以下、本発明の実施形態を図面に基づいて説明する。なお、図面は、概念図であり、細部構造の寸法まで規定するものではない。
<燃料電池システム1の構成>
図1に示すように、本実施形態の燃料電池システム1は、筐体11と、燃料電池モジュール20と、排熱回収システム30と、電力変換器50と、制御装置60とを備えている。
(筐体11)
筐体11は、燃料電池モジュール20と、排熱回収システム30と、電力変換器50と、制御装置60とを収容している。筐体11は、上述した機器を収容することができれば良く、その形状、材質等は限定されない。本実施形態では、筐体11は、例えば、ステンレス鋼板などの金属材料で、箱状に形成されている。また、筐体11は、仕切部材12を備えている。仕切部材12は、筐体11内を区画して第一室R1および第二室R2を形成する。後述するように、第一室R1および第二室R2は、連通可能になっている。
(燃料電池モジュール20)
燃料電池モジュール20は、第一室R1内において、第一室R1の内壁面から離間して収納されている。燃料電池モジュール20は、ケーシング21と、燃料電池24とを少なくとも含んでいる。燃料電池モジュール20は、ケーシング21と、蒸発部22と、改質部23と、燃料電池24とを備えていると好適である。
ケーシング21は、断熱性材料で箱状に形成されている。ケーシング21は、図示略の支持構造により、第一室R1内において、第一室R1の内壁面から離間して仕切部材12に設置されている。ケーシング21内には、蒸発部22と、改質部23と、燃料電池24とが配設されている。蒸発部22および改質部23は、燃料電池24の上方に配設されており、蒸発部22および改質部23と、燃料電池24との間には、燃焼部26である燃焼空間R3が形成されている。
蒸発部22は、燃料電池24の燃焼ガスにより加熱される。これにより、蒸発部22は、供給された改質水を蒸発させて水蒸気を生成するとともに、供給された改質用原料を予熱する。蒸発部22は、生成された水蒸気と予熱された改質用原料とを混合して改質部23に供給する。改質用原料は、例えば、天然ガス、LPガスなどの改質用気体燃料を用いることができる。また、改質用原料は、例えば、灯油、ガソリン、メタノールなどの改質用液体燃料を用いることもできる。
給水管41の一端(下端)側は、水タンク13に接続されており、給水管41の他端側は、蒸発部22に接続されている。給水管41には、改質水ポンプ41aが設けられている。改質水ポンプ41aは、蒸発部22に改質水を供給するとともに、改質水の供給量を調整する。改質水の供給量は、例えば、改質水の流量で表すことができ、改質水の流量は、例えば、改質水の単位時間あたりの流量で示すことができる。改質水ポンプ41aは、水タンク13に貯蔵されている凝縮水を改質水として蒸発部22に供給する。
また、蒸発部22には、改質用原料供給管42を介して改質用原料が供給される。同図では、改質用原料の供給源(以下、単に、供給源という。)を供給源Gsで示している。供給源Gsとして、例えば、都市ガスのガス供給管、LPガスのガスボンベなどが挙げられる。改質用原料供給管42には、流体機器42aと、流量検出器42bと、脱硫器42cとが設けられている。流体機器42aは、流体を燃料電池24に送出する。本実施形態では、流体は、改質用原料である。また、流体機器42aは、原料ポンプであり、例えば、ダイヤフラムポンプなどを用いることができる。
流体機器42aは、筐体11内に収納されている。流体機器42aの出力は、制御装置60によって制御される。具体的には、流体機器42aは、制御装置60から出力される指令にしたがって、供給源Gsから供給する改質用原料の供給量を調整する。改質用原料の供給量は、例えば、改質用原料の流量で表すことができ、改質用原料の流量は、例えば、改質用原料の単位時間あたりの流量で示すことができる。流体機器42aは、改質用原料を吸入し、蒸発部22に送出(圧送)する。
流量検出器42bは、熱式の流量検出器であり、流体(本実施形態では、改質用原料)の流量を検出する。流量検出器42bは、例えば、キャピラリ式、熱線式、フローセンサ式などの公知の流量検出器を用いることができる。キャピラリ式の流量検出器は、流体の流路にバイパス流路を設けて、バイパス流路に発熱部および一対の温度測定部を配設する。熱線式の流量検出器は、流体の流路に直接、発熱部および一対の温度測定部を配設する。フローセンサ式の流量検出器は、シリコン基板などの半導体基板上に絶縁膜を形成し、絶縁膜内に発熱部および一対の温度測定部を配設する。本実施形態では、流量検出器42bは、フローセンサ式の流量検出器を用いる。
図2に示すように、流量検出器42bは、発熱部42b1と、一対の温度測定部42b2と、雰囲気温度測定部42b5とを備えている。同図では、流体の流通方向を流通方向F1で示している。発熱部42b1は、例えば、ヒータなどの熱源であり、流体の流路に設けられる。一対の温度測定部42b2は、例えば、サーモパイルなどの感温素子であり、上流側温度測定部42b3と、下流側温度測定部42b4とを備えている。上流側温度測定部42b3は、発熱部42b1より上流側の流路に設けられる。下流側温度測定部42b4は、発熱部42b1より下流側の流路に設けられる。雰囲気温度測定部42b5は、流量検出器42bの雰囲気温度TAを検出する。雰囲気温度測定部42b5として、例えば、流量検出器42bの温度異常を検出する温度異常検出器(図示略)を用いることができる。また、雰囲気温度測定部42b5は、例えば、熱電対などの感温素子を別途設けても良い。
発熱部42b1が発熱することによって、発熱部42b1周辺の流体が加熱される。流体(改質用原料)が燃料電池24に送出されていない状態では、上流側温度測定部42b3によって測定される温度測定値と、下流側温度測定部42b4によって測定される温度測定値とは、概ね同じになる。この場合、流体の温度分布は、発熱部42b1を中心とした等温分布になる。一方、流体(改質用原料)が燃料電池24に送出されている状態では、流体の流れに伴って発熱部42b1の熱が下流側に移動し、下流側温度測定部42b4によって測定される温度測定値は、上流側温度測定部42b3によって測定される温度測定値と比べて、高くなる。また、流体の流量に応じて、下流側温度測定部42b4によって測定される温度測定値と、上流側温度測定部42b3によって測定される温度測定値との差分が変化する。よって、流量検出器42bは、発熱部42b1が発熱しているときに一対の温度測定部42b2によって測定される温度測定値の差分から、流体の流量を検出することができる。
脱硫器42cは、改質用原料に含まれる付臭剤(硫黄化合物などの硫黄成分)を脱硫剤によって除去する。脱硫剤は、公知の脱硫剤を用いることができ、脱硫剤と触媒とを併せて使用することもできる。これにより、付臭剤が吸着(脱硫)された改質用原料が、蒸発部22に供給される。
改質部23は、改質用原料および改質水から燃料を生成して、燃料電池24に導出する。具体的には、改質部23は、燃料電池24の燃焼ガスにより加熱されて、水蒸気改質反応に必要な熱が供給される。これにより、改質部23は、蒸発部22から供給された水蒸気と改質用原料の混合ガスとから改質ガスを生成して導出する。改質部23内には、触媒が充填されており、混合ガスが触媒によって反応し改質されて、水素ガスと一酸化炭素ガスが生成される(いわゆる水蒸気改質反応)。触媒は、例えば、ルテニウム系またはニッケル系の触媒などを用いることができる。
生成されたガス(いわゆる改質ガス)は、燃料電池24の燃料極に導出される。改質ガスは、水素、一酸化炭素、二酸化炭素、水蒸気、未改質の天然ガス(例えば、メタンガスなど)、改質に使用されなかった改質水(水蒸気)を含んでいる。このように、改質部23は、改質用原料(原燃料)と改質水とから燃料である改質ガスを生成して燃料電池24に供給する。なお、水蒸気改質反応は、吸熱反応である。
燃料電池24は、複数のセル24aが積層されている。複数のセル24aの各々は、燃料極と、空気極(酸化剤極)と、両極の間に形成されている電解質とを備える。燃料電池24は、種々の燃料電池を用いることができ、例えば、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)などを用いることができる。固体酸化物形燃料電池(SOFC)は、電解質として固体酸化物の一種である酸化ジルコニウムを使用する。燃料電池24の燃料極には、燃料として水素、一酸化炭素、メタンガスなどが供給される。複数のセル24aの各々の燃料極側には、燃料である改質ガスが流通する燃料流路24bが形成されている。複数のセル24aの各々の空気極側には、酸化剤ガスである空気(カソードエアともいう。)が流通する空気流路24cが形成されている。
燃料電池24は、マニホールド25上に設けられている。マニホールド25には、改質ガス供給管43の一端側が接続されており、改質ガス供給管43の他端側は、改質部23と接続されている。これにより、改質部23から導出された改質ガスは、改質ガス供給管43を介してマニホールド25に供給される。燃料流路24bの一端(下端)側は、マニホールド25の燃料導出口に接続されている。燃料導出口から導出された改質ガスは、燃料流路24bの一端(下端)側から導入され、燃料流路24bの他端(上端)側から導出される。
カソードエア供給管44の一端側は、空気流路24cの一端側(下端)に接続されており、カソードエア供給管44の他端側は、カソードエアブロワ44aに接続されている。カソードエアブロワ44aによって送出されたカソードエアは、カソードエア供給管44を介して空気流路24cに供給される。カソードエアは、空気流路24cの一端(下端)側から導入され、空気流路24cの他端(上端)側から導出される。
カソードエアブロワ44aは、第二室R2内に配設されている。カソードエアブロワ44aは、第二室R2内の空気を吸入し、燃料電池24の空気極に吐出する。カソードエアブロワ44aから吐出される空気の吐出量は、制御装置60によって調整制御される。制御装置60は、例えば、燃料電池24の発電電力に応じて、空気の吐出量を制御することができる。なお、空気の吐出量(供給量)は、例えば、空気の流量で表すことができ、空気の流量は、例えば、空気の単位時間あたりの流量で示すことができる。
燃料電池24は、燃料と酸化剤ガスとにより発電する。具体的には、複数のセル24aの各々の燃料極に供給された燃料と、空気極に供給された空気(酸化剤ガス)とにより発電が行われる。つまり、燃料極では、下記化1および化2に示す反応が生じ、空気極では、下記化3に示す反応が生じる。このように、空気極で生成した酸化物イオン(O2−)が電解質を透過し、燃料極で水素と反応することにより、電気エネルギーが発生する。なお、発電に使用されなかった改質ガスは、燃料流路24bから導出し、発電に使用されなかった酸化剤ガス(空気)は、空気流路24cから導出する。
(化1)
H2+O2−→H2O+2e−
(化2)
CO+O2−→CO2+2e−
(化3)
1/2O2+2e−→O2−
燃焼部26は、燃料のオフガスである燃料オフガスと、酸化剤ガスのオフガスである酸化剤オフガスとが燃焼して、蒸発部22および改質部23を加熱する。具体的には、燃焼部26では、燃料流路24bから導出された発電に使用されなかった改質ガス(燃料オフガス)と、空気流路24cから導出された発電に使用されなかった酸化剤ガス(酸化剤オフガス)とが燃焼する。図1に示すように、燃焼部26は、蒸発部22および改質部23と、燃料電池24との間の燃焼空間R3である。燃焼部26の燃焼ガスによって、蒸発部22および改質部23が加熱される。同図では、燃料オフガスと酸化剤オフガスとが燃焼する様子を複数の火炎27によって模式的に示している。また、燃焼部26は、燃料電池モジュール20内を動作温度に加熱する。その後、燃焼ガスは、導出口21aから燃料電池モジュール20の外部に排気される。
燃焼部26には、燃焼部温度センサ29が設けられている。燃焼部温度センサ29は、燃焼部26の温度THM(雰囲気温度)を検出し、検出結果を制御装置60に送信する。このように、燃焼部26は、燃料電池24から導出された燃料オフガスと酸化剤オフガスとが燃焼して、蒸発部22および改質部23を加熱する。つまり、燃焼部26は、燃料電池24から未使用の燃料を含む可燃性ガスを導入し、可燃性ガスと酸化剤ガスとが燃焼して燃焼ガスを導出する。なお、燃焼部26には、燃料オフガスを着火させる一対の着火ヒータ26a1,26a2が設けられている。
(排熱回収システム30)
排熱回収システム30は、燃料電池24の排熱と貯湯水との間で熱交換を行う。これにより、排熱回収システム30は、燃料電池24の排熱を貯湯水に回収して蓄える。排熱回収システム30は、貯湯水を貯湯する貯湯槽31と、貯湯水が循環する貯湯水循環ライン32と、燃料電池モジュール20の排熱を用いて貯湯水を加熱する熱交換器33とを備えている。熱交換器33は、燃料電池モジュール20から導出された燃焼排ガスと貯湯水との間で熱交換を行う。
貯湯槽31は、柱状容器を備えており、内部に貯湯水が層状に貯留されている。つまり、貯湯槽31に貯留されている貯湯水は、上部の温度が最も高温であり、下部にいくにしたがって低温となり、下部の温度が最も低温である。貯湯槽31の柱状容器の下部には、水供給源Ws(例えば、水道管などの水道設備)が接続されており、水供給源Wsから水(低温の水。例えば、水道水)が補給可能になっている。また、貯湯槽31の柱状容器の上部には、給湯器Hwsが接続されており、給湯器Hwsは、貯湯槽31に貯留された貯湯水(高温の水。温水)を利用可能になっている。給湯器Hwsは、例えば、排熱(潜熱)回収型の給湯器であり、貯湯槽31から供給された貯湯水を必要に応じて加熱することができる。
貯湯水循環ライン32の一端側は、貯湯槽31の下部に接続され、貯湯水循環ライン32の他端側は、貯湯槽31の上部に接続されている。貯湯水循環ライン32には、一端側から他端側に向かって順に、貯湯水循環ポンプ32a、負荷32b、第一温度センサ32c、熱交換器33および第二温度センサ32dが配設されている。貯湯水循環ポンプ32aは、貯湯槽31の下部の貯湯水を吸引し、貯湯水循環ライン32を図示矢印方向へ通水させて貯湯槽31の上部に吐出する。貯湯水循環ライン32を流通する貯湯水の流量(送出量)は、制御装置60によって制御される。貯湯水循環ポンプ32aは、例えば、第二温度センサ32dの検出温度(貯湯水の貯湯槽31の入口温度)が所定の温度または温度範囲となるように、送出量が制御される。
負荷32bは、自立運転時に、燃料電池24の余剰電力を消費する。また、負荷32bは、自立運転時以外にも、燃料電池24の余剰電力を消費することができる。負荷32bは、例えば、貯湯水循環ライン32を加熱して、貯湯水循環ライン32の凍結を抑制することができる。このように、負荷32bは、例えば、ヒータであり、公知の可変抵抗器を用いることができる。可変抵抗器の抵抗値は、例えば、燃料電池24の発電電力と、後述する外部負荷53の消費電力との電力差分の余剰電力を消費可能に、制御装置60によって設定される。
第一温度センサ32cは、熱交換器33の貯湯水導入側の貯湯水循環ライン32であって、熱交換器33と貯湯槽31との間に配設されている。第一温度センサ32cは、熱交換器33の入口温度(すなわち、貯湯槽31の出口温度)を検出し、検出結果を制御装置60に送信する。第二温度センサ32dは、熱交換器33の貯湯水導出側の貯湯水循環ライン32に配設されている。第二温度センサ32dは、熱交換器33の出口温度(すなわち、貯湯槽31の入口温度)を検出し、検出結果を制御装置60に送信する。
熱交換器33は、燃料電池24の排熱を含む燃焼部26から排出される燃焼排ガスと、貯湯槽31の貯湯水との間で熱交換を行う。具体的には、熱交換器33には、燃料電池モジュール20から排気される燃焼排ガスが供給されるとともに、貯湯槽31から貯湯水が供給される。そして、燃焼排ガスと貯湯水とが熱交換する。熱交換器33は、筐体11内に配設されている。本実施形態では、熱交換器33は、燃料電池モジュール20の下部に設けられており、少なくとも熱交換器33の下部は、仕切部材12を貫通して第二室R2に突出している。
熱交換器33は、ケーシング33aを備えている。ケーシング33aの上部は、燃料電池モジュール20のケーシング21の下部に設けられ、燃焼排ガスが導出される導出口21aに連通している。ケーシング33aの下部には、排気管45の一端側が接続されている。排気管45の他端側は、排気口11aに接続されている。ケーシング33aの底部には、純水器14に接続される凝縮水供給管46が接続されている。ケーシング33a内には、貯湯水循環ライン32に接続される熱交換部33bが配設されている。
燃料電池モジュール20から排出された燃焼排ガスは、導出口21aを通ってケーシング33a内に導入される。燃焼排ガスは、貯湯水が流通する熱交換部33bを通過する際に、貯湯水との間で熱交換が行われて、凝縮されるとともに冷却される。凝縮後の燃焼排ガスは、排気管45を通って排気口11aから外部に排出される。また、凝縮された凝縮水は、凝縮水供給管46を通って純水器14に供給される(自重で落水する)。一方、熱交換部33bに流入した貯湯水は、加熱されて流出される。
熱交換器33の燃焼排ガス導入部であるケーシング21の導出口21aには、第二燃焼部28が設けられている。第二燃焼部28は、燃焼部26から排気される未使用の可燃性ガス(例えば、水素、メタンガス、一酸化炭素など)を導入し、燃焼して導出する。第二燃焼部28は、可燃性ガスを燃焼する触媒である燃焼触媒を備えている。燃焼触媒は、例えば、白金、パラジウムなどの貴金属をセラミックの単体などに担持させて生成することができる。燃焼触媒は、ペレット状のものを充填しても良く、セラミック・メタルのハニカムや発泡金属上に担持させることもできる。第二燃焼部28には、燃焼触媒ヒータ28aが設けられている。燃焼触媒ヒータ28aは、燃焼触媒を触媒の活性温度まで加熱して可燃性ガスを燃焼させる。燃焼触媒ヒータ28aは、制御装置60から出力される指令にしたがって、加熱される。
燃料電池システム1は、水タンク13および純水器14を備えている。水タンク13および純水器14は、第二室R2内に配設されている。純水器14は、例えば、粒状のイオン交換樹脂を内蔵している。純水器14は、熱交換器33から排出された凝縮水をイオン交換樹脂によって純水化する。なお、熱交換器33から供給される凝縮水の状態によっては、中空糸フィルタなどを設置しても良い。純水器14は、配管47を介して水タンク13に連通しており、純水器14内の純水は、配管47を介して水タンク13に導出される。このようにして、純水器14は、熱交換器33から排出された凝縮水を純水化して水タンク13に供給する。水タンク13は、純水器14から導出された純水を貯蔵する。
また、燃料電池システム1は、空気導入口11bと、空気導出口11cと、換気用空気ブロワ15とを備えている。空気導入口11bは、第二室R2を形成する筐体11に形成されている。空気導出口11cは、第一室R1を形成する筐体11に形成されている。換気用空気ブロワ15は、空気導入口11bに設けられており、筐体11内を換気する。換気用空気ブロワ15が作動すると、外気が空気導入口11bを介して換気用空気ブロワ15に吸入され、第二室R2に送出される。さらに、第二室R2内の気体(主として空気)は、仕切部材12を通って第一室R1に流れ、第一室R1内の気体は、空気導出口11cを介して外部に排出される。
(電力変換器50)
燃料電池24は、電力変換器50を介して電源ライン52と接続されている。電力変換器50は、公知の昇圧型DC/DCコンバータおよびインバータを備えている。電力変換器50には、燃料電池24から出力された直流電力が入力される。昇圧型DC/DCコンバータは、入力された直流電力を昇圧する。インバータは、昇圧型DC/DCコンバータによって昇圧された直流電力を交流電力に変換して、電源ライン52に出力する。電源ライン52には、系統電源51および外部負荷53が接続されている。電力変換器50は、電源ライン52を介して外部負荷53に電力を供給する。
また、電力変換器50は、公知のAC/DCコンバータを備えている。AC/DCコンバータは、系統電源51から供給された交流電力を直流電力に変換して、補機や制御装置60に出力する。補機として、例えば、既述の改質水ポンプ41a、流体機器42aである原料ポンプおよびカソードエアブロワ44aなどが挙げられる。また、補機として、例えば、既述の貯湯水循環ポンプ32aおよび換気用空気ブロワ15などが挙げられる。さらに、補機として、例えば、既述の燃焼部温度センサ29、第一温度センサ32c、第二温度センサ32dおよび流量検出器42bなどの各種センサ、一対の着火ヒータ26a1,26a2、燃焼触媒ヒータ28aおよび負荷32bなどの各種ヒータなどが挙げられる。なお、補機は、上述の補機に限定されるものではない。
系統電源51は、例えば、電気事業者(例えば、電力会社など)が保有する商用の配電線網から供給される交流電源をいう。系統電源51は、単相であっても、多相(例えば、三相)であっても良い。系統電源51は、外部負荷53に電力を供給する。外部負荷53は、電力を駆動源とする負荷であり、例えば、家庭用電気機器(電化製品など)、産業用電気機器(ロボットなど)が挙げられる。外部負荷53は、一つであっても複数であっても良い。
(制御装置60)
制御装置60には、既述した補機が電気的に接続されている。図3に示すように、制御装置60は、公知の中央演算装置60a、記憶装置60bおよび入出力インターフェース60cを備えており、これらは、バス60dを介して電気的に接続されている。制御装置60は、これらを用いて、種々の演算処理を行うことができ、補機を含む外部機器との間で、入出力信号の授受を行うことができる。
中央演算装置60aは、CPU:Central Processing Unitであり、種々の演算処理を行うことができる。記憶装置60bは、第一記憶装置60b1および第二記憶装置60b2を備えている。第一記憶装置60b1は、読み出しおよび書き込み可能な揮発性の記憶装置(RAM:Random Access Memory)であり、第二記憶装置60b2は、読み出し専用の不揮発性の記憶装置(ROM:Read Only Memory)である。入出力インターフェース60cは、補機を含む外部機器との間で、入出力信号を送受信する。
例えば、中央演算装置60aは、第二記憶装置60b2に記憶されている補機の駆動制御プログラムを第一記憶装置60b1に読み出して、当該駆動制御プログラムを実行する。中央演算装置60aは、当該駆動制御プログラムに基づいて、補機の駆動信号を生成する。生成された駆動信号は、入出力インターフェース60cおよびドライバ回路(図示略)などの駆動回路を介して、補機に付与される。このようにして、補機は、制御装置60によって駆動制御される。以上のことは、電力変換器50などの制御についても同様に言える。
<制御装置60による制御>
図4に示すように、制御装置60は、制御ブロックとして捉えると、流量制御部61と、検出精度判定部62と、流量検出値補正部63とを備えている。また、制御装置60は、図5に示すフローチャートに従って、制御プログラムを実行する。流量制御部61は、ステップS11、ステップS14およびステップS19に示す処理を行う。検出精度判定部62は、ステップS11に示す処理、並びに、ステップS12およびステップS13に示す判断を行う。流量検出値補正部63は、ステップS15〜ステップS18に示す処理を行う。以下、各制御部および制御フローについて、図5〜図9を参照しつつ詳細に説明する。
(流量制御部61)
流量制御部61は、流量検出器42bによって検出された流量検出値Frdが流体(本実施形態では、改質用原料)の目標流量値Fr_refと一致するように、流体機器42aを駆動制御する。また、流量制御部61は、後述する検出精度判定部62によって、流量検出器42bの検出精度が所定水準より低下していることが認められたときに、流量検出器42bによって検出された流量検出値Frdの代わりに、流量検出値補正部63によって補正された流量検出値Frdである補正後流量検出値Frhを用いて、流体機器42aを駆動制御する。流量制御部61は、上述したように流体機器42aを駆動制御することができれば良く、限定されない。流量制御部61は、公知の種々のフィードバック制御、フィードフォワード制御などによって、流体機器42aを駆動制御することができる。本実施形態では、流量制御部61は、フィードバック制御によって、流体機器42aを駆動制御する。
図6に示すように、流量制御部61は、目標流量値設定部61aと、減算器61bと、選択器61cと、制御部61dと、PWM信号生成部61eと、デューティ比記憶部61fとを備えている。目標流量値設定部61aは、燃料電池24の発電電力(例えば、燃料電池24の掃引電流)に応じて、流体機器42aが送出する流体(改質用原料)の目標流量値Fr_refを設定する。燃料電池24の発電電力と、流体(改質用原料)の目標流量値Fr_refとの関係は、予めシミュレーション、実機による検証などによって取得しておくと良い。
減算器61bには、目標流量値設定部61aによって設定された流体(改質用原料)の目標流量値Fr_refと、選択器61cの出力値とが入力される。減算器61bは、流体(改質用原料)の目標流量値Fr_refから選択器61cの出力値を減じて、偏差ΔFrを算出する。選択器61cには、流量検出器42bによって検出された流量検出値Frdと、流量検出値補正部63によって補正された流量検出値Frdである補正後流量検出値Frhとが入力される。選択器61cは、検出精度判定部62の判定結果に応じて、流量検出値Frdまたは補正後流量検出値Frhを出力する。
減算器61bによって算出された偏差ΔFrは、制御部61dに入力される。制御部61dは、選択器61cの出力値(流量検出値Frdまたは補正後流量検出値Frh)が、流体(改質用原料)の目標流量値Fr_refと一致するように、比例制御、積分制御および微分制御を行う。制御部61dは、公知の比例演算器61d1と、積分演算器61d2と、微分演算器61d3と、加算器61d4とを備えている。
比例演算器61d1は、偏差ΔFrに比例ゲインKpを乗じた演算結果を出力する。積分演算器61d2は、偏差ΔFrを積分した積分値に積分ゲインKiを乗じた演算結果を出力する。微分演算器61d3は、偏差ΔFrを微分した微分値に微分ゲインKdを乗じた演算結果を出力する。加算器61d4は、比例演算器61d1の演算結果と、積分演算器61d2の演算結果と、微分演算器61d3の演算結果とを加算する。そして、制御部61dは、加算器61d4の演算結果を、電圧指令値V_refとしてPWM信号生成部61eに出力する。なお、制御部61dは、比例制御および積分制御のみを行う(微分制御を行わない)こともできる。この場合、加算器61d4は、比例演算器61d1の演算結果と、積分演算器61d2の演算結果とを加算する。
このように、制御部61dは、比例制御、積分制御および微分制御のうちの少なくとも比例制御および積分制御を行うことができる。なお、伝達関数G(s)は、下記数1で表すことができる。但し、sは、ラプラス演算子を示している。また、比例ゲインKp、積分ゲインKiおよび微分ゲインKdは、図3に示す第二記憶装置60b2に記憶されている。これらの制御ゲインは、燃料電池システム1の起動時に、第二記憶装置60b2から第一記憶装置60b1に読み出される。
(数1)
G(s)=Kp+Ki×1/s+Kd×s
比例ゲインKpを大きくすると、偏差ΔFrを短時間に低減することができる。また、積分ゲインKiを大きくすると、偏差ΔFrによるオフセット(定常偏差)を短時間に解消することができる。さらに、微分ゲインKdを大きくすると、偏差ΔFrの振動を短時間に収束することができ、外乱に対して強くなる。これらの制御ゲインは、例えば、シミュレーション、実機による検証などによって予め取得しておくと良い。
流量制御部61は、流体機器42aをパルス幅変調(PWM:Pulse Width Modulation)制御によって駆動制御すると好適である。本実施形態では、流量制御部61は、PWM信号生成部61eを備えている。PWM信号生成部61eは、流体機器42aの電動機42a1を駆動制御する電力変換器の複数のスイッチング素子(いずれも図示略)の駆動信号を生成する。
具体的には、PWM信号生成部61eには、制御部61dから出力された電圧指令値V_refと、上述した電力変換器に入力される直流電圧検出値と、PWMキャリア信号(三角波)とが入力される。PWM信号生成部61eは、電圧指令値V_refを直流電圧検出値で除して変調率を算出する。PWM信号生成部61eは、算出された変調率と、PWMキャリア信号(三角波)とに基づいて、パルス信号(開閉信号)を生成する。生成されたパルス信号(開閉信号)は、ドライバ回路を介して、上述した電力変換器の各スイッチング素子の制御端子に付与される。なお、デューティ比は、パルス信号(開閉信号)の一周期におけるハイレベル(所定電圧値を超えている状態)の割合である。
このようにして、流量制御部61は、燃料電池24の発電電力に応じて、流体機器42aが送出する流体(改質用原料)の目標流量値Fr_refを設定して、流量検出値Frdまたは補正後流量検出値Frhが流体(改質用原料)の目標流量値Fr_refと一致するように、流体機器42aを駆動制御することができる。なお、デューティ比記憶部61fについては、後述する。
(検出精度判定部62)
検出精度判定部62は、流量検出器42bの検出精度が所定水準より低下しているか否かを判定する。検出精度判定部62は、燃料電池24に対して所定電力P0で第一時間PT1継続して発電させると好適である。そして、検出精度判定部62は、第一時間PT1経過後の燃料電池24の燃焼部26の温度THMが適正温度範囲TR0から外れた状態が第二時間PT2継続したときに、流量検出器42bの検出精度が所定水準より低下していると判定すると好適である。
図7は、燃料電池24の出力電力および燃焼部26の温度THMの経時変化の一例を示す図である。曲線L11は、燃料電池24の出力電力の経時変化の一例を示している。曲線L12は、燃焼部26の温度THMの経時変化の一例を示している。縦軸は、曲線L11において電力を示し、曲線L12において温度を示している。横軸は、時刻を示している。
検出精度判定部62は、まず、燃料電池24に対して所定電力P0で第一時間PT1継続して発電させる(図5に示すステップS11)。所定電力P0は、一定電力であれば良く、例えば、定格発電時の電力に設定することができる。また、第一時間PT1は、図7の曲線L11に示すように、燃料電池24の出力電力が所定電力P0で安定するまでに要する時間(時刻0から時刻t1までの時間)である。第一時間PT1は、例えば、燃料電池24が固体酸化物形燃料電池(SOFC)の場合、一定発電状態で燃料電池モジュール20の内部温度が安定する概ね一時間程度に設定すると良い。
また、流量制御部61の目標流量値設定部61aは、所定電力P0に合わせて、流体機器42aが送出する流体(改質用原料)の目標流量値Fr_refを設定する(ステップS11)。流量制御部61は、流量検出器42bによって検出された流量検出値Frdが流体(改質用原料)の目標流量値Fr_refと一致するように、流体機器42aを駆動制御する。制御装置60は、カソードエアブロワ44aが吐出する空気についても同様に制御し、改質水ポンプ41aが供給する改質水についても同様に制御する。
検出精度判定部62は、所定電力P0で発電を開始してから、第一時間PT1が経過したか否かを判断する(ステップS12)。第一時間PT1が経過した場合(Yesの場合)、検出精度判定部62は、燃焼部26の温度THMが適正温度範囲TR0から外れた状態が第二時間PT2継続しているか否かを判断する(ステップS13)。一方、第一時間PT1が経過していない場合(ステップS12でNoの場合)、制御は、ステップS11に戻り、第一時間PT1が経過するまで、ステップS11の処理およびステップS12の判断を繰り返す。
燃焼部26の温度THMは、図1に示す燃焼部温度センサ29によって検出される。また、第二時間PT2は、図7の曲線L12に示すように、燃焼部26の温度THMの変動を把握するのに要する時間(時刻t1から時刻t2までの時間)である。第二時間PT2が短くなる程、燃焼部26の温度THMの変動を把握することが困難になり、検出精度判定部62は、瞬時温度に近い温度変動から、流量検出器42bの検出精度の低下を判定することになる。一方、第二時間PT2が長くなる程、検出精度判定部62の判定に要する所要時間が長くなる。第二時間PT2は、例えば、数分程度に設定することができる。さらに、適正温度範囲TR0は、流量検出器42bの検出精度が所定水準を維持している場合において、燃料電池24が一定の所定電力P0で第一時間PT1継続して発電したときの第一時間PT1経過後の燃料電池24の燃焼部26の温度範囲をいう。
既述したように、流量検出器42bは、熱式の流量検出器であり、一対の温度測定部42b2によって測定される温度測定値の差分から流体(改質用原料)の流量を検出する。そのため、例えば、外気温や燃料電池システム1の運転状態(特に、高温になる燃料電池モジュール20の運転状態)によって、燃料電池システム1の筐体11内に設置されている流量検出器42bの雰囲気温度TAが変動すると、流量検出器42b内部を流れる流体(改質用原料)の流体温度TFと雰囲気温度TAとの温度差が大きくなり、流量検出器42b内部の一対の温度測定部42b2によって測定される温度測定値に影響が及び、流量検出器42bの検出精度が低下する可能性がある。その結果、流量検出器42bによって正確な流量計測ができなくなり、流体(改質用原料)の実際の流量と、流量検出器42bによって計測された流体(改質用原料)の流量との間に差が生じ、燃料電池24の発電効率の低下および機器への悪影響が生じる可能性がある。
燃焼部26の温度THMが適正温度範囲TR0から外れた状態が第二時間PT2継続している場合(ステップS13でYesの場合)、流体機器42aから適切な流量で流体(改質用原料)が送出されていないものと考えられる。この場合、検出精度判定部62は、流量検出器42bの検出精度が所定水準より低下していると判断する。そして、流量検出値補正部63は、流量検出器42bによって検出された流量検出値Frdを補正する。一方、燃焼部26の温度THMが適正温度範囲TR0から外れた状態が第二時間PT2継続していない場合(ステップS13でNoの場合)、流体機器42aから適切な流量で流体(改質用原料)が送出されているものと考えられる。この場合、検出精度判定部62は、流量検出器42bの検出精度が所定水準を維持していると判断する。そして、制御は、一旦、終了する。
なお、図6に示す流量制御部61の選択器61cは、検出精度判定部62によって、流量検出器42bの検出精度が所定水準より低下していることが認められなかった(流量検出器42bの検出精度が所定水準を維持している)ときに、流量検出器42bによって検出された流量検出値Frdを選択して、選択器61cの出力とする。一方、選択器61cは、検出精度判定部62によって、流量検出器42bの検出精度が所定水準より低下していることが認められたときに、流量検出値補正部63の出力である補正後流量検出値Frhを選択して、選択器61cの出力とする。
本実施形態の燃料電池システム1によれば、検出精度判定部62は、燃料電池24に対して所定電力P0で第一時間PT1継続して発電させ、第一時間PT1経過後の燃料電池24の燃焼部26の温度THMが適正温度範囲TR0から外れた状態が第二時間PT2継続したときに、流量検出器42bの検出精度が所定水準より低下していると判定する。そのため、本実施形態の燃料電池システム1は、燃料電池24を含む燃料電池モジュール20における熱サイクルを考慮して、流量検出器42bの検出精度の低下を判定することができる。
また、本実施形態の燃料電池システム1によれば、流量制御部61は、選択器61cと、制御部61dとを備える。選択器61cは、流量検出器42bによって検出された流量検出値Frdと、流量検出値補正部63によって補正された補正後流量検出値Frhとが入力され、検出精度判定部62の判定結果に応じて、流量検出値Frdまたは補正後流量検出値Frhを出力する。制御部61dは、流体(改質用原料)の目標流量値Fr_refと選択器61cの出力値との偏差ΔFrから、比例制御、積分制御および微分制御のうちの少なくとも比例制御および積分制御を行う。そのため、本実施形態の燃料電池システム1は、検出精度判定部62の判定結果に応じて、流量検出値Frdまたは補正後流量検出値Frhを選択することが可能であり、選択器61cの出力値を流体(改質用原料)の目標流量値Fr_refと一致させることが容易である。
(流量検出値補正部63)
流量検出値補正部63は、検出精度判定部62によって流量検出器42bの検出精度の低下が認められたときに、流量検出器42bによって検出された流量検出値Frdを補正する。また、流量検出値補正部63は、第一温度T1と第二温度T2との温度比ΔTに応じて、流量検出値Frdを補正する補正量を変更する。第一温度T1は、流体(本実施形態では、改質用原料)の流量を所定流量で一定にし、且つ、流量検出器42bの発熱部42b1を発熱させた状態で検出される流量検出器42bの雰囲気温度TAと、発熱部42b1の発熱温度THとを加算した温度をいう。流量検出器42bの雰囲気温度TAは、雰囲気温度測定部42b5によって検出される。発熱部42b1の発熱温度THは、発熱部42b1が発熱しているときの発熱部42b1の温度であり、発熱部42b1の仕様によって規定される固定値である。このように、第一温度T1には、流量検出器42bの雰囲気温度TAと、熱源である発熱部42b1による温度上昇分とが加味されている。
第二温度T2は、流体(改質用原料)の流量を所定流量で一定にし、且つ、流量検出器42bの発熱部42b1を発熱させない状態で検出される流体(改質用原料)の流体温度TFをいう。第二温度T2は、発熱部42b1を発熱させない状態で検出されるので、このときの一対の温度測定部42b2(上流側温度測定部42b3および下流側温度測定部42b4)の温度測定値は、同じになる。よって、第二温度T2は、一対の温度測定部42b2のうちの一方(上流側温度測定部42b3または下流側温度測定部42b4)によって検出することができる。なお、第一温度T1および第二温度T2を検出する際には、燃料電池24の発電電力を一定(本実施形態では、所定電力P0で一定)にする。これにより、流体(改質用原料)の流量を所定流量で一定にすることができる。
第二温度T2は、流体(改質用原料)の流体温度TFである。そのため、筐体11内の雰囲気温度が変動しても、流体(改質用原料)が燃料電池24に送出されている状態では、その影響は、極めて少ない。一方、第一温度T1は、流量検出器42bの雰囲気温度TAと、発熱部42b1の発熱温度THとを加算した温度である。既述したように、発熱部42b1の発熱温度THは、固定値であるので、第一温度T1は、流量検出器42bの雰囲気温度TAの変動に応じて増減する。
第一温度T1と第二温度T2との温度比ΔTが小さい場合、流量検出器42bの雰囲気温度TAと、流体(改質用原料)の流体温度TFとの温度差も小さくなる。そのため、既述した流量検出器42bの雰囲気温度TAの変動に起因する流量検出器42bの検出精度の低下は、少ない。一方、第一温度T1と第二温度T2との温度比ΔTが大きくなる程、流量検出器42bの雰囲気温度TAと、流体(改質用原料)の流体温度TFとの温度差が大きくなる。そのため、既述した流量検出器42bの雰囲気温度TAの変動に起因する流量検出器42bの検出精度の低下が顕著になる。
そこで、流量検出値補正部63は、検出精度判定部62によって、流量検出器42bの検出精度が所定水準より低下していることが認められたときに、第一温度T1と第二温度T2との温度比ΔTに応じて、流量検出値Frdを補正する補正量を変更する。そして、流量制御部61は、検出精度判定部62によって、流量検出器42bの検出精度が所定水準より低下していることが認められたときに、流量検出器42bによって検出された流量検出値Frdの代わりに、流量検出値補正部63によって補正された流量検出値Frdである補正後流量検出値Frhを用いて、流体機器42aを駆動制御する。
本実施形態の燃料電池システム1によれば、制御装置60は、流量制御部61と、検出精度判定部62と、流量検出値補正部63とを備える。これにより、検出精度判定部62によって流量検出器42bの検出精度の低下が認められたときに、流量検出値補正部63が、温度比ΔTに応じて流量検出値Frdを補正する補正量を変更し、流量制御部61が、流量検出値補正部63によって補正された流量検出値Frd(補正後流量検出値Frh)を用いて、流体機器42aを駆動制御することができる。よって、本実施形態の燃料電池システム1は、熱式の流量検出器42bの検出精度が所定水準より低下したときに、流体機器42aから送出する流体(改質用原料)の目標流量(目標流量値Fr_ref)を確保することができ、燃料電池24の発電効率の低下を抑制することができる。
また、流量検出値補正部63は、発熱部42b1を発熱させない状態で流体(改質用原料)の流体温度TFである第二温度T2を検出する。つまり、本実施形態の燃料電池システム1によれば、流量検出器42bによって、流体(改質用原料)の流体温度TFを検出することができる。そのため、本実施形態の燃料電池システム1は、流体(改質用原料)の流体温度TFを検出するために、別途、温度検出器を設ける必要がなく、燃料電池システム1の小型化および製造コストの抑制を図ることができる。
逆に、流量検出値補正部63が少なくとも第二温度T2を検出する際には、流量検出器42bは、流体(改質用原料)の流量を検出することができなくなる。その結果、流量制御部61は、流量検出値補正部63が少なくとも第二温度T2を検出する際には、流体機器42aを駆動制御することができなくなる。なお、燃料電池24を発電する際の電力(本実施形態では、所定電力P0)が一定であれば、流体(改質用原料)の目標流量値Fr_refが一義的に決まり、流体機器42aの電動機42a1をパルス幅変調(PWM)制御する際のデューティ比も一義的に決定することができ、いわゆるオープン制御が可能であるとも思われる。しかしながら、流体機器42aおよび電動機42a1の個体差、経年変化、流体(改質用原料)の流路における圧損などによって、適正なデューティ比が変動する可能性がある。特に、本実施形態の流体機器42aは、ダイヤフラムポンプであり、経年変化の影響を受け易い。
そこで、流量制御部61は、燃料電池24が一定の所定電力P0で第一時間PT1継続して発電したときの第一時間PT1経過後のパルス幅変調(PWM)制御のデューティ比を記憶しておくと好適である。そして、流量制御部61は、流量検出値補正部63が第一温度T1および第二温度T2のうちの少なくとも第二温度T2を検出する際に、記憶しておいたデューティ比一定で流体機器42aを駆動制御すると好適である。
具体的には、図5に示すステップS13でYesの場合、流量制御部61は、負荷32bを使用可能にして、オープン制御を行う(ステップS14)。既述したように、流体(改質用原料)の流量を所定流量で一定にするため、第一温度T1および第二温度T2を検出する際には、燃料電池24の発電電力を一定(所定電力P0で一定)にする。そのため、燃料電池24の発電電力と、外部負荷53の消費電力との間で不均衡が生じ、余剰電力が生じる可能性がある。そこで、本実施形態では、図1に示す負荷32bにおいて、燃料電池24の余剰電力を消費可能にする。既述したように、負荷32bは、自立運転時および自立運転時以外のいずれにおいても、燃料電池24の余剰電力を消費することができる。また、負荷32bは、例えば、貯湯水循環ライン32を加熱して、貯湯水循環ライン32の凍結を抑制することができる。なお、余剰電力は、一対の着火ヒータ26a1,26a2、燃焼触媒ヒータ28aなどで消費させても良い。
また、第一時間PT1経過後のパルス幅変調(PWM)制御のデューティ比は、ステップS12でYesの場合に、図3に示す第一記憶装置60b1(図6に示すデューティ比記憶部61f)に記憶しておくことができる。本実施形態では、流量制御部61は、流量検出値補正部63が第一温度T1および第二温度T2を検出する際に、第一記憶装置60b1(デューティ比記憶部61f)に記憶しておいたデューティ比一定で、流体機器42aを駆動制御する。具体的には、図6に示すPWM信号生成部61eは、流量検出値補正部63が第一温度T1および第二温度T2を検出する際に、第一記憶装置60b1(デューティ比記憶部61f)に記憶しておいたデューティ比一定で、パルス信号(開閉信号)を生成する。
本実施形態の燃料電池システム1によれば、流量制御部61は、流体機器42aをパルス幅変調(PWM)制御によって駆動制御する。また、流量制御部61は、燃料電池24が一定の所定電力P0で第一時間PT1継続して発電したときの第一時間PT1経過後のパルス幅変調(PWM)制御のデューティ比を記憶しておき、流量検出値補正部63が第一温度T1および第二温度T2のうちの少なくとも第二温度T2を検出する際に、記憶しておいたデューティ比一定で流体機器42aを駆動制御する。そのため、本実施形態の燃料電池システム1は、流量検出値補正部63による制御によって流体(改質用原料)の流量を検出することができない場合に、いわゆるオープン制御で流体機器42aを駆動制御することができる。
また、温度比ΔTは、第一温度T1を第二温度T2で除して算出されると好適である。そして、流量検出値補正部63は、温度比ΔTと、流量検出値Frdの補正量である補正係数KTとの相関関係に基づいて、検出された温度比ΔTに対応する補正係数KTを出力し、流量検出器42bによって検出された流量検出値Frdに出力された補正係数KTを乗じて、補正後流量検出値Frhを導出すると好適である。
図8は、流体機器42aの雰囲気温度TA、流体温度TFに対する第一温度T1、第二温度T2、温度比ΔTおよび補正係数KTの関係の一例を示す図である。まず、流量検出器42bの雰囲気温度TAが雰囲気温度TA1の場合を考える。流体(改質用原料)の流体温度TFは、流体温度TF1とする。このとき、第一温度T1は、雰囲気温度TA1と、発熱部42b1の発熱温度TH(固定値)とを加算した温度になり、第二温度T2は、流体温度TF1になる。このときの温度比ΔT1は、第一温度T1を第二温度T2で除した値になり、下記数2で示される。雰囲気温度TA1と流体温度TF1とは一致しているものとする。この場合、流量検出器42bの雰囲気温度TA1に起因する流量検出器42bの検出精度の低下は、生じない。よって、このときの補正係数KT1は、1とする。
(数2)
ΔT1=(TA1+TH)/TF1
次に、流量検出器42bの雰囲気温度TAが雰囲気温度TA2の場合を考える。流体(改質用原料)の流体温度TFは、流体温度TF1で変化しないものとする。このとき、第一温度T1は、雰囲気温度TA2と、発熱部42b1の発熱温度TH(固定値)とを加算した温度になり、第二温度T2は、流体温度TF1になる。このときの温度比ΔT2は、下記数3で示される。雰囲気温度TA2は、流体温度TF1と比べて高くなっている。この場合、流量検出器42bの雰囲気温度TA2に起因する流量検出器42bの検出精度の低下がみられ、このときの補正係数KTを補正係数KT2とする。補正係数KT2は、1より大きいものとする。
(数3)
ΔT2=(TA2+TH)/TF1
流量検出器42bの雰囲気温度TAが雰囲気温度TA3の場合も同様である。但し、このときの温度比ΔT3は、雰囲気温度TA2の場合の温度比ΔT2と比べて大きいものとする。この場合、流量検出器42bの雰囲気温度TA3に起因する流量検出器42bの検出精度の低下がさらに顕著になる。そのため、このときの補正係数KT3は、補正係数KT2と比べて大きくする。なお、補正係数KT2および補正係数KT3は、予め、シミュレーション、実機による検証などによって取得しておくと良い。例えば、別途、検証用の流量検出器を流体(改質用原料)の流路に設けて、比較検証を行うことができる。この場合、流量検出器42bによって検出された流量検出値Frdと、検証用の流量検出器によって検出された流量検出値(真値)との偏差から、検出精度の低下率を算出することができる。そして、検出精度の低下率の逆数を、補正係数KTとすることができる。
図9は、温度比ΔTと補正係数KTとの相関関係の一例を示す図である。曲線L21は、温度比ΔTと補正係数KTとの相関関係を示している。縦軸は、補正係数KTを示し、横軸は、温度比ΔTを示している。曲線L21は、上述した図8に示す温度比ΔTと補正係数KTとの関係を線形補間して生成することができる。温度比ΔTと補正係数KTとの相関関係(曲線L21)は、例えば、マップ、関係式などに変換され、図3に示す第二記憶装置60b2に記憶しておくことができる。温度比ΔTと補正係数KTとの相関関係は、燃料電池システム1の起動時に、第二記憶装置60b2から第一記憶装置60b1に読み出される。なお、曲線L21は、上述した図8に示す温度比ΔTと補正係数KTとの関係を二次以上の多項式で補間して生成することもできる。
図5に示すステップS14の後に、流量検出値補正部63は、第一温度T1を検出する(ステップS15)。また、流量検出値補正部63は、第二温度T2を検出する(ステップS16)。そして、流量検出値補正部63は、第一温度T1を第二温度T2で除して温度比ΔTを算出する。また、流量検出値補正部63は、図9に示す温度比ΔTと補正係数KTとの相関関係に基づいて、温度比ΔTに対応する補正係数KTを出力する(ステップS17)。流量検出値補正部63は、例えば、温度比ΔT2のときに補正係数KT2を出力する。流量検出値補正部63は、流量検出器42bによって検出された流量検出値Frdに、出力された補正係数KTを乗じて、補正後流量検出値Frhを導出する(ステップS18)。
次に、流量制御部61は、発熱部42b1を発熱させ、負荷32bを使用不可にして、オープン制御から負荷追従制御に移行させる(ステップS19)。そして、制御は、一旦、終了する。第二温度T2は、発熱部42b1を発熱させない状態で検出される。そのため、上述した制御が終了した場合、流体(改質用原料)の流量を検出するために、発熱部42b1を発熱させる必要がある。また、上述した制御では、流体(改質用原料)の流量を一定にするため、燃料電池24は、一定の所定電力P0で発電している。そのため、上述した制御が終了した場合、負荷32bを使用不可にして、オープン制御から負荷追従制御に移行させる。負荷追従制御は、外部負荷53の消費電力に追従して、燃料電池24の発電電力を設定する制御である。
本実施形態の燃料電池システム1によれば、温度比ΔTは、第一温度T1を第二温度T2で除して算出される。そして、流量検出値補正部63は、温度比ΔTと流量検出値Frdの補正量である補正係数KTとの相関関係に基づいて、検出された温度比ΔTに対応する補正係数KTを出力し、流量検出器42bによって検出された流量検出値Frdに出力された補正係数KTを乗じて、補正後流量検出値Frhを導出する。そのため、本実施形態の燃料電池システム1は、温度比ΔTと補正係数KTとの相関関係に基づいて、容易に補正後流量検出値Frhを導出することができる。
<その他>
本発明は、上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施することができる。例えば、流体は、燃料電池24に送出されるものであれば良く、改質用原料に限定されるものではない。流体は、例えば、酸化剤ガスである空気であっても良い。但し、空気は、改質用原料と比べて、熱量が少ない。また、本実施形態では、筐体11内の空気は、カソードエアブロワ44aによって直接、燃料電池24に送出される。そのため、流量検出器42bの雰囲気温度TAと、流体温度TFとの間に温度差が生じにくい。流量検出器42bの雰囲気温度TAと、流体温度TFとの間に温度差が生じる形態において、実施形態で既述した作用効果と同様の作用効果を得ることができる。