WO2016114278A1 - Electroconductive film - Google Patents

Electroconductive film Download PDF

Info

Publication number
WO2016114278A1
WO2016114278A1 PCT/JP2016/050764 JP2016050764W WO2016114278A1 WO 2016114278 A1 WO2016114278 A1 WO 2016114278A1 JP 2016050764 W JP2016050764 W JP 2016050764W WO 2016114278 A1 WO2016114278 A1 WO 2016114278A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
conductive
original length
rubber
specific resistance
Prior art date
Application number
PCT/JP2016/050764
Other languages
French (fr)
Japanese (ja)
Inventor
今橋 聰
弘倫 米倉
近藤 孝司
万紀 木南
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016502559A priority Critical patent/JP6690528B2/en
Publication of WO2016114278A1 publication Critical patent/WO2016114278A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/32Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • C08L23/34Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur by chlorosulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D109/00Coating compositions based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09D109/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D111/00Coating compositions based on homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/32Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • C09D123/34Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur by chlorosulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide an exceptionally electroconductive paste that can yield a high-electroconductivity electroconductive film that is capable of being applied, printed, and stretched. [Solution] An electroconductive film containing an electroconductive metal powder (A) and a resin (B), wherein the electroconductive film is characterized in that the specific resistance is less than 1.0×10-3Ωcm, the film can be extended by at least 36% over the original length in at least one direction, and, in a self-supporting state in which a gripping part is not provided for gripping the base material and the electroconductive film, the rate of increase in the specific resistance of the film when extended to 100% of the original length is less than 10.

Description

導電性膜Conductive film
 本願第1の発明は、導電性が高く、伸長、捻りおよび圧縮の外力が作用しても、高い導電率を維持できるために、伸縮性の電極や配線に好適な導電性膜に関する。
 本願第2の発明は、高導電率であり、繰返し伸縮後の導電率の変化が小さく、かつ基板との密着性に優れた、電極や配線に好適な導電性膜に関する。
The first invention of the present application relates to a conductive film suitable for stretchable electrodes and wirings because it has high conductivity and can maintain high conductivity even when external forces such as stretching, twisting and compression act.
The second invention of the present application relates to a conductive film suitable for electrodes and wiring, which has high conductivity, has a small change in conductivity after repeated expansion and contraction, and has excellent adhesion to a substrate.
 高性能エレクトロニクスのほとんどは、基本的に剛直で平面の形態で、シリコンやガリウム砒素などの単結晶無機材料を使用している。一方、フレキシブルな基板を用いた場合、配線の耐屈曲性が要求される。さらに、アクチュエーターやトランスデューサーの電極や、皮膚センサーなどの用途では、エラストマーなどからなる基材や誘電膜などの変形に、電極や配線が追随可能であることが要求される。すなわち、例えば、アクチュエーターでは、印加電圧の大小により誘電膜が伸縮する。このため、誘電膜の表裏に配置される電極は、誘電膜の動きを妨げないように、誘電膜の伸縮に応じて伸縮可能であることが必要である。また、伸縮可能であることに加えて、伸縮された時に電気抵抗の変化が小さいことが求められる。 Most high-performance electronics are basically rigid and flat, and use single crystal inorganic materials such as silicon and gallium arsenide. On the other hand, when a flexible substrate is used, the wiring must be bent. Furthermore, in applications such as actuator and transducer electrodes and skin sensors, it is required that the electrodes and wiring can follow the deformation of a base material made of an elastomer or the like or a dielectric film. That is, for example, in an actuator, the dielectric film expands and contracts depending on the magnitude of the applied voltage. For this reason, the electrodes arranged on the front and back of the dielectric film must be able to expand and contract according to the expansion and contraction of the dielectric film so as not to hinder the movement of the dielectric film. In addition to being extendable and contractible, it is required that the change in electrical resistance be small when it is expanded and contracted.
 また、ロボットやウェアラブル電子機器には、動力供給用や信号伝送用の電線が多数使用されているが、一般に電線自体に伸縮性がほとんどないので、ロボットや人間の動きを妨げないように余裕を持たせて電線を配置する必要があり、実用上障害となっている。したがって、伸縮可能な電線に対する要求が高まっている。
 ヘルスケアの分野においても、高い伸縮性を示す導電材料が望まれる。例えば、伸縮性の導電材料の膜を用いることによって、柔軟で曲線状である人体に密着して適合できるデバイスを開発することが可能となる。これらのデバイスの用途は、電気生理学的信号の測定から、先進治療のデリバリや、人と機械のインターフェースにまで及ぶ。
In addition, robots and wearable electronic devices use many wires for power supply and signal transmission, but generally the wires themselves have almost no elasticity, so there is room to prevent the movement of robots and humans. It is necessary to dispose the electric wire and it is a practical impediment. Therefore, the request | requirement with respect to the electric wire which can be expanded-contracted is increasing.
Also in the field of health care, a conductive material exhibiting high stretchability is desired. For example, by using a film of a stretchable conductive material, it is possible to develop a device that can be fitted in close contact with a flexible and curved human body. Applications of these devices range from measuring electrophysiological signals to delivering advanced therapies and human-machine interfaces.
 伸縮性の導電材料の開発における解決方法の一つは、有機導電材料の使用であるが、これまでの材料はフレキシブルであるが、伸縮可能とは言えず、曲線状の表面を覆うことができない。そのために、性能や、複雑な集積回路への集積化に対する信頼性に欠ける。他の材料、例えば金属ナノワイヤやカーボンナノチューブなどの膜はある程度有望であるが、信頼性に欠け、かつ高価であるために開発は難しい。 One solution in the development of stretchable conductive materials is the use of organic conductive materials, but conventional materials are flexible but cannot be stretched and cannot cover curved surfaces. . Therefore, it lacks performance and reliability for integration into a complicated integrated circuit. Other materials, such as films of metal nanowires and carbon nanotubes, are promising to some extent, but are difficult to develop because they are unreliable and expensive.
 伸縮可能な導電性膜に必要な伸長率は使われる用途によって異なる。想定されるヘルスケア、ディスプレイ、太陽電池、PFIDなどの分野での配線、アンテナ、電極などの用途では、比抵抗が1×10-3Ωcm未満であり、かつ100%程度の伸長が可能であること望まれている。一般に、塗布や印刷が可能な、樹脂中に導電性金属粉が均一に分散された導電性ペーストを塗布または印刷により成膜した導電性膜では、伸長作用を受けると、比抵抗が大きく増加してしまう。伸長時での比抵抗は、1×10-2Ωcm未満であることが望まれる。 The elongation required for the stretchable conductive film varies depending on the application used. In applications such as wiring, antennas, and electrodes in the fields of assumed healthcare, displays, solar cells, PFID, etc., the specific resistance is less than 1 × 10 −3 Ωcm and can be extended by about 100%. It is hoped that. In general, in a conductive film that can be applied or printed and formed by applying or printing a conductive paste in which conductive metal powder is uniformly dispersed in a resin, the specific resistance increases greatly when subjected to elongation. End up. The specific resistance at the time of elongation is desirably less than 1 × 10 −2 Ωcm.
 また、実際の用途を想定すると、伸縮作用のみならず、捻りや圧縮などの外力が作用した時においても、比抵抗の変化が小さいことが望まれる。例えば、人体に直接、または着用する衣服に密着した配線や、ロボットの屈曲部分の配線やセンサーを想定すると、あらゆる動きにたいして、部位により、色々な方向にかつ、色々な形の外力を受け、部位によっては、繰り返し変形し、それに伴い配線自体も繰返し伸縮作用を受ける。このような状況においても、比抵抗が小さいことが望まれる。また、基材上の配線や電極は、繰返し伸縮作用を受けている間に、基材と導電性膜との密着性が小さくなり、断線などを起こす可能性がある。 Also, assuming an actual application, it is desired that the change in specific resistance is small not only when expanding and contracting but also when an external force such as twisting or compression is applied. For example, assuming wiring that is directly on the human body or in close contact with the clothes to be worn, wiring of the bent part of the robot, and sensors, it receives external forces in various directions and in various directions depending on the part for any movement. Depending on the case, the wire is repeatedly deformed, and accordingly, the wiring itself is repeatedly stretched and contracted. Even in such a situation, it is desired that the specific resistance is small. Further, while the wiring and electrodes on the base material are repeatedly subjected to the expansion and contraction action, the adhesion between the base material and the conductive film is reduced, and there is a possibility of causing disconnection or the like.
 伸縮可能なフレキシブル配線を開発するアプローチとして、主として2つの方法が報告されている。 Two main methods have been reported as an approach to develop flexible flexible wiring.
 1つは、波状構造を構築して、脆い材料でも伸縮性を持たせる方法である(非特許文献1参照)。この方法では、蒸着やメッキ、フォトレジスト処理などを行ってシリコーンゴム上に金属薄膜を作製する。金属薄膜は数%の伸縮しか示さないが、形状をジグザグ状または連続馬蹄状、波状の金属薄膜、または予め伸長したシリコーンゴム上に金属薄膜を形成することにより得られる皺状の金属薄膜などが伸縮性を示す。しかし、いずれも数10%伸長させると導電率が2桁以上低下する。また、シリコーンゴムは表面エネルギーが低いために、配線と基板との密着性が弱いので、伸長時に剥離し易いという欠点がある。従って、この方法では、安定した高い導電率と高い伸長性を両立するのが困難である。しかも、製造コストが高いという問題もある。 One is a method of constructing a wave-like structure to give stretchability even to a brittle material (see Non-Patent Document 1). In this method, a metal thin film is formed on silicone rubber by vapor deposition, plating, photoresist treatment, or the like. Although the metal thin film shows only a few percent of expansion / contraction, there are zigzag or continuous horseshoe-like shapes, corrugated metal thin films, or saddle-shaped metal thin films obtained by forming metal thin films on pre-stretched silicone rubber, etc. Shows elasticity. However, in any case, when the elongation is several tens of percent, the conductivity decreases by two orders of magnitude or more. In addition, since silicone rubber has a low surface energy, it has a drawback that it is easily peeled when stretched because the adhesion between the wiring and the substrate is weak. Therefore, with this method, it is difficult to achieve both stable high conductivity and high extensibility. Moreover, there is a problem that the manufacturing cost is high.
 もう一つは、導電材料とエラストマーの複合材料である。この材料の有利な点は、優れた印刷性と伸縮性である。電極や配線に使われている市販の銀ペーストは、高弾性率のバインダー樹脂に銀粉末が高充填配合されており、柔軟性に乏しく高弾性率である。伸長すると、クラックが発生し、著しく導電率が低下してしまう。そこで柔軟性を付与するために、バインダーとしてのゴムやエラストマーの検討、導電材料の充填度を下げるために、導電材料としてのアスペクト比が大きくて導電率の高い銀フレーク、カーボンナノチューブ、金属ナノワイヤなどが検討されている。銀粒子とシリコ-ンゴムの組合せ(特許文献1参照)では、シリコーンゴム基板上の導電性膜をさらにシリコーンゴムで被覆する包持部を設けることにより、伸長時のマイクロクラック発生や導電率低下を抑制している。実施例において、包持部を設けない場合には、80~100%伸長時にマイクロクラックが発生すると記している。銀粒子とポリウレタンエマルジョンの組合せ(特許文献2参照)では、基材上に導電性膜を設けた場合に、高導電率でかつ高伸長率が報告されているが、100%伸長時の比抵抗が大きくなり、自然状態の比抵抗に対して30倍を越える増加比を示す。さらに、水系であるために、銀粒子の分散方法が限定され、十分に銀粒子の分散した導電性膜が得られにくい。一般的には、伸縮性の基材上に設けた導電性膜は、伸長時に基材自身がある程度引張応力を緩和するために、導電性膜のマイクロクラック発生が抑制され、さらに導電性膜を包持する伸縮性のカバーコートなどの包持部を設けると、より大きな伸長度においても導電性膜の損傷が抑制できる。また、カーボンナノチューブとイオン液体とフッ化ビニリデンの組合せ(特許文献3、4参照)が報告されているが、導電率が低すぎて、用途が限定される。このように、高導電率と高伸縮性の両立は難しいのが現状である。一方、ミクロンサイズの銀粉と、自己組織化した銀ナノ粒子で表面修飾したカーボンナノチューブおよびポリフッ化ビニリデンの組合せにより、印刷可能で高導電性でかつ伸縮可能な複合材料が報告されている(非特許文献2参照)。しかし、伸長率35%で破断し、しかもアスペクト比の大きいカーボンナノチューブを配合するために、塗布などにより成膜する時に、塗布方向と、それと直角方向で、導電性および機械的性質の異方性を生じる可能性があり実用上好ましくない。さらに、カーボンナノチューブの銀ナノ粒子による表面修飾は、製造が煩雑で、コストアップの要因となり好ましくない。また、実用上、導電性膜の異方性、捻り作用や圧縮作用を加えた場合の導電率の変化も重要であるが、ほとんど報告はない。 The other is a composite material of conductive material and elastomer. The advantage of this material is excellent printability and stretchability. Commercially available silver pastes used for electrodes and wiring have a high elastic modulus binder resin with a high elastic modulus because of high filling and silver powder blended in a high elastic modulus binder resin. When it elongates, cracks are generated and the electrical conductivity is significantly reduced. Therefore, in order to give flexibility, study of rubber and elastomer as binders, silver flakes with high aspect ratio and high conductivity as conductive materials, carbon nanotubes, metal nanowires, etc. to reduce the filling degree of conductive materials Is being considered. In the combination of silver particles and silicone rubber (see Patent Document 1), the formation of microcracks during expansion and lowering of conductivity can be achieved by providing a holding part that further covers the conductive film on the silicone rubber substrate with silicone rubber. Suppressed. In the examples, it is described that when no holding portion is provided, a microcrack is generated at 80 to 100% elongation. In the combination of silver particles and polyurethane emulsion (see Patent Document 2), when a conductive film is provided on a substrate, a high conductivity and a high elongation rate have been reported, but the specific resistance at 100% elongation is reported. Becomes larger and shows an increase ratio exceeding 30 times the specific resistance in the natural state. Furthermore, since it is aqueous, the dispersion method of silver particles is limited, and it is difficult to obtain a conductive film in which silver particles are sufficiently dispersed. In general, a conductive film provided on a stretchable base material relieves tensile stress to some extent when stretched, so that the generation of microcracks in the conductive film is suppressed. If a holding part such as a stretchable cover coat is provided, damage to the conductive film can be suppressed even at a higher degree of elongation. Moreover, although the combination (refer patent document 3, 4) of a carbon nanotube, an ionic liquid, and vinylidene fluoride is reported, an electrical conductivity is too low and a use is limited. Thus, at present, it is difficult to achieve both high conductivity and high stretchability. On the other hand, a printable, highly conductive and stretchable composite material has been reported using a combination of micron-sized silver powder, carbon nanotubes surface-modified with self-assembled silver nanoparticles, and polyvinylidene fluoride (non-patented) Reference 2). However, in order to blend carbon nanotubes that break at an elongation rate of 35% and have a large aspect ratio, anisotropy of electrical conductivity and mechanical properties in the direction of application and in the direction perpendicular thereto when forming a film by coating or the like. May occur, which is not preferable for practical use. Furthermore, surface modification of carbon nanotubes with silver nanoparticles is not preferable because it is complicated to manufacture and causes cost increase. In practice, the change in conductivity when anisotropy, twisting action and compression action of the conductive film are added is also important, but there is almost no report.
特開2007-173226号公報JP 2007-173226 A 特開2012-54192号公報JP 2012-54192 A 国際公開WO2009/102077号International Publication WO2009 / 102077 特開2011-216562号公報JP 2011-216562 A
 本発明は、かかる従来技術の課題を背景になされたものであり、本願第1の発明の目的は、高導電率で、基材および導電性膜を包持する包持部を設けない自立膜の状態でも、伸縮、捻り、圧縮可能でしかも均質で異方性のない導電性膜を提供することにある。
 本願第2の発明の目的は、高導電率で、伸縮可能でしかも繰返し伸縮後においても導電率の低下の小さく、基板との密着性の優れる導電性膜を提供することにある。
The present invention has been made against the background of the problems of the prior art, and an object of the first invention of the present application is a self-supporting film that has a high conductivity and does not have a holding part for holding a base material and a conductive film. Even in such a state, an object is to provide a conductive film which can be expanded, contracted, twisted and compressed and which is homogeneous and has no anisotropy.
An object of the second invention of the present application is to provide a conductive film that has high conductivity, can be expanded and contracted, has a small decrease in conductivity even after repeated expansion and contraction, and has excellent adhesion to a substrate.
 本発明者は、かかる目的を達成するために鋭意検討した結果、以下の手段により上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本願第1の発明は以下の(1)~(7)の構成からなる。
(1)導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が 1.0×10-3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、基材および導電性膜を包持する包持部を設けない自立膜の状態で、元の長さの100%伸長した時の比抵抗増加比が10未満であることを特徴とする導電性膜。
(2)直交する2つの方向においていずれも元の長さの36%以上伸張可能であり、直交する2つの方向で元の長さの100%伸長した時、同じ伸長率における両者の比抵抗の差が10%未満であることを特徴とする(1)に記載の導電性膜。
(3)導電性膜の捻り試験において、導電性膜平面に対して、捻り角3600°まで膜破断を起こさず導電性膜を捻ることが可能であり、捻り角が0°から3600°の場合に比抵抗が1.0×10-2Ωcm未満であることを特徴とする(1)~(2)のいずれかに記載の導電性膜。
(4)導電性膜の厚み方向に10%圧縮した時に、比抵抗が1.0×10-3Ωcm未満であることを特徴とする(1)~(3)のいずれかに記載の導電性膜。
(5)導電性金属粉(A)が少なくとも銀、金、白金、パラジウム、銅、ニッケル、及びアルミニウムからなる群より選ばれる少なくとも1種以上であることを特徴とする(1)~(4)のいずれかに記載の導電性膜。
(6)樹脂(B)が、少なくともニトリル基を含有するゴム、アクリルゴム、ブチルゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムからなる群より選ばれる少なくとも1種以上であることを特徴とする(1)~(5)のいずれかに記載の導電性膜。
(7)塗布または印刷により作製されることを特徴とする(1)~(6)のいずれかに記載の導電性膜。
As a result of intensive studies to achieve this object, the present inventor has found that the above-mentioned problems can be solved by the following means, and has reached the present invention.
That is, the first invention of the present application comprises the following configurations (1) to (7).
(1) A conductive film containing a conductive metal powder (A) and a resin (B), having a specific resistance of less than 1.0 × 10 −3 Ωcm and having an original length of 36 in at least one direction %, And the specific resistance increase ratio when stretched 100% of the original length is less than 10 in the state of a self-supporting film that does not have a holding part for holding the base material and the conductive film. A conductive film characterized by
(2) Each of the two orthogonal directions can be stretched by 36% or more of the original length, and when the two orthogonal directions are stretched by 100% of the original length, the specific resistance of both at the same elongation rate A difference is less than 10%, The electroconductive film as described in (1) characterized by the above-mentioned.
(3) In a conductive film twist test, the conductive film can be twisted without causing film breakage to a twist angle of 3600 ° with respect to the conductive film plane, and the twist angle is 0 ° to 3600 ° The conductive film according to any one of (1) to (2), wherein the specific resistance is less than 1.0 × 10 −2 Ωcm.
(4) The conductivity according to any one of (1) to (3), wherein the specific resistance is less than 1.0 × 10 −3 Ωcm when compressed by 10% in the thickness direction of the conductive film. film.
(5) The conductive metal powder (A) is at least one selected from the group consisting of at least silver, gold, platinum, palladium, copper, nickel, and aluminum (1) to (4) The electroconductive film in any one of.
(6) The resin (B) is at least one selected from the group consisting of rubber containing at least a nitrile group, acrylic rubber, butyl rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber (1) The conductive film according to any one of (5) to (5).
(7) The conductive film according to any one of (1) to (6), which is produced by coating or printing.
 本願第2の発明は以下の(8)~(16)の構成からなる。
(8)導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が1.0×10-3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、元の長さの20%伸長後に元の長さに戻す伸縮を1000回繰り返した後の比抵抗が1.0×10-2Ωcm未満であることを特徴とする導電性膜。
(9)元の長さの3倍に伸長した時に、比抵抗が1.0×10Ωcm未満となることを特徴とする(8)に記載の導電性膜。
(10)元の長さの10倍に伸長した時に、破断しないことを特徴とする(8)~(9)のいずれかに記載の導電性膜。
(11)導電性金属粉(A)が少なくとも銀、金、白金、パラジウム、銅、ニッケル、及びアルミニウムからなる群より選ばれる少なくとも1種以上であることを特徴とする(8)~(10)のいずれかに記載の導電性膜。
(12)樹脂(B)が、少なくともニトリル基を含有するゴム、アクリルゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種以上であることを特徴とする(8)~(11)のいずれかに記載の導電性膜。
(13)塗布または印刷により作製されることを特徴とする(8)~(12)のいずれかに記載の導電性膜。
(14)前記(8)~(13)のいずれかに記載の導電性膜と基材層からなり、元の長さの36%以上伸長した状態において、100升目による碁盤目試験法において、95/100以上が残存することを特徴とする導電性複合膜。
(15)100升目による碁盤目試験法において、100/100が残存することを特徴とする(14)に記載の導電性複合膜。
(16)元の長さの20%伸長後に、元の長さに戻す伸縮を1000回繰り返した後に、100升目による碁盤目試験法において、95/100以上が残存することを特徴とする(14)~(15)のいずれかに記載の導電性複合膜。
The second invention of the present application has the following configurations (8) to (16).
(8) A conductive film containing conductive metal powder (A) and resin (B) having a specific resistance of less than 1.0 × 10 −3 Ωcm and having an original length of 36 in at least one direction. %, And the specific resistance is less than 1.0 × 10 −2 Ωcm after 1000 times of expansion and contraction to return to the original length after 20% extension of the original length. Sex membrane.
(9) The conductive film according to (8), wherein the specific resistance is less than 1.0 × 10 3 Ωcm when stretched to three times the original length.
(10) The conductive film according to any one of (8) to (9), wherein the conductive film does not break when stretched to 10 times the original length.
(11) The conductive metal powder (A) is at least one selected from the group consisting of at least silver, gold, platinum, palladium, copper, nickel, and aluminum (8) to (10) The electroconductive film in any one of.
(12) The resin (B) is at least one selected from the group consisting of rubber containing at least a nitrile group, acrylic rubber, butyl rubber, chlorosulfonated polyethylene rubber, and chloroprene rubber (8 ) To (11).
(13) The conductive film according to any one of (8) to (12), which is produced by coating or printing.
(14) In the cross-cut test method with 100 squares, comprising the conductive film according to any one of (8) to (13) and a base material layer and extending by 36% or more of the original length, A conductive composite film characterized in that / 100 or more remains.
(15) The conductive composite film according to (14), wherein 100/100 remains in the cross-cut test method using a 100-th mesh.
(16) It is characterized in that 95/100 or more remains in the cross-cut test method using 100 squares after extending and shrinking back to the original length 1000 times after extending 20% of the original length (14 )-(15).
 本発明の導電性膜によれば、樹脂(A)中に導電性金属粉(B)が均一に分散された導電性ペーストを塗布または印刷により作製でき、導電性膜中に有効な導電性ネットワークが形成されているために、伸長作用、捻り作用、圧縮作用、繰返し伸縮作用を受けても、導電性ネットワークが破断しないので導電率の低下が小さく、また導電率や伸長性に異方性も小さい。 According to the conductive film of the present invention, a conductive paste in which the conductive metal powder (B) is uniformly dispersed in the resin (A) can be produced by coating or printing, and an effective conductive network in the conductive film. Therefore, even when subjected to stretching, twisting, compression, and repeated stretching, the conductive network does not break, so the decrease in conductivity is small, and there is anisotropy in conductivity and stretchability. small.
 以下、本発明の実施形態の導電性膜について説明する。
 本発明の導電性膜は、導電性金属粉(A)が及び樹脂(B)を含有した導電性膜であり、その導電性は、絶縁性の樹脂(B)中における、導電性金属粉(A)の導電性ネットワークの形成に依存する。一般に導電性金属粉(A)の配合量を増加させると、ある閾値以上で導電性ネットワークを形成し始める。導電性膜に外力がかかって、この導電性ネットワークが切断または破壊されると、膜の導電性が減少または喪失する。従って、導電性ネットワークの外力に対する抵抗力を付与することが重要である。以下に、本発明の導電性膜の外力に対する性能について述べる。
Hereinafter, the conductive film of the embodiment of the present invention will be described.
The conductive film of the present invention is a conductive film in which the conductive metal powder (A) and the resin (B) are contained, and the conductivity is the conductive metal powder (in the insulating resin (B) ( Depends on the formation of the conductive network of A). Generally, when the amount of the conductive metal powder (A) is increased, a conductive network starts to be formed at a certain threshold value or more. When an external force is applied to the conductive film and the conductive network is cut or broken, the conductivity of the film is reduced or lost. Therefore, it is important to provide resistance to the external force of the conductive network. Below, the performance with respect to the external force of the conductive film of the present invention will be described.
(1)伸長性
 伸縮可能な導電性膜に必要な伸長率は使われる用途によって異なる。想定されるヘルスケア、ディスプレイ、太陽電池、PFIDなどの分野での配線、アンテナ、電極などの用途では、比抵抗が1.0×10-3Ωcm未満で、かつ5%から100%程度の伸長率が望まれている。本発明の伸縮可能な導電性膜は、少なくとも一方向において元の長さの36%以上伸張可能であり、36%以上伸長しても導電率の低下が小さい。本発明の導電性膜は導電性膜を包持する保持部を設けない自立膜の状態で100%伸張時でも、後述の評価方法による比抵抗増加比は10未満であり、好ましくは8未満、より好ましくは5未満であり、好ましくは、100%伸長時でも、比抵抗は、1.0×10-2Ωcm未満である。
(1) Stretchability The stretch rate required for a stretchable conductive film varies depending on the intended use. For applications such as wiring, antennas, and electrodes in fields such as healthcare, displays, solar cells, and PFIDs, the specific resistance is less than 1.0 × 10 −3 Ωcm, and the growth is about 5% to 100%. Rate is desired. The stretchable conductive film of the present invention can be stretched by 36% or more of the original length in at least one direction, and even when stretched by 36% or more, the decrease in conductivity is small. Even when the conductive film of the present invention is 100% stretched in the state of a self-supporting film that does not have a holding part for holding the conductive film, the specific resistance increase ratio according to the evaluation method described below is less than 10, preferably less than More preferably, it is less than 5. Preferably, even at 100% elongation, the specific resistance is less than 1.0 × 10 −2 Ωcm.
(2)均質性
 本発明の導電性膜は、導電性ペーストを塗布またはスクリーン印刷などの印刷手段によって作製され、多くの用途において、異方性がないことが望まれる。方向により、導電性および機械的性質が異なると、配線や電極としては好ましくない。カーボンナノチューブやカーボンナノフォーン等の高アスペクト比の導電性フィラーや非導電性フィラーを配合すると、例えば塗布の場合、塗布方向に導電性フィラーや非導電性フィラーが配向してしまい、導電性や機械的性質が、塗布方向とそれと直角方向の間で異なることになり、好ましくない。本発明の導電性膜は、直交する2つの方向においていずれも36%以上伸張可能であり、直交する2つの方向で元の長さの36%以上伸長した時の、同じ伸張率における両者の比抵抗の差は10%以内が好ましく、5%以内がより好ましい。
(2) Homogeneity The conductive film of the present invention is produced by applying a conductive paste or printing means such as screen printing, and is desired to have no anisotropy in many applications. If the conductivity and mechanical properties differ depending on the direction, it is not preferable as a wiring or electrode. When conductive fillers and non-conductive fillers with a high aspect ratio such as carbon nanotubes and carbon nanophones are blended, for example, in the case of coating, the conductive fillers and non-conductive fillers are oriented in the coating direction. The physical properties will be different between the direction of application and the direction perpendicular thereto, which is undesirable. The conductive film of the present invention can be stretched by 36% or more in two orthogonal directions, and the ratio of both at the same stretch ratio when stretched by 36% or more of the original length in the two orthogonal directions. The difference in resistance is preferably within 10%, more preferably within 5%.
(3)捻り性
 導電性膜は伸長作用の他に、用途によっては捻り作用を外力として受ける。導電性膜を捻る試験において、例えば幅20mm、長さ50mm、厚さ100μmの導電膜の場合に、下端を固定し、上端を10回転(3600°)捻った時に捻り角3600°まで膜破断を起こさず導電性膜を捻ることが可能であり、比抵抗が1.0×10-2Ωcm未満であることが好ましい。
(3) Torsional property The conductive film receives a torsional effect as an external force in addition to the stretching effect depending on the application. In a test for twisting a conductive film, for example, in the case of a conductive film having a width of 20 mm, a length of 50 mm, and a thickness of 100 μm, the film is broken to a twist angle of 3600 ° when the lower end is fixed and the upper end is twisted 10 turns (3600 °). It is possible to twist the conductive film without causing it, and the specific resistance is preferably less than 1.0 × 10 −2 Ωcm.
(4)圧縮性
 導電性膜は伸長作用の他に、用途によっては圧縮作用を外力として受ける。厚み方向に10%圧縮時に比抵抗が1.0×10-3Ωcm未満であることが好ましい。
(4) Compressibility The conductive film receives a compression action as an external force in addition to the extension action depending on the application. The specific resistance is preferably less than 1.0 × 10 −3 Ωcm when compressed by 10% in the thickness direction.
(5)繰返し伸縮性
 導電性膜を所定の割合だけ伸長させて、次に元の長さに戻す操作を繰り返した場合の導電率の変化も重要である。所定の伸長(例えば20%伸長率)時に導電性膜内では引張応力は主として絶縁性の樹脂が歪むことにより導電性ネットワークに切断や破壊が生じない場合、その後に元の長さに戻した時でも導電性ネットワークが変化せず、導電性膜の比抵抗は最初の自然状態の比抵抗とあまり変わらない。しかし、実際には、繰返し伸縮作用を受けると、導電性ネットワーク構造が全体または部分的に壊れてしまい、伸縮回数とともに比抵抗が増加したり、場合によっては、マイクロクラックが発生したり、遂には破断に至る。本発明の導電性膜は、繰返し伸縮に対する高度な耐性を有する導電性膜であり、20%伸長を1000回繰り返した後の比抵抗は、比抵抗が1.0×10-2Ωcm未満であり、好ましくは5.0×10-3Ωcm未満である。
(5) Repetitive stretchability It is also important to change the conductivity when the operation of extending the conductive film by a predetermined ratio and then returning it to the original length is repeated. The tensile stress in the conductive film at a predetermined elongation (for example, 20% elongation) is when the insulating resin is mainly distorted and the conductive network is not cut or broken, and then returned to its original length. However, the conductive network does not change, and the specific resistance of the conductive film is not much different from the specific resistance in the first natural state. However, in reality, when subjected to repeated expansion and contraction, the conductive network structure is broken in whole or in part, and the specific resistance increases with the number of expansions and contractions, and in some cases, microcracks occur. Lead to breakage. The conductive film of the present invention is a conductive film having a high resistance to repeated expansion and contraction, and the specific resistance after repeating 20% elongation 1000 times is less than 1.0 × 10 −2 Ωcm. Preferably, it is less than 5.0 × 10 −3 Ωcm.
(6)基板への密着性
 本発明の導電性複合膜は、導電性膜と基材層からなる導電性複合膜であって、自然状態のみならず、伸長作用を受けている時も導電性膜と基材がとの密着性に優れる。密着性が悪いと、伸長時に基材上の配線や電極が断線やショートという問題を生じる可能性がある。密着性試験としては、一般に碁盤目試験、剥離試験、鉛筆引っかき法、エリクセン試験、屈曲試験などが知られているが、この中で、100升目による碁盤目試験は操作が極めて簡単で、塗膜の実際の損傷脱落機構に類似しており、評価法として好ましい。塗膜にカミソリで基材まで届く直角に交差する11本の直線をカットして碁盤目100個を描き、碁盤目上に粘着テープを強く圧着し、テープをはがした後の碁盤目のはがれ状態を観察する。本発明の導電性複合膜は、100升目による碁盤目試験において、(試験で剥離せず残存した枡目数)/(試験前の枡目数)としたときに、95/100以上が残存し、好ましくは100/100が残存する。
(6) Adhesiveness to substrate The conductive composite film of the present invention is a conductive composite film comprising a conductive film and a base material layer, and is conductive not only in a natural state but also when subjected to an elongation action. Excellent adhesion between film and substrate. If the adhesiveness is poor, there is a possibility that the wiring and electrodes on the base material will be disconnected or short-circuited during elongation. As the adhesion test, there are generally known a cross-cut test, a peel test, a pencil scratching method, an Eriksen test, a bending test, etc. Among them, the cross-cut test using the 100th check is extremely easy to operate. It is similar to the actual damage drop-off mechanism, and is preferable as an evaluation method. Cut the 11 straight lines crossing at right angles to reach the base material with a razor on the paint film, draw 100 grids, strongly press the adhesive tape on the grids, and peel off the grids after peeling the tapes Observe the condition. The conductive composite film of the present invention has 95/100 or more remaining in a cross-cut test with 100 squares when (number of squares remaining without peeling in the test) / (number of squares before test). Preferably, 100/100 remains.
 (7)高伸長時の導電率および機械的特性
 伸縮可能な導電性膜は、用途によってはまれに大きな伸長作用をうける可能性があり、その際にも、破断することなく、好ましくは導電性をある程度維持することが要求される。本発明の導電性膜は3倍伸長しても、比抵抗が1.0×10Ωcm未満であることが好ましく、また10倍伸長しても破断しないことがより好ましい。
(7) Electrical conductivity and mechanical properties at high elongation The stretchable conductive film may be subjected to a large elongation action rarely depending on the application. Is required to be maintained to some extent. The conductive film of the present invention preferably has a specific resistance of less than 1.0 × 10 3 Ωcm even when stretched 3 times, and more preferably does not break even when stretched 10 times.
以下、本発明の導電性膜の実施形態について、順に説明する。
本発明の導電性膜は、導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、好ましくは導電性金属粉(A)が樹脂(B)中に均一に分散された導電性膜であって、導電性金属粉(A)および樹脂(B)は特に限定されないが、以下に好ましい実施形態を示す。
Hereinafter, embodiments of the conductive film of the present invention will be described in order.
The conductive film of the present invention is a conductive film containing a conductive metal powder (A) and a resin (B), and preferably the conductive metal powder (A) is uniformly dispersed in the resin (B). The conductive metal powder (A) and the resin (B) are not particularly limited, but preferred embodiments are shown below.
 導電性金属粉(A)は形成される導電性膜や導電性パターンにおいて導電性を付与するために用いられる。 The conductive metal powder (A) is used for imparting conductivity in the formed conductive film or conductive pattern.
 導電性金属粉(A)としては、銀粉、金粉、白金粉、パラジウム粉等の貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉等の卑金属粉が好ましい。また、卑金属やシリカ等の無機物からなる異種粒子を銀等の貴金属でめっきしためっき粉、銀等の貴金属で合金化した卑金属粉等が挙げられる。これらの金属粉は、単独で用いてもよく、また、併用してもよい。これらの中で、銀粉および/または銅粉を主成分(50重量%以上)とするものが、高い導電性を示す塗膜を得やすい点および価格の点で特に好ましい。銀粉は導電性、加工性、信頼性などから特に好ましい。 The conductive metal powder (A) is preferably a noble metal powder such as silver powder, gold powder, platinum powder or palladium powder, or a base metal powder such as copper powder, nickel powder, aluminum powder or brass powder. Further, a plating powder obtained by plating different kinds of particles made of an inorganic material such as a base metal or silica with a noble metal such as silver, a base metal powder obtained by alloying with a noble metal such as silver, or the like can be given. These metal powders may be used alone or in combination. Among these, those containing silver powder and / or copper powder as the main component (50% by weight or more) are particularly preferable from the viewpoint of easily obtaining a coating film exhibiting high conductivity and price. Silver powder is particularly preferable from the viewpoints of conductivity, processability, reliability, and the like.
 導電性金属粉(A)の形状の例としては、公知のフレーク状(リン片状)、球状、樹枝状(デンドライト状)、凝集状(球状の1次粒子が3次元状に凝集した形状)などを挙げることができる。これらの中で、例えば銀粉の場合、不定形凝集銀粉やフレーク状銀粉が好ましく、形成される導電性膜や導電性パターンにおいて導電性を付与するために用いられる。不定形凝集銀粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集銀粉およびフレーク状銀粉は、球状銀粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成でき、導電性膜が伸長、捻り、あるいは圧縮などの外力を受けた状態でも導電性ネットワークを維持できるので好ましい。不定形凝集銀粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。 Examples of the shape of the conductive metal powder (A) include a known flake shape (flaky shape), spherical shape, dendritic shape (dendritic shape), and aggregated shape (a shape in which spherical primary particles are aggregated three-dimensionally). And so on. Among these, for example, in the case of silver powder, amorphous aggregated silver powder and flaky silver powder are preferable, and are used for imparting conductivity in the formed conductive film or conductive pattern. The amorphous agglomerated silver powder is a three-dimensionally aggregated spherical or irregularly shaped primary particle. Amorphous silver powder and flaky silver powder have a larger specific surface area than spherical silver powder, etc., so they can form a conductive workpiece even at low filling levels, and the conductive film is subjected to external forces such as stretching, twisting, or compression. However, it is preferable because the conductive network can be maintained. Since the amorphous agglomerated silver powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
 導電性金属粉(A)の粒子径は特に限定されないが、微細パターン性を付与するという観点から、平均径が0.5~10μmであるものが好ましい。平均径が10μmより大きい金属粉を用いた場合には、形成されたパターンの形状が悪く、パターン化した細線の解像力が低下する可能性がある。平均径が0.5μmより小さくなると、大量配合すると、金属粉の凝集力が増加して印刷性が悪くなる場合があり、また高価であるためにコスト的に好ましくない。 The particle diameter of the conductive metal powder (A) is not particularly limited, but from the viewpoint of imparting fine pattern properties, those having an average diameter of 0.5 to 10 μm are preferable. When metal powder having an average diameter larger than 10 μm is used, the shape of the formed pattern is poor, and the resolution of the patterned fine line may be reduced. When the average diameter is smaller than 0.5 μm, when blended in a large amount, the cohesive force of the metal powder may increase and printability may be deteriorated, and it is expensive, which is not preferable in terms of cost.
 導電性ペースト中の導電性金属粉(A)の配合量は、導電率と伸縮性を考慮して決定される。固形分中の体積%が大きいと、導電率は高くなるが、ゴムの量が少なくなって伸縮性が悪くなる。体積%が小さいと、伸縮性は良くなるが、導電性ネットワークが形成し難くなって導電率は低下する。従って、導電性ペーストの固形分中の導電性金属粉(A)の配合量は20~50体積%(70~90重量%)であり、25~40体積%(78~88重量%)が好ましい。なお、該固形分中の体積%は、ペーストに含まれる各成分の各固形分の重量を計測し、(各固形分の重量÷各固形分の比重)を計算して各成分の固形分の体積を算出することによって求めることができる。 The blending amount of the conductive metal powder (A) in the conductive paste is determined in consideration of conductivity and stretchability. When the volume% in the solid content is large, the electrical conductivity increases, but the amount of rubber decreases and the stretchability deteriorates. When the volume% is small, the stretchability is improved, but it is difficult to form a conductive network and the conductivity is lowered. Therefore, the blending amount of the conductive metal powder (A) in the solid content of the conductive paste is 20 to 50% by volume (70 to 90% by weight), and preferably 25 to 40% by volume (78 to 88% by weight). . In addition, the volume% in the solid content is obtained by measuring the weight of each solid content of each component contained in the paste and calculating (the weight of each solid content / the specific gravity of each solid content) to calculate the solid content of each component. It can be determined by calculating the volume.
 本発明における導電性膜には、導電率の向上や印刷性の改良などの目的で、導電性金属粉として金属ナノ粒子をさらに配合することができる。金属ナノ粒子は、導電性ネットワーク間での導電性付与の機能があるために導電率の向上が期待できる。また、印刷性改良のための導電性ペーストのレオロジー調節の目的にも配合することができる。金属ナノ粒子の平均粒径は2~100nmが好ましい。具体的には、銀、ビスマス、白金、金、ニッケル、スズ、銅、亜鉛が挙げられ、導電性の観点から、銅、銀、白金、金が好ましく、銀及び/又は銅を主成分(50重量%以上)とするものが特に好ましい。 In the conductive film of the present invention, metal nanoparticles can be further blended as conductive metal powder for the purpose of improving conductivity and improving printability. Since metal nanoparticles have a function of imparting conductivity between conductive networks, an improvement in conductivity can be expected. Moreover, it can mix | blend also for the purpose of the rheology adjustment of the electrically conductive paste for printability improvement. The average particle size of the metal nanoparticles is preferably 2 to 100 nm. Specific examples include silver, bismuth, platinum, gold, nickel, tin, copper, and zinc. From the viewpoint of conductivity, copper, silver, platinum, and gold are preferable, and silver and / or copper is the main component (50 (% By weight or more) is particularly preferable.
 金属ナノ粒子も一般に高価であるために、できるだけ少量であることが好ましい。導電性ペーストの固形分中の金属ナノ粒子の配合量は0.5~5体積%が好ましい。 Since metal nanoparticles are also generally expensive, it is preferable that the amount be as small as possible. The blending amount of the metal nanoparticles in the solid content of the conductive paste is preferably 0.5 to 5% by volume.
 樹脂(B)としては、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられるが、膜の伸縮性を発現させるためには、ゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、アクリルゴム、ブチルゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。 Examples of the resin (B) include thermoplastic resins, thermosetting resins, and rubbers, but rubbers are preferable in order to develop the stretchability of the film. As rubber, urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene Examples include rubber and vinylidene fluoride copolymer. Among these, nitrile group-containing rubber, acrylic rubber, butyl rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
 樹脂(B)は、導電性金属粉(A)の均一な分散を実現するために、導電性金属粉(B)との良好な親和性が求められる。ニトリル基は金属との高い親和性を有し、ニトリル基の金属粒子への強い親和性のために、導電性金属粉(B)とも親和性が増して、導電性発現に有効で、かつ外力に切断または破壊されにくい導電性ネットワークを形成できる。したがって樹脂(B)としてニトリル基を含有するゴムを含有することが好ましい。その結果、本発明の導電性膜は、高導電率であり、伸長、捻り、圧縮などの外力に強いために、外力の作用時にも高導電率を保持できる。金属粉(B)は、平均粒径0.5μm~10μmであることが好ましく、フレーク状金属粉、または凝集状金属粉から選ばれることが好ましい。それに加えて、さらに平均粒径が100nm以下の金属ナノ粒子を含むことができる。 Resin (B) is required to have good affinity with conductive metal powder (B) in order to achieve uniform dispersion of conductive metal powder (A). The nitrile group has a high affinity with the metal, and because of the strong affinity of the nitrile group to the metal particles, the affinity with the conductive metal powder (B) is increased, which is effective for the expression of conductivity, and external force It is possible to form a conductive network that is not easily cut or broken. Therefore, it is preferable to contain a rubber containing a nitrile group as the resin (B). As a result, the conductive film of the present invention has high conductivity and is resistant to external forces such as stretching, twisting, and compression, and therefore can maintain high conductivity even when an external force is applied. The metal powder (B) preferably has an average particle size of 0.5 μm to 10 μm, and is preferably selected from flaky metal powder or aggregated metal powder. In addition, metal nanoparticles having an average particle size of 100 nm or less can be further included.
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、アクリロニトリルブタジエン共重合体ゴム中の結合アクリロニトリル量は18~50重量%が好ましく、40~50重量%が特に好ましい。 The rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable. Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Accordingly, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by weight, particularly preferably 40 to 50% by weight.
 導電性ペースト中の樹脂(B)の配合量において、固形分中の体積%が小さいと、導電率は高くなるが、伸縮性が悪くなる。一方、体積%が大きいと、伸縮性は良くなるが、導電率は低下する。従って、導電性ペーストの固形分中の樹脂(A)の配合量は50~80体積%(10~30重量%)であり、60~75体積%(12~22重量%)が好ましい。 In the blending amount of the resin (B) in the conductive paste, if the volume% in the solid content is small, the conductivity is increased, but the stretchability is deteriorated. On the other hand, when the volume% is large, the stretchability is improved, but the conductivity is lowered. Therefore, the blending amount of the resin (A) in the solid content of the conductive paste is 50 to 80% by volume (10 to 30% by weight), and preferably 60 to 75% by volume (12 to 22% by weight).
 なお、本発明の導電性膜を形成する導電性ペーストには、伸縮可能な導電性膜としての性能や塗布性や印刷性を損なわない範囲で他の樹脂が配合されていても良い。 In addition, other resin may be mix | blended with the electrically conductive paste which forms the electrically conductive film of this invention in the range which does not impair the performance, applicability | paintability, and printability as an electrically conductive film | membrane which can be expanded / contracted.
 本発明の導電性膜には、導電性および伸縮性、均質性、捻り性、圧縮性を損なわない範囲で無機物を添加することができる。無機物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブテン、炭化カルシウム、ダイヤモンドカーボンラクタム等の各種炭化物;窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物;酸化チタン(チタニア)、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、シリカ、コロイダルシリカ等の各種酸化物;チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物;二硫化モリブデン等の硫化物;フッ化マグネシウム、フッ化炭素等の各種フッ化物;ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸;その他、滑石、ベントナイト、タルク、炭酸カルシウム、ベントナイト、カオリン、ガラス繊維、雲母等を用いることができる。これらの無機物を添加することによって、印刷性や耐熱性、さらには機械的特性や長期耐久性を向上させることが可能となる場合がある。 An inorganic substance can be added to the conductive film of the present invention as long as the conductivity, stretchability, homogeneity, twistability, and compressibility are not impaired. Examples of inorganic substances include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, diamond carbon lactam, and other carbides; boron nitride Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; various oxidations such as titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica and colloidal silica Products: various titanate compounds such as calcium titanate, magnesium titanate, strontium titanate; sulfides such as molybdenum disulfide; various fluorides such as magnesium fluoride and carbon fluoride; aluminum stearate, calcium stearate Um, zinc stearate, various metal soaps such as magnesium stearate and the like; may be used talc, bentonite, talc, calcium carbonate, bentonite, kaolin, glass fiber, mica or the like. By adding these inorganic substances, it may be possible to improve printability and heat resistance, as well as mechanical properties and long-term durability.
 また、チキソ性付与剤、消泡剤、難燃剤、粘着付与剤、加水分解防止剤、レベリング剤、可塑剤、酸化防止剤、紫外線吸収剤、レーザー光吸収剤、難燃剤、顔料、染料などを配合することができる。 Also, thixotropic agents, antifoaming agents, flame retardants, tackifiers, hydrolysis inhibitors, leveling agents, plasticizers, antioxidants, UV absorbers, laser absorbers, flame retardants, pigments, dyes, etc. Can be blended.
 本発明の導電性膜を形成する導電性ペーストには有機溶剤を含有することが好ましい。使用する有機溶剤は、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が150℃以上、290℃未満である。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、低温乾燥工程が求められる場合(例えば150℃以下)において、溶剤が塗膜中に多量に残存する可能性があり、塗膜の信頼性低下を引き起こす懸念がある。 The conductive paste that forms the conductive film of the present invention preferably contains an organic solvent. The organic solvent to be used preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 150 ° C. or higher and lower than 290 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, when a low-temperature drying step is required (for example, 150 ° C. or less), a large amount of the solvent may remain in the coating film, causing a decrease in the reliability of the coating film. There are concerns.
 このような高沸点溶剤としては、シクロヘキサノン、トルエン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン(沸点:260~280℃)、トリアミルベンゼン(沸点:300~320℃)、n-ドデカノール(沸点:255~29℃)、ジエチレングリコール(沸点:245℃)、エチレングリコールモノエチルエーテルアセテート(沸点:145℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)、ジエチレングリコールジブチルエーテル(沸点:255℃)、ジエチレングリコールモノアセテート(沸点:250℃)、トリエチレングリコールジアセテート(沸点:300℃)トリエチレングリコール(沸点:276℃)、トリエチレングリコールモノメチルエーテル(沸点:249℃)、トリエチレングリコールモノエチルエーテル(沸点:256℃)、トリエチレングリコールモノブチルエーテル(沸点:271℃)、テトラエチレングリコール(沸点:327℃)、テトラエチレングリコールモノブチルエーテル(沸点:304℃)、トリプロピレングリコール(沸点:267℃)、トリプロピレングリコールモノメチルエーテル(沸点:243℃)、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(沸点:253℃)などが挙げられる。また、石油系炭化水素類としては、新日本石油社製のAFソルベント4号(沸点:240~265℃)、5号(沸点:275~306℃)、6号(沸点:296~317℃)、7号(沸点:259~282℃)、および0号ソルベントH(沸点:245~265℃)なども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、導電性ペーストが印刷などに適した粘度となるように適宜含有される。 Examples of such high-boiling solvents include cyclohexanone, toluene, isophorone, γ-butyrolactone, benzyl alcohol, Exsorb Chemical's Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene ( Boiling point: 260 to 280 ° C., triamylbenzene (boiling point: 300 to 320 ° C.), n-dodecanol (boiling point: 255 to 29 ° C.), diethylene glycol (boiling point: 245 ° C.), ethylene glycol monoethyl ether acetate (boiling point: 145 ° C), diethylene glycol monoethyl ether acetate (boiling point 217 ° C), diethylene glycol monobutyl ether acetate (boiling point: 247 ° C), diethylene glycol dibutyl ether ( Point: 255 ° C.), diethylene glycol monoacetate (boiling point: 250 ° C.), triethylene glycol diacetate (boiling point: 300 ° C.), triethylene glycol (boiling point: 276 ° C.), triethylene glycol monomethyl ether (boiling point: 249 ° C.), tri Ethylene glycol monoethyl ether (boiling point: 256 ° C.), triethylene glycol monobutyl ether (boiling point: 271 ° C.), tetraethylene glycol (boiling point: 327 ° C.), tetraethylene glycol monobutyl ether (boiling point: 304 ° C.), tripropylene glycol ( Boiling point: 267 ° C.), tripropylene glycol monomethyl ether (boiling point: 243 ° C.), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (boiling point: 253 ° C.), and the like. As petroleum-based hydrocarbons, AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary. Such an organic solvent is appropriately contained so that the conductive paste has a viscosity suitable for printing or the like.
 導電性ペースト中の有機溶剤の含有量は、導電性金属粉の分散方法や、導電性膜形成方法に適合する導電性ペーストの粘度や乾燥方法などによって決められる。本発明の導電性膜を形成するための導電性ペーストは、粉体を液体に分散させる従来公知の方法を用いることによって樹脂中に導電性金属粉を均一に分散することができる。例えば、金属粉、導電材料の分散液、樹脂溶液を混合した後、超音波法、ミキサー法、3本ロールミル法、ボールミル法などで均一に分散することができる。これらの手段は、複数を組み合わせて使用することも可能である。 The content of the organic solvent in the conductive paste is determined by the method of dispersing the conductive metal powder, the viscosity of the conductive paste suitable for the method of forming the conductive film, the drying method, and the like. The conductive paste for forming the conductive film of the present invention can uniformly disperse the conductive metal powder in the resin by using a conventionally known method of dispersing the powder in a liquid. For example, after mixing a metal powder, a dispersion of a conductive material, and a resin solution, they can be uniformly dispersed by an ultrasonic method, a mixer method, a three-roll mill method, a ball mill method, or the like. These means can be used in combination.
 本発明の導電性膜を形成するための導電性ペーストを基材上に塗布または印刷して塗膜を形成し、次いで塗膜に含まれる有機溶剤を揮散させ乾燥させることにより、導電性膜または導電性パターンを形成することができる。また、塗膜をレーザーエッチング加工により導電性パターンを形成することもできる。膜厚の範囲は特に限定されないが、1μm~1mmが好ましい。1μm未満の場合はピンホール等の膜欠陥が生じやすくなり、問題になる場合がある。1mmを超える場合は膜内部に溶剤が残留しやすくなり、膜物性の再現性に劣る場合がある。 The conductive paste for forming the conductive film of the present invention is applied or printed on a substrate to form a coating film, and then the organic solvent contained in the coating film is volatilized and dried to dry the conductive film or A conductive pattern can be formed. Moreover, a conductive pattern can be formed on the coating film by laser etching. The range of the film thickness is not particularly limited, but 1 μm to 1 mm is preferable. If the thickness is less than 1 μm, film defects such as pinholes are likely to occur, which may be a problem. If it exceeds 1 mm, the solvent tends to remain inside the film, and the reproducibility of film properties may be inferior.
 導電性ペーストが塗布される基材は特に限定されないが、伸縮性の導電膜の伸縮性を生かすために、可とう性または伸縮性のある基材が好ましい。一般的には、伸縮性の基材上に設けた導電性膜は、伸長時に基材自身がある程度引張応力を緩和するために、導電性膜のマイクロクラック発生が抑制される。可とう性基材の例として、紙、布、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリイミドなどが挙げられる。伸縮性の基材としては、ポリウレタン、ポリジメチルシロキサン(PDMS)、ニトリルゴム、ブタジエンゴム、SBSエラストマー、SEBSエラストマー、スパンデックス布、ニット布などが挙げられる。これらの基材は、折り目を付けることが可能で、面方向に伸縮可能であることが好ましい。その点でゴムやエラストマーからなる基材が好ましい。 The substrate to which the conductive paste is applied is not particularly limited, but a flexible or stretchable substrate is preferable in order to make use of the stretchability of the stretchable conductive film. In general, the conductive film provided on the stretchable base material relaxes the tensile stress to some extent when the base film itself is stretched, so that the occurrence of microcracks in the conductive film is suppressed. Examples of flexible substrates include paper, cloth, polyethylene terephthalate, polyvinyl chloride, polyethylene, polyimide, and the like. Examples of the stretchable substrate include polyurethane, polydimethylsiloxane (PDMS), nitrile rubber, butadiene rubber, SBS elastomer, SEBS elastomer, spandex cloth, and knit cloth. These base materials can be creased and are preferably stretchable in the surface direction. In this respect, a base material made of rubber or elastomer is preferable.
 本発明において、特に本願第2の発明において、導電性複合膜は導電性膜と基材との密着性が良好であることが好ましい。密着性が悪いと伸長作用や繰返し伸縮作用により、導電性膜で出来た配線が基材より剥離して断線やショートする問題を引き起こす場合がある。 In the present invention, particularly in the second invention of the present application, the conductive composite film preferably has good adhesion between the conductive film and the substrate. If the adhesion is poor, the wiring made of the conductive film may be peeled off from the base material due to the stretching action or repeated stretching action, causing a problem of disconnection or short circuit.
 導電性ペーストを基材上に塗布する工程は、特に限定されないが、例えば、コーティング法、印刷法などによって行うことができる。印刷法としては、スクリーン印刷法、平版オフセット印刷法、インクジェット法、フレキソ印刷法、グラビア印刷法、グラビアオフセット印刷法、スタンピング法、ディスペンス法、スキージ印刷などが挙げられる。 The step of applying the conductive paste on the base material is not particularly limited, and can be performed by, for example, a coating method, a printing method, or the like. Examples of the printing method include screen printing method, planographic offset printing method, ink jet method, flexographic printing method, gravure printing method, gravure offset printing method, stamping method, dispensing method, squeegee printing and the like.
 導電性ペーストを塗布された基材を加熱する工程は、大気下、真空雰囲気下、不活性ガス雰囲気下、還元性ガス雰囲気下などで行うことができる。加熱温度は20~200℃の範囲で行い、要求される導電率や基材の耐熱性などを考慮して選択される。有機溶剤が揮散され、場合により加熱下で硬化反応が進行し、乾燥後の導電性膜の導電性や密着性、表面硬度が良好となる。20℃未満では溶剤が塗膜中に残留し、導電性が得られない場合がある。長時間処理すれば導電性を発現するが、比抵抗が大幅に劣る場合がある。好ましい加熱温度は70~180℃である。70℃未満では塗膜の熱収縮が小さくなり、塗膜中の銀粉の導電ネットワークが十分に形成できず、比抵抗が高くなる場合がある。塗膜の緻密性から伸長率、繰返し伸縮性も悪化する場合がある。180℃を超える場合は耐熱性から基材が限定され、長時間処理するとニトリル基を含有するゴム(B)が熱劣化し、伸長率、繰返し伸縮性が悪化する場合がある。 The step of heating the substrate coated with the conductive paste can be performed in the air, in a vacuum atmosphere, in an inert gas atmosphere, in a reducing gas atmosphere, or the like. The heating temperature is in the range of 20 to 200 ° C., and is selected in consideration of the required conductivity and the heat resistance of the substrate. The organic solvent is volatilized, the curing reaction proceeds under heating in some cases, and the conductivity, adhesion, and surface hardness of the conductive film after drying become good. If it is less than 20 degreeC, a solvent may remain in a coating film and electroconductivity may not be acquired. If treated for a long period of time, conductivity is exhibited, but the specific resistance may be significantly inferior. A preferred heating temperature is 70 to 180 ° C. If it is less than 70 degreeC, the heat shrink of a coating film becomes small, the conductive network of the silver powder in a coating film cannot fully be formed, and a specific resistance may become high. The elongation rate and repeated stretchability may also deteriorate due to the denseness of the coating film. When the temperature exceeds 180 ° C., the base material is limited due to heat resistance, and when treated for a long time, the rubber (B) containing a nitrile group may be thermally deteriorated, and the elongation rate and repeated stretchability may be deteriorated.
 基材上の導電性膜の上に伸縮性のカバーコートなどの包持部を設けても良い。包持部を設けると、より大きな伸長度においても導電性膜の損傷が抑制でき、また防水性や絶縁性などの機能を付与できる。カバーコート材料としては、導電性膜と密着性が良い伸縮性の材料であれば特に限定されない。好ましい材料として、本発明の樹脂(B)が挙げられる。 A holding part such as a stretchable cover coat may be provided on the conductive film on the substrate. When the holding portion is provided, damage to the conductive film can be suppressed even at a larger elongation, and functions such as waterproofness and insulation can be imparted. The cover coat material is not particularly limited as long as it is a stretchable material having good adhesion to the conductive film. A preferred material is the resin (B) of the present invention.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [導電ペーストの作製]
(実施例1~4、比較例1~5)
 樹脂をソルベッソに溶解させた。ただし、溶剤として、NBR(ニトリルゴム)の場合はイソホロン、PVDF(フッ化ビニリデンコポリマー)の場合は4-メチルー2-ペンタノンを用いた。各成分が表1に記載の固形分中の体積%となるように、この溶液に銀粒子、場合によりさらにカーボンナノチューブまたは気相成長炭素繊維を配合して、3本ロールミルにて混練して、導電性ペーストを得た。
(実施例5~12、比較例6~11)
 樹脂をエチレングリコールモノメチルエーテルアセテートに溶解させて、この溶液に銀粒子を均一に分散した液を、各成分が表2又は表3に記載の固形分中の体積%となるように配合し、3本ロールミルにて混練して、導電性ペーストを得た。
[Preparation of conductive paste]
(Examples 1 to 4, Comparative Examples 1 to 5)
The resin was dissolved in Solvesso. However, as the solvent, isophorone was used in the case of NBR (nitrile rubber), and 4-methyl-2-pentanone was used in the case of PVDF (vinylidene fluoride copolymer). In this solution, silver particles, and optionally carbon nanotubes or vapor-grown carbon fibers are further blended in this solution so that each component has a volume% in the solid content described in Table 1, and kneaded in a three-roll mill. A conductive paste was obtained.
(Examples 5 to 12, Comparative Examples 6 to 11)
A resin is dissolved in ethylene glycol monomethyl ether acetate, and a solution in which silver particles are uniformly dispersed in this solution is blended so that each component has a volume% in the solid content described in Table 2 or Table 3. The conductive paste was obtained by kneading with this roll mill.
[導電性膜の作製]
(実施例1~7、比較例6~7)
導電性ペーストをテフロン(登録商標)シートの上にワイヤーバーにて製膜し、150℃で30分間乾燥して、厚み100μmのシート状の導電性膜を作製した。導電性膜を用いて比抵抗、均質性、捻り性、圧縮性の試験を実施した。
導電性膜は、後述する方法で自然状態および外力が作用した時の比抵抗を評価した。実施例1~4、比較例1~5の導電性膜の組成とその評価結果を表1に示す。また、導電性膜は、後述する方法で伸長試験および繰り返し伸縮試験を実施した。実施例5~7、比較例6~7の導電性膜の組成とその評価結果を表2に示す。
[Preparation of conductive film]
(Examples 1 to 7, Comparative Examples 6 to 7)
A conductive paste was formed on a Teflon (registered trademark) sheet with a wire bar and dried at 150 ° C. for 30 minutes to prepare a sheet-like conductive film having a thickness of 100 μm. Tests for specific resistance, homogeneity, twistability, and compressibility were conducted using the conductive film.
The conductive film was evaluated for specific resistance when a natural state and an external force acted by a method described later. Table 1 shows the compositions of the conductive films of Examples 1 to 4 and Comparative Examples 1 to 5 and the evaluation results thereof. In addition, the conductive film was subjected to an extension test and a repeated extension test by a method described later. Table 2 shows the compositions of the conductive films of Examples 5 to 7 and Comparative Examples 6 to 7 and the evaluation results.
[導電性複合膜の作製]
(実施例8~12、比較例8~11)
 厚さ1mmの伸縮性のウレタンシートまたはシリコンシート上にワイヤーバーにて導電ペーストを塗布し、150℃で30分間乾燥して、100μmの導電性膜を含有する導電性複合膜を作製した。この導電性複合膜を用いて、後述する方法で伸長試験、繰返し伸縮試験、100升目による碁盤目試験、3倍伸長試験、10倍伸長試験を実施した。実施例8~12、比較例8~11の導電性複合膜の組成とその評価結果を表3に示す。
[Preparation of conductive composite film]
(Examples 8 to 12, Comparative Examples 8 to 11)
A conductive paste was applied with a wire bar onto a stretchable urethane sheet or silicon sheet having a thickness of 1 mm, and dried at 150 ° C. for 30 minutes to produce a conductive composite film containing a 100 μm conductive film. Using this conductive composite film, an extension test, a repeated extension test, a grid pattern test with 100 squares, a 3-times extension test, and a 10-times extension test were carried out by the methods described later. Table 3 shows the compositions and evaluation results of the conductive composite films of Examples 8 to 12 and Comparative Examples 8 to 11.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の1)~11)の詳細は以下の通りである。
1)凝集銀粉:G-35(平均粒径5.9μm、DOWAエレクトロニクス社製)
2)フレーク状銀粉:FA-D-3(平均粒径1.6μm、DOWAエレクトロニクス社製)
3)VGCF:気相法炭素繊維(繊維径150nm、繊維長15μm、昭和電工社製)
4)CNT-A:カーボンナノチューブ(SWeNT MW100(多層カーボンナノチューブ、直径6~9nm、長さ5μm、アスペクト比556~833、SouthWest Nano Technologies社製)
5)CNT-B:非特許文献2に記載の製造方法に準じて作製した。ベンジルメルカプタンと硝酸銀より作製した銀ナノ粒子ディスパージョン中でSWeNT MW100を超音波処理により分散させた。その後、ろ過、洗浄して銀ナノ粒子で修飾したカーボンナノチューブCNT-Bが得られる。
6)CSM:クロロスルホン化ポリエチレンゴム(CSM-TS530、東ソー社製)
7)NBR:ニトリルゴム(Nipol DN003、アクリロニトリル含量50重量%、日本ゼオン社製)
8)CR:クロロプレンゴム(DOR-40、デンカ社製)
9)UR:ウレタンゴム(コートロンKYU-1、三洋化成社製)
10)EPDM:エチレンプロピレンゴム(EP11、JSR社製)
11)PVDF/イオン液体:フッ化ビニリデンコポリマー(ダイエルG-801、ダイキン社製)/1-ブチルーメチルピリジニウム テトラフルオロボレート(50重量/50重量)
Details of 1) to 11) in Table 1 are as follows.
1) Aggregated silver powder: G-35 (average particle size 5.9 μm, manufactured by DOWA Electronics)
2) Flaky silver powder: FA-D-3 (average particle size 1.6 μm, manufactured by DOWA Electronics)
3) VGCF: vapor grown carbon fiber (fiber diameter 150 nm, fiber length 15 μm, manufactured by Showa Denko KK)
4) CNT-A: carbon nanotube (SWeNT MW100 (multi-walled carbon nanotube, diameter 6-9 nm, length 5 μm, aspect ratio 556-833, manufactured by Southwest Nano Technologies)
5) CNT-B: produced according to the production method described in Non-Patent Document 2. SWeNT MW100 was dispersed by sonication in a silver nanoparticle dispersion prepared from benzyl mercaptan and silver nitrate. Thereafter, filtration and washing are performed to obtain carbon nanotube CNT-B modified with silver nanoparticles.
6) CSM: chlorosulfonated polyethylene rubber (CSM-TS530, manufactured by Tosoh Corporation)
7) NBR: Nitrile rubber (Nipol DN003, acrylonitrile content 50% by weight, manufactured by Zeon Corporation)
8) CR: Chloroprene rubber (DOR-40, manufactured by Denka)
9) UR: Urethane rubber (Coatron KYU-1, manufactured by Sanyo Chemical Industries)
10) EPDM: ethylene propylene rubber (EP11, manufactured by JSR)
11) PVDF / ionic liquid: vinylidene fluoride copolymer (Daiel G-801, manufactured by Daikin) / 1-butyl-methylpyridinium tetrafluoroborate (50 wt / 50 wt)
 実施例1~4及び比較例1~5の導電性膜の評価方法は以下の通りである。
[比抵抗の評価]
 導電性膜を幅20mm、長さ50mmにカットして試験片を作製した。自然状態(伸長率0%)の導電性膜試験片のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はシックネスゲージ SMD-565L(TECLOCK社製)を用い、シート抵抗はLoresta-GP MCP-T610(三菱化学アナリテック社製)を用いて試験片4枚について測定し、その平均値を用いた。比抵抗は以下の式により算出した。
比抵抗(Ω・cm)=Rs(Ω/□)×t(cm)
ここで、Rsは各条件で測定されたシート抵抗、tは各条件で測定された膜厚を示す。
 そして自然状態(伸長率0%)と同様にして、万能試験機( 島津製作所製、オートグラフAG-IS)を用いて、20%、35%、50%、100%に伸長した時(伸長速度60mm/分)の比抵抗を測定した。伸長率は以下の式により算出した。
 なお、導電性膜の伸長評価は、導電性ペーストを塗布した方向を試験片の伸長方向としたものと、該塗布方向と直交する方向を試験片の伸長方向としたものとの2つの伸長方向にて実施した。
  伸長率(%)=(ΔL/L)×100
 ここで、Lは試験片の標線間距離、ΔLは試験片の標線韓距離の増加分を示す。なお、伸長時のシート抵抗は、所定の伸長度に達してから30秒後の値を読み取った。
また、100%伸長時の比抵抗増加比は以下の式により算出した。
  比抵抗増加比=(R100/R)×100(%)
ここで、R100は100%伸長後の比抵抗、Rは自然状態の比抵抗を示す。
The evaluation methods of the conductive films of Examples 1 to 4 and Comparative Examples 1 to 5 are as follows.
[Evaluation of resistivity]
The conductive film was cut into a width of 20 mm and a length of 50 mm to prepare a test piece. The sheet resistance and film thickness of the conductive film test piece in the natural state (elongation rate 0%) were measured, and the specific resistance was calculated. Thickness gauge SMD-565L (manufactured by TECLOCK) was used for the film thickness, and sheet resistance was measured for four test pieces using Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech), and the average value was used. . The specific resistance was calculated by the following formula.
Specific resistance (Ω · cm) = Rs (Ω / □) × t (cm)
Here, Rs represents the sheet resistance measured under each condition, and t represents the film thickness measured under each condition.
And when stretched to 20%, 35%, 50%, 100% using the universal testing machine (manufactured by Shimadzu Corp., Autograph AG-IS) in the same way as in the natural state (elongation rate 0%) The specific resistance of 60 mm / min) was measured. The elongation rate was calculated by the following formula.
In addition, the extension evaluation of the conductive film has two extension directions, one in which the direction in which the conductive paste is applied is the extension direction of the test piece, and one in which the direction orthogonal to the application direction is the extension direction of the test piece. It carried out in.
Elongation rate (%) = (ΔL 0 / L 0 ) × 100
Here, L 0 represents the distance between the marked lines of the test piece, and ΔL 0 represents the increment of the marked line Korean distance of the test piece. In addition, the sheet resistance at the time of extension was read as a value 30 seconds after reaching a predetermined degree of extension.
The specific resistance increase ratio at 100% elongation was calculated by the following formula.
Specific resistance increase ratio = (R 100 / R 0 ) × 100 (%)
Here, R 100 represents the specific resistance after 100% elongation, and R 0 represents the specific resistance in the natural state.
[均質性の評価]
 導電性膜を塗布方向と、塗布方向と直角の方向にそれぞれ幅20mm、長さ50mmにカットして試料片を作製した。それぞれの試験片を用いて、伸長率20%、35%、50%、100%時の比抵抗を測定した。塗布方向と塗布方向と直角の方向の試験片での比抵抗の差を比較して均質性の評価とした。
[Evaluation of homogeneity]
The conductive film was cut into a width of 20 mm and a length of 50 mm in the application direction and in a direction perpendicular to the application direction, respectively, to prepare a sample piece. Using each of the test pieces, the specific resistance at an elongation rate of 20%, 35%, 50%, and 100% was measured. The difference in specific resistance between the test pieces in the direction perpendicular to the coating direction and the coating direction was compared to evaluate the homogeneity.
[捻り性の評価]
 導電性膜を幅20mm、長さ50mmにカットして試料片とした。試料片の片端を固定し、もうひとつの片端を1回転(360°)および10回転(3600°)捻った時の比抵抗を測定した。
[Evaluation of torsion]
The conductive film was cut to a width of 20 mm and a length of 50 mm to obtain a sample piece. One end of the sample piece was fixed, and the specific resistance was measured when the other end was twisted once (360 °) and 10 times (3600 °).
[圧縮性の評価]
 導電性膜試験片(厚み100μm、直径200mm)を10枚重ねて試験片とした。圧縮操作は万能試験機(島津製作所製、オートグラフAG-IS)を用いた。試験片はフォームラバー用圧縮治具と試料受台にそれぞれ電極(銅箔)を介して取り付け、10%圧縮した時の電極間の抵抗より比抵抗を測定した。
[Evaluation of compressibility]
Ten conductive film test pieces (thickness 100 μm, diameter 200 mm) were stacked to form a test piece. For the compression operation, a universal testing machine (manufactured by Shimadzu Corporation, Autograph AG-IS) was used. The test piece was attached to the foam rubber compression jig and the sample cradle via electrodes (copper foil), respectively, and the specific resistance was measured from the resistance between the electrodes when compressed by 10%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2、表3中の21)~31)の詳細は以下の通りである。
21)凝集銀粉:G-35(平均粒径5.9μm、DOWAエレクトロニクス社製)
22)フレーク状銀粉:FA-D-3(平均粒径1.6μm、DOWAエレクトロニクス社製)
23)AR:アクリルゴム(Nipol AR51、日本ゼオン社製)
24)IIR:ブチルゴム(BUTYLO065、JSR社製)
25)NBR:ニトリルゴム(Nipol DN003、アクリロニトリル含量50重量%、日本ゼオン社製)
26)CSM:クロロスルホン化ポリエチレンゴム(CSM-TS530、東ソー社製)
27)CR:クロロプレンゴム(DOR-40、デンカ社製)
28)UR:ウレタンゴム(コートロンKYU-1、三洋化成社製)
29)EPDM:エチレンプロピレンゴム(EP11、JSR社製)
30)ウレタンゴムシート:厚み1mm、(タイガースポリマー社製)
31)シリコーンゴムシート:厚み1mm(アズワン社製)
Details of 21) to 31) in Tables 2 and 3 are as follows.
21) Aggregated silver powder: G-35 (average particle size 5.9 μm, manufactured by DOWA Electronics)
22) Flaky silver powder: FA-D-3 (average particle size 1.6 μm, manufactured by DOWA Electronics)
23) AR: Acrylic rubber (Nipol AR51, manufactured by Nippon Zeon)
24) IIR: Butyl rubber (BUTYLO065, manufactured by JSR)
25) NBR: Nitrile rubber (Nipol DN003, acrylonitrile content 50% by weight, manufactured by Zeon Corporation)
26) CSM: chlorosulfonated polyethylene rubber (CSM-TS530, manufactured by Tosoh Corporation)
27) CR: Chloroprene rubber (DOR-40, manufactured by Denka)
28) UR: Urethane rubber (Coatron KYU-1, Sanyo Chemical Co., Ltd.)
29) EPDM: ethylene propylene rubber (EP11, manufactured by JSR)
30) Urethane rubber sheet: Thickness 1 mm (manufactured by Tigers Polymer)
31) Silicone rubber sheet: Thickness 1 mm (manufactured by ASONE)
 実施例5~12及び比較例6~12の導電性膜及び導電性複合膜の評価方法は、比抵抗の評価については実施例1~4と同じ評価方法により行った。その他の評価方法については、以下の通りである。 The evaluation methods of the conductive films and the conductive composite films of Examples 5 to 12 and Comparative Examples 6 to 12 were the same as those of Examples 1 to 4 for the evaluation of specific resistance. Other evaluation methods are as follows.
 [繰り返し伸縮性の評価]
繰返し耐久試験機(レスカ社製、TIQ-100)を用い、導電性膜試験片および導電性複合膜試験片の両端を保持するチャック部に電極を設け、元の長さの20%伸長した状態、および元の長さに戻した状態でのシート抵抗を2端子法により測定した。伸長速度および元の長さに戻す速度は、ともに60mm/分とした。なお、シート抵抗測定の際には、自然状態(0%伸長度)および20%伸長度に達してから30秒後の値を読み取った。この伸縮操作を1000回繰り返した後の自然状態の比抵抗を測定した。
[Evaluation of repeated stretchability]
Using a repeated durability tester (TIQ-100, manufactured by Reska Co., Ltd.), an electrode is provided on the chuck part that holds both ends of the conductive film test piece and the conductive composite film test piece, and the state is extended 20% of the original length. And the sheet resistance in the state returned to the original length was measured by the two-terminal method. The stretching speed and the speed for returning to the original length were both 60 mm / min. In the sheet resistance measurement, the value 30 seconds after the natural state (0% elongation) and 20% elongation were reached was read. The specific resistance in the natural state after repeating this stretching operation 1000 times was measured.
 [密着性の評価]
 100升目による碁盤目試験により実施した。導電性複合膜の導電性膜にカミソリで基材シートまで届く直角に交差する11本の直線を1mm間隔でカットして碁盤目100個を描き、碁盤目上に粘着テープ(セロテープ(登録商標)、(ニチバン(株)製))を強く圧着し、テープをはがした後の碁盤目のはがれ状態を観察した。表1の結果の数値は、(試験で剥離せず残存した枡目数)/(試験前の枡目数)を表す。
[Evaluation of adhesion]
It was carried out by a cross cut test with 100 squares. Cut eleven straight lines intersecting at right angles to the base sheet with a razor on the conductive film of the conductive composite film at 1 mm intervals to draw 100 grids, and adhesive tape (Cellotape (registered trademark)) on the grids , (Manufactured by Nichiban Co., Ltd.) was strongly pressure-bonded, and the peeling state of the grid after the tape was peeled off was observed. The numerical values of the results in Table 1 represent (number of cells remaining without peeling in the test) / (number of cells before the test).
 [伸長性の評価]
 導電性複合膜試験片を3倍伸長時(伸張率200%)の導電性膜の比抵抗を測定し、10倍伸長時(伸張率900%)の導電膜の外観を観察した。
[Evaluation of extensibility]
The specific resistance of the conductive film when the conductive composite film test piece was stretched 3 times (stretching rate 200%) was measured, and the appearance of the conductive film when stretched 10 times (stretching rate 900%) was observed.
 表1の結果から明らかなように、実施例1~4の導電性膜は、自然状態の良好な導電性だけでなく36%以上の伸長時でも高い導電性を維持することができ、均質性、捻り性、圧縮性に優れている。一方、比較例1~5の導電性膜は、実施例1~4に比べて比抵抗が高いか、又は均質性が悪く、伸長作用、捻り作用、圧縮作用により比抵抗が大幅に増加する。 As is apparent from the results in Table 1, the conductive films of Examples 1 to 4 can maintain not only good conductivity in the natural state but also high conductivity even when stretched by 36% or more, and homogeneity. Excellent twisting and compressibility. On the other hand, the conductive films of Comparative Examples 1 to 5 have higher specific resistance than the Examples 1 to 4 or poor homogeneity, and the specific resistance greatly increases due to the stretching action, twisting action, and compression action.
 表2の結果から明らかなように、実施例5~7の導電性膜は、比較例6~7に比べて、伸長時でも高い導電性を維持することができ、繰り返し伸縮後も導電性の低下は小さい。
 また、表3の結果から明らかなように、実施例8~12の導電性複合膜は、伸長時でも高い導電性を維持することができ、繰り返し伸縮後も導電性の低下は小さく、密着性の低下もほとんど見られない。一方、比較例8~11の導電性膜は、実施例8~12に比べて、伸長により破断を招くか、繰り返し伸縮により密着性が大きく低下する。
As is apparent from the results in Table 2, the conductive films of Examples 5 to 7 can maintain higher conductivity even when stretched than those of Comparative Examples 6 to 7, and are conductive even after repeated stretching. The decline is small.
Further, as is apparent from the results in Table 3, the conductive composite films of Examples 8 to 12 can maintain high conductivity even when stretched, and the decrease in conductivity is small after repeated expansion and contraction. There is almost no decline in the above. On the other hand, the conductive films of Comparative Examples 8 to 11 cause breakage due to elongation or the adhesiveness greatly decreases due to repeated expansion and contraction, as compared with Examples 8 to 12.
 本発明の導電性ペーストは、高い導電率と高い伸縮性、優れた繰り返し伸縮性、基材との優れ多密着性を有するを有することから、ゴムやエラストマー材料を利用した折り曲げ可能なディスプレイ、伸縮性LEDアレイ、伸縮性太陽電池、伸縮性アンテナ、伸縮性バッテリ、アクチュエーター、ヘルスケアデバイスや医療用センサー、ウエアラブルコンピュータなどの電極や配線などに好適に利用することができる。 Since the conductive paste of the present invention has high conductivity and high stretchability, excellent repeated stretchability, and excellent multi-adhesion with a substrate, it can be folded using rubber or an elastomer material, stretchable It can be suitably used for electrodes and wirings of flexible LED arrays, stretchable solar cells, stretchable antennas, stretchable batteries, actuators, healthcare devices, medical sensors, wearable computers, and the like.

Claims (16)

  1.  導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が 1.0×10-3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、基材および導電性膜を包持する包持部を設けない自立膜の状態で、元の長さの100%伸長した時の比抵抗増加比が10未満であることを特徴とする導電性膜。 A conductive film containing conductive metal powder (A) and resin (B) having a specific resistance of less than 1.0 × 10 −3 Ωcm and extending at least 36% of the original length in at least one direction The specific resistance increase ratio is less than 10 when it is stretched 100% of the original length in the state of a self-supporting film that does not have a holding part for holding the base material and the conductive film. Conductive film.
  2.  直交する2つの方向においていずれも元の長さの36%以上伸張可能であり、直交する2つの方向で元の長さの100%伸長した時、同じ伸長率における両者の比抵抗の差が10%未満であることを特徴とする請求項1に記載の導電性膜。 Each of the two orthogonal directions can expand by 36% or more of the original length, and when the two orthogonal directions extend 100% of the original length, the difference in specific resistance between the two at the same expansion ratio is 10%. The conductive film according to claim 1, wherein the conductive film is less than%.
  3.  導電性膜の捻り試験において、導電性膜平面に対して、捻り角3600°まで膜破断を起こさず導電性膜を捻ることが可能であり、捻り角が0°から3600°の場合に比抵抗が1.0×10-2Ωcm未満であることを特徴とする請求項1~2のいずれかに記載の導電性膜。 In a torsion test of a conductive film, it is possible to twist the conductive film without breaking the film up to a twist angle of 3600 ° with respect to the plane of the conductive film. When the twist angle is 0 ° to 3600 °, the specific resistance 3. The conductive film according to claim 1, wherein is less than 1.0 × 10 −2 Ωcm.
  4.  導電性膜の厚み方向に10%圧縮した時に、比抵抗が1.0×10-3Ωcm未満であることを特徴とする請求項1~3のいずれかに記載の導電性膜。 4. The conductive film according to claim 1, wherein the specific resistance is less than 1.0 × 10 −3 Ωcm when compressed by 10% in the thickness direction of the conductive film.
  5.  導電性金属粉(A)が少なくとも銀、金、白金、パラジウム、銅、ニッケル、及びアルミニウムからなる群より選ばれる少なくとも1種以上であることを特徴とする請求項1~4のいずれかに記載の導電性膜。 5. The conductive metal powder (A) is at least one selected from the group consisting of at least silver, gold, platinum, palladium, copper, nickel, and aluminum. Conductive film.
  6.  樹脂(B)が、少なくともニトリル基を含有するゴム、アクリルゴム、ブチルゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムからなる群より選ばれる少なくとも1種以上であることを特徴とする請求項1~5のいずれかに記載の導電性膜。 The resin (B) is at least one selected from the group consisting of rubber containing at least a nitrile group, acrylic rubber, butyl rubber, chloroprene rubber, and chlorosulfonated polyethylene rubber. The electroconductive film in any one.
  7.  塗布または印刷により作製されることを特徴とする請求項1~6のいずれかに記載の導電性膜。 The conductive film according to claim 1, wherein the conductive film is produced by coating or printing.
  8.  導電性金属粉(A)及び樹脂(B)を含有した導電性膜であって、比抵抗が 1.0×10-3Ωcm未満であり、少なくとも1方向に元の長さの36%以上伸長可能であり、元の長さの20%伸長後に元の長さに戻す伸縮を1000回繰り返した後の比抵抗が1.0×10-2Ωcm未満であることを特徴とする導電性膜。 A conductive film containing conductive metal powder (A) and resin (B) having a specific resistance of less than 1.0 × 10 −3 Ωcm and extending at least 36% of the original length in at least one direction A conductive film characterized by having a specific resistance of less than 1.0 × 10 −2 Ωcm after 1000 times of expansion and contraction to return to the original length after 20% elongation of the original length.
  9.  元の長さの3倍に伸長した時に、比抵抗が1.0×10Ωcm未満となることを特徴とする請求項8に記載の導電性膜。 9. The conductive film according to claim 8, wherein the specific resistance is less than 1.0 × 10 3 Ωcm when stretched to three times the original length.
  10.  元の長さの10倍に伸長した時に、破断しないことを特徴とする請求項8~9のいずれかに記載の導電性膜。 10. The conductive film according to claim 8, wherein the conductive film does not break when stretched to 10 times the original length.
  11.  導電性金属粉(A)が少なくとも銀、金、白金、パラジウム、銅、ニッケル、及びアルミニウムからなる群より選ばれる少なくとも1種以上であることを特徴とする請求項8~10のいずれかに記載の導電性膜。 11. The conductive metal powder (A) is at least one selected from the group consisting of at least silver, gold, platinum, palladium, copper, nickel, and aluminum. Conductive film.
  12.  樹脂(B)が、少なくともニトリル基を含有するゴム、アクリルゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、及びクロロプレンゴムからなる群より選ばれる少なくとも1種以上であることを特徴とする請求項8~11のいずれかに記載の導電性膜。 The resin (B) is at least one selected from the group consisting of rubber containing at least a nitrile group, acrylic rubber, butyl rubber, chlorosulfonated polyethylene rubber, and chloroprene rubber. The electroconductive film in any one of.
  13. 塗布または印刷により作製されることを特徴とする請求項8~12のいずれかに記載の導電性膜。 The conductive film according to any one of claims 8 to 12, which is produced by coating or printing.
  14.  請求項8~13のいずれかに記載の導電性膜と基材層からなり、元の長さの36%以上伸長した状態において、100升目による碁盤目試験法において、95/100以上が残存することを特徴とする導電性複合膜。 A conductive film according to any one of claims 8 to 13 and a base material layer, and 95/100 or more remains in a cross-cut test method using 100 squares in a state where the conductive film is extended by 36% or more of the original length. A conductive composite film characterized by the above.
  15.  100升目による碁盤目試験法において、100/100が残存することを特徴とする請求項14に記載の導電性複合膜。 The conductive composite film according to claim 14, wherein 100/100 remains in the cross-cut test method using a 100-th mesh.
  16.  元の長さの20%伸長後に、元の長さに戻す伸縮を1000回繰り返した後に、100升目による碁盤目試験法において、95/100以上が残存することを特徴とする請求項14~15のいずれかに記載の導電性複合膜。 15. After the stretching of 20% of the original length, the expansion / contraction to return to the original length is repeated 1000 times, and then 95/100 or more remains in the cross cut test with 100 squares. The conductive composite film according to any one of the above.
PCT/JP2016/050764 2015-01-14 2016-01-13 Electroconductive film WO2016114278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016502559A JP6690528B2 (en) 2015-01-14 2016-01-13 Conductive film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-004915 2015-01-14
JP2015004914 2015-01-14
JP2015004915 2015-01-14
JP2015-004914 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016114278A1 true WO2016114278A1 (en) 2016-07-21

Family

ID=56405821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050764 WO2016114278A1 (en) 2015-01-14 2016-01-13 Electroconductive film

Country Status (3)

Country Link
JP (1) JP6690528B2 (en)
TW (1) TWI684999B (en)
WO (1) WO2016114278A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054590A (en) * 2016-09-21 2018-04-05 東洋紡株式会社 Elastic capacitor and deformation sensor
WO2018074402A1 (en) * 2016-10-18 2018-04-26 東洋紡株式会社 Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity
JP2018104581A (en) * 2016-12-27 2018-07-05 ナミックス株式会社 Resin composition, cured product, conductive film, conductive pattern and clothing
KR102073319B1 (en) * 2018-11-02 2020-02-03 한국화학연구원 Stretchable conductive film
US11239004B2 (en) 2018-03-30 2022-02-01 Panasonic Intellectual Property Management Co., Ltd. Conductive resin composition and conductive structure using same
CN117683279A (en) * 2024-02-02 2024-03-12 比音勒芬服饰股份有限公司 Double-arch bridge type supporting shock-absorbing anti-skid sole and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173226A (en) * 2005-11-28 2007-07-05 Osaka Univ Rubber material and manufacturing method of the same
JP2008198425A (en) * 2007-02-09 2008-08-28 Tokai Rubber Ind Ltd Flexible electrode and electronic equipment using it
JP2010153821A (en) * 2008-11-18 2010-07-08 Tokai Rubber Ind Ltd Conductive film, transducer having the same, and flexible wiring board
JP2010525526A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション Composite transparent conductor and method for forming the same
JP2012248399A (en) * 2011-05-27 2012-12-13 Tokai Rubber Ind Ltd Soft conductive material and method for producing the same
WO2013031958A1 (en) * 2011-09-02 2013-03-07 独立行政法人産業技術総合研究所 Carbon nanotube composite material and conductive material
WO2014178207A1 (en) * 2013-04-30 2014-11-06 昭和電工株式会社 Elastic composite, elastic composite paste, method for producing same and elastic electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363592B2 (en) * 2010-05-19 2013-12-11 東海ゴム工業株式会社 Conductive film, transducer using the same, and flexible wiring board
JP5607187B2 (en) * 2013-01-15 2014-10-15 東海ゴム工業株式会社 Conductive material, method for manufacturing the same, and transducer using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173226A (en) * 2005-11-28 2007-07-05 Osaka Univ Rubber material and manufacturing method of the same
JP2008198425A (en) * 2007-02-09 2008-08-28 Tokai Rubber Ind Ltd Flexible electrode and electronic equipment using it
JP2010525526A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション Composite transparent conductor and method for forming the same
JP2010153821A (en) * 2008-11-18 2010-07-08 Tokai Rubber Ind Ltd Conductive film, transducer having the same, and flexible wiring board
JP2012248399A (en) * 2011-05-27 2012-12-13 Tokai Rubber Ind Ltd Soft conductive material and method for producing the same
WO2013031958A1 (en) * 2011-09-02 2013-03-07 独立行政法人産業技術総合研究所 Carbon nanotube composite material and conductive material
WO2014178207A1 (en) * 2013-04-30 2014-11-06 昭和電工株式会社 Elastic composite, elastic composite paste, method for producing same and elastic electrode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054590A (en) * 2016-09-21 2018-04-05 東洋紡株式会社 Elastic capacitor and deformation sensor
WO2018074402A1 (en) * 2016-10-18 2018-04-26 東洋紡株式会社 Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity
JPWO2018074402A1 (en) * 2016-10-18 2019-12-12 東洋紡株式会社 Stretchable conductor sheet, stretchable wiring, fabric with stretchable wiring, and conductivity recovery method
JP7063271B2 (en) 2016-10-18 2022-05-09 東洋紡株式会社 Elastic conductor sheet, elastic wiring, fabric with elastic wiring, and method of restoring conductivity
JP2018104581A (en) * 2016-12-27 2018-07-05 ナミックス株式会社 Resin composition, cured product, conductive film, conductive pattern and clothing
CN110099963A (en) * 2016-12-27 2019-08-06 纳美仕有限公司 Resin combination, solidfied material, conductive film, conductive pattern and clothes
US11239004B2 (en) 2018-03-30 2022-02-01 Panasonic Intellectual Property Management Co., Ltd. Conductive resin composition and conductive structure using same
KR102073319B1 (en) * 2018-11-02 2020-02-03 한국화학연구원 Stretchable conductive film
CN117683279A (en) * 2024-02-02 2024-03-12 比音勒芬服饰股份有限公司 Double-arch bridge type supporting shock-absorbing anti-skid sole and preparation method thereof
CN117683279B (en) * 2024-02-02 2024-04-05 比音勒芬服饰股份有限公司 Double-arch bridge type supporting shock-absorbing anti-skid sole and preparation method thereof

Also Published As

Publication number Publication date
JP6690528B2 (en) 2020-04-28
JPWO2016114278A1 (en) 2017-10-26
TW201633328A (en) 2016-09-16
TWI684999B (en) 2020-02-11

Similar Documents

Publication Publication Date Title
JP6614127B2 (en) Conductive silver paste
JP6690528B2 (en) Conductive film
JP6319085B2 (en) Conductive paste
EP3397702B1 (en) Piezoresistive ink, methods and uses thereof
US10590296B2 (en) Piezoresistive ink, methods and uses thereof
JP5876618B2 (en) Conductive material and transducer using the same
Ko et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics
JP2015079724A (en) Conductive paste
CN108885919B (en) Conductive film and method for producing same
Luo et al. A stretchable and printable PEDOT: PSS/PDMS composite conductors and its application to wearable strain sensor
JP2015079725A (en) Conductive paste
JP2015065139A (en) Conductive paste
ES2896903T3 (en) Piezoresistive inks, methods and uses of these
KR20150057135A (en) Composites for sensor, preparation method of the same, and strain sensor using the composites for sensor
Janczak et al. Screen printed resistive pressure sensors fabricated from polymer composites with carbon nanotubes
KR102402322B1 (en) Paste manufacturing method and flexible electrode manufacturing method using the same
Cui Silver Nanowire-based Flexible and Stretchable Devices: Applications and Manufacturing
Ramadan et al. Flexible, stretchable, and highly sensitive piezoresistive strain sensors based on modified PEDOT: PSS layers with nickel microparticles
Lim et al. Preparation of Flexible Electrodes Based on Silver Nanoparticles-Carbon Nanotubes (AgNPs-CNTs) and Elastomer Composites for Soft Electronics
Ramadan et al. Flexible Piezoresistive Strain Sensors Based on Pedot: Pss and Nickel Microparticles Layer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016502559

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737349

Country of ref document: EP

Kind code of ref document: A1