018074402A1
WO2018074402A1 PCT/JP2017/037321 JP2017037321W WO2018074402A1 WO 2018074402 A1 WO2018074402 A1 WO 2018074402A1 JP 2017037321 W JP2017037321 W JP 2017037321W WO 2018074402 A1 WO2018074402 A1 WO 2018074402A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable
wiring
conductivity
recovery rate
sheet
Prior art date
Application number
PCT/JP2017/037321
Other languages
French (fr)
Japanese (ja)
Inventor
弘倫 米倉
義哲 権
達彦 入江
万紀 木南
石丸 園子
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018546314A priority Critical patent/JP7063271B2/en
Publication of WO2018074402A1 publication Critical patent/WO2018074402A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/04Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive material used in a clothes-type wearable electronic device that is used by incorporating an electronic function or an electric function into a garment, and more specifically, an electric wiring having elasticity is formed, and more natural wearing
  • the present invention relates to a clothing-type electronic device.
  • wearable electronic devices intended to use electronic devices having input / output, arithmetic and communication functions in close proximity to or close to the body have been developed.
  • devices having an accessory-type outer shape such as a wristwatch, glasses, and earphones, and textile integrated devices in which electronic functions are incorporated into clothes are known.
  • An example of such a textile integrated device is disclosed in Patent Document 1.
  • Electronic equipment requires electrical wiring for power supply and signal transmission.
  • the electrical wiring is required to be stretchable in accordance with the stretchable clothes.
  • electrical wiring made of metal wires or metal foils is not practically elastic, so the metal wires or metal foils are placed in a corrugated or repeated horseshoe shape to give a pseudo expansion / contraction function.
  • the method is used.
  • wiring can be formed by regarding the metal wire as an embroidery thread and sewing it onto clothes.
  • a method of forming a wiring by etching a metal foil is a general method for producing a printed wiring board.
  • a technique is known in which a metal foil is bonded to a stretchable resin sheet, and corrugated wiring is formed by a technique similar to that of a printed wiring board to make a pseudo stretchable wiring.
  • Such a technique is to give a pseudo expansion / contraction characteristic by torsional deformation of the corrugated wiring portion.
  • the metal foil is also deformed in the thickness direction by torsional deformation, When used, it was very uncomfortable and unpleasant.
  • permanent plastic deformation occurs in the metal foil, and there is a problem in the durability of the wiring.
  • Conductive particles such as silver particles, carbon particles, carbon nanotubes and elastomers such as stretchable urethane resin, natural rubber, synthetic rubber, solvent, etc. are kneaded to form a paste, directly on clothes or stretchable film base
  • the wiring is printed and drawn in combination with a material.
  • a conductive composition composed of conductive particles and a stretchable binder resin can realize a stretchable conductor.
  • the conductive composition obtained from such a paste maintains its conductivity within a range in which the resin binder portion is deformed when external force is applied and the electrical chain of the conductive particles is not interrupted.
  • Patent Document 2 discloses a technique for suppressing a decrease in conductivity at the time of elongation by combining silver particles and silicone rubber and further coating a conductive film on a silicone rubber substrate with silicone rubber.
  • Patent Document 3 discloses a combination of silver particles and a polyurethane emulsion, and it is said that a conductive film having high conductivity and high elongation can be obtained. Further, many examples have been proposed in which characteristics are improved by combining high aspect ratio conductive particles such as carbon nanotubes and silver fillers.
  • Patent Document 4 discloses a technique for directly forming electrical wiring on clothes using a printing method.
  • the stretchable conductor composition is mainly composed of conductive particles and a flexible resin.
  • a composition in which a crosslinked elastomer such as rubber is used as a resin binder and carbon black or metal particles is blended is generally known.
  • Such a stretchable conductor composition is formed through a paste or slurry obtained by mixing, dissolving, and dispersing a solvent or the like into the metal-based conductive particles and the precursor of the cross-linked elastomer as necessary.
  • the paste it becomes easy to form a wiring pattern by screen printing or the like.
  • the stretchable conductive film composed of the conductive particles and the stretchable binder resin is a dispersion system, and the elastic range, that is, the range in which the tensile load and the strain (elongation) are linearly proportional, is narrow, It is only a few percent at most.
  • the elastic range that is, the range in which the tensile load and the strain (elongation) are linearly proportional
  • the deformation is applied beyond the elastic range, minute cracks are generated inside the coating, and the coating is continuously deformed by widening the gap generated by the crack.
  • the coating around the crack is still flexible, the coating does not completely break, and microscopic internal structural changes such as an increase in the number and width of cracks are macroscopically fatal. This is an area that seems to continue to stretch flexibly without breaking.
  • the film does not break, but in terms of internal structure, the conductive path gradually narrows due to the chain of conductive particles due to the growth of microcracks, and as a result, the conductivity of the film
  • the stretchable conductive film stretched to the plastic deformation region contracts to return to a length close to the initial length when the tensile load is removed, but the resistance is set to the initial value because the connection of the conductive particles is broken. It does not return until it becomes a value higher than the initial value.
  • the resistance value of the stretchable conductive film gradually increases and finally reaches non-conduction.
  • the conventional stretchable conductive film has a problem that the conductivity decreases due to repeated stretching, and when such a stretchable dynamic coating is used for wiring of a clothes-type electronic device, repeated stretching that occurs in actual use is used. Furthermore, the durability against repeated expansion and contraction has been a problem due to the water flow applied during washing.
  • the present inventor has found that repeated stretch durability is practically greatly improved by imparting specific characteristics to the stretchable conductive film, and the following invention is achieved. Reached. That is, the present invention has the following configuration.
  • [1] In a stretchable conductor sheet composed of a conductive filler and a binder resin, the film thickness unevenness of the sheet is 10% or less, and the stretch recovery rate after stretching 20% at 25 ° C. is 92% or more.
  • a stretchable conductor sheet characterized by that.
  • the initial electrical conductivity in the sheet surface direction of the stretchable conductor sheet is 1 ⁇ 10 2 S / cm or more, and the electrical conductivity reduction ratio due to a mechanical load is within a range of 1/1000 of the initial electrical conductivity.
  • a conductive filler consisting of 65 to 85% by weight of a binder resin having a stretch recovery rate of 20% or higher after stretching by 20% and a glass transition temperature of 0 ° C. or lower and 90% by weight or more of metal particles. % Of the stretchable conductor sheet according to any one of [1] to [3].
  • this invention has the following structures.
  • Elastic wiring composed of [9]
  • the initial conductivity in the plane direction of the stretchable conductor layer is 1 ⁇ 10 2 S / cm or more, When the electrical conductivity reduction ratio due to mechanical load is in the range of 1/1000 or more of the initial electrical conductivity,
  • the stretchable conductor layer has a stretch recovery rate after stretching by 20% of 99% or more, a binder resin of 65 to 85% by mass with a glass transition temperature of 0 ° C. or less, and metal particles from 90% by mass or more.
  • the stretchable wiring according to any one of [8] to [12] is provided on an insulating fabric having a stretch recovery rate of 99% or higher at 50% stretch and having heat resistance of 60 ° C or higher.
  • the stretchable conductor sheet and stretchable conductor layer of the present invention have a dispersed structure composed of conductive particles and a stretchable binder resin.
  • a dispersed structure composed of conductive particles and a stretchable binder resin.
  • the flexible film having such a dispersion structure when stretched, it has an elastic deformation region in which the hook law is established according to the degree of stretching, and a plastic deformation region that deviates from the hook law.
  • the elastic region is narrow and microcracks are generated inside the coating in the composition region.
  • the composition region observed here is a plastic region observed from a macroscopic viewpoint. An irreversible structural change occurs due to the occurrence of minute cracks in the coating, but the binder resin portion where no cracks are generated is elastically deformed.
  • the stretchable conductor sheet has the same meaning as the stretchable conductor layer, and is composed of the same stretchable conductor composition.
  • the stretchable laminate and the stretchable conductor layer in the stretchable wiring have a predetermined size. It is a processed elastic conductor sheet.
  • the main purpose is to suppress a decrease in practical conductive performance by adjusting the stretch recovery rate of the stretchable conductor sheet macroscopically to be 92% or more. That is, even when the conductive path due to particle contact is cut off due to micro cracks generated when the stretchable conductor sheet is stretched, if the stretchable conductor sheet itself has a sufficiently high stretch recovery rate, it is once cut off. The contact between the conductive particles is reproduced, and the resistivity is reduced, that is, the conductivity is restored.
  • the stretch recovery of the stretchable conductor sheet is mainly due to the flexibility of the binder resin, and this effect is enhanced by using a binder resin that has a high recovery rate and at the same time exhibits a strong shrinkage force.
  • the polymer chain that was originally in a crimped state has a shape in which the chain is stretched.
  • the stretched polymer chain expresses a contraction force to return to the original crimped state.
  • the binder resin exhibiting a predetermined stretch recovery rate as the stretchable conductor sheet also has such an effect, and therefore, the stretch load was removed from the stretchable conductor sheet whose conductivity was reduced by repeated use such as stretching.
  • the recovery effect can be further enhanced by widening the molecular weight distribution of the binder resin.
  • the relatively high molecular weight resin component controls the stretchability, and at the same time, the relatively low molecular weight component self-repairs and fills microcracks, thereby restoring the mechanical dimensions as well as the conductive performance. Promoted.
  • Such an effect can be further promoted by heating to an appropriate temperature in a state where the extension load is removed.
  • the stretchable conductor sheet, stretchable conductor layer, and stretchable wiring in the present invention include at least a stretchable insulating polymer layer having a tensile yield elongation of 70% or more and a thermal deformation temperature of 60 ° C or more, It is comprised from the elastic conductor layer comprised from a conductive filler and binder resin.
  • the tensile yield elongation is a curve (S ⁇ ) obtained by a general tensile test, where the vertical axis is weight (or strength) and the horizontal axis is strain (or elongation or elongation).
  • S curve the elongation at the first point at which an increase in elongation is observed without an increase in weight, that is, the yield point.
  • the yield point is generally regarded as a point indicating the boundary of transition from elastic deformation to plastic deformation.
  • FIG. 1A is a schematic diagram showing a typical SS curve obtained in a tensile test, in which SR: tensile strength at break SB: tensile strength SS: tensile yield strength ER: tensile elongation at break EB: tensile Elongation ES: Tensile yield elongation.
  • the tensile yield elongation of the stretchable insulating polymer layer in the present invention is preferably 80% or more, more preferably 95% or more, and still more preferably 120% or more.
  • the upper limit of the tensile yield elongation is 450%, preferably 360%. If the tensile yield strength is higher than necessary, the mechanical strength as the insulating protective layer may be impaired.
  • the heat deformation temperature in the present invention means that the resin occupies one of fluidity, tackiness, and adhesiveness at the temperature.
  • the thermal deformation temperature is a remarkable deformation in the stretchable insulating polymer layer or adhesion between the metal and the stretchable insulating polymer layer when the stretched insulating polymer layer adjusted to the specified temperature is brought into contact with the metal adjusted to the same specified temperature. Judgment is made based on whether or not adhesiveness or adhesiveness is produced.
  • the iron heated to a predetermined temperature is brought into contact, and after maintaining the time for which the stretchable insulating polymer layer is sufficiently heated (1 minute), the iron is separated from the stretchable insulating polymer layer, It is possible to use a method for determining whether the elastic insulating polymer layer is deformed or not and whether it exhibits adhesiveness / adhesiveness when the iron is released or not based on the tactile sensation and whether or not the heat distortion temperature has been reached.
  • the heat distortion temperature of the stretchable insulating polymer layer in the present invention is essentially 60 ° C. or higher, preferably 75 ° C. or higher, more preferably 90 ° C. or higher, and further preferably 110 ° C. or higher.
  • the upper limit of the heat distortion temperature depends on the heat resistance of the fabric, but is preferably 180 ° C. In addition, Preferably it is 160 degreeC. If the thermal deformation temperature is lower than this range, the elastic wiring may cause blocking, and if the thermal deformation temperature exceeds this range, flexibility may be hindered.
  • a non-crosslinked or crosslinked elastomer can be used as the stretchable insulating polymer layer having a tensile yield elongation of 70% or more and a heat distortion temperature of 60 ° C. or more in the present invention.
  • the non-crosslinked elastomer used in the present invention is preferably a thermoplastic elastomer resin having an elastic modulus of 1 to 1000 MPa, preferably a glass transition temperature in the range of ⁇ 60 ° C. to 15 ° C.
  • examples include thermoplastic synthetic resins, synthetic rubbers, and natural rubbers.
  • urethane rubber acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, Examples include ethylene propylene rubber and vinylidene fluoride copolymer.
  • nitrile group-containing rubber, chloroprene rubber, chlorosulfonated polyethylene rubber and styrene butadiene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • a crosslinked rubber obtained by blending a crosslinking agent with the above-mentioned non-crosslinked elastomer can be preferably used.
  • the crosslinking agent sulfur, a sulfur-based crosslinking agent (so-called vulcanizing agent), an organic peroxide, a metal oxide, an organic amine compound, or the like can be used.
  • the liberated sulfur-containing component may act on the conductive particles of the conductive layer to cause inconveniences such as a decrease in conductivity.
  • the cross-link density is preferably relatively low in order to keep the yield elongation within a predetermined range.
  • the stretchable insulating polymer layer can be bonded to the fabric or stretchable conductor layer by other adhesive means such as self-adhesion / adhesion or a hot melt adhesive layer after being formed alone.
  • the stretchable insulating polymer layer can be formed by melting and extruding a polymer material forming the stretchable insulating polymer layer on the cloth or the stretchable conductor layer.
  • the polymer material forming the stretchable insulating polymer layer is blended with a solvent as necessary, a crosslinking agent added as necessary, an additive and the like. It can be formed by forming an ink, printing or coating on a cloth or stretchable conductor layer, and drying and curing. About the solvent and additive which can be used, it applies to the material which can be used for the elastic conductor layer mentioned later.
  • the thickness unevenness of the sheet or conductor layer is 10% or less, and the stretch recovery rate after stretching 20% at 25 ° C. is 92% or more.
  • the film thickness unevenness of the stretchable conductor sheet is preferably 8% or less.
  • the film thickness unevenness [%] in the present invention was determined by randomly measuring the thickness of 10 points on a 10 cm square sheet and obtaining 100 ⁇ (maximum film thickness ⁇ minimum film thickness) / average film thickness (10 points average). Ask.
  • the film thickness unevenness of the stretchable conductor sheet of the present invention is preferably 8% or less, more preferably 6% or less, and still more preferably 4% or less.
  • the stretch recovery rate means that when the stretchable conductive sheet is suspended as shown in FIG. 1 and stretched by applying a load, and the load is removed and contracted, the initial length is L 0 ,
  • the length when stretched by 20% to a predetermined percentage is L 1 and the length when the stretch load is removed is L 2
  • Elongation recovery rate ((L 1 ⁇ L 2 ) / (L 1 ⁇ L 0 )) ⁇ 100 [%]
  • Residual strain rate ((L 2 ⁇ L 0 ) / L 0 ) ⁇ 100 [%] L 0 initial length
  • L 3 elongation L 1 ⁇ L 0 L 4
  • recovery length L 1- L 2
  • residual strain L 2 ⁇ L 0
  • a similar measurement method is stipulated in the JIS L 1096 woven and knitted fabric test method, but it is not the recovery rate after stretching under a constant load, but the recovery rate when stretched to a certain length. Different. In actual use, the load applied to the stretchable conductor layer is often repeatedly stretched to a predetermined length regardless of the load, so that the practical performance cannot be expressed by the stretch recovery rate by the constant load method. Unless otherwise specified, the extension recovery rate is evaluated under an environment of 25 ° C. ⁇ 3 ° C.
  • the stretchable conductor sheet, stretchable conductor layer, and stretchable wiring in the present invention have a stretch recovery rate of 96% or more when heated at 60 ° C with the stretching load removed after 20% stretch at 25 ° C. It is preferable.
  • the state in which the extension load is removed refers to a state in which the load applied when the extension load is extended is removed, and the self-weight acting as the extension load is also removed. Ideally, it should be weightless or floated in a fluid with the same specific gravity as the stretchable conductor sheet, but if it is practically handled as if the sample is lying horizontally on a table placed horizontally, In effect, it can be treated as a state where the extension load is removed.
  • the extension recovery rate after heating can be determined by the same method as the extension recovery rate at 25 ° C., except that the recovery length after heating is used.
  • the elongation recovery rate after heating is preferably 97% or more, more preferably 98% or more, and still more preferably 98.8% or more.
  • the initial conductivity in the surface direction of the stretchable conductor sheet, the stretchable conductor layer, and the stretchable wiring is 1 ⁇ 10 ⁇ 3 S / cm or more.
  • the conductivity is the reciprocal of the specific resistance.
  • the initial conductivity of the stretchable conductor sheet of the present invention is preferably 1 ⁇ 10 ⁇ 2 S / cm or more, more preferably 1 ⁇ 10 ⁇ 1 S / cm or more, and still more preferably 1 ⁇ 10 0 S. / Cm or more.
  • the electrical conductivity recovery rate by heating at 60 ° C. is 10%.
  • Ratio of decrease in conductivity by mechanical load test conductivity after mechanical load test / initial conductivity
  • Conductivity recovery rate after mechanical load test conductivity after heating at 100 ⁇ 60 ° C. after mechanical load test / initial conductivity, It is.
  • the stretchable conductor sheet exhibiting the stretch recovery rate in the present invention regains the electrical contact between the conductive particles at the time of stretch recovery, and the contact between the conductive particles becomes more dense due to the contraction force generated by heating. Can be expressed.
  • the conductivity recovery rate by heating at 60 ° C. after the mechanical load test is more preferably 15% or more, further preferably 25% or more, and still more preferably 35% or more.
  • the conductivity recovery rate by heating at 60 ° C. is 10%.
  • Ratio of decrease in conductivity after washing test conductivity after washing test / initial conductivity
  • Conductivity recovery rate after washing test conductivity after heating at 100 ⁇ 60 ° C. after washing test / initial conductivity, It is.
  • mechanical load is applied both in the stretching direction and in the compression direction in water or in water containing detergent, and more complicated deformation is applied to the conductive sheet than simple mechanical load.
  • the stretchable conductor sheet shown can regain electrical contact between the conductive particles upon recovery from stretching, and can further exhibit such characteristics because the contact between the conductive particles becomes more dense due to the contraction force generated by heating.
  • the conductivity recovery rate by heating at 60 ° C. after the washing test is more preferably 15% or more, further preferably 25% or more, and still more preferably 35% or more.
  • the stretchable conductor sheet, stretchable conductor layer, and stretchable wiring of the present invention are composed of a conductive filler mainly composed of metal particles and a binder resin.
  • the conductive particle of the present invention is a particle having a specific resistance of 1 ⁇ 10 ⁇ 2 ⁇ cm or less and a particle diameter of 0.5 ⁇ m or more and 5 ⁇ m or less. Examples of the substance having a specific resistance of 1 ⁇ 10 ⁇ 2 ⁇ cm or less include metals, alloys, and doped semiconductors.
  • the conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
  • the main use is to use 90% by mass or more of the conductive particles.
  • the amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles.
  • Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
  • the particle diameter of the conductive particles is such that the average particle diameter (50% D) measured by the dynamic light scattering method is 0.5 to 5 ⁇ m, more preferably 0.7 to 3 ⁇ m.
  • the average particle diameter exceeds a predetermined range, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing.
  • the average particle size is less than 0.5 ⁇ m, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
  • carbon black having a DBP oil absorption of 100 to 550 can be used as the conductive filler.
  • the DBP oil absorption is a parameter indicating the liquid absorption and retention performance of carbon black, and is measured based on ISO 4656: 2012.
  • the DBP oil absorption amount is preferably 160 or more and 530 or less, more preferably 210 or more and 510 or less, and still more preferably 260 or more and 500 or less. If the DBP oil absorption amount is less than this range, the fine lines are easily filled when fine lines are printed, and the fine line printability is lowered.
  • the compounding amount of carbon black is 0.5% by mass or more and 2.0% by mass or less, preferably 0.7% by mass or more and 1.6% by mass or less, based on the total amount of the metal filler and carbon black.
  • non-conductive particles having an average particle size of 0.3 ⁇ m or more and 10 ⁇ m or less may be included.
  • the non-conductive particles in the present invention are mainly metal oxide particles, such as silicon oxide, titanium oxide, magnesium oxide, calcium oxide, aluminum oxide, iron oxide, metal sulfate, metal carbonate, metal A titanate or the like can be used.
  • metal oxide particles such as silicon oxide, titanium oxide, magnesium oxide, calcium oxide, aluminum oxide, iron oxide, metal sulfate, metal carbonate, metal A titanate or the like can be used.
  • the binder resin used for the stretchable conductor sheet, stretchable conductor layer, and stretchable wiring of the present invention preferably has a stretch recovery rate of 20% or more after stretching by 20%, more preferably 99.5% or more. Is more preferable, and it is still more preferable that it is 99.85% or more.
  • the elongation recovery rate of the binder resin is measured in an environment of 25 ⁇ 3 ° C. by molding the binder resin on a sheet having a thickness of 20 to 200 ⁇ m and a film thickness unevenness of 10% or less. If the stretch recovery rate of the binder resin is less than this range, it becomes difficult to set the stretch recovery rate of the stretchable conductor sheet to a predetermined range or more.
  • a non-crosslinked elastomer can be used as the binder resin in the present invention.
  • the non-crosslinked elastomer is preferably a thermoplastic elastomer resin having an elastic modulus of 1 to 1000 MPa, and preferably a glass transition temperature in the range of ⁇ 40 ° C. to 0 ° C., and a thermoplastic synthetic resin, Examples include rigid rubber and natural rubber. In order to express the stretchability of the coating film (sheet), rubber or polyester resin is preferable.
  • urethane rubber acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene Examples include rubber and vinylidene fluoride copolymer.
  • nitrile group-containing rubber, chloroprene rubber, chlorosulfonated polyethylene rubber and styrene butadiene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the elastic modulus of the flexible resin is preferably 3 to 600 MPa, more preferably 10 to 500 MPa, further preferably 15 to 300 MPa, even more preferably 20 to 150 MPa, and particularly preferably 25 to 100 MPa.
  • the rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable.
  • Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Therefore, the amount of bound acrylonitrile is preferably 18 to 50% by mass, more preferably 30 to 50% by mass, and more preferably 40 to 50% by mass in 100% by mass of nitrile-containing rubber (for example, acrylonitrile butadiene copolymer rubber). It is particularly preferable that the content is% by mass.
  • the glass transition temperature of polyester resin and urethane rubber is preferably -40 ° C to 0 ° C. Further, it preferably has a block copolymer structure composed of a hard segment and a soft segment.
  • the elastic modulus of the non-crosslinked elastomer of the present invention is preferably in the range of 1 to 1000 MPa, more preferably 3 to 600 MPa, further preferably 10 to 500 MPa, and still more preferably 30 to 300 MPa.
  • the non-crosslinked elastomer of the present invention preferably has a glass transition temperature of 0 ° C. or lower, preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • the glass transition temperature of such a binder resin is preferably 0 ° C. or lower, more preferably ⁇ 8 ° C. or lower, even more preferably ⁇ 16 ° C. or lower, still more preferably ⁇ 24 ° C. or lower. When the glass transition temperature exceeds this range, the stretch recovery property is hardly exhibited.
  • the stretchable conductor sheet of the present invention is preferably composed of at least 65 to 85% by mass of a binder resin and 15 to 35% by mass of a conductive filler comprising 90% by mass or more of metal particles.
  • the glass transition temperature can be determined by differential scanning calorimetry (DSC) according to a conventional method.
  • the number average molecular weight of the binder resin is Mn and the weight average molecular weight is Mw
  • Mw / Mn> 4 or more it is essential that Mw / Mn> 4 or more, and Mw / Mn> 4.4 or more. Is more preferable, Mw / Mn> 4.8 or more is more preferable, and Mw / Mn> 5.2 or more is still more preferable.
  • Mw / Mn is a factor representing the molecular weight distribution, and the larger the Mw / Mn, the wider the molecular weight distribution.
  • the relatively high molecular weight component dominates the stretch recovery property.
  • the relatively low molecular weight component has a function of bleeding in the microcrack portion generated at the time of stretching and connecting the microcracks again in a self-repairing manner when the stretch is recovered.
  • the number average molecular weight and the weight average molecular weight can be determined by GPC (gel permeation chromatography) analysis according to a conventional method.
  • the binder resin does not need to be a single resin, and a high molecular weight resin having a high elongation recovery rate and a different low molecular resin having a high self-healing function may be used in combination.
  • a binder resin having two or more peaks in a molecular weight distribution obtained by blending a resin having a peak in the weight average molecular weight of 800 to 4000 and a resin having a peak in the range of the weight average molecular weight of 4000 to 100,000. Is preferably used.
  • a non-crosslinked elastomer is used as a main binder resin, but a branching component can be added to obtain a high molecular weight binder resin.
  • the molecular structure may be almost the same as the crosslinked structure.
  • a crosslinked high molecular weight elastomer and a low molecular weight non-crosslinked elastomer can be appropriately mixed and used.
  • the stretchable conductor sheet in the present invention is a single membrane in a sheet-like or film-like state constituted by the stretchable conductor composition.
  • the stretchable conductor sheet of the present invention can be formed into a sheet by a technique such as extrusion molding by directly melting and mixing a conductive filler and a binder resin. Such a method can be suitably applied when the binder resin has a relatively low melt viscosity at a relatively low temperature.
  • a conductive filler, a binder component is added with a solvent component, mixed, stirred and kneaded to obtain a paste for forming a stretchable conductor, and the obtained paste is used for a coating method.
  • a method of forming a sheet Similarly, a paste for forming a stretchable conductor is obtained, and a sheet or an electric wiring pattern can be obtained by a method of directly patterning by the printing method using the obtained paste.
  • a screen printing method, a lithographic offset printing method, a paste jet method, a flexographic printing method, a gravure printing method, a gravure offset printing method, a stamping method, a stencil method, or the like can be used.
  • a method of directly drawing wiring using a dispenser or the like can be interpreted as printing in a broad sense and used.
  • the solvent used in the paste for forming a stretchable conductor of the present invention is preferably an organic solvent having a boiling point of 200 ° C. or higher and a saturated vapor pressure at 20 ° C. of 20 Pa or lower. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced. In addition, since the drying and curing process takes a long time, the edge sagging during the drying process increases and it becomes difficult to keep the gap between the wirings narrow.
  • benzyl alcohol vapor pressure: 3 Pa, boiling point: 205 ° C.
  • terpionol vapor pressure: 3.1 Pa, boiling point: 219 ° C.
  • diethylene glycol vapor pressure: 0.11 Pa, boiling point: 245 ° C.
  • Diethylene glycol monoethyl ether acetate vapor pressure: 5.6 Pa, boiling point 217 ° C.
  • diethylene glycol monobutyl ether acetate vapor pressure: 5.3 Pa, boiling point: 247 ° C.
  • diethylene glycol dibutyl ether vapor pressure: 0.01 mmHg or less, boiling point: 255 ° C.
  • Triethylene glycol (vapor pressure: 0.11 Pa, boiling point: 276 ° C.), triethylene glycol monomethyl ether (vapor pressure: 0.1 Pa or less, boiling point: 249 ° C.), triethylene glycol monoethyl ether (vapor pressure: 0.3 Pa, Boiling point: 256 ° C.), triethylene glycol monobutyl ether (vapor pressure: 1 Pa, boiling point: 271 ° C., tetraethylene glycol (vapor pressure: 1 Pa, boiling point: 327 ° C.), tetraethylene glycol monobutyl ether (vapor pressure: 0.01 Pa or less, boiling point: 304 ° C.), tripropylene glycol (vapor pressure: 0.01) Pa or less, boiling point: 267 ° C.), tripropylene glycol monomethyl ether (vapor pressure: 3 Pa, boiling point: 243 ° C.), diethylene glycol monobutyl ether (vapor pressure: 3 Pa, boiling point: 230 ° C.) can be used. Two or more
  • the stretchable conductor forming paste of the present invention can be obtained by mixing and dispersing with a disperser such as a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, or a sand mill.
  • a disperser such as a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, or a sand mill.
  • the paste for forming a stretchable conductor of the present invention is provided with known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidants, ultraviolet absorbers and the like within the scope of the invention. Can be blended.
  • the paste for forming a stretchable conductor thus obtained is dried and cured to obtain an electrical wiring pattern composed of a stretchable conductor sheet or a stretchable conductor substantially free from a solvent and exhibiting a predetermined stretch recovery rate. be able to.
  • the paste for stretchable conductor formation can be applied to a film substrate coated with a release agent using a die coater, a slit coater, a comma coater, a gravure coater or the like and dried to form a sheet.
  • an electrical wiring can be formed on an insulating fabric having a recovery rate of 99% or more at 50% elongation and heat resistance of 60 ° C. or more. .
  • the heat resistance of the fabric is evaluated based on the heat shrink temperature of the material fiber.
  • the electrical wiring can be produced by cutting a stretchable conductor sheet into a predetermined shape and attaching it to a fabric with an adhesive or the like. It is also possible to obtain an electrical wiring pattern having a predetermined shape by a printing method after forming a base layer directly on the fabric or with an insulating resin in advance. Furthermore, a predetermined pattern can be formed on another substrate having releasability by printing or the like, and transferred to the fabric.
  • an insulating cover layer is formed on the wiring as necessary.
  • a screen printing method a lithographic offset printing method, a paste jet method, a flexographic printing method, a gravure printing method, a gravure offset printing method, a stamping method, a stencil method, or the like can be used.
  • a method of directly drawing wiring using a dispenser or the like may be interpreted as printing in a broad sense.
  • clothes having an electrical wiring made of the stretchable conductor composition can be produced by these methods.
  • the cloth having the electrical wiring made of the stretchable conductor, and the clothes having the electrical wiring, for example, the iron, the trouser press the hair in the state where the stretched load of the stretchable conductor portion is removed.
  • the conductive performance can be recovered from a state in which the conductivity is deteriorated due to a load such as repeated stretching in practical use to a state in which it can be practically used.
  • Such a process is called a conductive recovery process.
  • the heating temperature used for the conductive recovery treatment is preferably 75 ° C. or higher, more preferably 90 ° C. or higher, and still more preferably 110 ° C. or higher.
  • the upper limit of the temperature of the conductive recovery treatment depends on the heat resistance of the shared base material and the like. In a woven or knitted fabric made of general chemical fibers, the upper limit is about 150 ° C.
  • relatively high heat resistant fibers such as cotton
  • heat resistant fiber materials such as aramid fibers, polybenzazole fibers, polyimide fibers, and heat resistant flexible resins such as silicone resins
  • heat resistant flexible resins such as silicone resins
  • ⁇ Tensile yield elongation> A resin material used for the stretchable insulating polymer layer is formed into a sheet shape with an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell mold defined by ISO 527-2-1A. It was. Subsequently, the SS curve was obtained using a tensile tester, the yield point was obtained as shown in FIG. 1A, and the elongation at that time was defined as the tensile yield elongation.
  • ⁇ Heat deformation temperature> A sheet of stretchable insulating polymer is placed on a hot plate and heated to a predetermined temperature. Next, an electric iron having an iron hot plate heated to the same predetermined temperature is placed on the stretchable insulating polymer sheet for 1 minute, and then the electric iron is lifted. When lifted together with the hot plate, it was judged that there was adhesion and adhesion. Moreover, when the trace which had been in the iron can be visually determined, it determined with having thermally deformed. The measurement was carried out by raising the predetermined temperature in increments of 60 ° C. to 5 ° C., and the lowest temperature at which any one of thermal deformation or adhesion / adhesion was observed was defined as the thermal deformation temperature. When the temperature reached 180 ° C., the test was stopped there. When the fabric was deformed or abnormal, the test was stopped at that temperature, and it was determined that the thermal deformation temperature was higher than that temperature.
  • ⁇ Elastic modulus> The binder resin was molded into a sheet shape with an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell mold defined by ISO 527-2-1A to obtain a test piece. A tensile test was performed by a method defined in ISO 527-1 to obtain a stress-strain diagram of the resin material, and an elastic modulus was calculated by a conventional method.
  • the glass transition temperature was determined by differential scanning calorimetry (DSC) according to a conventional method.
  • the paste material is added to THF (tetrahydrofuran) so that the concentration of the sample in the solution is 2.0% by mass, and the solution is stirred. While raising the temperature to the boiling point of THF, the mixture was kept for 30 minutes, cooled to room temperature, and left for 24 hours.
  • THF tetrahydrofuran
  • the obtained resin solution was diluted 4 times with THF, passed through a 0.45 ⁇ m filter to remove inorganic matters, GPC measurement was performed on the filtrate, and low molecular weight components such as additives were added with a molecular weight of 500
  • the number average molecular weight, the weight average molecular weight, and the dispersion ratio (Mw / Mn) were determined for portions having a molecular weight of 500 or more.
  • ⁇ Resin recovery rate> The resin material was formed into a sheet shape with an arbitrary thickness in the range of 20 ⁇ m to 200 ⁇ m, and then punched into a dumbbell mold defined by ISO 527-2-1A to obtain a test piece. Subsequently, a mark was placed at a location 33 mm (effective length 66 mm) from the center of the 10 mm wide and 80 mm long portion in the dumbbell-shaped test piece, and the initial distance L 0 between the marks was measured accurately.
  • the outside of the marked part is clamped, and the 66 mm mark is stretched to an extension length of 79.2 mm (+13.2 mm, corresponding to an extension degree of 20%), then separated from the clamp, and a predetermined temperature (especially placed on at otherwise if no is 25 ° C.) of the fluorine resin sheet was kept in a horizontal direction, measured after stretching distance L 2 between the marks was determined extension recovery rate according to the following equation.
  • ⁇ Stretch recovery rate of fabric> The fabric material was punched into a dumbbell shape specified by ISO 527-2-1A to obtain a test piece. In addition, the extending
  • ⁇ Average particle size> The average particle size of the filler was measured using a light scattering particle size distribution measuring device LB-500 manufactured by Horiba.
  • ⁇ Conductivity> When the size of the conductor sheet is sufficient, it is punched into a dumbbell type specified by ISO 527-2-1A, and the dumbbell type test piece is 10 mm wide and 80 mm long as the test piece. Using. When the conductor sheet could be molded, it was heat-compressed into a sheet having a thickness of 200 ⁇ 20 ⁇ m, then punched into a dumbbell shape defined by ISO 527-2-1A, and similarly a test piece was obtained. When the size of the conductor sheet is small and the specified dumbbell shape cannot be obtained, a rectangle with a width and length that can be collected is cut out to make a test piece, and the width, thickness, and length of the measured conductivity are measured. It converted using.
  • Test piece The resistance value [ ⁇ ] of a portion having a width of 10 mm and a length of 80 mm was measured using a milliohm meter manufactured by Agilent Technologies, and the sheet resistance value “ ⁇ ” was multiplied by the aspect ratio (1/8) of the test piece. ⁇ ”.
  • the resistivity [ ⁇ ] was multiplied by the cross-sectional area (width 1 [cm] mm ⁇ thickness [cm]) and divided by the length (8 cm) to obtain the specific resistance [ ⁇ cm]. Furthermore, the reciprocal of the specific resistance was determined and used as the conductivity.
  • Reading of resistance value is repeated every 10 times up to 600 times of extension, and every 50 times more than 600 times, with the extension rate being 0%, and the value after 1 minute is read and recorded, The number of times when the resistance value reached 100 times the initial value was recorded, and the test was terminated there.
  • ⁇ Washing durability> (1) Preparation of test piece A stretchable conductor layer punched into a dumbbell shape was punched into 40 mm ⁇ 180 mm at almost the center of a 50 mm ⁇ 200 mm fabric (tricot knitted fabric, heat resistance> 100 ° C., stretch recovery rate 100%).
  • a hot melt adhesive layer MOB100 [manufactured by Nisshinbo Co., Ltd.] was stacked, sandwiched between fluororesin sheets, and hot-pressed at 120 ° C. to obtain a test piece. Note that the tricot knitted fabric and the hot melt adhesive layer MOB100 both have sufficient stretchability, with a stretch recovery rate of 100% when stretched 100%.
  • washing test A 30-cycle washing test was conducted according to the 105 method defined in JIS L 0217 Textile Handling Symbols and Display Methods. Washing solution: neutral detergent 0.5% solution water flow: weak bath ratio: 1:60 Washing cycle Washing 30 ° C 5 minutes Rinse 30 ° C 2 minutes 2 times This cycle is 1 cycle 30 times. (3) Evaluation In the washing test of the conductive sheet, when the ratio of decrease in conductivity after the test is 1/1000 or more, the test piece after the washing test is removed from the extension load and no load other than its own weight is applied. The sample was allowed to stand on a fluororesin sheet held in a horizontal direction, heated in a dry oven at 60 ° C.
  • Conductivity reduction ratio after washing test conductivity after washing test / initial conductivity
  • Conductivity recovery after washing test conductivity after heating at 100 ⁇ 60 ° C./initial conductivity after washing test. In calculating the electrical conductivity, the value of the sheet thickness before being attached to the fabric was used for convenience.
  • Salt and dilute sulfuric acid are added to the resulting latex for aggregation and filtration, and the resin is redispersed in deionized water in a volume of 20 times the volume ratio of deionized water, and washed by repeating filtration. And dried in air to obtain a synthetic rubber resin.
  • Table 1 shows the glass transition temperature, number average molecular weight, weight average molecular weight, dispersion ratio, gel fraction, and resin elongation recovery rate of the obtained synthetic rubber resin.
  • the polymerization initiator potassium persulfate
  • Binder resin A resin material was blended at a blending ratio shown in Table 2, and kneaded at a temperature at which the resin material was sufficiently melted to obtain a binder resin.
  • Table 2 shows the characteristics of each binder resin. Shown in In the table, in the SBR + crosslinking agent, SBR is SBR1 obtained in the production example, and as the crosslinking agent, non-sulfur perbutyl P [manufactured by NOF Corporation] is 0.1% by mass with respect to the total amount of the resin. did UR-8700 [Toyobo Co., Ltd.] was used as the urethane in the table.
  • the binder resin is dissolved in half the amount of the predetermined solvent, and the resulting solution is added with metal-based particles, carbon-based particles, and other components, premixed, and then dispersed in a three-roll mill.
  • the paste shown in Table 3 was obtained as Pag1. Similarly, the paste was adjusted at the composition ratio shown in Table 3.
  • Carbon-based particles CB01 scale-like graphite BF-1AT (average particle size 1 ⁇ m) manufactured by Chuetsu Graphite Co., Ltd.
  • Carbon particle CB02 Graphite powder made by Lion Specialty Chemicals Ketjen Black EC300J BET specific surface area 800 (m2 / g)
  • Metal-based particles Ag01 Fine flaky silver powder Ag-XF301 (average particle size 6 ⁇ m) manufactured by Fukuda Metal Foil Powder Co., Ltd.
  • Metal-based particles Ag02 Agglomerated silver powder G-35 (average particle size 6.0 ⁇ m) manufactured by DOWA Electronics Co., Ltd.
  • Metal-based particles Ag03 Fine size silver powder SPQ03R (Mitsui Metal Mining Co., Ltd.) (average particle size 0.7 ⁇ m)
  • Non-conductive particles TiO2 Titanium oxide particles R-62N manufactured by Sakai Chemical Industry Co., Ltd. (average particle size is 0.3 ⁇ m)
  • Non-conductive particles SiO2 Fumed silica AEROSIL 200 (BET specific surface area 200m2 / g) manufactured by Nihon Aerosil Solvent BC: butyl carbitol acetate solvent IP: isophorone.
  • the decrease in conductivity is significant. Furthermore, the conductivity recovery effect by heating is low for samples having a conductivity reduction ratio of 1/1000 or less. It can also be seen that when a binder resin having a wide molecular weight distribution is used, the recovery rate of the conductivity by heating is high.
  • the obtained stretchable conductor layer was attached to a tricot fabric by a predetermined method to obtain a stretchable conductor / fabric laminate.
  • the initial conductivity of the stretchable conductor portion of the obtained stretchable conductor / fabric laminate, the conductivity after the washing test, the conductivity decrease ratio after the washing test, and the conductivity recovery rate after the washing test are shown. 4 shows.
  • Electrode Surface Layer Paste (Stretchable Carbon Paste) According to the composition shown in Table 3, an electrode surface layer carbon paste was prepared.
  • a clothes-type electronic device for measuring an electrocardiogram was manufactured by the direct printing method shown in FIG.
  • the knit sports shirt was turned upside down and put on the temporary support so that there were no wrinkles on the back, and pins were fixed on both shoulders and left and right hems of the shirt.
  • the stretchable conductor layer is made of the stretchable conductor forming paste Pag5 and the stretchable cover layer is made of the stretchable insulating polymer layer forming paste Pcc1 according to the process shown in FIG.
  • a stretchable carbon layer is printed using the electrode surface layer paste Pcb1, screen-printed on each layer, dried and cured under predetermined conditions, printed and laminated, and a sport having electrodes and wiring for electrocardiogram measurement I got a shirt.
  • the electrode surface layer for electrocardiogram measurement is a circle with a diameter of 30 mm.
  • the insulating cover layer has a donut shape with an inner diameter of 30 mm and an outer diameter of 36 mm at the electrode portion, the wiring portion extending from the electrode has a width of 14 mm, and the end of the wiring portion has a diameter of 10 mm to attach a hook for connection with the sensor.
  • the circular electrodes are similarly printed with carbon paste.
  • the carbon paste layer has a dry film thickness of 18 ⁇ m
  • the insulating cover layer has a thickness of 30 ⁇ m
  • the stretchable conductor layer has a thickness of 28 ⁇ m.
  • the base layer Prior to printing the stretchable conductor layer, although not shown in the figure, the base layer is formed with a stretchable insulating polymer layer forming paste.
  • the resulting sports shirt with electrodes and wiring has a circular electrode with a diameter of 30 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and a stretchable conductor with a width of 10 mm from the circular electrode to the center of the rear neck Electrical wiring is formed on the inside.
  • the wiring extending from the left and right electrodes to the center of the rear neck has a gap of 5 mm at the center of the neck, and both are not short-circuited.
  • a stainless steel hook is attached to the surface side of the central end of the rear neck, and a stretchable conductor composition layer using a conductive thread twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side And a stainless steel hook were electrically connected.
  • FIG. 5 shows the wiring pattern
  • FIG. 4 shows the layout of the wiring pattern with respect to the shirt.
  • the subject was wearing this sports shirt, and sports training was performed while acquiring electrocardiographic data.
  • the obtained electrocardiogram data has low noise, high resolution, and the quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc. of the mental state, physical condition, fatigue, drowsiness, tension etc. .
  • This sports shirt was washed every time after training, and the electrode part and the wiring part were heat-treated with a domestic iron whose surface temperature was adjusted to 80 ° C. after drying.
  • a sports shirt that is turned inside out is placed on an ironing board in the same way as with normal ironing, and a 38 ⁇ m-thick polyimide film XENOMAX (manufactured by Toyobo Co., Ltd.) is placed on the wiring part as a release sheet. Then, the operation of moving at a speed of 5 to 10 cm / second was repeated 5 times.
  • a sports shirt having wiring of the same pattern as in Application Example 1 was used, except that Pag11 was used as a stretchable conductor forming paste and Pcc2 was used as a stretchable insulating polymer layer forming paste by the print transfer method shown in FIG.
  • a prototype was made using the same material.
  • sport training was performed while taking electrocardiogram data in the same manner as in Application Example 1, and washing, drying, and ironing were repeated in the same manner.
  • the sportswear maintained a state where the electrocardiogram measurement was possible even after 100 times of use.
  • a sports shirt having the same pattern wiring as Application Example 1 was used by the printing transfer method shown in FIG. 3, except that Pag11 was used as the stretchable conductor forming paste and Pcc3 was used as the stretchable insulating polymer layer forming paste.
  • a prototype was made using the same material. Using the obtained sport shirt, sport training was performed while taking electrocardiogram data in the same manner as in Application Example 1, and washing, drying, and ironing were repeated in the same manner. As a result, also in the application example 3, the sportswear maintained the state where the electrocardiogram measurement was possible even after 100 times of use.
  • the stretchable electrical wiring obtained by using the stretchable insulating polymer layer and the stretchable conductor layer in the present invention has a characteristic that the reduced conductivity is regenerated by appropriately performing the heat treatment. Therefore, it has a useful characteristic that a practical life can be extended by using household equipment without using a special device.
  • information on the human body i.e., biopotentials such as myoelectric potential and cardiac potential, biological information such as body temperature, pulse, blood pressure, etc.
  • wearable device for detection, or clothing incorporating an electrical heating device
  • wearable device incorporating a sensor for measuring clothing pressure
  • clothing for measuring body size using clothing pressure sole of foot Socks-type devices for measuring pressure
  • wiring parts such as clothes, tents and bags with flexible solar cell modules integrated in textiles, low-frequency treatment devices with joints, wiring parts such as thermotherapy machines, flexion degree It can be applied to sensing parts.
  • Such wearable devices can be applied not only to the human body but also to animals such as pets and livestock, or mechanical devices having a telescopic part, a bent part, etc. It can also be used as electrical wiring for systems that are connected. It can also be applied as a wiring material for implant devices to be embedded in the body.

Abstract

[Problem] To provide an elastic conductive material for forming elastic wiring in a garment-type electronic device, wherein the product life thereof which is limited by deterioration of the electrical wiring can be extended on the user side. [Solution] An electrode, electrical wiring, or the like is formed in a garment by using an elastic conductive sheet as the wiring, said elastic conductive sheet being configured from a conductive filler and a binder resin, characterized in that the unevenness in the film thickness of the sheet is 10% or less and the elastic recovery thereof after 20% elongation at 25°C is 92% or greater, and preferably, further characterized in that Mw/Mn>4 or higher, given that the number average molecular weight of the binder resin is Mn and the weight average molecular weight thereof is Mw. Furthermore, when the conductivity of this electrode or wiring decreases due to repeated stretching or laundering, it is possible to restore the conductivity thereof to a useful level by heating to 60°C or higher.

Description

伸縮性導体シート、伸縮性配線、伸縮性配線付き布帛、および導電性回復方法Stretchable conductor sheet, stretchable wiring, fabric with stretchable wiring, and conductivity recovery method
 本発明は、電子機能ないし電気機能を衣服に組み込んで使用する衣服型のウェアラブル電子機器に使用される導電材料に関し、さらに詳しくは、伸縮性を有する電気配線が形成されており、さらに自然な着用感のある衣服型電子機器に関する。 The present invention relates to a conductive material used in a clothes-type wearable electronic device that is used by incorporating an electronic function or an electric function into a garment, and more specifically, an electric wiring having elasticity is formed, and more natural wearing The present invention relates to a clothing-type electronic device.
 昨今、入出力、演算、通信機能を有する電子機器を身体に極近接、ないしは密着した状態で使用することを意図したウェアラブル電子機器が開発されている。ウェアラブル電子機器には腕時計、メガネ、イヤホンのようなアクセサリ型の外形を有する機器、衣服に電子機能を組み込んだテキスタイル集積型機器が知られている。かかるテキスタイル集積型機器の一例が特許文献1に開示されている。 Recently, wearable electronic devices intended to use electronic devices having input / output, arithmetic and communication functions in close proximity to or close to the body have been developed. As wearable electronic devices, devices having an accessory-type outer shape such as a wristwatch, glasses, and earphones, and textile integrated devices in which electronic functions are incorporated into clothes are known. An example of such a textile integrated device is disclosed in Patent Document 1.
 電子機器には、電力供給用や信号伝送用の電気配線が必要である。特にテキスタイル集積型ウェアラブル電子機器には、伸縮する衣服に合わせて電気配線にも伸縮性が求められる。通常、金属線や金属箔からなる電気配線には、本質的に実用的な伸縮性は無いため、金属線や金属箔を波形、あるいは繰り返し馬蹄形に配置して、擬似的に伸縮機能を持たせる手法が用いられている。
 金属線の場合には、金属線を刺繍糸と見なして、衣服に縫い付けることにより配線形成が可能である。しかしながら、かかる手法が大量生産に向いていないことは自明である。
 金属箔のエッチングにより配線を形成する手法は、プリント配線板の製法として一般的である。金属箔を伸縮性のある樹脂シートに貼り合わせ、プリント配線板と同様の手法で波形配線を形成して、擬似的に伸縮性配線とする手法が知られている。(非特許文献1参照)かかる手法は波形配線部の捻れ変形により擬似的に伸縮特性を持たせるものであるが、捻れ変形により金属箔が厚さ方向にも変形するため、衣服の一部として用いると、非常に違和感のある着用感となり好ましいものではなかった。また洗濯時のような過度な変形を受けた場合には金属箔に永久塑性変形が生じ、配線の耐久性にも問題があった。
Electronic equipment requires electrical wiring for power supply and signal transmission. In particular, in textile-integrated wearable electronic devices, the electrical wiring is required to be stretchable in accordance with the stretchable clothes. Usually, electrical wiring made of metal wires or metal foils is not practically elastic, so the metal wires or metal foils are placed in a corrugated or repeated horseshoe shape to give a pseudo expansion / contraction function. The method is used.
In the case of a metal wire, wiring can be formed by regarding the metal wire as an embroidery thread and sewing it onto clothes. However, it is obvious that this method is not suitable for mass production.
A method of forming a wiring by etching a metal foil is a general method for producing a printed wiring board. A technique is known in which a metal foil is bonded to a stretchable resin sheet, and corrugated wiring is formed by a technique similar to that of a printed wiring board to make a pseudo stretchable wiring. (Refer to Non-Patent Document 1) Such a technique is to give a pseudo expansion / contraction characteristic by torsional deformation of the corrugated wiring portion. However, since the metal foil is also deformed in the thickness direction by torsional deformation, When used, it was very uncomfortable and unpleasant. In addition, when subjected to excessive deformation as in washing, permanent plastic deformation occurs in the metal foil, and there is a problem in the durability of the wiring.
 伸縮性の導体配線を実現する手法として、特殊な導電ペーストを用いる方法が提案されている。銀粒子、カーボン粒子、カーボンナノチューブ等の導電性粒子と伸縮性を持つウレタン樹脂などのエラストマー、天然ゴム、合成ゴム、溶剤などを混練してペースト状とし、衣服に直接、ないし伸縮性のフィルム基材などと組み合わせて配線を印刷描画するものである。
 導電粒子と伸縮性バインダー樹脂とからなる導電性組成物は、巨視的には伸縮可能な導体を実現することができる。かかるペーストから得られる導電性組成物は、微視的に見れば、外力を受けた際に樹脂バインダー部が変形し、導電性粒子の電気的連鎖が途切れない範囲で導電性が維持されるものである。巨視的に観察される比抵抗は、金属線や金属箔に比較すると高い値であるが、組成物自体が伸縮性を持つために波形配線などの形状を採る必要が無く、配線幅と厚さには自由度が高いため実用的には金属線に比較して低抵抗な配線を実現可能である。
As a technique for realizing a stretchable conductor wiring, a method using a special conductive paste has been proposed. Conductive particles such as silver particles, carbon particles, carbon nanotubes and elastomers such as stretchable urethane resin, natural rubber, synthetic rubber, solvent, etc. are kneaded to form a paste, directly on clothes or stretchable film base The wiring is printed and drawn in combination with a material.
Macroscopically, a conductive composition composed of conductive particles and a stretchable binder resin can realize a stretchable conductor. When viewed microscopically, the conductive composition obtained from such a paste maintains its conductivity within a range in which the resin binder portion is deformed when external force is applied and the electrical chain of the conductive particles is not interrupted. It is. The specific resistance observed macroscopically is higher than that of metal wires and metal foils, but because the composition itself has elasticity, there is no need to adopt a shape such as corrugated wiring, and the wiring width and thickness. Since there is a high degree of freedom, it is practically possible to realize a low resistance wiring compared to a metal wire.
 特許文献2では、銀粒子とシリコ-ンゴムを組合せ、シリコーンゴム基板上の導電性膜をさらにシリコーンゴムで被覆することにより、伸長時の導電率低下を抑制する技術が開示されている。特許文献3には銀粒子とポリウレタンエマルジョンの組合せが開示されており、高導電率でかつ高伸長率の導電膜が得られるとされている。さらにカーボンナノチューブや銀フィラーなど、高アスペクト比の導電性粒子を組み合わせて特性改善を試みた例も多々提案されている。 Patent Document 2 discloses a technique for suppressing a decrease in conductivity at the time of elongation by combining silver particles and silicone rubber and further coating a conductive film on a silicone rubber substrate with silicone rubber. Patent Document 3 discloses a combination of silver particles and a polyurethane emulsion, and it is said that a conductive film having high conductivity and high elongation can be obtained. Further, many examples have been proposed in which characteristics are improved by combining high aspect ratio conductive particles such as carbon nanotubes and silver fillers.
 特許文献4では、印刷法を用いて電気配線を衣服に直接的に形成する技術が開示されている。 Patent Document 4 discloses a technique for directly forming electrical wiring on clothes using a printing method.
特開平2-234901号公報JP-A-2-234901 特開2007-173226号公報JP 2007-173226 A 特開2012-54192号公報JP 2012-54192 A 特許第3723565号公報Japanese Patent No. 3723565
 伸縮性導体組成物は、主として導電粒子と柔軟性樹脂から構成されるものである。このような伸縮性導体としては、ゴムなどの架橋型エラストマーを樹脂バインダーとして用い、カーボンブラックや金属粒子を配合した組成物が一般に知られている。このような伸縮性導体組成物は、金属系導電粒子と架橋型エラストマーの前駆体に必要に応じて溶剤などを混合溶解分散して得られるペーストないしスラリーを介して形成される。ペーストとした場合にはスクリーン印刷などで配線パターンを形成することが容易となる。 The stretchable conductor composition is mainly composed of conductive particles and a flexible resin. As such a stretchable conductor, a composition in which a crosslinked elastomer such as rubber is used as a resin binder and carbon black or metal particles is blended is generally known. Such a stretchable conductor composition is formed through a paste or slurry obtained by mixing, dissolving, and dispersing a solvent or the like into the metal-based conductive particles and the precursor of the cross-linked elastomer as necessary. When the paste is used, it becomes easy to form a wiring pattern by screen printing or the like.
 伸縮性バインダーを用いる伸縮性導電ペーストから得られる伸縮性の導体組成物を用いて衣服を構成する布帛に印刷法を用いて配線を形成する場合には、類似の技術、たえば導電ペーストを用いたメンブレン回路の形成技術と比較して様々な相違点があり、それらが技術的困難性につながっている。
 通常、PETフィルムなどのエンジニアリングプラスチックフィルムを基材に用いるメンブレン回路においては、回路全体が屈曲性を有するが、基材自体の伸張負荷に対する弾性率が非常に高いために実質的に伸縮性は示さない。一方で伸縮性導体組成物による配線を布帛や柔軟な高分子シートを基材に用いて形成した場合には伸縮性のある配線を実現する事ができる。適切に設計・製造された、かかる伸縮性導体配線は10%程度から最大100%以上に達するまで伸張しても導電性を維持することが出来る。
When wiring is formed on a fabric constituting a garment using a stretchable conductive composition obtained from a stretchable conductive paste using a stretchable binder, a similar technique, for example, a conductive paste is used. There are various differences compared to the conventional membrane circuit formation technology, which leads to technical difficulties.
Usually, in a membrane circuit using engineering plastic film such as PET film as a base material, the entire circuit has flexibility, but the elasticity itself with respect to the tensile load of the base material itself is so high that it exhibits substantially stretchability. Absent. On the other hand, when a wiring made of a stretchable conductor composition is formed using a fabric or a flexible polymer sheet as a base material, a stretchable wiring can be realized. Appropriately designed and manufactured, such stretchable conductor wiring can maintain electrical conductivity even when stretched from about 10% to a maximum of 100% or more.
 しかしながら、導電粒子と伸縮性バインダー樹脂からなる伸縮性導電被膜は、分散系であり、弾性範囲、すなわちフックの法則が成立する、引張荷重と歪み(伸び)が直線的に比例する範囲は狭く、せいぜい数%に過ぎない。弾性範囲を越えて、なお変形を与えた場合には被膜内部で微小なクラックが発生し、クラックにより生じた間隙が広がることで塗膜の変形が継続して続く。この状態は、クラック周囲の被膜がなお柔軟であるために、被膜が完全に破断することは無く、クラックの数、幅の増加等の微視的な内部構造変化が巨視的には被膜を致命的に破壊すること無く、柔軟に伸張し続けているように見える領域である。この領域では被膜の破断は生じないが、内部構造的には微小クラックの成長により導電粒子の連鎖により導電経路は次第に狭くなり、結果として塗膜の導電性は低下する。 However, the stretchable conductive film composed of the conductive particles and the stretchable binder resin is a dispersion system, and the elastic range, that is, the range in which the tensile load and the strain (elongation) are linearly proportional, is narrow, It is only a few percent at most. When the deformation is applied beyond the elastic range, minute cracks are generated inside the coating, and the coating is continuously deformed by widening the gap generated by the crack. In this state, since the coating around the crack is still flexible, the coating does not completely break, and microscopic internal structural changes such as an increase in the number and width of cracks are macroscopically fatal. This is an area that seems to continue to stretch flexibly without breaking. In this region, the film does not break, but in terms of internal structure, the conductive path gradually narrows due to the chain of conductive particles due to the growth of microcracks, and as a result, the conductivity of the film decreases.
 塑性変形領域まで伸張した伸縮性導電被膜は、引っ張り荷重を除けば収縮して、ほぼ初期の長さに近い長さに戻るが、導電粒子の連結は断たれているため抵抗値は初期値にまでは戻らず、初期値より高い値となる。このように、弾性領域を越えた伸張を繰り返すと伸縮性導電膜の抵抗値は次第に高くなり、最終的には非導通に達する。このように従来の伸縮性導電被膜は、繰り返し伸縮により導電性が低下するという問題があり、かかる伸縮性動態皮膜が衣服型の電子機器の配線に用いられた場合には実使用時に生じる繰り返し伸縮、さらには洗濯時などに加わる水流により繰り返し伸縮に対する耐久性が問題となっていた。 The stretchable conductive film stretched to the plastic deformation region contracts to return to a length close to the initial length when the tensile load is removed, but the resistance is set to the initial value because the connection of the conductive particles is broken. It does not return until it becomes a value higher than the initial value. As described above, when the stretching beyond the elastic region is repeated, the resistance value of the stretchable conductive film gradually increases and finally reaches non-conduction. As described above, the conventional stretchable conductive film has a problem that the conductivity decreases due to repeated stretching, and when such a stretchable dynamic coating is used for wiring of a clothes-type electronic device, repeated stretching that occurs in actual use is used. Furthermore, the durability against repeated expansion and contraction has been a problem due to the water flow applied during washing.
 本発明者は、かかる目的を達成するために鋭意検討した結果、伸縮性導電被膜に特定の特性を付与することにより、繰り返し伸縮耐久性が実用的に大きく改善することを見出し、以下の発明に到達した。
 すなわち、本発明は以下の構成を持つ。
[1] 導電フィラーとバインダー樹脂から構成される伸縮性の導体シートにおいて、該シートの膜厚斑が10%以下であり、25℃における、20%伸張後の伸張回復率が92%以上であることを特徴とする伸縮性導体シート。
[2] 25℃における20%伸張後に、伸張荷重を除去した状態にて60℃加熱とした場合の伸張回復率が96%以上である[1]に記載の伸縮性導体シート。
[3] 伸縮性導体シートの、シート面方向の初期導電率が1×102S/cm以上であり、機械的負荷による導電率低下比が、初期導電率の1/1000以内の範囲である場合の、60℃加熱による導電性回復率が10%以上である事を特徴とする[1]または[2]に記載の伸縮性導体シート。
[4] 20%伸張後の伸張回復率が99%以上であり、ガラス転移温度が0℃以下のバインダー樹脂65~85質量%と、金属粒子を90質量%以上からなる導電フィラー15~35質量%から構成される[1]から[3]のいずれかに記載の伸縮性導体シート。
[5] 前記バインダー樹脂の数平均分子量をMn、重量平均分子量をMwとした場合に、
Mw/Mn>4以上であることを特徴とする[1]から[4]のいずれかに記載の伸縮性導体シート。
[6] 50%伸張時の伸張回復率が99%以上であり、60℃以上の耐熱性を有する絶縁性布帛層と、[1]から[5]のいずれかに記載の伸縮性導体シートの層を有する伸縮性導体/布帛積層体。
[7] 伸縮性導体シートの伸張荷重を除去した状態にて60℃以上に加熱することによる、[1]から[5]のいずれかに記載の伸縮性導体シート、または、[6]に記載の伸縮性導体/布帛積層体の導電性回復方法。
 
As a result of intensive studies to achieve this object, the present inventor has found that repeated stretch durability is practically greatly improved by imparting specific characteristics to the stretchable conductive film, and the following invention is achieved. Reached.
That is, the present invention has the following configuration.
[1] In a stretchable conductor sheet composed of a conductive filler and a binder resin, the film thickness unevenness of the sheet is 10% or less, and the stretch recovery rate after stretching 20% at 25 ° C. is 92% or more. A stretchable conductor sheet characterized by that.
[2] The stretchable conductor sheet according to [1], wherein after 20% stretching at 25 ° C, the stretch recovery rate is 96% or more when heated at 60 ° C with the stretching load removed.
[3] The initial electrical conductivity in the sheet surface direction of the stretchable conductor sheet is 1 × 10 2 S / cm or more, and the electrical conductivity reduction ratio due to a mechanical load is within a range of 1/1000 of the initial electrical conductivity. The stretchable conductor sheet according to [1] or [2], wherein the conductivity recovery rate by heating at 60 ° C. is 10% or more.
[4] A conductive filler consisting of 65 to 85% by weight of a binder resin having a stretch recovery rate of 20% or higher after stretching by 20% and a glass transition temperature of 0 ° C. or lower and 90% by weight or more of metal particles. % Of the stretchable conductor sheet according to any one of [1] to [3].
[5] When the number average molecular weight of the binder resin is Mn and the weight average molecular weight is Mw,
The elastic conductor sheet according to any one of [1] to [4], wherein Mw / Mn> 4 or more.
[6] An insulating fabric layer having an elongation recovery rate of 99% or more at 50% elongation and heat resistance of 60 ° C. or more, and the stretchable conductor sheet according to any one of [1] to [5] Stretchable conductor / fabric laminate having a layer.
[7] The stretchable conductor sheet according to any one of [1] to [5], or the heating according to [6], wherein the stretchable conductor sheet is heated to 60 ° C. or more in a state in which an extension load is removed. Method for recovering electrical conductivity of stretchable conductor / fabric laminate.
 さらに本発明は以下の構成を有する。
[8] 少なくとも、
 引張降伏伸度が70%以上であり、熱変形温度が60℃以上である伸縮性絶縁高分子層と、
 導電フィラーとバインダー樹脂から構成される伸縮性導体層、
から構成される伸縮性配線。
[9] 前記伸縮性導体層が、25℃における20%伸張後の伸張回復率が92%以上であることを特徴とする[8]に記載の伸縮性配線。
[10] 伸縮性導体層の、面方向の初期導電率が1×102S/cm以上であり、
機械的負荷による導電率低下比が、初期導電率の1/1000以上の範囲である場合の、
60℃加熱による導電性回復率が10%以上である事を特徴とする[8]または[9]に記載の伸縮性配線。
[11]  前記伸縮性導体層が、20%伸張後の伸張回復率が99%以上であり、ガラス転移温度が0℃以下のバインダー樹脂65~85質量%と、金属粒子を90質量%以上からなる導電フィラー15~35質量%から構成される[8]から[10]のいずれかに記載の伸縮性配線。
[12] 前記バインダー樹脂の数平均分子量をMn、重量平均分子量をMwとした場合に、
Mw/Mn>4以上であることを特徴とする[8]から[11]のいずれかに記載の伸縮性配線。
[13] 50%伸張時の伸張回復率が99%以上であり、60℃以上の耐熱性を有する絶縁性布帛上に、[8]から[12]のいずれかに記載の伸縮性配線を有する事を特徴とする伸縮性配線付き布帛。
[14] 伸縮性配線の伸張荷重を除去した状態にて60℃以上に加熱することによる、[8]から[12]のいずれかに記載の伸縮性配線の導電性回復方法。
[15] 伸縮性配線付き布帛の伸張荷重を除去した状態にて60℃以上に加熱することによる[13]に記載の伸縮性配線付き布帛の導電性回復方法。
 
Furthermore, this invention has the following structures.
[8] At least
A stretchable insulating polymer layer having a tensile yield elongation of 70% or more and a thermal deformation temperature of 60 ° C or more;
Stretchable conductor layer composed of conductive filler and binder resin,
Elastic wiring composed of
[9] The stretchable wiring according to [8], wherein the stretchable conductor layer has a stretch recovery rate of 92% or more after 20% stretch at 25 ° C.
[10] The initial conductivity in the plane direction of the stretchable conductor layer is 1 × 10 2 S / cm or more,
When the electrical conductivity reduction ratio due to mechanical load is in the range of 1/1000 or more of the initial electrical conductivity,
The stretchable wiring according to [8] or [9], wherein a conductivity recovery rate by heating at 60 ° C. is 10% or more.
[11] The stretchable conductor layer has a stretch recovery rate after stretching by 20% of 99% or more, a binder resin of 65 to 85% by mass with a glass transition temperature of 0 ° C. or less, and metal particles from 90% by mass or more. The stretchable wiring according to any one of [8] to [10], comprising 15 to 35% by mass of a conductive filler.
[12] When the number average molecular weight of the binder resin is Mn and the weight average molecular weight is Mw,
The stretchable wiring according to any one of [8] to [11], wherein Mw / Mn> 4 or more.
[13] The stretchable wiring according to any one of [8] to [12] is provided on an insulating fabric having a stretch recovery rate of 99% or higher at 50% stretch and having heat resistance of 60 ° C or higher. A fabric with a stretchable wiring characterized by the above.
[14] The method for recovering the conductive property of the elastic wiring according to any one of [8] to [12], wherein the elastic wiring is heated to 60 ° C. or higher in a state where the tensile load of the elastic wiring is removed.
[15] The method for recovering electrical conductivity of a fabric with stretchable wiring according to [13], wherein the fabric with stretchable wiring is heated to 60 ° C. or higher in a state where an extension load is removed.
 本発明の伸縮性導体シートおよび伸縮性導体層は、導電粒子と伸縮性バインダー樹脂からなる分散系構造を有する。先に述べたとおり、このような分散系構造を有する柔軟性被膜は、伸張させると、伸張度に応じてフックの法則が成立する弾性変形領域と、フックの法則から外れる塑性変形領域を有する。弾性領域が狭く、組成領域において、被膜内部に微小クラックが生ずることは先に述べた通りである。ここに観察される組成領域は巨視的な観点から観察される塑性領域である。被膜内部では微小なクラックが生じることで不可逆な構造変化が生じているが、クラックが生じていないバインダー樹脂部分は弾性変形している。
 以下、特に断りの無い限り、伸縮性導体シートは伸縮性導体層と同義で有り、同じ伸縮性導体組成物により構成され、伸縮性の積層体、伸縮性配線における伸縮性導体層は所定サイズに加工された伸縮性導体シートである。
The stretchable conductor sheet and stretchable conductor layer of the present invention have a dispersed structure composed of conductive particles and a stretchable binder resin. As described above, when the flexible film having such a dispersion structure is stretched, it has an elastic deformation region in which the hook law is established according to the degree of stretching, and a plastic deformation region that deviates from the hook law. As described above, the elastic region is narrow and microcracks are generated inside the coating in the composition region. The composition region observed here is a plastic region observed from a macroscopic viewpoint. An irreversible structural change occurs due to the occurrence of minute cracks in the coating, but the binder resin portion where no cracks are generated is elastically deformed.
Hereinafter, unless otherwise specified, the stretchable conductor sheet has the same meaning as the stretchable conductor layer, and is composed of the same stretchable conductor composition. The stretchable laminate and the stretchable conductor layer in the stretchable wiring have a predetermined size. It is a processed elastic conductor sheet.
 本発明では、巨視的に見た伸縮性導体シートの伸張回復率を92%以上となるように調整することで実用上の導電性能の低下を抑制することを主眼とするものである。すなわち、伸縮性導体シートを伸張した場合に生じる微小クラックにより粒子接触による導電経路が断たれた場合であっても、伸縮性導体シート自体が十分に高い伸張回復率を有する場合には、一度断ち切れた導電粒子間の接触が再現され、抵抗率の低下、すなわち導電性の回復が行われる。伸縮性導体シートの伸張回復は主としてバインダー樹脂の柔軟性によるものであり、回復率が高く、同時に強い収縮力を示すバインダー樹脂を用いることにより、この効果は高くなる。高分子は、引っ張り荷重により延伸された場合、元来捲縮状態にあった高分子鎖は鎖が引き延ばされた形となる。かかる状態において、高分子鎖の自由度をあげる操作、すなわち、加熱、ないし溶剤などによる可塑化操作を行うと伸ばされていた高分子鎖が元の捲縮状態に戻ろうとして収縮力を発現する。本発明のように、伸縮性導体シートとして所定の伸張回復率を示すバインダー樹脂はかかる効果も併せ持つため、繰り返し伸張などの実使用により導電性が低下した伸縮性導体シートを、伸張荷重を除去した状態にて適温に加熱することでさらに伸張回復率を高めることができ、同時に断たれていた導電性粒子間の接触状態も回復する。 In the present invention, the main purpose is to suppress a decrease in practical conductive performance by adjusting the stretch recovery rate of the stretchable conductor sheet macroscopically to be 92% or more. That is, even when the conductive path due to particle contact is cut off due to micro cracks generated when the stretchable conductor sheet is stretched, if the stretchable conductor sheet itself has a sufficiently high stretch recovery rate, it is once cut off. The contact between the conductive particles is reproduced, and the resistivity is reduced, that is, the conductivity is restored. The stretch recovery of the stretchable conductor sheet is mainly due to the flexibility of the binder resin, and this effect is enhanced by using a binder resin that has a high recovery rate and at the same time exhibits a strong shrinkage force. When a polymer is stretched by a tensile load, the polymer chain that was originally in a crimped state has a shape in which the chain is stretched. In such a state, when an operation for increasing the degree of freedom of the polymer chain, that is, a plasticizing operation with heating or a solvent is performed, the stretched polymer chain expresses a contraction force to return to the original crimped state. . As in the present invention, the binder resin exhibiting a predetermined stretch recovery rate as the stretchable conductor sheet also has such an effect, and therefore, the stretch load was removed from the stretchable conductor sheet whose conductivity was reduced by repeated use such as stretching. By heating to an appropriate temperature in the state, the stretch recovery rate can be further increased, and the contact state between the conductive particles that has been cut off is also recovered.
また、本発明ではバインダー樹脂の分子量分布を広くすることで、さらに回復効果を高めることができる。すなわち比較的高分子量の樹脂成分が伸縮性を支配し、同時に比較的低分子量の成分が、自己修復的に微小クラックを埋める働きを示すことにより、機械的寸法の回復と同時に導電性能の回復も促進される。かかる効果は、伸張荷重を除去した状態にて適温に加熱することでさらに促進することができる。 In the present invention, the recovery effect can be further enhanced by widening the molecular weight distribution of the binder resin. In other words, the relatively high molecular weight resin component controls the stretchability, and at the same time, the relatively low molecular weight component self-repairs and fills microcracks, thereby restoring the mechanical dimensions as well as the conductive performance. Promoted. Such an effect can be further promoted by heating to an appropriate temperature in a state where the extension load is removed.
本発明における引張降伏伸度を説明するための概略図である。It is the schematic for demonstrating the tensile yield elongation in this invention. 本発明における伸張回復率を説明するための概略図である。It is the schematic for demonstrating the expansion | restoration recovery rate in this invention. 本発明における直接印刷法による配線付きウェアの製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the wear with wiring by the direct printing method in this invention. 本発明における印刷転写法による配線付きウェアの製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the wear with wiring by the printing transfer method in this invention. シャツに配線を敷設した状態の一例を示す概略図である。It is the schematic which shows an example of the state which laid the wiring in the shirt. 配線の形状の一例を示す概略図である。It is the schematic which shows an example of the shape of wiring.
 本発明に於ける伸縮性導体シート、伸縮性導体層、伸縮性配線は、少なくとも、引張降伏伸度が70%以上であり、熱変形温度が60℃以上である伸縮性絶縁高分子層と、導電フィラーとバインダー樹脂から構成される伸縮性導体層とから構成される。 The stretchable conductor sheet, stretchable conductor layer, and stretchable wiring in the present invention include at least a stretchable insulating polymer layer having a tensile yield elongation of 70% or more and a thermal deformation temperature of 60 ° C or more, It is comprised from the elastic conductor layer comprised from a conductive filler and binder resin.

 本発明における、引張降伏伸度とは、一般的な引張試験にて得られる、縦軸に加重(ないし強度)、横軸に歪み(ないし伸度あるいは伸び)をとったときの曲線(S-Sカーブ)において、加重の増加なしに伸びの増加が認められる最初の点、すなわち降伏点における伸度である。一般的に降伏点は弾性変形から塑性変形に推移をする境界を概略的に示す地点と捉えられている。
 図1Aは、引張試験にて得られる典型的なS-Sカーブを示す概略図で有り、図中において
 SR:引張破断強度
 SB:引張強度
 SS:引張降伏強度
 ER:引張破断伸度
 EB:引張伸度
 ES:引張降伏伸度
である。
 本発明における伸縮性絶縁高分子層の引張降伏伸度は80%以上が好ましく95%以上が更に好ましく、120%以上がなおさらに好ましい。
 引張降伏伸度の上限は450%、好ましくは360%である。引張降伏強度が必要以上に高いと、絶縁保護層としての機械的強度が損なわれる場合がある。
1
In the present invention, the tensile yield elongation is a curve (S−) obtained by a general tensile test, where the vertical axis is weight (or strength) and the horizontal axis is strain (or elongation or elongation). In the S curve), the elongation at the first point at which an increase in elongation is observed without an increase in weight, that is, the yield point. In general, the yield point is generally regarded as a point indicating the boundary of transition from elastic deformation to plastic deformation.
FIG. 1A is a schematic diagram showing a typical SS curve obtained in a tensile test, in which SR: tensile strength at break SB: tensile strength SS: tensile yield strength ER: tensile elongation at break EB: tensile Elongation ES: Tensile yield elongation.
The tensile yield elongation of the stretchable insulating polymer layer in the present invention is preferably 80% or more, more preferably 95% or more, and still more preferably 120% or more.
The upper limit of the tensile yield elongation is 450%, preferably 360%. If the tensile yield strength is higher than necessary, the mechanical strength as the insulating protective layer may be impaired.
 本発明における熱変形温度とは、当該温度において樹脂が、流動性、粘着性、接着性のいずれかを占すことを云う。熱変形温度は所定の温度に調整した伸縮性絶縁高分子層に同じ所定の温度に調整した金属を接触させた場合に、伸縮性絶縁高分子層に顕著な変形、あるいは金属との間に粘着性ないし接着性を生ずるか否かで判定する。本発明では簡便な手法として、所定温度に加熱したアイロンを接触させ、伸縮性絶縁高分子層が十分に加熱される時間(1分間)保った後に、アイロンを伸縮性絶縁高分子層から離し、伸縮性絶縁高分子層の変形の有無、アイロンを離すさいに粘着・接着性を示すか否かを、触感によって判断し熱変形温度に達しているか否かを判断する方法を用いる事ができる。
 本発明における伸縮性絶縁高分子層の熱変形温度は60℃以上が必須で有り、75℃以上が好ましく、90℃以上がさらに好ましく、さらに110℃以上が好ましい。熱変形温度の上限は生地の耐熱性により左右されるが、好ましくは180℃である。なお好ましくは160℃である。熱変形温度がこの範囲より低いと、伸縮性配線がブロッキングを生じる場合がある、また熱変形温度がこの範囲を超えると、柔軟性に支障が出る場合がある。
The heat deformation temperature in the present invention means that the resin occupies one of fluidity, tackiness, and adhesiveness at the temperature. The thermal deformation temperature is a remarkable deformation in the stretchable insulating polymer layer or adhesion between the metal and the stretchable insulating polymer layer when the stretched insulating polymer layer adjusted to the specified temperature is brought into contact with the metal adjusted to the same specified temperature. Judgment is made based on whether or not adhesiveness or adhesiveness is produced. In the present invention, as a simple method, the iron heated to a predetermined temperature is brought into contact, and after maintaining the time for which the stretchable insulating polymer layer is sufficiently heated (1 minute), the iron is separated from the stretchable insulating polymer layer, It is possible to use a method for determining whether the elastic insulating polymer layer is deformed or not and whether it exhibits adhesiveness / adhesiveness when the iron is released or not based on the tactile sensation and whether or not the heat distortion temperature has been reached.
The heat distortion temperature of the stretchable insulating polymer layer in the present invention is essentially 60 ° C. or higher, preferably 75 ° C. or higher, more preferably 90 ° C. or higher, and further preferably 110 ° C. or higher. The upper limit of the heat distortion temperature depends on the heat resistance of the fabric, but is preferably 180 ° C. In addition, Preferably it is 160 degreeC. If the thermal deformation temperature is lower than this range, the elastic wiring may cause blocking, and if the thermal deformation temperature exceeds this range, flexibility may be hindered.
 本発明における、引張降伏伸度が70%以上であり、熱変形温度が60℃以上である伸縮性絶縁高分子層としては、非架橋型ないし架橋型のエラストマーを用いることができる。本発明で用いられる非架橋型のエラストマーとは、好ましくは弾性率が1~1000MPaであり、好ましくはガラス転移温度が-60℃から15℃の範囲内の熱可塑性エラストマー樹脂を用いることができ、熱可塑性の合成樹脂、合成ゴム、天然ゴムなどが挙げられる。より具体的には、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴム、スチレンブタジエンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。
 本発明における架橋型のエラストマーとしては、先に述べた非架橋型エラストマーに対し、架橋剤を配合して得られる架橋ゴムを好ましく用いる事ができる。架橋剤としては、硫黄、硫黄系架橋剤(所謂加硫剤)、有機過酸化物、金属酸化物、有機アミン化合物などを用いる事ができる。本発明では非イオウ系の架橋剤を使用することが好ましい。硫黄ないし硫黄を含有する架橋剤の場合、遊離した含イオウ成分が、導電層の導電粒子に作用して導電性低下などの不都合を生じることがある。
 本発明における架橋型エラストマーにおいては、降伏伸度を所定範囲以上に保つために、架橋密度は比較的低くすることが好ましい。本発明においては溶剤にテトラハイドロフランを用いたゲル分率においてゲル分率90質量%以下、好ましくは80質量%以下となるように架橋密度を留めることが好ましい。
As the stretchable insulating polymer layer having a tensile yield elongation of 70% or more and a heat distortion temperature of 60 ° C. or more in the present invention, a non-crosslinked or crosslinked elastomer can be used. The non-crosslinked elastomer used in the present invention is preferably a thermoplastic elastomer resin having an elastic modulus of 1 to 1000 MPa, preferably a glass transition temperature in the range of −60 ° C. to 15 ° C., Examples include thermoplastic synthetic resins, synthetic rubbers, and natural rubbers. More specifically, urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, Examples include ethylene propylene rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, chlorosulfonated polyethylene rubber and styrene butadiene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
As the crosslinked elastomer in the present invention, a crosslinked rubber obtained by blending a crosslinking agent with the above-mentioned non-crosslinked elastomer can be preferably used. As the crosslinking agent, sulfur, a sulfur-based crosslinking agent (so-called vulcanizing agent), an organic peroxide, a metal oxide, an organic amine compound, or the like can be used. In the present invention, it is preferable to use a non-sulfur crosslinking agent. In the case of sulfur or a sulfur-containing crosslinking agent, the liberated sulfur-containing component may act on the conductive particles of the conductive layer to cause inconveniences such as a decrease in conductivity.
In the cross-linked elastomer in the present invention, the cross-link density is preferably relatively low in order to keep the yield elongation within a predetermined range. In the present invention, it is preferable to keep the crosslinking density so that the gel fraction using tetrahydrofuran as a solvent is 90% by mass or less, preferably 80% by mass or less.
 本発明における、伸縮性絶縁高分子層は、単独に成膜された後に生地ないし伸縮性導体層上に自己粘着・接着ないし、ホットメルト接着層などの他の接着手段により貼り合わせることができる。
 また、本発明における、伸縮性絶縁高分子層は、伸縮性絶縁高分子層を形成する高分子材料を生地ないし伸縮性導体層上に溶融押出して形成することができる。
 またさらに、本発明における、伸縮性絶縁高分子層は、伸縮性絶縁高分子層を形成する高分子材料を必要に応じて溶剤、必要に応じて添加される架橋剤、添加剤などと配合してインク化し、生地ないし伸縮性導体層上に印刷ないし塗布し、乾燥硬化させることにより形成することができる。使用できる溶剤、添加剤などについては後述する伸縮性導体層に用いる事ができる材料に準ずる。
In the present invention, the stretchable insulating polymer layer can be bonded to the fabric or stretchable conductor layer by other adhesive means such as self-adhesion / adhesion or a hot melt adhesive layer after being formed alone.
In the present invention, the stretchable insulating polymer layer can be formed by melting and extruding a polymer material forming the stretchable insulating polymer layer on the cloth or the stretchable conductor layer.
Still further, in the stretchable insulating polymer layer of the present invention, the polymer material forming the stretchable insulating polymer layer is blended with a solvent as necessary, a crosslinking agent added as necessary, an additive and the like. It can be formed by forming an ink, printing or coating on a cloth or stretchable conductor layer, and drying and curing. About the solvent and additive which can be used, it applies to the material which can be used for the elastic conductor layer mentioned later.
本発明の伸縮性導体シート、伸縮性導体層は、該シートないし導体層の膜厚斑が10%以下であり、25℃における、20%伸張後の伸張回復率が92%以上であることを必須とする。
本発明では伸縮性導体シートの膜厚斑が8%以下であることが好ましい。膜厚斑が大きい場合には、伸張荷重が加えられた際に膜厚が薄い部分の伸度が選択的に高くなるため、部分的に劣化が加速され、総合的に見た場合の導電性低下度合いが高くなり、シートの機械的ダメージ、電気的ダメージも大きくなるからである。本発明では、該シートの膜厚斑を10%以下とすることにより、かかる効果をさらに顕著に表すことができる。
In the stretchable conductor sheet and stretchable conductor layer of the present invention, the thickness unevenness of the sheet or conductor layer is 10% or less, and the stretch recovery rate after stretching 20% at 25 ° C. is 92% or more. Required.
In the present invention, the film thickness unevenness of the stretchable conductor sheet is preferably 8% or less. When the film thickness is large, the elongation of the thin film is selectively increased when an extension load is applied, so the deterioration is partially accelerated, and the overall conductivity is seen. This is because the degree of decrease increases and the mechanical damage and electrical damage of the sheet also increase. In the present invention, this effect can be more remarkably expressed by setting the film thickness unevenness of the sheet to 10% or less.
 本発明における膜厚斑[%]は、10cm四方のシートにおいて、無作為に10点の厚さを測定し、100×(最大膜厚-最小膜厚)/平均膜厚(10点平均)にて求める。
本発明の伸縮性導体シートの膜厚斑は8%以下である事が好ましく、6%以下であることがさらに好ましく、4%以下である事がなお好ましい。
The film thickness unevenness [%] in the present invention was determined by randomly measuring the thickness of 10 points on a 10 cm square sheet and obtaining 100 × (maximum film thickness−minimum film thickness) / average film thickness (10 points average). Ask.
The film thickness unevenness of the stretchable conductor sheet of the present invention is preferably 8% or less, more preferably 6% or less, and still more preferably 4% or less.
本発明における伸張回復率とは、図1に示す如く伸縮性導電シートを懸垂し、荷重を加えて伸張させ、荷重を除去して収縮させる作用を加えた際に、初期長さをL、20%ないし所定%伸張させた際の長さをL、伸張荷重を除去した際の長さをLとした場合に、
(数1)
伸張回復率=((L1-L2)/(L1-L0))×100    [%]
(数2)
残留歪み率=((L2-L0)/L0)×100        [%]
0 初期長さ
3 伸び=L1-L0
4 回復長さ=L1-L2   
5 残留歪み=L2-L0   
と、定義する。類似の測定法がJIS L 1096 織物および編物の生地試験法に定めてられているが、一定荷重負荷による伸張後の回復率では無くでは、一定長さまで伸張させた場合の回復率である点が異なる。実使用において伸縮性導体層に加わる負荷は、荷重とは無関係に、所定の長さまで繰り返し伸張される場合が多いため、一定荷重負荷法による伸張回復率では実用性能を表現することができない。特に断らない限り伸張回復率は25℃±3℃の環境下にて評価される。
In the present invention, the stretch recovery rate means that when the stretchable conductive sheet is suspended as shown in FIG. 1 and stretched by applying a load, and the load is removed and contracted, the initial length is L 0 , When the length when stretched by 20% to a predetermined percentage is L 1 and the length when the stretch load is removed is L 2 ,
(Equation 1)
Elongation recovery rate = ((L 1 −L 2 ) / (L 1 −L 0 )) × 100 [%]
(Equation 2)
Residual strain rate = ((L 2 −L 0 ) / L 0 ) × 100 [%]
L 0 initial length L 3 elongation = L 1 −L 0
L 4 recovery length = L 1- L 2
L 5 residual strain = L 2 −L 0
And define. A similar measurement method is stipulated in the JIS L 1096 woven and knitted fabric test method, but it is not the recovery rate after stretching under a constant load, but the recovery rate when stretched to a certain length. Different. In actual use, the load applied to the stretchable conductor layer is often repeatedly stretched to a predetermined length regardless of the load, so that the practical performance cannot be expressed by the stretch recovery rate by the constant load method. Unless otherwise specified, the extension recovery rate is evaluated under an environment of 25 ° C. ± 3 ° C.
 本発明における伸縮性導体シート、伸縮性導体層、伸縮性配線は、25℃における20%伸張後に、伸張荷重を除去した状態にて60℃加熱とした場合の伸張回復率が96%以上であることが好ましい。
 ここに伸張荷重を除去した状態とは、懸垂時に伸張させる際に加えていた荷重を除去し、なおかつ伸張荷重として作用している自重も除去した状態を云う。無重力状態ないし、伸縮導体シートと同レベルの高比重流体中に浮かせた状態が理想であるが、実用的には水平に置かれた台上にて試料が水平方向に寝るようにして扱えば、事実上伸張荷重が除かれた状態として扱うことが出来る。
The stretchable conductor sheet, stretchable conductor layer, and stretchable wiring in the present invention have a stretch recovery rate of 96% or more when heated at 60 ° C with the stretching load removed after 20% stretch at 25 ° C. It is preferable.
Here, the state in which the extension load is removed refers to a state in which the load applied when the extension load is extended is removed, and the self-weight acting as the extension load is also removed. Ideally, it should be weightless or floated in a fluid with the same specific gravity as the stretchable conductor sheet, but if it is practically handled as if the sample is lying horizontally on a table placed horizontally, In effect, it can be treated as a state where the extension load is removed.
 60℃に加熱する手段としては、ホットプレート、アイロン、ズボンプレッサーなどによる直接加熱、ドライヤー、ホットブラスターなどによる熱風の照射、蒸気の照射、強い光の照射、赤外加熱、ヒーターからの輻射加熱などを用いることができる。また温湯への浸漬も効果的な手法である。
 加熱後の伸張回復率は、加熱後の回復長さを用いる以外は25℃における伸張回復率と同じ方法で求める事ができる。加熱後の伸張回復率は97%以上であることが好ましく、さらに98%以上であることが好ましく、なおさらに98.8%以上であることが好ましい。
As means for heating to 60 ° C., direct heating with a hot plate, iron, trouser press, etc., hot air irradiation with a dryer, hot blaster, etc., vapor irradiation, strong light irradiation, infrared heating, radiant heating from a heater, etc. Can be used. Also, immersion in warm water is an effective method.
The extension recovery rate after heating can be determined by the same method as the extension recovery rate at 25 ° C., except that the recovery length after heating is used. The elongation recovery rate after heating is preferably 97% or more, more preferably 98% or more, and still more preferably 98.8% or more.
 伸縮性導体シート、伸縮性導体層、伸縮性配線の、面方向の初期導電率が1×10-3S/cm以上であることが好ましい。導電率は比抵抗の逆数である。本発明伸縮性導体シートの初期の導電率は好ましくは1×10-2S/cm以上であり、さらに好ましくは1×10-1S/cm以上であり、なおさらに好ましくは1×10S/cm以上である。
 導電率をS[1/(Ω・cm)]は、幅W[cm]、長さL[cm]、厚さt[cm]の導電被膜の、長さL方向の抵抗値をR[Ω]とした場合、
 S=(1/R)・(L/(t・W))
にて求める事ができる。
It is preferable that the initial conductivity in the surface direction of the stretchable conductor sheet, the stretchable conductor layer, and the stretchable wiring is 1 × 10 −3 S / cm or more. The conductivity is the reciprocal of the specific resistance. The initial conductivity of the stretchable conductor sheet of the present invention is preferably 1 × 10 −2 S / cm or more, more preferably 1 × 10 −1 S / cm or more, and still more preferably 1 × 10 0 S. / Cm or more.
The conductivity S [1 / (Ω · cm)] is the resistance value in the length L direction of the conductive film having a width W [cm], a length L [cm], and a thickness t [cm]. ]
S = (1 / R) · (L / (t · W))
Can be requested.
本発明では、機械的負荷試験により伸縮性導体シートのシート面方向の導電率低下比が、初期導電率の1/1000以内の範囲である場合に、60℃加熱による導電性回復率が10%以上である事が好ましい。ここに、
  機械的負荷試験による導電率低下比=機械的負荷試験後の導電率/初期導電率、
  機械的負荷試験後の導電性回復率=機械的負荷試験後に100×60℃加熱した後の導電率/初期導電率、
である。本発明における伸張回復率を示す伸縮性導体シートは伸張回復時に導電粒子間の電気的接触が復活し、さらに加熱により生成する収縮力により導電性粒子間の接触はさらに密になるため、かかる特性を発現することができる。
 機械的負荷試験後の60℃加熱による導電性回復率は15%以上である事がさらに好ましく、25%以上である事がさらに好ましく、35%以上である事がなおさらに好ましい。
In the present invention, when the electrical conductivity decreasing ratio in the sheet surface direction of the stretchable conductor sheet is within 1/1000 of the initial electrical conductivity by a mechanical load test, the electrical conductivity recovery rate by heating at 60 ° C. is 10%. The above is preferable. here,
Ratio of decrease in conductivity by mechanical load test = conductivity after mechanical load test / initial conductivity,
Conductivity recovery rate after mechanical load test = conductivity after heating at 100 × 60 ° C. after mechanical load test / initial conductivity,
It is. The stretchable conductor sheet exhibiting the stretch recovery rate in the present invention regains the electrical contact between the conductive particles at the time of stretch recovery, and the contact between the conductive particles becomes more dense due to the contraction force generated by heating. Can be expressed.
The conductivity recovery rate by heating at 60 ° C. after the mechanical load test is more preferably 15% or more, further preferably 25% or more, and still more preferably 35% or more.
 さらに、本発明では洗濯試験後の伸縮性導体シートのシート面方向の導電率低下比が、初期導電率の1/1000以内の範囲である場合に、60℃加熱による導電性回復率が10%以上である事が好ましい。ここに、
  洗濯試験後の導電率低下比=洗濯試験後の導電率/初期導電率、
  洗濯試験後の導電性回復率=洗濯試験後に100×60℃加熱した後の導電率/初期導電率、
である。洗濯試験は、水中、ないし洗剤を含む水中にて機械的負荷が伸縮方向、圧縮方向の両面で加わり、単純な機械的負荷よりも複雑な変形を導電シートに加わるが、本発明の回復率を示す伸縮性導体シートは伸張回復時に導電粒子間の電気的接触が復活し、さらに加熱により生成する収縮力により導電性粒子間の接触はさらに密になるため、かかる特性を発現することができる。
 洗濯試験後の60℃加熱による導電性回復率は15%以上である事がさらに好ましく、25%以上である事がさらに好ましく、35%以上である事がなおさらに好ましい。
Furthermore, in the present invention, when the ratio of conductivity reduction in the sheet surface direction of the stretchable conductor sheet after the washing test is within a range of 1/1000 of the initial conductivity, the conductivity recovery rate by heating at 60 ° C. is 10%. The above is preferable. here,
Ratio of decrease in conductivity after washing test = conductivity after washing test / initial conductivity,
Conductivity recovery rate after washing test = conductivity after heating at 100 × 60 ° C. after washing test / initial conductivity,
It is. In the washing test, mechanical load is applied both in the stretching direction and in the compression direction in water or in water containing detergent, and more complicated deformation is applied to the conductive sheet than simple mechanical load. The stretchable conductor sheet shown can regain electrical contact between the conductive particles upon recovery from stretching, and can further exhibit such characteristics because the contact between the conductive particles becomes more dense due to the contraction force generated by heating.
The conductivity recovery rate by heating at 60 ° C. after the washing test is more preferably 15% or more, further preferably 25% or more, and still more preferably 35% or more.
本発明の伸縮性導体シート、伸縮性導体層、伸縮性配線は、少なくとも金属粒子を主体とする導電フィラーと、バインダー樹脂から構成される。
 本発明の導電性粒子は、比抵抗が1×10-2Ωcm以下の物質からなる、粒子径が0.5μm以上5μm以下の粒子である。比抵抗が1×10-2Ωcm以下の物質としては、金属、合金、ドーピングされた半導体などを例示することができる。本発明で好ましく用いられる導電性粒子は銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などの金属、黄銅、青銅、白銅、半田などの合金粒子、銀被覆銅のようなハイブリッド粒、さらには金属メッキした高分子粒子、金属メッキしたガラス粒子、金属被覆したセラミック粒子などを用いることができる。
The stretchable conductor sheet, stretchable conductor layer, and stretchable wiring of the present invention are composed of a conductive filler mainly composed of metal particles and a binder resin.
The conductive particle of the present invention is a particle having a specific resistance of 1 × 10 −2 Ωcm or less and a particle diameter of 0.5 μm or more and 5 μm or less. Examples of the substance having a specific resistance of 1 × 10 −2 Ωcm or less include metals, alloys, and doped semiconductors. The conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
 本発明ではフレーク状銀粒子ないし不定形凝集銀粉を主体に用いることが好ましい。なお、ここに主体に用いるとは導電性粒子の90質量%以上用いることである。不定形凝集粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集粉およびフレーク状粉は球状粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成できるので好ましい。不定形凝集粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。 In the present invention, it is preferable to mainly use flaky silver particles or amorphous aggregated silver powder. Here, the main use is to use 90% by mass or more of the conductive particles. The amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles. Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
 導電性粒子の粒子径は、動的光散乱法により測定した平均粒子径(50%D)が0.5~5μmであり、より好ましくは0.7~3μmである。平均粒子径が所定の範囲を超えると微細配線の形成が困難になり、スクリーン印刷などの場合は目詰まりが生じる。平均粒子径が0.5μm未満の場合、低充填では粒子間で接触できなくなり、導電性が悪化する場合がある。 The particle diameter of the conductive particles is such that the average particle diameter (50% D) measured by the dynamic light scattering method is 0.5 to 5 μm, more preferably 0.7 to 3 μm. When the average particle diameter exceeds a predetermined range, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing. When the average particle size is less than 0.5 μm, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
本発明では、DBP吸油量が100~550の範囲にあるカーボンブラックを導電性フィラーとして用いることができる。カーボンブラックには原料や製造方法の異なる多くの種類があり、それぞれに特徴を有している。DBP吸油量はカーボンブラックの液体吸収と保持性能を示すパラメータであり、ISO4656:2012に基づいて測定される。本発明において好ましいDBP吸油量は160以上530以下であり、さらに好ましくは210以上510以下であり、なおさらに好ましくは260以上500以下である。DBP吸油量がこの範囲に満たないと細線を印刷した際に線間が埋まりやすくなり、細線印刷性が低下する。またDBP吸油量がこの範囲を超えると、ペーストの粘度が上がりやすくなり、粘度調整に溶剤の配合量を増やす必要が生じるため、微細線を印刷した際に線間に溶剤がブリードしやすくり、同様に細線印刷性が低下する。
 カーボンブラックの配合量は金属系フィラーとカーボンブラックの総量に対して0.5質量%以上、2.0質量%以下であり、好ましくは0.7質量%以上1.6質量%以下である。
In the present invention, carbon black having a DBP oil absorption of 100 to 550 can be used as the conductive filler. There are many types of carbon black that differ in raw materials and production methods, each having its own characteristics. The DBP oil absorption is a parameter indicating the liquid absorption and retention performance of carbon black, and is measured based on ISO 4656: 2012. In the present invention, the DBP oil absorption amount is preferably 160 or more and 530 or less, more preferably 210 or more and 510 or less, and still more preferably 260 or more and 500 or less. If the DBP oil absorption amount is less than this range, the fine lines are easily filled when fine lines are printed, and the fine line printability is lowered. Also, if the DBP oil absorption exceeds this range, the viscosity of the paste tends to increase, and it is necessary to increase the amount of the solvent to adjust the viscosity, so that when the fine line is printed, the solvent tends to bleed between the lines, Similarly, fine line printability is reduced.
The compounding amount of carbon black is 0.5% by mass or more and 2.0% by mass or less, preferably 0.7% by mass or more and 1.6% by mass or less, based on the total amount of the metal filler and carbon black.
 本発明では平均粒子径が0.3μm以上10μm以下の非導電性粒子を含んでも良い。本発明における非導電性粒子としては主には金属酸化物の粒子であり、酸化ケイ素、酸化チタン、酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化鉄、金属の硫酸塩、金属の炭酸塩、金属のチタン酸塩等を用いることができる。本発明ではかかる非導電性粒子の中で、硫酸バリウム粒子を用いることが好ましい。 In the present invention, non-conductive particles having an average particle size of 0.3 μm or more and 10 μm or less may be included. The non-conductive particles in the present invention are mainly metal oxide particles, such as silicon oxide, titanium oxide, magnesium oxide, calcium oxide, aluminum oxide, iron oxide, metal sulfate, metal carbonate, metal A titanate or the like can be used. In the present invention, it is preferable to use barium sulfate particles among such non-conductive particles.
本発明の伸縮性導体シート、伸縮性導体層、伸縮性配線に用いられるバインダー樹脂は、20%伸張後の伸張回復率が99%以上であることが好ましく、さらに99.5%以上である事が好ましく、なおさらに99.85%以上であることが好ましい。バインダー樹脂の伸張回復率は、バインダー樹脂を厚さ20から200μm、かつ膜厚斑10%以下のシート上に成型し25±3℃の環境下にて測定される。バインダー樹脂の伸張回復率がこの範囲に満たないと、伸縮性導体シートの伸張回復率を所定の範囲以上にすることが困難となる。 The binder resin used for the stretchable conductor sheet, stretchable conductor layer, and stretchable wiring of the present invention preferably has a stretch recovery rate of 20% or more after stretching by 20%, more preferably 99.5% or more. Is more preferable, and it is still more preferable that it is 99.85% or more. The elongation recovery rate of the binder resin is measured in an environment of 25 ± 3 ° C. by molding the binder resin on a sheet having a thickness of 20 to 200 μm and a film thickness unevenness of 10% or less. If the stretch recovery rate of the binder resin is less than this range, it becomes difficult to set the stretch recovery rate of the stretchable conductor sheet to a predetermined range or more.
 本発明におけるバインダー樹脂として、非架橋型エラストマーを用いることができる。非架橋型エラストマーとは、好ましくは弾性率が1~1000MPaであり、好ましくはガラス転移温度が-40℃から0℃の範囲内の熱可塑性エラストマー樹脂を用いることができ、熱可塑性の合成樹脂、剛性ゴム、天然ゴムなどが挙げられる。塗膜(シート)の伸縮性を発現させるためには、ゴムやポリエステル樹脂が好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴム、スチレンブタジエンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。
 柔軟性樹脂の弾性率は、好ましくは3~600MPaであり、より好ましく10~500MPa、さらに好ましくは15~300MPa、さらにより好ましくは20~150MPa、特に好ましくは25~100MPaである。
As the binder resin in the present invention, a non-crosslinked elastomer can be used. The non-crosslinked elastomer is preferably a thermoplastic elastomer resin having an elastic modulus of 1 to 1000 MPa, and preferably a glass transition temperature in the range of −40 ° C. to 0 ° C., and a thermoplastic synthetic resin, Examples include rigid rubber and natural rubber. In order to express the stretchability of the coating film (sheet), rubber or polyester resin is preferable. As rubber, urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene Examples include rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, chloroprene rubber, chlorosulfonated polyethylene rubber and styrene butadiene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
The elastic modulus of the flexible resin is preferably 3 to 600 MPa, more preferably 10 to 500 MPa, further preferably 15 to 300 MPa, even more preferably 20 to 150 MPa, and particularly preferably 25 to 100 MPa.
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、結合アクリロニトリル量は、ニトリル含有ゴム(例えばアクリロニトリルブタジエン共重合体ゴム)100質量%中、18~50質量%であることが好ましく、30~50質量%であることがより好ましく、40~50質量%であることが特に好ましい。 The rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Therefore, the amount of bound acrylonitrile is preferably 18 to 50% by mass, more preferably 30 to 50% by mass, and more preferably 40 to 50% by mass in 100% by mass of nitrile-containing rubber (for example, acrylonitrile butadiene copolymer rubber). It is particularly preferable that the content is% by mass.
 ポリエステル樹脂とウレタンゴムにおいてガラス転移温度が-40℃から0℃であることが好ましい。またハードセグメントとソフトセグメントからなるブロック共重合体構造を持つことが好ましい。本発明の非架橋型エラストマーの弾性率は、1~1000MPaの範囲であることが好ましく、さらに3~600MPaが好ましく、さらに好ましく10~500MPa、なお好ましくは30~300MPaの範囲である。また本発明の非架橋型エラストマーはガラス転移温度が零℃以下であることが好ましく、-5℃以下が好ましく、-10℃以下がさらに好ましい。 The glass transition temperature of polyester resin and urethane rubber is preferably -40 ° C to 0 ° C. Further, it preferably has a block copolymer structure composed of a hard segment and a soft segment. The elastic modulus of the non-crosslinked elastomer of the present invention is preferably in the range of 1 to 1000 MPa, more preferably 3 to 600 MPa, further preferably 10 to 500 MPa, and still more preferably 30 to 300 MPa. The non-crosslinked elastomer of the present invention preferably has a glass transition temperature of 0 ° C. or lower, preferably −5 ° C. or lower, more preferably −10 ° C. or lower.
かかるバインダー樹脂のガラス転移温度は0℃以下である事が好ましく、-8℃以下である事がさらに好ましく、-16℃以下である事がなお好ましく-24℃以下である事がなおさらに好ましい。ガラス転移温度がこの範囲を上回ると、伸張回復特性が発現しにくくなる。
本発明の伸縮性導体シートは、少なくともバインダー樹脂65~85質量%と、金属粒子を90質量%以上からなる導電フィラー15~35質量%から構成されることが好ましい。
ガラス転移温度は常法に従い示差走査熱量分析(DSC)により求める事ができる。
The glass transition temperature of such a binder resin is preferably 0 ° C. or lower, more preferably −8 ° C. or lower, even more preferably −16 ° C. or lower, still more preferably −24 ° C. or lower. When the glass transition temperature exceeds this range, the stretch recovery property is hardly exhibited.
The stretchable conductor sheet of the present invention is preferably composed of at least 65 to 85% by mass of a binder resin and 15 to 35% by mass of a conductive filler comprising 90% by mass or more of metal particles.
The glass transition temperature can be determined by differential scanning calorimetry (DSC) according to a conventional method.
 本発明にいては、前記バインダー樹脂の数平均分子量をMn、重量平均分子量をMwとした場合に、Mw/Mn>4以上であることが必須であり、Mw/Mn>4.4以上であることがさらに好ましく、Mw/Mn>4.8以上であることがなお好ましく、Mw/Mn>5.2以上であることが、なおさらに好ましい。Mw/Mnは分子量分布を表すファクターでありMw/Mnが大きいほど分子量分布は広くなる。広い分子量分布を有するバインダー樹脂成分においては、比較的高分子量の成分が伸張回復性を支配する。一方の、比較的低分子量成分は、伸張時に生じた微小クラック部分にブリードし、伸張回復した際に微小クラック間を再度、自己修復的に接続する作用を有する。
 数平均分子量、重量平均分子量は常法に従いGPC(ゲル浸透クロマトグラフィー)分析法にて求める事ができる。
In the present invention, when the number average molecular weight of the binder resin is Mn and the weight average molecular weight is Mw, it is essential that Mw / Mn> 4 or more, and Mw / Mn> 4.4 or more. Is more preferable, Mw / Mn> 4.8 or more is more preferable, and Mw / Mn> 5.2 or more is still more preferable. Mw / Mn is a factor representing the molecular weight distribution, and the larger the Mw / Mn, the wider the molecular weight distribution. In the binder resin component having a wide molecular weight distribution, the relatively high molecular weight component dominates the stretch recovery property. On the other hand, the relatively low molecular weight component has a function of bleeding in the microcrack portion generated at the time of stretching and connecting the microcracks again in a self-repairing manner when the stretch is recovered.
The number average molecular weight and the weight average molecular weight can be determined by GPC (gel permeation chromatography) analysis according to a conventional method.
 バインダー樹脂は単一の樹脂である必要は無く、伸張回復率の高い高分子量の樹脂と、それとは異なる、自己修復機能の高い低分子樹脂を混合して用いても良い。本発明では重量平均分子量が800~4000にピークを持つ樹脂と、重量平均分子量が4000~100000の範囲にピークを持つ樹脂を配合することによって得られる分子量分布に二つ以上のピークを有するバインダー樹脂を用いることが好ましい。 The binder resin does not need to be a single resin, and a high molecular weight resin having a high elongation recovery rate and a different low molecular resin having a high self-healing function may be used in combination. In the present invention, a binder resin having two or more peaks in a molecular weight distribution obtained by blending a resin having a peak in the weight average molecular weight of 800 to 4000 and a resin having a peak in the range of the weight average molecular weight of 4000 to 100,000. Is preferably used.
 本発明では、非架橋型エラストマーを主たるバインダー樹脂に用いるが、高分子量のバインダー樹脂を得るために分岐成分を加えることができる。分岐成分が多めの場合には、ほぼ、架橋構造と同等の分子構造となる場合がある。このように本発明では、なかば架橋した高分子量のエラストマーと、低分子量の非架橋型エラストマーを適宜配合して用いることができる。 In the present invention, a non-crosslinked elastomer is used as a main binder resin, but a branching component can be added to obtain a high molecular weight binder resin. When there are a lot of branched components, the molecular structure may be almost the same as the crosslinked structure. As described above, in the present invention, a crosslinked high molecular weight elastomer and a low molecular weight non-crosslinked elastomer can be appropriately mixed and used.
本発明における伸縮性導体シートとは、伸縮性導体組成物によって構成されるシート状ないしフィルム状の状態の単体膜である。
本発明の伸縮性導体シートは、導電性フィラー、バインダー樹脂を直接溶融混合し、押し出し成型等の手法によってシート化することができる。かかる方法はバインダー樹脂が比較的低温で比較的低い溶融粘度である場合に好適に適用できる。
本発明において好適な製造方法として、少なくとも導電性フィラー、バインダー樹脂に溶剤成分を加えて混合撹拌、混練することによって伸縮性導体形成用のペーストを得て、得られたペーストを用いてコーティング法にてシート化する方法を例示できる。
また同様に伸縮性導体形成用のペーストを得て、得られたペーストを用いて、印刷法により直接パターン化する方法などによりシートないし電気配線パターンを得ることができる。
ここに印刷法としては、スクリーン印刷法、平版オフセット印刷法、ペーストジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ステンシル法、などを用いることができる。さらに、ディスペンサ等を用いて配線を直接描画する手法も広義の印刷と解釈して用いることができる。
The stretchable conductor sheet in the present invention is a single membrane in a sheet-like or film-like state constituted by the stretchable conductor composition.
The stretchable conductor sheet of the present invention can be formed into a sheet by a technique such as extrusion molding by directly melting and mixing a conductive filler and a binder resin. Such a method can be suitably applied when the binder resin has a relatively low melt viscosity at a relatively low temperature.
As a preferable production method in the present invention, at least a conductive filler, a binder component is added with a solvent component, mixed, stirred and kneaded to obtain a paste for forming a stretchable conductor, and the obtained paste is used for a coating method. And a method of forming a sheet.
Similarly, a paste for forming a stretchable conductor is obtained, and a sheet or an electric wiring pattern can be obtained by a method of directly patterning by the printing method using the obtained paste.
As the printing method, a screen printing method, a lithographic offset printing method, a paste jet method, a flexographic printing method, a gravure printing method, a gravure offset printing method, a stamping method, a stencil method, or the like can be used. Furthermore, a method of directly drawing wiring using a dispenser or the like can be interpreted as printing in a broad sense and used.
 本発明の伸縮性導体形成用のペーストに用いられる溶剤は、沸点が200℃以上、20℃における飽和蒸気圧が20Pa以下の有機溶剤であることが好ましい。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、乾燥硬化塗膜中の残溶剤量が多くなり、塗膜の信頼性低下を引き起こす懸念がある。また乾燥硬化に長時間を有するため、乾燥過程でのエッジダレが大きくなり、配線間を狭く保つことが困難になる。 The solvent used in the paste for forming a stretchable conductor of the present invention is preferably an organic solvent having a boiling point of 200 ° C. or higher and a saturated vapor pressure at 20 ° C. of 20 Pa or lower. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced. In addition, since the drying and curing process takes a long time, the edge sagging during the drying process increases and it becomes difficult to keep the gap between the wirings narrow.
 本発明における有機溶剤としては、ベンジルアルコール(蒸気圧:3Pa、沸点:205℃)、ターピオネール(蒸気圧:3.1Pa、沸点:219℃)、ジエチレングリコール(蒸気圧:0.11Pa、沸点:245℃)、ジエチレングリコールモノエチルエーテルアセテート(蒸気圧:5.6Pa、沸点217℃)、ジエチレングリコールモノブチルエーテルアセテート(蒸気圧:5.3Pa、沸点:247℃)、ジエチレングリコールジブチルエーテル(蒸気圧:0.01mmHg以下、沸点:255℃)、トリエチレングリコール(蒸気圧:0.11Pa、沸点:276℃)、トリエチレングリコールモノメチルエーテル(蒸気圧:0.1Pa以下、沸点:249℃)、トリエチレングリコールモノエチルエーテル(蒸気圧:0.3Pa、沸点:256℃)、トリエチレングリコールモノブチルエーテル(蒸気圧:1Pa、沸点:271℃)、テトラエチレングリコール(蒸気圧:1Pa、沸点:327℃)、テトラエチレングリコールモノブチルエーテル(蒸気圧:0.01Pa以下、沸点:304℃)、トリプロピレングリコール(蒸気圧:0.01Pa以下、沸点:267℃)、トリプロピレングリコールモノメチルエーテル(蒸気圧:3Pa、沸点:243℃)、ジエチレングリコールモノブチルエーテル(蒸気圧:3Pa、沸点:230℃)を用いることができる。
 本発明における溶剤は必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、伸縮性導体組成物形成用のペーストが印刷などに適した粘度となるように適宜含有される。
As the organic solvent in the present invention, benzyl alcohol (vapor pressure: 3 Pa, boiling point: 205 ° C.), terpionol (vapor pressure: 3.1 Pa, boiling point: 219 ° C.), diethylene glycol (vapor pressure: 0.11 Pa, boiling point: 245 ° C.) , Diethylene glycol monoethyl ether acetate (vapor pressure: 5.6 Pa, boiling point 217 ° C.), diethylene glycol monobutyl ether acetate (vapor pressure: 5.3 Pa, boiling point: 247 ° C.), diethylene glycol dibutyl ether (vapor pressure: 0.01 mmHg or less, boiling point: 255 ° C. ), Triethylene glycol (vapor pressure: 0.11 Pa, boiling point: 276 ° C.), triethylene glycol monomethyl ether (vapor pressure: 0.1 Pa or less, boiling point: 249 ° C.), triethylene glycol monoethyl ether (vapor pressure: 0.3 Pa, Boiling point: 256 ° C.), triethylene glycol monobutyl ether (vapor pressure: 1 Pa, boiling point: 271 ° C., tetraethylene glycol (vapor pressure: 1 Pa, boiling point: 327 ° C.), tetraethylene glycol monobutyl ether (vapor pressure: 0.01 Pa or less, boiling point: 304 ° C.), tripropylene glycol (vapor pressure: 0.01) Pa or less, boiling point: 267 ° C.), tripropylene glycol monomethyl ether (vapor pressure: 3 Pa, boiling point: 243 ° C.), diethylene glycol monobutyl ether (vapor pressure: 3 Pa, boiling point: 230 ° C.) can be used.
Two or more of these solvents may be included as necessary in the present invention. Such an organic solvent is appropriately contained so that the paste for forming the stretchable conductor composition has a viscosity suitable for printing or the like.
 本発明の伸縮性導体形成用ペーストは、ディゾルバー、三本ロールミル、自公転型混合機、アトライター、ボールミル、サンドミルなどの分散機により混合分散することにより得ることができる。 The stretchable conductor forming paste of the present invention can be obtained by mixing and dispersing with a disperser such as a dissolver, a three-roll mill, a self-revolving mixer, an attritor, a ball mill, or a sand mill.
 本発明の伸縮性導体形成用ペーストには、発明の内容を損なわない範囲で、印刷適性の付与、色調の調整、レベリング、酸化防止剤、紫外線吸収剤などの公知の有機、無機の添加剤を配合することができる。 The paste for forming a stretchable conductor of the present invention is provided with known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidants, ultraviolet absorbers and the like within the scope of the invention. Can be blended.
 このようにして得られた伸縮性導体形成用ペーストを乾燥硬化することにより、実質的に溶剤を含有しない、所定の伸張回復率を示す伸縮性導体シートないし伸縮性導体からなる電気配線パターンを得ることができる。
 伸縮性導体シートを得る場合には伸縮性導体形成用ペーストをダイコーター、スリットコーター、コンマコーター、グラビアコーターなどで離型剤を塗布したフィルム基板などに塗布乾燥し、シート化することができる。
The paste for forming a stretchable conductor thus obtained is dried and cured to obtain an electrical wiring pattern composed of a stretchable conductor sheet or a stretchable conductor substantially free from a solvent and exhibiting a predetermined stretch recovery rate. be able to.
In the case of obtaining a stretchable conductor sheet, the paste for stretchable conductor formation can be applied to a film substrate coated with a release agent using a die coater, a slit coater, a comma coater, a gravure coater or the like and dried to form a sheet.
 本発明では以上説明してきた伸縮性導体シートを用いて、50%伸張時の回復率が99%以上であり、60℃以上の耐熱性を有する絶縁性布帛上に電気配線を形成することができる。本発明では布帛の耐熱性は素材繊維の熱収縮温度をもって評価する。
 電気配線は、伸縮性導体シートを所定の形状にカットし、接着材などにて布帛に貼り付けることで作製できる。また、布帛に直接、ないし、あらかじめ絶縁性の樹脂により下地層を形成した上に、印刷法により所定の形状の電気配線パターンを得ることも可能である。
さらには離型性を有する別の基材上に所定のパターンを印刷等により形成し、布帛に転写することもできる。本発明では、必要に応じて配線上に絶縁カバー層が形成される。
印刷法としては、スクリーン印刷法、平版オフセット印刷法、ペーストジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ステンシル法、などを用いることができる。本発明ではスクリーン印刷法、ステンシル法を用いることが好ましい。またディスペンサ等を用いて配線を直接描画する手法も広義の印刷と解釈して良い。
 本発明では、これらの手法により伸縮性導体組成物からなる電気配線を有する衣服を製造することができる。 
In the present invention, using the stretchable conductor sheet described above, an electrical wiring can be formed on an insulating fabric having a recovery rate of 99% or more at 50% elongation and heat resistance of 60 ° C. or more. . In the present invention, the heat resistance of the fabric is evaluated based on the heat shrink temperature of the material fiber.
The electrical wiring can be produced by cutting a stretchable conductor sheet into a predetermined shape and attaching it to a fabric with an adhesive or the like. It is also possible to obtain an electrical wiring pattern having a predetermined shape by a printing method after forming a base layer directly on the fabric or with an insulating resin in advance.
Furthermore, a predetermined pattern can be formed on another substrate having releasability by printing or the like, and transferred to the fabric. In the present invention, an insulating cover layer is formed on the wiring as necessary.
As the printing method, a screen printing method, a lithographic offset printing method, a paste jet method, a flexographic printing method, a gravure printing method, a gravure offset printing method, a stamping method, a stencil method, or the like can be used. In the present invention, it is preferable to use a screen printing method or a stencil method. A method of directly drawing wiring using a dispenser or the like may be interpreted as printing in a broad sense.
In the present invention, clothes having an electrical wiring made of the stretchable conductor composition can be produced by these methods.
 本発明における伸縮性導体シート、ないし伸縮性導体からなる電気配線を有する布帛、電気配線を有する衣服においては、伸縮性導体部分の伸張荷重を除去した状態にて、たとえば、アイロン、ズボンプレッサー、ヘアドライヤーなどを用いて60℃以上に加熱することにより、実使用において、特に繰り返し伸張などの負荷により導電性が劣化した状態から、実用的に使用可能な状態まで導電性能を回復させることができる。かかる処理を導電性回復処理と呼ぶ。導電性回復処理に用いられる加熱温度は75℃以上が好ましく、90℃以上がさらにこのましく、110℃以上がなお好ましい。なお、導電性回復処理の温度の上限は、共用される基材などの耐熱性に依存する。一般の化学繊維などによる織編物においては、150℃程度が上限である。もちろん木綿など比較的高耐熱の繊維、さらにはアラミド繊維、ポリベンザゾール繊維、ポリイミド繊維などの耐熱性を有する繊維素材や、シリコーン樹脂など耐熱性の柔軟性樹脂を基材に用いた場合にはこの限りでは無く、180℃~300℃の範囲を、バインダー樹脂に熱ダメージを与えすぎないように注意して用いれば良い。 In the stretchable conductor sheet in the present invention, the cloth having the electrical wiring made of the stretchable conductor, and the clothes having the electrical wiring, for example, the iron, the trouser press, the hair in the state where the stretched load of the stretchable conductor portion is removed. By heating to 60 ° C. or higher using a dryer or the like, the conductive performance can be recovered from a state in which the conductivity is deteriorated due to a load such as repeated stretching in practical use to a state in which it can be practically used. Such a process is called a conductive recovery process. The heating temperature used for the conductive recovery treatment is preferably 75 ° C. or higher, more preferably 90 ° C. or higher, and still more preferably 110 ° C. or higher. Note that the upper limit of the temperature of the conductive recovery treatment depends on the heat resistance of the shared base material and the like. In a woven or knitted fabric made of general chemical fibers, the upper limit is about 150 ° C. Of course when using relatively high heat resistant fibers such as cotton, heat resistant fiber materials such as aramid fibers, polybenzazole fibers, polyimide fibers, and heat resistant flexible resins such as silicone resins as the base material This is not restrictive, and a range of 180 ° C. to 300 ° C. may be used with care so as not to cause excessive thermal damage to the binder resin.
 以下、実施例を示し、本発明をより詳細かつ具体的に説明する。なお実施例中の評価結果などは以下の方法にて測定した。 Hereinafter, the present invention will be described in more detail and specifically with reference to examples. The evaluation results in the examples were measured by the following methods.
<引張降伏伸度>
 伸縮性絶縁高分子層に用いる樹脂材料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。ついで、引っ張り試験器を用いてS-Sカーブを求め、図1Aのように降伏点を求め、その際の伸度を引張降伏伸度とした。
<Tensile yield elongation>
A resin material used for the stretchable insulating polymer layer is formed into a sheet shape with an arbitrary thickness in the range of 20 μm to 200 μm, and then punched into a dumbbell mold defined by ISO 527-2-1A. It was. Subsequently, the SS curve was obtained using a tensile tester, the yield point was obtained as shown in FIG. 1A, and the elongation at that time was defined as the tensile yield elongation.
<熱変形温度>
 伸縮性絶縁高分子のシートをホットプレートに置き、所定温度に加温する。ついで同じ所定温度に加温した鉄製の熱板を有する電気アイロンを伸縮性絶縁高分子のシート上に1分間置き、その後電気アイロンを持ち上げて、持ち上げる際に伸縮性絶縁高分子のシートがアイロンの熱板と共に持ち上がる場合は粘着、接着しありと判定した。またアイロンを居ていた跡が目視にて判定できる場合には熱変形したと判定した。測定は所定温度を60℃から5℃きざみで上げて実施し、熱変形ないし粘着・接着性のいずれかが認められた最低温度を熱変形温度とした。温度を180℃に達した場合には、そこで試験を中止した。また生地に変形ないし異常が生じた場合にはその温度にて試験を中止し、熱変形温度がその温度以上であると判定した。
<Heat deformation temperature>
A sheet of stretchable insulating polymer is placed on a hot plate and heated to a predetermined temperature. Next, an electric iron having an iron hot plate heated to the same predetermined temperature is placed on the stretchable insulating polymer sheet for 1 minute, and then the electric iron is lifted. When lifted together with the hot plate, it was judged that there was adhesion and adhesion. Moreover, when the trace which had been in the iron can be visually determined, it determined with having thermally deformed. The measurement was carried out by raising the predetermined temperature in increments of 60 ° C. to 5 ° C., and the lowest temperature at which any one of thermal deformation or adhesion / adhesion was observed was defined as the thermal deformation temperature. When the temperature reached 180 ° C., the test was stopped there. When the fabric was deformed or abnormal, the test was stopped at that temperature, and it was determined that the thermal deformation temperature was higher than that temperature.
<ニトリル量>
 得られた樹脂材料をNMR分析して得られた組成比から、モノマーの質量比による質量%に換算した。
<Nitrile amount>
From the composition ratio obtained by NMR analysis of the obtained resin material, it was converted to mass% based on the mass ratio of the monomers.
<ムーニー粘度>
 島津製作所製 SMV-300RT「ムーニービスコメータ」を用いて測定した。
<Mooney viscosity>
This was measured using an SMV-300RT “Mooney Viscometer” manufactured by Shimadzu Corporation.
<弾性率>
 バインダー樹脂を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。
ISO 527-1に規定された方法で引っ張り試験を行って、樹脂材料の応力-歪み線図を求め、常法により弾性率を算出した。
<Elastic modulus>
The binder resin was molded into a sheet shape with an arbitrary thickness in the range of 20 μm to 200 μm, and then punched into a dumbbell mold defined by ISO 527-2-1A to obtain a test piece.
A tensile test was performed by a method defined in ISO 527-1 to obtain a stress-strain diagram of the resin material, and an elastic modulus was calculated by a conventional method.
<ガラス転移温度>
ガラス転移温度は常法に従い示差走査熱量分析(DSC)により求めた。
<Glass transition temperature>
The glass transition temperature was determined by differential scanning calorimetry (DSC) according to a conventional method.
<分子量>
 バインダー樹脂材料の試料をTHF(テトラヒドロフラン)中に、溶液中の樹脂の濃度が0.4質量%となるよう添加して室温で1時間撹拌後、24時間放置した。次いで得られた樹脂溶液をTHFで4倍に希釈した後、0.45μmのフィルターを通過させ、そのろ液につき、GPCを用いて数平均分子量、重量平均分子量、分散比(Mw/Mn)を求めた。
<Molecular weight>
A sample of the binder resin material was added to THF (tetrahydrofuran) so that the concentration of the resin in the solution was 0.4 mass%, stirred at room temperature for 1 hour, and then allowed to stand for 24 hours. Next, the resulting resin solution was diluted 4 times with THF, and then passed through a 0.45 μm filter. The filtrate was subjected to GPC to obtain a number average molecular weight, a weight average molecular weight, and a dispersion ratio (Mw / Mn). Asked.
 得られる試料が調合後の導電ペースト、ないしペーストの硬化物である場合、ペースト材料をTHF(テトラヒドロフラン)中に、溶液中の試料の濃度が2.0質量%となるよう添加し、溶液を撹拌しながらTHFの沸点まで温度を上げ、30分間保持後に室温まで冷却し、24時間放置した。次いで得られた樹脂溶液をTHFで4倍に希釈した後、0.45μmのフィルターを通過させて無機分を除き、そのろ液につき、GPC測定を行い、添加剤などの低分子量成分を分子量500未満の成分とみなして削除し、分子量500以上の部分について数平均分子量、重量平均分子量、分散比(Mw/Mn)を求めた。 When the obtained sample is a conductive paste after preparation or a cured product of the paste, the paste material is added to THF (tetrahydrofuran) so that the concentration of the sample in the solution is 2.0% by mass, and the solution is stirred. While raising the temperature to the boiling point of THF, the mixture was kept for 30 minutes, cooled to room temperature, and left for 24 hours. Next, the obtained resin solution was diluted 4 times with THF, passed through a 0.45 μm filter to remove inorganic matters, GPC measurement was performed on the filtrate, and low molecular weight components such as additives were added with a molecular weight of 500 The number average molecular weight, the weight average molecular weight, and the dispersion ratio (Mw / Mn) were determined for portions having a molecular weight of 500 or more.
<樹脂の伸張回復率>
 樹脂材料を厚さ20μmから200μmの範囲の任意の厚さにてシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。
 ついで、ダンベル型試験片中の幅10mm、長さ80mmの部分の中央からそれぞれ33mmの個所(有効長66mm)に印を付け、印間の初期距離L0を正確に測長した。次いで印を付けた個所の外側をクランプで挟み、66mmである印間を伸張長さ79.2mm(+13.2mm、伸張度20%に相当)まで伸ばした後にクランプから離し、所定の温度(特に断りの無い場合は25℃)にて水平方向に保持したフッ素樹脂シートの上に置き、印間の伸張後距離L2を測定し、以下の式に従って伸張回復率を求めた。
 初期長さ L0=66.0mm
 伸張長さ L1=79.2mm
 伸張後の長さ L2=実測
 伸び   L3=L1-L0=13.2mm
 回復長さ L4=L1-L2
伸張回復率=((L1-L2)/(L1-L0))×100    [%]
<Resin recovery rate>
The resin material was formed into a sheet shape with an arbitrary thickness in the range of 20 μm to 200 μm, and then punched into a dumbbell mold defined by ISO 527-2-1A to obtain a test piece.
Subsequently, a mark was placed at a location 33 mm (effective length 66 mm) from the center of the 10 mm wide and 80 mm long portion in the dumbbell-shaped test piece, and the initial distance L 0 between the marks was measured accurately. Next, the outside of the marked part is clamped, and the 66 mm mark is stretched to an extension length of 79.2 mm (+13.2 mm, corresponding to an extension degree of 20%), then separated from the clamp, and a predetermined temperature (especially placed on at otherwise if no is 25 ° C.) of the fluorine resin sheet was kept in a horizontal direction, measured after stretching distance L 2 between the marks was determined extension recovery rate according to the following equation.
Initial length L 0 = 66.0 mm
Extension length L 1 = 79.2 mm
Length after extension L 2 = Measured Elongation L 3 = L 1 -L 0 = 13.2 mm
Recovery length L 4 = L 1 -L 2
Elongation recovery rate = ((L 1 −L 2 ) / (L 1 −L 0 )) × 100 [%]
<布帛の伸張回復率>
 布帛材料をISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。なお、布帛の伸長方向をダンベルの長さ方向とした。
 次いで、樹脂の伸張回復率の測定と同様にダンベル型試験片中の幅10mm、長さ80mmの部分の中央からそれぞれ33mmの個所(有効長66mm)に印を付け、伸張長さを99mm(+33mm、伸張度50%に相当)まで伸ばした以外は、樹脂の伸張回復率と同様に操作して伸張回復率を求めた。
<Stretch recovery rate of fabric>
The fabric material was punched into a dumbbell shape specified by ISO 527-2-1A to obtain a test piece. In addition, the extending | stretching direction of the fabric was made into the length direction of a dumbbell.
Next, as in the measurement of the stretch recovery rate of the resin, marks are placed at 33 mm positions (effective length 66 mm) from the center of the 10 mm width and 80 mm length in the dumbbell-shaped test piece, and the stretch length is 99 mm (+33 mm). The elongation recovery rate was determined by operating in the same manner as the resin stretch recovery rate except that the elongation was extended to 50%.
<布帛の耐熱性>
JIS L1013:2010 化学繊維フィラメント糸試験方法 8.19.2 にて求められる熱収縮温度をもって、布帛の耐熱性とした。
<Heat resistance of fabric>
JIS L1013: 2010 Chemical fiber filament yarn test method The heat shrinkage temperature obtained in 8.19.2 was defined as the heat resistance of the fabric.
<平均粒子径>
フィラーの平均粒子径は、堀場製作所製の光散乱式粒径分布測定装置LB-500を用いて測定した。
<Average particle size>
The average particle size of the filler was measured using a light scattering particle size distribution measuring device LB-500 manufactured by Horiba.
<導電率>
 導体シートの大きさが十分にある場合には、ISO 527-2-1Aにて規定されるダンベル型に打ち抜き、ダンベル型試験片の中央部にある幅10mm、長さ80mmの部分を試験片として用いた。導体シートの成型が可能な場合には厚さ200±20μmのシート状に加熱圧縮成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、同様に試験片とした。導体シートの大きさが小さく、規定されたダンベル形状を得られない場合には、採取可能な幅および長さの矩形を切り取り、試験片とし、導電率測定を行った幅、厚さ、長さを用いて換算した。
 試験片:幅10mm、長さ80mmの部分の抵抗値[Ω]を、アジレントテクノロージ社製ミリオームメーターを用いて測定し、試験片の縦横比(1/8)を乗じてシート抵抗値「Ω□」を求めた。
 また、抵抗値[Ω]に断面積(幅1[cm]mm×厚さ[cm])を乗じ、長さ(8cm)にて除して、比抵抗[Ωcm]を求めた。さらに比抵抗の逆数を求め導電率とした。
<Conductivity>
When the size of the conductor sheet is sufficient, it is punched into a dumbbell type specified by ISO 527-2-1A, and the dumbbell type test piece is 10 mm wide and 80 mm long as the test piece. Using. When the conductor sheet could be molded, it was heat-compressed into a sheet having a thickness of 200 ± 20 μm, then punched into a dumbbell shape defined by ISO 527-2-1A, and similarly a test piece was obtained. When the size of the conductor sheet is small and the specified dumbbell shape cannot be obtained, a rectangle with a width and length that can be collected is cut out to make a test piece, and the width, thickness, and length of the measured conductivity are measured. It converted using.
Test piece: The resistance value [Ω] of a portion having a width of 10 mm and a length of 80 mm was measured using a milliohm meter manufactured by Agilent Technologies, and the sheet resistance value “Ω” was multiplied by the aspect ratio (1/8) of the test piece. □ ”.
The resistivity [Ω] was multiplied by the cross-sectional area (width 1 [cm] mm × thickness [cm]) and divided by the length (8 cm) to obtain the specific resistance [Ωcm]. Furthermore, the reciprocal of the specific resistance was determined and used as the conductivity.
<導電シート材料の伸張回復率>
導電率の測定に用いたものと同様の試験片を用いた。
 次いで、樹脂の伸張回復率の測定と同様にダンベル型試験片中の幅10mm、長さ80mmの部分の中央からそれぞれ33mmの個所(有効長66mm)に印を付け、伸張長さを99mm(+33mm、伸張度50%に相当)まで伸ばした以外は、樹脂の伸張回復率と同様に操作して導電シートの伸張回復率を求めた。
<Elongation recovery rate of conductive sheet material>
A test piece similar to that used for the measurement of conductivity was used.
Next, as in the measurement of the stretch recovery rate of the resin, marks are placed at 33 mm positions (effective length 66 mm) from the center of the 10 mm width and 80 mm length in the dumbbell-shaped test piece, and the stretch length is 99 mm (+33 mm). The elongation recovery rate of the conductive sheet was determined in the same manner as the resin extension recovery rate except that the elongation was extended to 50%.
<導電シート材料の繰り返し伸縮耐久性(機械的負荷試験)>
 (1) 試験片作製
 導体シートの大きさが十分にある場合には、ISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。導体シートの成型が可能な場合には、厚さ20~200μmの任意の厚さを有するシート状に成形し、次いでISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。導体シートの大きさが小さく、規定されたダンベル形状を得られない場合には、採取可能な幅および長さの矩形を切り取り、試験片とし、導電率測定を行った幅、厚さ、長さを用いて換算した。
(2)繰り返し伸縮試験
 山下マテリアル製のIPC屈曲試験機を改造し、試験機の往復ストロークを13.2mmに設定、可動板側に試験片をクランプで固定、もう一端を別の固定端にクランプにて固定、ダンベル型試験片中の幅10mm、長さ80mmの部分を用いて、有効長が66mmとなるように調整し(伸張度20%に相当)し、サンプルの繰り返し伸張が行えるように改造した装置を用い、伸縮有効長の66mmの両端の外側0~5mmにアルミホイルを巻き付けた上で金属製クリップで挟み、テスターで抵抗値をモニターしながら繰り返し伸張を行った。抵抗値の読み取りは、繰り返し伸張600回までは10回毎に、600回以上は50回毎に伸張率が0%の状態にて停止し、停止後1分後の値を読んで記録し、抵抗値が初期の100倍に達した時点の回数を記録して、そこで試験を打ち切った。
<Repeated stretch durability of conductive sheet material (mechanical load test)>
(1) Preparation of test piece When the size of the conductor sheet was sufficient, it was punched into a dumbbell shape specified by ISO 527-2-1A to obtain a test piece. When the conductor sheet can be molded, it is formed into a sheet having an arbitrary thickness of 20 to 200 μm, and then punched into a dumbbell shape defined by ISO 527-2-1A to obtain a test piece. . When the size of the conductor sheet is small and the specified dumbbell shape cannot be obtained, a rectangle with a width and length that can be collected is cut out to make a test piece, and the width, thickness, and length of the measured conductivity are measured. It converted using.
(2) Repeated expansion and contraction test The IPC bending tester made by Yamashita Material was remodeled, the reciprocating stroke of the tester was set to 13.2 mm, the test piece was clamped on the movable plate side, and the other end was clamped to another fixed end. Fixed at, and adjusted to an effective length of 66 mm (corresponding to an elongation of 20%) by using a 10 mm wide and 80 mm long portion in the dumbbell-shaped test piece so that the sample can be repeatedly stretched. Using a modified device, aluminum foil was wrapped around 0 to 5 mm outside the ends of 66 mm, which had an effective length of expansion and contraction, and was sandwiched between metal clips, and repeatedly stretched while monitoring the resistance value with a tester. Reading of resistance value is repeated every 10 times up to 600 times of extension, and every 50 times more than 600 times, with the extension rate being 0%, and the value after 1 minute is read and recorded, The number of times when the resistance value reached 100 times the initial value was recorded, and the test was terminated there.
<伸縮性導体層および、伸縮性導体/布帛積層体の加熱導電性回復率>
 導電シートの繰り返し伸縮耐久性(機械的負荷)において、導電率低下比が1/1000以上である場合において、繰り返し伸縮耐久性(機械的負荷)試験後の試験片を伸張荷重を除去し、自重以外の負荷が加わっていない状態にて水平に保持したフッ素樹脂シートの上に静置し、ドライオーブンにて60℃、10分間加熱したのち、室温に戻し、導電率を測定し、導電性回復率を求めた。伸縮性導体/布帛積層体についても同様に、自重以外の負荷が加わっていない状態にて水平に保持したフッ素樹脂シートの上に静置し、ドライオーブンにて60℃、10分間加熱したのち、室温に戻し、導電率を測定し、導電性回復率を求めた。
 (数3)
  導電率低下比=測定時導電率/初期導電率
  導電性回復率=100×60℃加熱後の導電率/初期導電率
<Heating conductivity recovery rate of stretchable conductor layer and stretchable conductor / fabric laminate>
In the case of repeated stretch durability (mechanical load) of the conductive sheet, when the conductivity reduction ratio is 1/1000 or more, the test piece after the repeated stretch durability (mechanical load) test is removed from the tensile load and its own weight Rest on a fluororesin sheet held horizontally in a state where no other load is applied, heat at 60 ° C. for 10 minutes in a dry oven, return to room temperature, measure conductivity, and restore conductivity The rate was determined. Similarly, the stretchable conductor / fabric laminate is allowed to stand on a fluororesin sheet that is horizontally held in a state where no load other than its own weight is applied, and after heating in a dry oven at 60 ° C. for 10 minutes, It returned to room temperature, the electrical conductivity was measured, and the electroconductive recovery rate was calculated | required.
(Equation 3)
Conductivity decrease ratio = Measurement conductivity / initial conductivity Conductivity recovery rate = 100 × 60 ° C. conductivity after heating / initial conductivity
<膜厚斑>
 伸縮性導体層を、液体窒素に浸漬して十分に冷却し、次いで任意の方向に折り曲げることによりシートを割り、断面観察可能な試験片とした。得られた試験片の断面を測長機能を有する顕微鏡にて観察し、面方向に約1mm間隔にて伸縮性導体層の導体部分の厚さを10点測定し、以下の数式により膜厚斑を求めた。得られた10点の最大膜厚、最小膜厚、平均膜厚から、次式に従って膜厚斑を求めた。
 (数4)
 膜厚斑[%]=100×(最大膜厚-最小膜厚)/平均膜厚
<Thickness unevenness>
The stretchable conductor layer was immersed in liquid nitrogen and sufficiently cooled, and then bent in an arbitrary direction to break the sheet to obtain a test piece capable of observing a cross section. The cross section of the obtained test piece was observed with a microscope having a length measuring function, and the thickness of the conductor portion of the stretchable conductor layer was measured at intervals of about 1 mm in the plane direction. Asked. From the obtained 10 maximum film thicknesses, minimum film thicknesses, and average film thicknesses, film thickness unevenness was determined according to the following equation.
(Equation 4)
Film thickness unevenness [%] = 100 × (maximum film thickness−minimum film thickness) / average film thickness
<洗濯耐久性>
(1)試験片作製
ダンベル型に打ち抜いた伸縮性導体層を50mm×200mmの布帛(トリコット編地、耐熱性>100℃、伸張回復率100%)のほぼ中央部に、40mm×180mmに打ち抜いたホットメルト接着層MOB100[日清紡株式会社製]を重ね、フッ素樹脂シートで挟んで、120℃にてホットプレスすることによりラミネートして試験片とした。なお、トリコット編地、ホットメルト接着層MOB100、共に100%伸張にて伸張回復率が100%と、十分な伸張性を有しているものである。
(2)洗濯試験
JIS L 0217繊維製品の取扱いに関する表示記号及び表示方法に規定されている105法により30サイクルの洗濯試験を行った。
洗液:中性洗剤0.5%溶液
水流:弱
浴比:1:60
洗濯サイクル
  洗い 30℃5分
  すすぎ 30℃2分 を2回
本サイクルを1サイクルとして、30回くりかえし。
(3)評価
 導電シートの洗濯試験において、試験後の導電率低下比が1/1000以上である場合において、洗濯試験後の試験片を伸張荷重を除去し、自重以外の負荷が加わっていない状態にて水平に保持したフッ素樹脂シートの上に静置し、ドライオーブンにて60℃、10分間加熱したのち、室温に戻し、導電率を測定し、導電性回復率を求めた。
  洗濯試験後の導電率低下比=洗濯試験後の導電率/初期導電率
  洗濯試験後の導電性回復率=洗濯試験後に100×60℃加熱した後の導電率/初期導電率。
 なお、導電率算出にあたり、シートの厚さは布帛に貼り付ける前の値を便宜的に用いた。
<Washing durability>
(1) Preparation of test piece A stretchable conductor layer punched into a dumbbell shape was punched into 40 mm × 180 mm at almost the center of a 50 mm × 200 mm fabric (tricot knitted fabric, heat resistance> 100 ° C., stretch recovery rate 100%). A hot melt adhesive layer MOB100 [manufactured by Nisshinbo Co., Ltd.] was stacked, sandwiched between fluororesin sheets, and hot-pressed at 120 ° C. to obtain a test piece. Note that the tricot knitted fabric and the hot melt adhesive layer MOB100 both have sufficient stretchability, with a stretch recovery rate of 100% when stretched 100%.
(2) Washing test
A 30-cycle washing test was conducted according to the 105 method defined in JIS L 0217 Textile Handling Symbols and Display Methods.
Washing solution: neutral detergent 0.5% solution water flow: weak bath ratio: 1:60
Washing cycle Washing 30 ° C 5 minutes Rinse 30 ° C 2 minutes 2 times This cycle is 1 cycle 30 times.
(3) Evaluation In the washing test of the conductive sheet, when the ratio of decrease in conductivity after the test is 1/1000 or more, the test piece after the washing test is removed from the extension load and no load other than its own weight is applied. The sample was allowed to stand on a fluororesin sheet held in a horizontal direction, heated in a dry oven at 60 ° C. for 10 minutes, then returned to room temperature, and the conductivity was measured to obtain the conductivity recovery rate.
Conductivity reduction ratio after washing test = conductivity after washing test / initial conductivity Conductivity recovery after washing test = conductivity after heating at 100 × 60 ° C./initial conductivity after washing test.
In calculating the electrical conductivity, the value of the sheet thickness before being attached to the fabric was used for convenience.
[製造例1~5]
<合成ゴム材料の重合>
攪拌機、水冷ジャケットを備えたステンレス鋼製の反応容器に
 ブタジエン     61質量部
 アクリロニトリル  39質量部
 脱イオン水    270質量部
 ドデシルベンゼンスルホン酸ナトリウム 0.5質量部
 ナフタレンスルホン酸ナトリウム縮合物 2.5質量部
 t-ドデシルメルカプタン       0.3質量部
 トリエタノールアミン         0.2質量部
 炭酸ナトリウム            0.1質量部
を仕込み、窒素を流しながら浴温度を5℃に保ち、静かに攪拌した。次いで 過硫酸カリウム3質量部を脱イオン水19.7質量部に溶解した水溶液を30分間かけて滴下し、さらに20時間反応を継続した後、ハイドロキノン0.5質量部を脱イオン水19.5質量部に溶解した水溶液を加えて重合停止操作を行った。
 次いで、未反応モノマーを留去させるために、まず反応容器内を減圧し、さらにスチームを導入して未反応モノマーを回収し、NBRからなる合成ゴムラテックス(L1)を得た。
 得られたラテックスに食塩と希硫酸を加えて凝集・濾過し、樹脂に対する体積比20倍量の脱イオン水を5回に分けて樹脂を脱イオン水に再分散、濾過を繰り返すことで洗浄し、空気中にて乾燥して合成ゴム樹脂を得た。得られた合成ゴム樹脂のガラス転移温度、数平均分子量、重量平均分子量、分散比、ゲル分率、樹脂の伸張回復率を表1に示す。
 以下、重合開始剤(過硫酸カリウム)の添加量、重合温度、原料仕込み比を変えることにより表1.に示す、NBR1、NBR2、NBR3、NBR4、SBR1を得た。
[Production Examples 1 to 5]
<Polymerization of synthetic rubber material>
In a reaction vessel made of stainless steel equipped with a stirrer and a water cooling jacket 61 parts by mass of butadiene 39 parts by mass of acrylonitrile 270 parts by mass of deionized water sodium dodecylbenzenesulfonate 0.5 part by mass sodium naphthalenesulfonate condensate 2.5 parts by mass t -Dodecyl mercaptan 0.3 part by weight Triethanolamine 0.2 part by weight Sodium carbonate 0.1 part by weight was charged, and the bath temperature was kept at 5 ° C while flowing nitrogen, followed by gentle stirring. Next, an aqueous solution obtained by dissolving 3 parts by mass of potassium persulfate in 19.7 parts by mass of deionized water was added dropwise over 30 minutes, and the reaction was continued for another 20 hours. Then, 0.5 part by mass of hydroquinone was added to 19.5 parts of deionized water. An aqueous solution dissolved in parts by mass was added to stop the polymerization.
Next, in order to distill off the unreacted monomer, first, the inside of the reaction vessel was depressurized, and further steam was introduced to recover the unreacted monomer to obtain a synthetic rubber latex (L1) composed of NBR.
Salt and dilute sulfuric acid are added to the resulting latex for aggregation and filtration, and the resin is redispersed in deionized water in a volume of 20 times the volume ratio of deionized water, and washed by repeating filtration. And dried in air to obtain a synthetic rubber resin. Table 1 shows the glass transition temperature, number average molecular weight, weight average molecular weight, dispersion ratio, gel fraction, and resin elongation recovery rate of the obtained synthetic rubber resin.
Hereinafter, by changing the addition amount of the polymerization initiator (potassium persulfate), the polymerization temperature, and the raw material charge ratio, Table 1. NBR1, NBR2, NBR3, NBR4 and SBR1 were obtained.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
[バインダー樹脂]
 表2に示される配合比にて樹脂材料を配合し、十分に溶融する温度にて混練し、バインダー樹脂とした。各バインダー樹脂の特性を表2.に示す。
 なお、表中、SBR+架橋剤においてSBRは製造例で得られたSBR1であり、架橋剤としては非イオウ系のパーブチルP[日油株式会社製]を樹脂総量に対して0.1質量%とした 
 表中の ウレタンは、UR-8700[東洋紡株式会社製]を用いた。
[Binder resin]
A resin material was blended at a blending ratio shown in Table 2, and kneaded at a temperature at which the resin material was sufficiently melted to obtain a binder resin. Table 2 shows the characteristics of each binder resin. Shown in
In the table, in the SBR + crosslinking agent, SBR is SBR1 obtained in the production example, and as the crosslinking agent, non-sulfur perbutyl P [manufactured by NOF Corporation] is 0.1% by mass with respect to the total amount of the resin. did
UR-8700 [Toyobo Co., Ltd.] was used as the urethane in the table.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
[ペースト化]
 まず、所定の溶剤量の半分量の溶剤にバインダー樹脂を溶解し、得られた溶液に金属系粒子、炭素系粒子、そのほかの成分を添加して予備混合の後、三本ロールミルにて分散することによりペースト化し、表3に示すペーストをPag1を得た。以下同様に表3に示す組成比にてペーストを調整した。
[Paste]
First, the binder resin is dissolved in half the amount of the predetermined solvent, and the resulting solution is added with metal-based particles, carbon-based particles, and other components, premixed, and then dispersed in a three-roll mill. The paste shown in Table 3 was obtained as Pag1. Similarly, the paste was adjusted at the composition ratio shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 なお表3.において
炭素系粒子CB01:株式会社中越黒鉛製造所製 鱗状黒鉛 グラファイトBF-1AT(平均粒径1μm)
炭素系粒子CB02:ライオン・スペシャリティ・ケミカルズ株式会社製 黒鉛粉末 ケッチェンブラック EC300J BET比表面積  800(m2/g)
金属系粒子Ag01:福田金属箔粉工業株式会社製 微細フレーク状銀粉 Ag-XF301 (平均粒子径6μm)
金属系粒子Ag02:DOWAエレクトロニクス株式会社製 凝集銀粉G-35 (平均粒子径6.0μm)
金属系粒子Ag03:三井金属鉱業株式会社製 微小径銀粉 SPQ03R (平均粒子径0.7μm)
非導電粒子TiO2:堺化学工業株式会社製 酸化チタン粒子 R-62N (平均粒子径は0.3μm)
非導電粒子SiO2:ニホンアエロジル社製 フュームドシリカAEROSIL 200(BET比表面積200m2/g)
溶剤BC:ブチルカルビトールアセテート
溶剤IP:イソホロン
である。
Table 3. Carbon-based particles CB01: scale-like graphite BF-1AT (average particle size 1 μm) manufactured by Chuetsu Graphite Co., Ltd.
Carbon particle CB02: Graphite powder made by Lion Specialty Chemicals Ketjen Black EC300J BET specific surface area 800 (m2 / g)
Metal-based particles Ag01: Fine flaky silver powder Ag-XF301 (average particle size 6 μm) manufactured by Fukuda Metal Foil Powder Co., Ltd.
Metal-based particles Ag02: Agglomerated silver powder G-35 (average particle size 6.0 μm) manufactured by DOWA Electronics Co., Ltd.
Metal-based particles Ag03: Fine size silver powder SPQ03R (Mitsui Metal Mining Co., Ltd.) (average particle size 0.7μm)
Non-conductive particles TiO2: Titanium oxide particles R-62N manufactured by Sakai Chemical Industry Co., Ltd. (average particle size is 0.3 μm)
Non-conductive particles SiO2: Fumed silica AEROSIL 200 (BET specific surface area 200m2 / g) manufactured by Nihon Aerosil
Solvent BC: butyl carbitol acetate solvent IP: isophorone.
 得られた伸縮性導体形成用ペーストを、幅600mm幅のシリコーン系離型剤処理されたポリエステルフィルム上に、コンマコーターを用いて有効幅500mmとなるように塗布することにより、表4に示す伸縮性導体層を得た。
 得られたシートを離型処理されたポリエステルフィルムから剥離し、厚さ、厚さ斑を評価した。結果を表4.に示す。続いて伸縮性導体層の初期導電率、機械的負荷後(繰り返し伸縮耐久性試験後)の導電率を評価し、導電率低下比を求めた。さらに機械的負荷後の伸縮性導体層の加熱導電性回復率を求めた。結果を表4に示す。分子量分布が狭いバインダー樹脂を用いた試料においては、導電率低下が著しい。さらに導電率低下比が1/1000以下の試料については加熱による導電率回復効果は低い。また、分子量分布が広いバインダー樹脂を用いた場合には導電率の加熱による回復率が高いことがわかる。
By applying the obtained paste for forming an elastic conductor onto a polyester film having a width of 600 mm and treated with a silicone release agent so as to have an effective width of 500 mm using a comma coater, the expansion and contraction shown in Table 4 is achieved. A conductive conductor layer was obtained.
The obtained sheet | seat was peeled from the polyester film by which the mold release process was carried out, and thickness and thickness spot were evaluated. The results are shown in Table 4. Shown in Subsequently, the initial conductivity of the stretchable conductor layer and the conductivity after mechanical loading (after repeated stretch durability test) were evaluated to determine the conductivity reduction ratio. Furthermore, the heating conductivity recovery rate of the stretchable conductor layer after mechanical loading was determined. The results are shown in Table 4. In a sample using a binder resin having a narrow molecular weight distribution, the decrease in conductivity is significant. Furthermore, the conductivity recovery effect by heating is low for samples having a conductivity reduction ratio of 1/1000 or less. It can also be seen that when a binder resin having a wide molecular weight distribution is used, the recovery rate of the conductivity by heating is high.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 得られた伸縮性導体層を、所定の方法にてトリコット生地に貼り付けて伸縮性導体/布帛積層体を得た。得られた伸縮性導体/布帛積層体の伸縮性導体部分の初期導電率、洗濯試験後の導電率、洗濯試験後の導電率低下比、洗濯試験後の導電性回復率を求めた結果を表4に示す。 The obtained stretchable conductor layer was attached to a tricot fabric by a predetermined method to obtain a stretchable conductor / fabric laminate. The initial conductivity of the stretchable conductor portion of the obtained stretchable conductor / fabric laminate, the conductivity after the washing test, the conductivity decrease ratio after the washing test, and the conductivity recovery rate after the washing test are shown. 4 shows.
[ペースト化例2]電極表面層用ペースト(ストレッチャブルカーボンペースト)の調製
表3に示す組成により、電極表面層用のカーボンペーストを調整した。
[Paste Formation Example 2] Preparation of Electrode Surface Layer Paste (Stretchable Carbon Paste) According to the composition shown in Table 3, an electrode surface layer carbon paste was prepared.
[ペースト化例3]伸縮性絶縁高分子層形成用ペースト(伸縮性絶縁インク:カバーコート樹脂インク、下地層用インク)
 表3に示す組成により、伸縮性絶縁高分子層形成用ペーストを調整した。得られた伸縮性絶縁高分子層形成用ペーストから得られた被膜の特性を表5に示す。
[Paste Formation Example 3] Stretchable Insulating Polymer Layer Forming Paste (Stretchable Insulating Ink: Cover Coat Resin Ink, Underlayer Ink)
A paste for forming a stretchable insulating polymer layer was prepared according to the composition shown in Table 3. Table 5 shows the properties of the film obtained from the obtained paste for stretchable insulating polymer layer formation.
[応用実施例1]
 図2に示す直接印刷法により、心電図測定用の衣服型電子機器を製作した。ニット地のスポーツシャツを裏返し、仮支持体に背面にしわが入らないように入れてシャツの両肩と左右の裾にピンを打って固定した。
 次いで、図5に示す導体パターンを含む配線を、図2に示すプロセスに従って伸縮性導体層を伸縮性導体形成用ペーストPag5にて、さらに伸縮性カバー層を伸縮性絶縁高分子層形成用ペーストPcc1にて、さらに電極表面層用ペーストPcb1を用いて伸縮性カーボン層を印刷、それぞれにスクリーン印刷し、所定の条件で乾燥・硬化させて印刷積層し、心電測定用の電極と配線を有するスポーツシャツを得た。心電測定用の電極表面層は直径30mmの円形である。また絶縁カバー層は電極部において内径が30mm、外径が36mmのドーナツ状であり電極から伸びる配線部は幅14mmで、配線部の終端には、センサとの接続用ホックを取り付けるために直径10mmの円形電極が同様にカーボンペーストで印刷されている。カーボンペースト層の厚さは乾燥膜厚で18μmであり、絶縁カバー層は30μm、伸縮性導体層は厚さ28μmである。なお伸縮性導体層の印刷に先立ち、図では省略されているが伸縮性絶縁高分子層形成用ペーストにて下地層が形成されている。、
[Application Example 1]
A clothes-type electronic device for measuring an electrocardiogram was manufactured by the direct printing method shown in FIG. The knit sports shirt was turned upside down and put on the temporary support so that there were no wrinkles on the back, and pins were fixed on both shoulders and left and right hems of the shirt.
Next, in the wiring including the conductor pattern shown in FIG. 5, the stretchable conductor layer is made of the stretchable conductor forming paste Pag5 and the stretchable cover layer is made of the stretchable insulating polymer layer forming paste Pcc1 according to the process shown in FIG. Further, a stretchable carbon layer is printed using the electrode surface layer paste Pcb1, screen-printed on each layer, dried and cured under predetermined conditions, printed and laminated, and a sport having electrodes and wiring for electrocardiogram measurement I got a shirt. The electrode surface layer for electrocardiogram measurement is a circle with a diameter of 30 mm. The insulating cover layer has a donut shape with an inner diameter of 30 mm and an outer diameter of 36 mm at the electrode portion, the wiring portion extending from the electrode has a width of 14 mm, and the end of the wiring portion has a diameter of 10 mm to attach a hook for connection with the sensor. The circular electrodes are similarly printed with carbon paste. The carbon paste layer has a dry film thickness of 18 μm, the insulating cover layer has a thickness of 30 μm, and the stretchable conductor layer has a thickness of 28 μm. Prior to printing the stretchable conductor layer, although not shown in the figure, the base layer is formed with a stretchable insulating polymer layer forming paste. ,
 得られた電極・配線付きスポーツシャツは、左右の後腋窩線上と第7肋骨との交差点に直径30mmの円形電極があり、さらに円形電極から後頸部中央までの幅10mmの伸縮性のある導体による電気配線が内側に形成されている。なお左右の電極から後頸部中央に伸びる配線は、頸部中央にて5mmのギャップを持ち、両者は短絡されていない。
 続いて、後頸部中央端の表面側にステンレススチール製のホックを取り付け、裏側の配線部と電気的導通を確保するために金属細線を撚り込んだ導電糸を用いて伸縮性導体組成物層とステンレススチール製ホックとを電気的に接続した。
The resulting sports shirt with electrodes and wiring has a circular electrode with a diameter of 30 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and a stretchable conductor with a width of 10 mm from the circular electrode to the center of the rear neck Electrical wiring is formed on the inside. The wiring extending from the left and right electrodes to the center of the rear neck has a gap of 5 mm at the center of the neck, and both are not short-circuited.
Subsequently, a stainless steel hook is attached to the surface side of the central end of the rear neck, and a stretchable conductor composition layer using a conductive thread twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side And a stainless steel hook were electrically connected.
 ステンレススチール製ホックを介して、ユニオンツール社製の心拍センサWHS-2を接続し、同心拍センサWHS-2専用のアプリ「myBeat」を組み込んだアップル社製スマートホンで心拍データを受信し、画面表示できるように設定した。以上のようにして心拍計測機能を組み込んだスポーツシャツを作製した。配線パターンを図5に、シャツに対する配線パターンの配置を図4に示す。
 本スポーツシャツを被験者に着用させ、心電データを取得しながらスポーツトレーニングを実施した。得られる心電データはノイズが少なく、高解像度で、心電図としてメンタルな状態、体調、疲労度、眠気、緊張度合いなどを心拍間隔の変化、心電波形などから解析可能な品位を有していた。
 本スポーツシャツはトレーニング後に毎回洗濯を行い、乾燥後に表面温度を80℃に調整した家庭用アイロンにて、電極部、および配線部を熱処理した。熱処理は通常のアイロン掛けと同様に裏返したスポーツシャツをアイロン台に置き、配線部分に離型シートとして38μm厚のポリイミドフィルムXENOMAX(東洋紡株式会社製)を被せ、その上からアイロンの熱板が当たるようにして、5~10cm/秒の速度で動かす操作を5回繰り返した。
 かかる洗濯と乾燥後のアイロン掛けを毎回行うことにより、のべ100回使用後も良好に心電測定が可能な状態を維持することができた。
Connect a heart rate sensor WHS-2 made by Union Tool through a stainless steel hook, and receive heart rate data with an Apple smartphone incorporating the app “myBeat” dedicated to the heart rate sensor WHS-2. Set to display. A sports shirt incorporating a heart rate measurement function was produced as described above. FIG. 5 shows the wiring pattern, and FIG. 4 shows the layout of the wiring pattern with respect to the shirt.
The subject was wearing this sports shirt, and sports training was performed while acquiring electrocardiographic data. The obtained electrocardiogram data has low noise, high resolution, and the quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc. of the mental state, physical condition, fatigue, drowsiness, tension etc. .
This sports shirt was washed every time after training, and the electrode part and the wiring part were heat-treated with a domestic iron whose surface temperature was adjusted to 80 ° C. after drying. In the heat treatment, a sports shirt that is turned inside out is placed on an ironing board in the same way as with normal ironing, and a 38 μm-thick polyimide film XENOMAX (manufactured by Toyobo Co., Ltd.) is placed on the wiring part as a release sheet. Then, the operation of moving at a speed of 5 to 10 cm / second was repeated 5 times.
By performing such washing and ironing after drying each time, it was possible to maintain a state in which electrocardiographic measurement could be satisfactorily performed even after 100 times of use.
 一方で、アイロン処理を省略した以外は同様に使用したスポーツシャツにおいては洗濯30回後に心電測定のノイズが増え、トレーニング中の心電測定が困難になった。31回以後は、アイロン処理を行うことにより、80回まで心電測定が可能な状態を維持することができた。 On the other hand, in the sports shirt that was used in the same manner except that the ironing process was omitted, the electrocardiographic noise increased after 30 washings, making it difficult to measure the electrocardiogram during training. After 31 times, by performing the ironing process, it was possible to maintain a state where electrocardiogram measurement was possible up to 80 times.
[応用実施例2]
 図3に示す印刷転写法により、応用例1と同じパターンの配線を有するスポーツシャツを、伸縮性導体形成用ペーストとしてPag11を用い、伸縮性絶縁高分子層形成用ペーストとしてPcc2を用いた以外は同じ材料を用いて試作した。得られたスポーツシャツを用いて、応用例1と同様に心電データを取りながらスポーツトレーニング行い、同様に洗濯と乾燥、アイロン掛けを繰り返し行った。結果、応用実施例2においても、のべ100回の使用後もスポーツウェアは心電測定が可能な状態を維持していた。
[Application Example 2]
A sports shirt having wiring of the same pattern as in Application Example 1 was used, except that Pag11 was used as a stretchable conductor forming paste and Pcc2 was used as a stretchable insulating polymer layer forming paste by the print transfer method shown in FIG. A prototype was made using the same material. Using the obtained sport shirt, sport training was performed while taking electrocardiogram data in the same manner as in Application Example 1, and washing, drying, and ironing were repeated in the same manner. As a result, also in the application example 2, the sportswear maintained a state where the electrocardiogram measurement was possible even after 100 times of use.
[応用実施例3]
 図3に示す印刷転写法により、応用例1と同じパターンの配線を有するスポーツシャツを、伸縮性導体形成用ペーストとしてPag11を用い、伸縮性絶縁高分子層形成用ペーストとしてPcc3を用いた以外は同じ材料を用いて試作した。得られたスポーツシャツを用いて、応用例1と同様に心電データを取りながらスポーツトレーニング行い、同様に洗濯と乾燥、アイロン掛けを繰り返し行った。結果、応用実施例3においても、のべ100回の使用後もスポーツウェアは心電測定が可能な状態を維持していた。
[Application Example 3]
A sports shirt having the same pattern wiring as Application Example 1 was used by the printing transfer method shown in FIG. 3, except that Pag11 was used as the stretchable conductor forming paste and Pcc3 was used as the stretchable insulating polymer layer forming paste. A prototype was made using the same material. Using the obtained sport shirt, sport training was performed while taking electrocardiogram data in the same manner as in Application Example 1, and washing, drying, and ironing were repeated in the same manner. As a result, also in the application example 3, the sportswear maintained the state where the electrocardiogram measurement was possible even after 100 times of use.
[応用実施例4]
 実施例1にて伸縮性導体形成用ペーストPag4から得られた伸縮性導体層を用い、伸縮性絶縁高分子層には、日清紡株式会社製ホットメルト層付きエラストマーシート「モビロン」を用い、電極表面層は省略して、それぞれシートを所定形状に切り抜いて積層ラミネートする方法により、電極・配線付きのスポーツシャツを得た。
 以下、応用例1と同様に心電データを取りながらスポーツトレーニング行い、同様に洗濯と乾燥、アイロン掛けを繰り返し行った。結果応用例3においては、のべ250回の使用後もスポーツウェアは心電測定が可能な状態を維持していた。
[Application Example 4]
Using the stretchable conductor layer obtained from the paste Pag4 for stretchable conductor formation in Example 1, and using the elastomer sheet “Mobilon” with a hot melt layer made by Nisshinbo Co., Ltd. as the stretchable insulating polymer layer, the electrode surface The sports shirt with electrodes and wiring was obtained by omitting the layers and cutting each sheet into a predetermined shape and laminating and laminating.
Thereafter, sport training was performed while taking electrocardiogram data in the same manner as in Application Example 1, and washing, drying, and ironing were repeated in the same manner. Results In Application Example 3, the sportswear maintained a state where electrocardiogram measurement was possible even after a total of 250 uses.
産業上の利用分野Industrial application fields
 以上、示してきたように、本発明における伸縮性絶縁高分子層と伸縮性導体層を用いて得られる伸縮性電気配線は、適切に加熱処理を施すことにより、低下した導電性が再生する特性を有しているため、特殊な装置を用いることなく家庭用の備品を用いて実用上の寿命を延ばすことができるという有用な特性を有するものである。
 本発明の伸縮性電気配線をウェアラブル・スマート・デバイスに用いることにより、人体の持つ情報、すなわち筋電位、心電位などの生体電位、体温、脈拍、血圧などの生体情報を衣服に設けたセンサなど検知するためのウェアラブル装置や、あるいは、電気的な温熱装置を組み込んだ衣服、衣服圧を測定するためのセンサを組み込んだウェアラブル装置、衣服圧を利用して身体サイズを計測するウェア、足裏の圧力を測定するための靴下型装置、フレキシブルな太陽電池モジュールをテキスタイルに集積した衣服、テント、バッグなどの配線部、関節部を有する低周波治療器、温熱療養機などの配線部、屈曲度のセンシング部などに応用可能である。かかるウェアラブル装置は、人体を対象にするのみならず、ペットや家畜などの動物、あるいは伸縮部、屈曲部などを有する機械装置にも応用可能であり、ロボット義手、ロボット義足など機械装置と人体と接続して用いるシステムの電気配線としても利用できる。また体内に埋設してしようするインプラントデバイスの配線材料としても応用可能である。
As described above, the stretchable electrical wiring obtained by using the stretchable insulating polymer layer and the stretchable conductor layer in the present invention has a characteristic that the reduced conductivity is regenerated by appropriately performing the heat treatment. Therefore, it has a useful characteristic that a practical life can be extended by using household equipment without using a special device.
By using the stretchable electrical wiring of the present invention for a wearable smart device, information on the human body, i.e., biopotentials such as myoelectric potential and cardiac potential, biological information such as body temperature, pulse, blood pressure, etc. provided on clothes Wearable device for detection, or clothing incorporating an electrical heating device, wearable device incorporating a sensor for measuring clothing pressure, clothing for measuring body size using clothing pressure, sole of foot Socks-type devices for measuring pressure, wiring parts such as clothes, tents and bags with flexible solar cell modules integrated in textiles, low-frequency treatment devices with joints, wiring parts such as thermotherapy machines, flexion degree It can be applied to sensing parts. Such wearable devices can be applied not only to the human body but also to animals such as pets and livestock, or mechanical devices having a telescopic part, a bent part, etc. It can also be used as electrical wiring for systems that are connected. It can also be applied as a wiring material for implant devices to be embedded in the body.
1.ファブリック
2.仮支持体
3.伸縮性導体組成物層
4.伸縮性カバー層
5.伸縮性カーボン層
6.離型支持体
7.接着層
 
 
 
 
 
 
 
 
 
1. Fabric 2. Temporary support 3. 3. Stretchable conductor composition layer Elastic cover layer5. Stretchable carbon layer6. Release support 7. Adhesive layer







Claims (15)

  1.  導電フィラーとバインダー樹脂から構成される伸縮性の導体シートにおいて、該シートの膜厚斑が10%以下であり、25℃における、20%伸張後の伸張回復率が92%以上であることを特徴とする伸縮性導体シート。 In a stretchable conductor sheet composed of a conductive filler and a binder resin, the film thickness unevenness of the sheet is 10% or less, and the stretch recovery rate after stretching 20% at 25 ° C. is 92% or more. A stretchable conductor sheet.
  2.  25℃における20%伸張後に、伸張荷重を除去した状態にて60℃加熱とした場合の伸張回復率が96%以上である特許請求の範囲1に記載の伸縮性導体シート。 The stretchable conductor sheet according to claim 1, wherein after 20% stretching at 25 ° C, the stretch recovery rate is 96% or more when heated at 60 ° C with the stretching load removed.
  3.  伸縮性導体シートの、シート面方向の初期導電率が1×102S/cm以上であり、
    機械的負荷による導電率低下比が、初期導電率の1/1000以上の範囲である場合の、
    60℃加熱による導電性回復率が10%以上である事を特徴とする請求項1または2に記載の伸縮性導体シート。
    The initial conductivity of the stretchable conductor sheet in the sheet surface direction is 1 × 10 2 S / cm or more,
    When the electrical conductivity reduction ratio due to mechanical load is in the range of 1/1000 or more of the initial electrical conductivity,
    The stretchable conductor sheet according to claim 1 or 2, wherein a conductivity recovery rate by heating at 60 ° C is 10% or more.
  4.  20%伸張後の伸張回復率が99%以上であり、ガラス転移温度が0℃以下のバインダー樹脂65~85質量%と、金属粒子を90質量%以上からなる導電フィラー15~35質量%から構成される請求項1から3のいずれかに記載の伸縮性導体シート。 Consists of 65 to 85% by mass of binder resin with a glass transition temperature of 0 ° C. or lower and a conductive filler of 15 to 35% by mass comprising 90% by mass or more of metal particles with an extension recovery rate after 20% elongation of 99% or more The stretchable conductor sheet according to any one of claims 1 to 3.
  5.  前記バインダー樹脂の数平均分子量をMn、重量平均分子量をMwとした場合に、
    Mw/Mn>4以上であることを特徴とする請求項1から4のいずれかに記載の伸縮性導体シート。
    When the number average molecular weight of the binder resin is Mn and the weight average molecular weight is Mw,
    The elastic conductor sheet according to any one of claims 1 to 4, wherein Mw / Mn> 4 or more.
  6.  50%伸張時の伸張回復率が99%以上であり、60℃以上の耐熱性を有する絶縁性布帛層と、請求項1から5のいずれかに記載の伸縮性導体シートの層を有する伸縮性導体/布帛積層体。 6. An elastic fabric having an insulating fabric layer having an elongation recovery rate of 99% or more at 50% elongation and a heat resistance of 60 ° C. or more, and the stretchable conductor sheet layer according to claim 1. Conductor / fabric laminate.
  7.  伸縮性導体シートの伸張荷重を除去した状態にて60℃以上に加熱することによる、請求項1から請求項5のいずれかに記載の伸縮性導体シート、または、請求項6に記載の伸縮性導体/布帛積層体の導電性回復方法。 The stretchable conductor sheet according to any one of claims 1 to 5 or the stretchability according to claim 6, wherein the stretchable conductor sheet is heated to 60 ° C or higher in a state where an extension load of the stretchable conductor sheet is removed. Method for recovering conductivity of conductor / fabric laminate.
  8. 少なくとも、
     引張降伏伸度が70%以上であり、熱変形温度が60℃以上である伸縮性絶縁高分子層と、
     導電フィラーとバインダー樹脂から構成される伸縮性導体層、
    から構成される伸縮性配線。
    at least,
    A stretchable insulating polymer layer having a tensile yield elongation of 70% or more and a thermal deformation temperature of 60 ° C or more;
    Stretchable conductor layer composed of conductive filler and binder resin,
    Elastic wiring composed of
  9.  前記伸縮性導体層が、25℃における20%伸張後の伸張回復率が92%以上であることを特徴とする請求項8に記載の伸縮性配線。 The stretchable wiring according to claim 8, wherein the stretchable conductor layer has a stretch recovery rate of 92% or more after 20% stretch at 25 ° C.
  10.  伸縮性導体層の、面方向の初期導電率が1×102S/cm以上であり、
    機械的負荷による導電率低下比が、初期導電率の1/1000以上の範囲である場合の、
    60℃加熱による導電性回復率が10%以上である事を特徴とする請求項8または9に記載の伸縮性配線。
    The initial conductivity in the surface direction of the stretchable conductor layer is 1 × 10 2 S / cm or more,
    When the electrical conductivity reduction ratio due to mechanical load is in the range of 1/1000 or more of the initial electrical conductivity,
    The stretchable wiring according to claim 8 or 9, wherein a conductivity recovery rate by heating at 60 ° C is 10% or more.
  11.  前記伸縮性導体層が、20%伸張後の伸張回復率が99%以上であり、ガラス転移温度が0℃以下のバインダー樹脂65~85質量%と、金属粒子を90質量%以上からなる導電フィラー15~35質量%から構成される請求項8から10のいずれかに記載の伸縮性配線。 The stretchable conductor layer has a stretch recovery rate after stretching 20% of 99% or more, a conductive resin comprising 65 to 85% by weight of a binder resin having a glass transition temperature of 0 ° C. or less and 90% by weight or more of metal particles. The stretchable wiring according to any one of claims 8 to 10, comprising 15 to 35% by mass.
  12.  前記バインダー樹脂の数平均分子量をMn、重量平均分子量をMwとした場合に、
    Mw/Mn>4以上であることを特徴とする請求項8から11のいずれかに記載の伸縮性配線。
    When the number average molecular weight of the binder resin is Mn and the weight average molecular weight is Mw,
    The stretchable wiring according to any one of claims 8 to 11, wherein Mw / Mn> 4 or more.
  13.  50%伸張時の伸張回復率が99%以上であり、60℃以上の耐熱性を有する絶縁性布帛上に、請求項8から12のいずれかに記載の伸縮性配線を有する事を特徴とする伸縮性配線付き布帛。 It has the stretchable rate according to any one of claims 8 to 12 on an insulating fabric having a stretch recovery rate of 99% or more when stretched by 50% and having heat resistance of 60 ° C or more. Fabric with elastic wiring.
  14.  伸縮性配線の伸張荷重を除去した状態にて60℃以上に加熱することによる、請求項8から請求項12のいずれかに記載の伸縮性配線の導電性回復方法。 The method for recovering the conductivity of the stretchable wiring according to any one of claims 8 to 12, wherein the stretched wiring is heated to 60 ° C or higher in a state where an extension load of the stretchable wiring is removed.
  15.  伸縮性配線付き布帛の伸張荷重を除去した状態にて60℃以上に加熱することによる請求項14に記載の伸縮性配線付き布帛の導電性回復方法。
     
     
     
     
    The method for recovering electrical conductivity of a fabric with stretchable wiring according to claim 14, wherein the fabric with stretchable wiring is heated to 60 ° C. or higher in a state in which an extension load of the fabric with stretchable wiring is removed.



PCT/JP2017/037321 2016-10-18 2017-10-16 Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity WO2018074402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546314A JP7063271B2 (en) 2016-10-18 2017-10-16 Elastic conductor sheet, elastic wiring, fabric with elastic wiring, and method of restoring conductivity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-204204 2016-10-18
JP2016204204 2016-10-18
JP2016-217097 2016-11-07
JP2016217097 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018074402A1 true WO2018074402A1 (en) 2018-04-26

Family

ID=62018660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037321 WO2018074402A1 (en) 2016-10-18 2017-10-16 Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity

Country Status (3)

Country Link
JP (1) JP7063271B2 (en)
TW (1) TW201825013A (en)
WO (1) WO2018074402A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220045041A (en) * 2019-09-21 2022-04-12 엘지전자 주식회사 Video coding method and apparatus based on transformation
JP2022083344A (en) * 2020-11-24 2022-06-03 東和株式会社 Electrode pad for wearable device
CH718480A1 (en) * 2021-03-29 2022-09-30 Vorn Layered garment as part of a personal surveillance system.
WO2023188455A1 (en) * 2022-03-31 2023-10-05 Tdk株式会社 Stretchable wiring material, and stretchable device
JP7452722B2 (en) 2019-05-17 2024-03-19 コニカミノルタ株式会社 Inspection device and image generation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654498A (en) * 2018-11-06 2021-04-13 积水保力马科技株式会社 Telescopic wiring component
JP7256729B2 (en) * 2018-12-26 2023-04-12 信越化学工業株式会社 Method for forming stretchable wiring film
TWI805064B (en) * 2021-11-08 2023-06-11 財團法人工業技術研究院 Flexible hybrid electronic substrate and electronic textile including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153364A (en) * 2008-11-18 2010-07-08 Tokai Rubber Ind Ltd Conductive film and transducer equipped therewith, and flexible wiring board
JP2012054192A (en) * 2010-09-03 2012-03-15 Bayer Material Science Ag Conductive member with elastic wiring
WO2016114298A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Stretchable electrode and wiring sheet, and biological information measurement interface
WO2016114278A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Electroconductive film
WO2016114279A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Electroconductive silver paste
JP2016141713A (en) * 2015-01-30 2016-08-08 タツタ電線株式会社 Conductive composition and conductive sheet comprising the same
JP2017073364A (en) * 2015-10-09 2017-04-13 プラスコート株式会社 Conductive paste and conductive film
WO2017122639A1 (en) * 2016-01-13 2017-07-20 東洋紡株式会社 Elastic conductor composition, paste for forming elastic conductor, clothing having wires made from elastic conductor composition, and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303367B2 (en) 2013-09-30 2018-04-04 東洋紡株式会社 Conductive paste, conductive film and touch panel
JP6406359B2 (en) 2015-01-14 2018-10-17 東洋紡株式会社 Conductive fabric

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153364A (en) * 2008-11-18 2010-07-08 Tokai Rubber Ind Ltd Conductive film and transducer equipped therewith, and flexible wiring board
JP2012054192A (en) * 2010-09-03 2012-03-15 Bayer Material Science Ag Conductive member with elastic wiring
WO2016114298A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Stretchable electrode and wiring sheet, and biological information measurement interface
WO2016114278A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Electroconductive film
WO2016114279A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Electroconductive silver paste
JP2016141713A (en) * 2015-01-30 2016-08-08 タツタ電線株式会社 Conductive composition and conductive sheet comprising the same
JP2017073364A (en) * 2015-10-09 2017-04-13 プラスコート株式会社 Conductive paste and conductive film
WO2017122639A1 (en) * 2016-01-13 2017-07-20 東洋紡株式会社 Elastic conductor composition, paste for forming elastic conductor, clothing having wires made from elastic conductor composition, and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452722B2 (en) 2019-05-17 2024-03-19 コニカミノルタ株式会社 Inspection device and image generation method
KR20220045041A (en) * 2019-09-21 2022-04-12 엘지전자 주식회사 Video coding method and apparatus based on transformation
KR102467334B1 (en) 2019-09-21 2022-11-16 엘지전자 주식회사 Image coding method and device based on transformation
US11805257B2 (en) 2019-09-21 2023-10-31 Lg Electronics Inc. Image coding method based on transform, and device therefor
JP2022083344A (en) * 2020-11-24 2022-06-03 東和株式会社 Electrode pad for wearable device
CH718480A1 (en) * 2021-03-29 2022-09-30 Vorn Layered garment as part of a personal surveillance system.
WO2023188455A1 (en) * 2022-03-31 2023-10-05 Tdk株式会社 Stretchable wiring material, and stretchable device

Also Published As

Publication number Publication date
JP7063271B2 (en) 2022-05-09
TW201825013A (en) 2018-07-16
JPWO2018074402A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018074402A1 (en) Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity
US11357104B2 (en) Garment-type electronic device and method for producing same
CN108701505B (en) Stretchable conductor sheet, stretchable conductor sheet having adhesive property, and method for forming wiring composed of stretchable conductor on fabric
JP6766869B2 (en) Wearable smart device
KR102562579B1 (en) Stretchable conductor composition, paste for forming a flexible conductor, clothes having wires made of the flexible conductor composition and manufacturing method thereof
JP6551422B2 (en) Elastic electrode and wiring sheet, interface for measuring biological information
JP6973372B2 (en) Elastic conductor sheet and paste for forming elastic conductor sheet
JP2017168438A (en) Paste for forming elastic conductor, elastic conductive sheet, and probe for measuring organism information
JP6926500B2 (en) Clothes-type electronic equipment
JP2017144239A (en) Wearable electronic device
JP6996214B2 (en) Wearable biometric information measuring device and biometric information measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018546314

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17862784

Country of ref document: EP

Kind code of ref document: A1